八上第二章勾股定理与实数

合集下载

八年级上册期中考试知识点归纳(北师大版)

八年级上册期中考试知识点归纳(北师大版)

八年级上册期中考试知识点归纳(北师大版)八年级上册期中考试知识点归纳(北师大版)北师大版《数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理(1)直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c2根据勾股定理可求AC,只要求出EC即可。

解:在Rt△ACB中,AC2=AB2-BC2=2.52-1.52=4,∴AC=2∵BD=0.5,∴CD=2222.2222.25在RtECD中,5∴EC=1.5(2)勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:尽限于直角三角形2、勾股定理的逆定理15.05.答:梯子顶端下滑了0.5米。

点拨:要考虑梯子的长度不变。

例5.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,算术平方根定义如果一个非负数某的平方等于a,即某2a那么这个非负数某就叫做a的算术平方根,记为a,算术平方根为非负数a0正数的平方根有2个,它们互为相反数平方根0的平方根是0负数没有平方根2.无理数的表示定义:如果一个数的平方等于a,即某2a,那么这个数就叫做a的平方根,记为a正数的立方根是正数立方根负数的立方根是负数0的立方根是0如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。

3、勾股数:满足a2b2c2的三个正整数a,b,c,称为勾股数。

常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)规律:(1),短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。

即当a为奇数且a<b时,如果b+c=a2那么a,b,c就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)(2)大于2的任意偶数,2n(n>1)都可构成一组勾股数分别是:2n,n2 -1,n2+1如:(6,8,10)(8,15,17)(10,24,26)4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度//斜边上的高线/周长/面积(3)判定三角形形状:a2+b2>c2锐角~,a2+b2=c2直角~,a2+b2<c2钝角~判定直角三角形a..找最长边;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状(4)构建直角三角形解题例1.已知直角三角形的两直角边之比为3:4,斜边为10。

北师大版数学八年级上册教材目录

北师大版数学八年级上册教材目录
八年级上册
第一章勾股定理
1.探索勾股定理
2.能得到直角三角形吗
3.蚂蚁怎样走最近
回顾与思考
复习题1.数怎么又不够用了
2.平方根
3.立方根
4.公园有多宽
5.用计算器开方
6.实数
回顾与思考
复习题
第三章图形的平移与旋转
1.生活中的平移
2.简单的平移作图
3.生活中的旋转
4.简单的旋转作图
回顾与思考
复习题
总复习
第六章一次函数
1.函数
2.一次函数
3.一次函数的图象
4.确定一次函数表达式
5.一次函数图象的应用
回顾与思考
复习题
第七章二元一次方程组
1.谁的包裹多
2.解二元一次方程组
3.鸡兔同笼
4.增收节支
5.里程碑上的数
6.二元一次方程与一次函数
回顾与思考
复习题
第八章数据的代表
1.平均数
2.中位数与众数
3.利用计算器求平均数
5.它们是怎样变过来的
6.简单的图案设计
回顾与思考
复习题
第四章四边形性质探索
1.平行四边形的性质
2.平行四边形的判别
3.菱形
4.矩形、正方形
5.梯形
6.探索多边形的内角和与外角和
7.平面图形的密铺
8.中心对称图形
回顾与思考
复习题
第五章位置的确定
1.确定位置
2.平面直角坐标系
3.变化的鱼
回顾与思考
复习题

