电能质量标准常识(国际版)

合集下载

电能质量知识

电能质量知识

电能质量知识目录1 电能质量的定义 (2)2 电能质量的分类 (2)3 电能质量标准 (3)4 电能质量问题产生的原因 (5)5 产生谐波的主要设备 (5)6 谐波的危害 (6)7 谐波的治理效果 (8)8 谐波的治理方法 (8)9 电效洁能仕介绍............................................................................................错误!未定义书签。

(1) 产品构成与工作原理.........................................................................错误!未定义书签。

(2) 电效洁能仕的特点.............................................................................错误!未定义书签。

(3) 电效洁能仕相对同行产品的主要优点.............................................错误!未定义书签。

(4) 电效洁能仕的连接方式.....................................................................错误!未定义书签。

1 电能质量的定义(1)IEC(1000-2-2/4)标准:供电装置正常工作情况下不中断和干扰用户使用电力的物理特性。

(2)一种简洁的定义:电压或电流的幅值、频率、波形等参量距规定值的偏差。

电能质量知识Page 4 of 9 表3 注入公共连接点的谐波电流允许值表4 公用电网谐波电压(相电压)限值4 电能质量问题产生的原因表5 电能质量问题产生的原因5 产生谐波的主要设备表6 产生谐波的主要设备6 谐波的危害表7 谐波造成的主要危害表8 谐波对设备仪器的危害附:谐波对电度表的具体影响研究表明,感应式电度表对高次谐波有负的频率误差,而电子式电度表的频响特性一般较好。

电能质量标准介绍共34页文档

电能质量标准介绍共34页文档


30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——量标准介绍
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