数学八年级上册北师大

数学八年级上册北师大

数学八年级上册北师大一、勾股定理。

1. 定理内容。

- 直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么a^2+b^2=c^2。

2. 证明方法。

- 常见的证明方法有赵爽弦图证法。

赵爽通过构造四个全等的直角三角形(直角边分别为a、b,斜边为c),将它们拼成一个大正方形,中间是一个小正方形。

大正方形的面积可以表示为(a + b)^2,也可以表示为c^2+4×(1)/(2)ab,从而得出a^2+b^2=c^2。

3. 应用。

- 在实际问题中,如已知直角三角形的两边求第三边。

例如,已知一个直角三角形的一条直角边为3,斜边为5,根据勾股定理可求出另一条直角边为√(5^2)-3^{2}=√(25 - 9)=√(16) = 4。

- 解决一些几何图形中的边长计算问题,如在等腰三角形中,已知底边上的高和底边的一半,利用勾股定理求腰长等。

二、实数。

1. 平方根与算术平方根。

- 平方根:如果x^2=a,那么x叫做a的平方根,记作x=±√(a)(a≥slant0)。

例如,4的平方根是±2,因为(±2)^2=4。

- 算术平方根:正数a的正的平方根叫做a的算术平方根,记作√(a)。

0的算术平方根是0。

例如,4的算术平方根是2。

2. 立方根。

- 如果x^3=a,那么x叫做a的立方根,记作x=sqrt[3]{a}。

例如,8的立方根是2,因为2^3=8;-8的立方根是- 2,因为(-2)^3=-8。

3. 实数的分类。

- 实数包括有理数和无理数。

有理数是有限小数和无限循环小数,无理数是无限不循环小数,如√(2)、π等。

- 实数与数轴上的点一一对应,每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数。

三、位置与坐标。

1. 确定位置。

- 在平面内确定一个物体的位置需要两个数据。

例如,在电影院中确定一个座位的位置,需要知道排数和座位号这两个数据。

初二数学上册讲义

初二数学上册讲义

八年级上讲义第一章 勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

如果用,a b 和c 分别表示直角三角形的两直角边和斜边,那么222a b c +=。

第二章 实数一、 基本概念1. 实数:有理数与无理数统称为实数。

其中无限不循环小数叫做无理数。

2. 算术平方根:一般地,如果一个正数x 的平方等于a ,即2a x =,那么这个正数x 就叫做a ,读作“根号a ”。

特别的,0的算术平方根是0。

一个正数有两个平方根;0只有一个平方根,负数没有平方根。

立方根:. 一般地,如果一个正数x 的立方等于a ,即3a x =,那么这个正数x 就叫做a 的立方根,也叫做三次方根。

正数的立方根是正数,0的立方根是0,负数的立方根是负数。

0,0)a b ≥≥ 0,0)a b =≥> 二、中考题1.(08太原)在函数y =x 的取值范围是 。

2.(09太原)计算2的结果等于 .3.(091=的根是 x=2第三章 四边形性质探索一、 基本概念1. 平行四边形的性质:平行四边形的对边相等,平行四边形的对角相等;平行四边形的对角线互相平方。

平行四边形的判别:○1两条对角线互相平分的四边形是平行四边形 ○2一组对边平行且相等的四边形是平行四边形。

○3两组对边分别相等的四边形是平行四边形○4两组对边分别平行的四边形是平行四边形。

2.菱形菱形:一组邻边相等的平行四边形叫做菱形。

菱形性质:菱形的四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形的判别方法:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形。

3.矩形、正方形有一个内角是直角的平行四边形叫做矩形。

矩形的对角线相等,四个角都是直角。

矩形判别方法:对角线相等的平行四边形是矩形。

正方形:一组邻边相等的矩形叫做正方形。

正方形具有平行四边形、矩形、菱形的一切性质。

4.梯形梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。

八年级(上册)目录

八年级(上册)目录

八年级(上册)
第一章勾股定理
1 探索勾股定理
2 一定是直角三角形吗?
3 勾股定理的应用
第二章实数
1 认识无理数
2 平方根
3 立方根
4 估算
5 用计算器开方
6 实数
7 二次根式
第三章位置与坐标
1 确定位置
2 平面直角坐标系
3 轴对称与坐标变化
∙第四章一次函数
∙ 1 函数
∙ 2 一次函数与正比例函数
∙ 3 一次函数的图象
∙ 4 一次函数的应用
∙第五章二元一次方程组
∙ 1 认识二元一次方程组
∙ 2 求解二元一次方程组
∙ 3 应用二元一次方程组——鸡兔同笼
∙ 4 应用二元一次方程组——增收节支
∙ 5 应用二元一次方程组——里程碑上的数
∙ 6 二元一次方程与一次函数
∙7 用二元一次方程组确定一次函数表达式
∙*8 三元一次方程组

∙第六章数据的分析
∙ 1 平均数
∙ 2 中位数与众数
∙ 3 从统计图分析数据的集中趋势
∙ 4 数据的离散程度
∙第七章平行线的证明
∙ 1 为什么要证明
∙ 2 定义与命题
∙ 3 平行线的判定
∙ 4 平行线的性质
∙ 5 三角形内角和定理。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。

探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。

练习:让学生通过解决实际问题,巩固勾股定理的应用。

1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。

探究:让学生通过割补、折叠等方法,尝试证明勾股定理。

练习:让学生通过解决实际问题,加深对勾股定理证明的理解。

第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。

探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。

练习:让学生通过解决实际问题,加深对实数分类的理解。

2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。

探究:让学生通过解方程的方法,掌握一元一次方程的解法。

练习:让学生通过解决实际问题,巩固一元一次方程的应用。

第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。

探究:让学生通过实际操作,理解不等式的性质。

练习:让学生通过解决实际问题,加深对不等式概念的理解。

3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。

探究:让学生通过实际操作,掌握不等式的解法。

练习:让学生通过解决实际问题,巩固不等式的解法。

第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。

探究:让学生通过实际操作,理解函数的性质。

练习:让学生通过解决实际问题,加深对函数概念的理解。

4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。

探究:让学生通过实际操作,绘制一次函数的图象。

练习:让学生通过解决实际问题,巩固一次函数图象的应用。

第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。

八年级数学上册-知识点总结

八年级数学上册-知识点总结

《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

北师大版数学八年级上册全册复习ppt课件

北师大版数学八年级上册全册复习ppt课件
北师大版八年级上册 期末总复习典型题
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
第一章 勾股定理
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
各种表达形式:在 RБайду номын сангаас△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?

八年级数学辅导: 勾股定理与实数复习

八年级数学辅导:  勾股定理与实数复习

225400 A225400B256112C144400D勾股定理与实数复习【知识要点】1、勾股定理是:直角三角形两直角边的平方和等于斜边的平方,即:222c b a =+2、勾股定理逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=那么这个三角形是直角三角形。

3、一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

4、正数的立方根是正数,0的立方根是0,负数的立方根是负数。

【典型习题】1、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A. 2cm B. 3cm C. 4cm D. 5cm2、求下列各图字母中所代表的正方形的面积。

=A S =B S =C S =D S3、如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

5、在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米, 2.8米9.6米6、为丰富少年儿童的业余文化生活,某社区要在如图所示的AB 所在的直线上建一图书阅览室,该社区有两所学校,所在的位置分别在点C 和点D 处。

CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB=25km ,CA=15km,DB=10km,试问:阅览室E 建在距A 点多远时,才能使它到C 、D 两所学校的距离相等?7、如图所示,MN 表示一条铁路,A 、B 是两个城市,它们到铁路的所在直线MN 的垂直距离分别AA1=20km,BB1=40km ,A1B1=80km.现要在铁路A1,B1=80km 。

八年级数学上册知识点总结

八年级数学上册知识点总结

《数学》(八年级上册)知识点总结(北师大版)第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222a b c += 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222a b c +=,那么这个三角形是直角三角形。

3、勾股数:满足222a b c +=的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

人教版八年级上册数学知识点汇总

人教版八年级上册数学知识点汇总

第一章勾股定理1.勾股定理o直角三角形两直角边的平方和等于斜边的平方,即a2+b2=c2(其中a、b为直角边,c为斜边)。

o应用:用于直角三角形中的边长计算、证明等。

2.一定是直角三角形吗o如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形一定是直角三角形。

3.勾股定理的应用o应用于解决实际问题中的直角三角形边长计算。

第二章实数1.认识无理数o有理数:可以表示为有限小数或无限循环小数的数。

o无理数:无限不循环小数,如2、π等。

2.平方根o算数平方根:一个正数x的平方等于a,则x是a的算数平方根。

o平方根:一个数x的平方等于a,则x是a的平方根,正数有两个平方根,互为相反数;0的平方根是0本身;负数没有平方根。

3.立方根o立方根:一个数x的立方等于a,则x是a的立方根。

o每个数都有一个立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数。

4.估算与开方o估算:对复杂小数进行近似计算。

o用计算机开平方或立方。

5.实数o实数是有理数和无理数的统称,可以在数轴上表示。

第三章位置与坐标1.确定位置o在平面内,确定一个物体的位置一般需要两个数据(横坐标和纵坐标)。

2.平面直角坐标系o由两条互相垂直且有公共原点的数轴组成。

o通常地,两条数轴分别置于水平位置(x轴)与竖直位置(y轴),取向右与向上的方向分别为正方向。

3.轴对称与坐标变化o关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

第四章一次函数1.函数o如果在一个变化过程中有两个变量x和y,且对于x的每一个值,y都有唯一确定的值,则称y是x的函数。

2.一次函数o形式为y=kx+b(k、b为常数,k ≠ 0)的函数称为一次函数。

o当b = 0时,称为正比例函数y=kx。

3.一次函数的图像及性质o图像是一条直线,经过点(0, b)和(−kb,0)。

o当k > 0时,y随x的增大而增大;当k < 0时,y随x的增大而减小。

勾股定理和实数概念

勾股定理和实数概念

("是大于】的奇数,则n, 丁ir +1是勾般数,(2) n是大于2的偶数,则n, —-1,4 —+ 1是勾股数。

第一章勾股定理宜角三角形1.直角三角形的两个锐角互余;2.在直角三角形中,如果一个锐角为30°,那么它所对的直角边等于斜边的一半;3.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角是30°;4.直角三角形面积公式:5.直角三角形的两直角边的平方和等于斜边的平方;6.直角三角形斜边上的中线等于斜边的一半。

勾股定理如果直角三角形两直角边的长分别是尔b,斜边长是c,那么a2+i2=c2,即直角三角形的两直角边的平方和等于斜边的平方。

勾股定理的表现形式是______________ , a、b、c为线段长,而由J可想到以a为边长的正方形的________ ,故勾股定理的证明一定与图形的面积有关。

在我国古代,将直角三角形较短的直角边称为勾,较长的直角边称为股,斜边称为弦 1 •使用勾股定理:先判断是否是直角三角形,然后找出直角边和斜边,最后运用勾股定理2•勾股定理有以下应用:(1)己知直角三角形的两边,求第三边(2)已知直角三角形的一边,求另两边的关系3・可以利用等面积法求直角三角形斜边上的高线利用直角三角形的面积相等导出的等积式是一个很逐要的关系式,即AB • CD=BC • ACo4.运用勾股定理方法:(1)若图形缺少直角条件,则可以通过作垂线的方法构造直角三角形(2)若不能宜接用勾股定理求出宜角三角形的边,那么应引入未知数,建立方程求解5.勾股定理也间接反映了三个图形面积之间的关系6.若a、b、c是三角形的三边,当a、b、c 满足:a2+b2=c2时三角形为直角三角形;a+b2<c2时三角形为钝角三角形;a2+b2>c2时三角形为锐角三角形7•勾股定理的逆定理:在AABC中,若a2+b2=c2则ZACB=90。

8.满足a2 + b2=c2的三个正整数a、b、c,称为勾股数,常见的勾股数有:3, 4, 5; 5,12, 13; 8, 15, 17; 7, 24, 25; 20, 21, 29: 9, 40, 41'''这些勾股数的整数倍数仍然是勾股数拓展:构造勾股数的重要方法:第二章实数1.有理数1)由整数和分数组成2)包含有限小数和有限循环小数3)能表示成巴的形式(m、n为整数,nHO,且最大公约数为1)II2•无理数:无限不循环小数常见的无理数类型1)一般的无限不循环小数,如:1.41421356・・・2)看似循环而实际不循环的小数,如0. 1010010001・・•(相邻两个1之间0的个数逐次加1)。

导图系列(3-4):八年级数学(北师大版)各章知识点思维导图集合

导图系列(3-4):八年级数学(北师大版)各章知识点思维导图集合

第三章 图形的平移与旋转
第四章 因式分解 第五章 分式与分式方程
第六章 平行四边形
任它本身;负数的绝对值是它的相反数;0 的绝对值是 0。(反之,若 5 绝对值
性质 |a|=a,则 a≥0;若|a|=-a,则 a≤0。)
互为相反数的两个数的绝对值相等。
两个负数比较大小,绝对值大的反而小。
如果两个数只有符号不同,那么称其中一个数为另一个的相反数,也称这两个数互
性质 负数。
一般地,形如 的代数式叫做二次根式,a 叫做被开方数。
二次根 一般地,被开方数不含分母,也不含能开得尽方的因数或因式的二次根式叫最简二次根式。
11

·
( , ),
(,)
第三章 位置与坐标
序号 1
知识点 确定位置
第三章 位置与坐标
内容 在平面内,确定一个物体的位置一般需要 2 个数据。 在平面内,两条互相垂直且有公共原点的两条数轴构成平面直角坐标系。通常,两条 数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平 的数轴叫做 x 轴或横轴,垂直的数轴叫做 y 轴或纵轴,x 轴和 y 轴统称为坐标轴,它们的 公共原点 O 称为直角坐标系的原点。建立了平面直角坐标系,平面内的点就可以用一组有 序实数对(a,b)来表示了。 在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一 象限,其它三部分按逆时针方向依次叫做第二、三、四象限。坐标轴上的点不在任何一个 象限内。
性质 一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
算数 定义 一般地,如果一个正数 x 的平方等于 a, ,那么这个正数 x 就叫做 a 的算数平方根。 9
平方根 性质 一个正数的算数平方根是正数;0 的算数平方根是 0;负数没有算数平方根。

北师大版八年级数学上册全部知识点归纳

北师大版八年级数学上册全部知识点归纳

北师大版初二上册知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足的三222c b a =+个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类一是分类是:正数、负数、0; 另一种分类是:有理数、无理数将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

初二上册数学知识点总结

初二上册数学知识点总结

初二上册数学知识点总结数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。

下面小编为大家带来初二上册数学知识点总结,希望大家喜欢!第一章勾股定理1、探索勾股定理① 勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b 和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗① 如果三角形的三边长a b c 满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x 的平方等于a,即 x2=a,那么这个正数 x 就叫做a 的算数平方根② 特别地,我们规定:0 的算数平方根是 0③平方根:一般地,如果一个数x 的平方等于a,即 x2=a。

那么这个数x 就叫做a 的平方根,也叫做二次方根④一个正数有两个平方根;0 只有一个平方根,它是 0 本身;负数没有平方根⑤ 正数有两个平方根,一个是a 的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥ 开平方:求一个数a 的平方根的运算叫做开平方,a 叫做被开方数3、立方根①立方根:一般地,如果一个数x 的立方等于a,即 x3=a,那么这个数x 就叫做a 的立方根,也叫三次方根② 每个数都有一个立方根,正数的立方根是正数;0 立方根是 0;负数的立方根是负数。

③ 开立方:求一个数a 的立方根的运算叫做开立方,a 叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数① 实数:有理数和无理数的统称② 实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a 叫做被开方数②= (a≥0,b≥0),= (a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

八上数学勾股定理知识点

八上数学勾股定理知识点

勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。

勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2.勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:①有一个角为90°的三角形是直角三角形。

②有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:①确定最大边(不妨设为c);②若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:①直角三角形斜边上的中线等于斜边的一半②在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

③在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:①已知直角三角形的两边求第三边;②已知直角三角形的一边,求另两边的关系;③用于证明线段平方关系的问题; ④利用勾股定理,作出长为n 的线段。

二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。

(也称为二次方根),也就是说如果x 2=a ,那么x 就叫做a 的平方根。

2、平方根的性质:①一个正数有两个平方根,它们互为相反数;一个正数a 的正的平方根,记作“a ”,又叫做算术平方根,它负的平方根,记作“—a ”,这两个平方根合起来记作“±a ”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n


(3)继续观察4,3,5;6,8,10;8,15, 17;…可以发现各组的第一个数都是偶数,且 从4起也没有间断过,运用类似上述探索的方 法,直接用m(m为偶数且m>4)的代数式表示 他们的股和弦.
当 为偶数且 >4时,股、弦的代 数式分别为: 2 2 m m 1 1 2 2
4、在直角三角形中,已知两直角边的长 分别是5、12,则这个直角三角形斜 边上的高为_________。 5、若a为4的平方根的个数,b为16的算 术平方根的个数,c为算术平方根等 于其本身的数的个数,d为-2的平方 bc 根的个数,则 ( a d ) =______。 2005 2005 6、若 a 1 a b 0 ,则 a b =______________。
7、把直角三角形两直角边同时扩大到原 来的2倍,则其斜边扩大到原来的 ( ) A、2倍 B、4倍 C、3倍 D、以上都不对 8、在三边分别为下列长度的三角形中, 能围成直角三角形的是 ( ) A、1、1、2 B、4、7、5 C、5、12、13 D、5、5、5
9、下列语句中正确的是 ( ) A、9的平方根是-3 B、-5是-25的平方根 C、-12是144的平方根 D、的平方根是-3 10、下列各数中有平方根的数有 ( ) (1)0(2) (5)
你能得到哪些信息?
例4
一座建筑物发生了火灾,消防
车到达现场后,发现最多只能靠近 建筑物底端5米,消防车的云梯最大 升长为13米,则云梯可以达到该建 筑物的最大高度是 ( ) A.12米 B. 13米 C. 14米 D. 15米
例5
根据我国古代《周髀算经》记载, 公元1120年商高对周公说,将一根直尺折成一 个直角,两端连结得一个直角三角形,如果勾 是三、股是四,那么弦就等于五,后人概括为 “勾三、股四,弦五”. (1) 观察:3,4,5;5,12,13;7,24, 25;……,发现这些勾股数的勾都是奇数,且 1 从3起就没有间断过,计算 9 1 , 1 9 1 2 2 1 1 与 2 25 1 , 2 25 1 ,并根据你发现的规 律,分别写出能表示7,24,25的股和弦的算 式;
《勾股定理与平方根》
小结与复习
知识梳理
开平方 数 的 开 方 平方根的概 念、性质
算术平方根 的概念、性质 开立方 立方根的概念
立方根的性质
实 数
知识梳理
有理数 实 数 无理数
正有理数 0
负有理数
正无理数 负无理数
有限小数 或无限循 环小数
无限不循 环小数
实数与数轴上的点一一对应
例1
判断下列说法是否正确: ( ( ) )
m
m
基础演练
1、若一直角三角形三边的长是三个连续整 数,则这三边长为__________; 若一直角三角形三边的长是三个连续偶 数,则这三边长为___________; 2、在△ABC中,∠C=90o,若a:b=3:4, c=10,则a=_______,b=__________。 3、一个正数的两个平方根的和是_________。
(2)根据(1)的规律,用n(n为奇数且n≥3) 的代数式来表示所有这些勾股数的勾、股、弦, 合情猜想他们之间二种相等关系并对其中一种 猜想加以证明;
①当 n 为奇数且 n≥3,勾、股、弦的 ②在一组勾股数中,当最小边为奇数时,它的 ③弦—股=1 代数式分别为: 平方刚好是另外两个连续正整数的和。因此, 我们把它推广到一般,从而得出下面的公式: 1 2 1 2 n 1 n 1 2 2 (2n+1,2n2+2n,2n2+2n+1)(n为正整数)
拓展提高
x 12 x y 25 与z 10z 25
2
互为相反数,那么以x、y、z 为边的三角形是什么三角形?
⑴±6的平方根是36 ⑵1的平方根是1
பைடு நூலகம்
⑶-9的平方根是±3

(
(
)
)
36 6
★判断下列说法是否正确 ⑸4是16的平方根 ⑹-3是-32的平方根 ⑺ 7的平方根是± ( ( ( ) ) )
7
例2
口答:
■16的平方根是___________.
■ 4是_______平方根.
■一个数的平方等于它本身,这个
25 4 (3)
2
a
2
(8) 5(6)a 1(7)a 1 B、3个 C、6个
1 (4) 1 3
3
16
A、0个
D、8个
11、 256的算术平方根是 ( ) A、16 B、±16 C、4 D、±4 12、下列4种说法(1)如果a存在平方根,那么 a>0;(2)如果a没有平方根,那么a<0 (3)如果a的平方根不等于0,那么a不等于 0;(4)a>0时,a的平方根必大于0; 其中,正确的是 ( ) A、(1)、(2) B、(2)(3) C、(3)(4) D、(1)(4)
数是 ; ■一个数的平方根等于它本身, 这个数是 .
■化简 | 1 2 | | 2 3 | ____ .
■2.4万精确到 效数字.
位,有
个有
■1.8×104精确到 效数字.
位,有 个有
■陆地面积约是149480000km2, 如对这个数据保留3个有效数字表 示为_______.
例3
已知: 2 x 3 3 2 x 1 y.
相关文档
最新文档