电能质量国际标准 IEEE 1159-1999

电能质量国际标准 IEEE 1159-1999

IEEE Std 1159-1995 IEEE Recommended Practice for Monitoring Electric Power QualitySponsorIEEE Standards Coordinating Committee 22 onPower QualityApproved June 14, 1995IEEE Standards BoardAbstract: The monitoring of electric power quality of ac power systems, definitions of power quality terminology, impact of poor power quality on utility and customer equipment, and the measurement of electromagnetic phenomena are covered.Keywords: data interpretation, electric power quality, electromagnetic phenomena, monitoring, power quality definitionsIEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have expressed an interest in partici-pating in the development of the standard.Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, mar-ket, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and com-ments received from users of the standard. Every IEEE Standard is subjected to review at least every Þve years for revision or reafÞrmation. When a document is more than Þve years old and has not been reafÞrmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reßect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership afÞliation with IEEE. Suggestions for changes in docu-ments should be in the form of a proposed change of text, together with appropriate supporting comments.Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to speciÞc applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appro-priate responses. Since IEEE Standards represent a consensus of all concerned inter-ests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason IEEE and the members of its technical com-mittees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.Comments on standards and requests for interpretations should be addressed to:Secretary, IEEE Standards Board445 Hoes LaneP.O. Box 1331Piscataway, NJ 08855-1331USAIntroduction(This introduction is not part of IEEE Std 1159-1995, IEEE Recommended Practice for Monitoring Electric Power Quality.)This recommended practice was developed out of an increasing awareness of the difÞculty in comparing results obtained by researchers using different instruments when seeking to characterize the quality of low-voltage power systems. One of the initial goals was to promote more uniformity in the basic algorithms and data reduction methods applied by different instrument manufacturers. This proved difÞcult and was not achieved, given the free market principles under which manufacturers design and market their products. However, consensus was achieved on the contents of this recommended practice, which provides guidance to users of monitoring instruments so that some degree of comparisons might be possible.An important Þrst step was to compile a list of power quality related deÞnitions to ensure that contributing parties would at least speak the same language, and to provide instrument manufacturers with a common base for identifying power quality phenomena. From that starting point, a review of the objectives of moni-toring provides the necessary perspective, leading to a better understanding of the means of monitoringÑthe instruments. The operating principles and the application techniques of the monitoring instruments are described, together with the concerns about interpretation of the monitoring results. Supporting information is provided in a bibliography, and informative annexes address calibration issues.The Working Group on Monitoring Electric Power Quality, which undertook the development of this recom-mended practice, had the following membership:J. Charles Smith, Chair Gil Hensley, SecretaryLarry Ray, Technical EditorMark Andresen Thomas Key John RobertsVladi Basch Jack King Anthony St. JohnRoger Bergeron David Kreiss Marek SamotyjJohn Burnett Fran•ois Martzloff Ron SmithJohn Dalton Alex McEachern Bill StuntzAndrew Dettloff Bill Moncrief John SullivanDave GrifÞth Allen Morinec David VannoyThomas Gruzs Ram Mukherji Marek WaclawlakErich Gunther Richard Nailen Daniel WardMark Kempker David Pileggi Steve WhisenantHarry RauworthIn addition to the working group members, the following people contributed their knowledge and experience to this document:Ed Cantwell Christy Herig Tejindar SinghJohn Curlett Allan Ludbrook Maurice TetreaultHarshad MehtaiiiThe following persons were on the balloting committee:James J. Burke David Kreiss Jacob A. RoizDavid A. Dini Michael Z. Lowenstein Marek SamotyjW. Mack Grady Fran•ois D. Martzloff Ralph M. ShowersDavid P. Hartmann Stephen McCluer J. C. SmithMichael Higgins A. McEachern Robert L. SmithThomas S. Key W. A. Moncrief Daniel J. WardJoseph L. KoepÞnger P. Richman Charles H. WilliamsJohn M. RobertsWhen the IEEE Standards Board approved this standard on June 14, 1995, it had the following membership:E. G. ÒAlÓ Kiener, Chair Donald C. Loughry,Vice ChairAndrew G. Salem,SecretaryGilles A. Baril Richard J. Holleman Marco W. MigliaroClyde R. Camp Jim Isaak Mary Lou PadgettJoseph A. Cannatelli Ben C. Johnson John W. PopeStephen L. Diamond Sonny Kasturi Arthur K. ReillyHarold E. Epstein Lorraine C. Kevra Gary S. RobinsonDonald C. Fleckenstein Ivor N. Knight Ingo RuschJay Forster*Joseph L. KoepÞnger*Chee Kiow TanDonald N. Heirman D. N. ÒJimÓ Logothetis Leonard L. TrippL. Bruce McClung*Member EmeritusAlso included are the following nonvoting IEEE Standards Board liaisons:Satish K. AggarwalRichard B. EngelmanRobert E. HebnerChester C. TaylorRochelle L. SternIEEE Standards Project EditorivContentsCLAUSE PAGE 1.Overview (1)1.1Scope (1)1.2Purpose (2)2.References (2)3.Definitions (2)3.1Terms used in this recommended practice (2)3.2Avoided terms (7)3.3Abbreviations and acronyms (8)4.Power quality phenomena (9)4.1Introduction (9)4.2Electromagnetic compatibility (9)4.3General classification of phenomena (9)4.4Detailed descriptions of phenomena (11)5.Monitoring objectives (24)5.1Introduction (24)5.2Need for monitoring power quality (25)5.3Equipment tolerances and effects of disturbances on equipment (25)5.4Equipment types (25)5.5Effect on equipment by phenomena type (26)6.Measurement instruments (29)6.1Introduction (29)6.2AC voltage measurements (29)6.3AC current measurements (30)6.4Voltage and current considerations (30)6.5Monitoring instruments (31)6.6Instrument power (34)7.Application techniques (35)7.1Safety (35)7.2Monitoring location (38)7.3Equipment connection (41)7.4Monitoring thresholds (43)7.5Monitoring period (46)8.Interpreting power monitoring results (47)8.1Introduction (47)8.2Interpreting data summaries (48)8.3Critical data extraction (49)8.4Interpreting critical events (51)8.5Verifying data interpretation (59)vANNEXES PAGE Annex A Calibration and self testing (informative) (60)A.1Introduction (60)A.2Calibration issues (61)Annex B Bibliography (informative) (63)B.1Definitions and general (63)B.2Susceptibility and symptomsÑvoltage disturbances and harmonics (65)B.3Solutions (65)B.4Existing power quality standards (67)viIEEE Recommended Practice for Monitoring Electric Power Quality1. Overview1.1 ScopeThis recommended practice encompasses the monitoring of electric power quality of single-phase and polyphase ac power systems. As such, it includes consistent descriptions of electromagnetic phenomena occurring on power systems. The document also presents deÞnitions of nominal conditions and of deviations from these nominal conditions, which may originate within the source of supply or load equipment, or from interactions between the source and the load.Brief, generic descriptions of load susceptibility to deviations from nominal conditions are presented to identify which deviations may be of interest. Also, this document presents recommendations for measure-ment techniques, application techniques, and interpretation of monitoring results so that comparable results from monitoring surveys performed with different instruments can be correlated.While there is no implied limitation on the voltage rating of the power system being monitored, signal inputs to the instruments are limited to 1000 Vac rms or less. The frequency ratings of the ac power systems being monitored are in the range of 45Ð450 Hz.Although it is recognized that the instruments may also be used for monitoring dc supply systems or data transmission systems, details of application to these special cases are under consideration and are not included in the scope. It is also recognized that the instruments may perform monitoring functions for envi-ronmental conditions (temperature, humidity, high frequency electromagnetic radiation); however, the scope of this document is limited to conducted electrical parameters derived from voltage or current measure-ments, or both.Finally, the deÞnitions are solely intended to characterize common electromagnetic phenomena to facilitate communication between various sectors of the power quality community. The deÞnitions of electromagnetic phenomena summarized in table 2 are not intended to represent performance standards or equipment toler-ances. Suppliers of electricity may utilize different thresholds for voltage supply, for example, than the ±10% that deÞnes conditions of overvoltage or undervoltage in table 2. Further, sensitive equipment may mal-function due to electromagnetic phenomena not outside the thresholds of the table 2 criteria.1IEEEStd 1159-1995IEEE RECOMMENDED PRACTICE FOR 1.2 PurposeThe purpose of this recommended practice is to direct users in the proper monitoring and data interpretation of electromagnetic phenomena that cause power quality problems. It deÞnes power quality phenomena in order to facilitate communication within the power quality community. This document also forms the con-sensus opinion about safe and acceptable methods for monitoring electric power systems and interpreting the results. It further offers a tutorial on power system disturbances and their common causes.2. ReferencesThis recommended practice shall be used in conjunction with the following publications. When the follow-ing standards are superseded by an approved revision, the revision shall apply.IEC 1000-2-1 (1990), Electromagnetic Compatibility (EMC)ÑPart 2 Environment. Section 1: Description of the environmentÑelectromagnetic environment for low-frequency conducted disturbances and signaling in public power supply systems.1IEC 50(161)(1990), International Electrotechnical V ocabularyÑChapter 161: Electromagnetic Compatibility. IEEE Std 100-1992, IEEE Standard Dictionary of Electrical and Electronic Terms (ANSI).2IEEE Std 1100-1992, IEEE Recommended Practice for Powering and Grounding Sensitive Electronic Equipment (Emerald Book) (ANSI).3. DeÞnitionsThe purpose of this clause is to present concise deÞnitions of words that convey the basic concepts of power quality monitoring. These terms are listed below and are expanded in clause 4. The power quality commu-nity is also pervaded by terms that have no scientiÞc deÞnition. A partial listing of these words is included in 3.2; use of these terms in the power quality community is discouraged. Abbreviations and acronyms that are employed throughout this recommended practice are listed in 3.3.3.1 Terms used in this recommended practiceThe primary sources for terms used are IEEE Std 100-19923 indicated by (a), and IEC 50 (161)(1990) indi-cated by (b). Secondary sources are IEEE Std 1100-1992 indicated by (c), IEC-1000-2-1 (1990) indicated by (d) and UIE -DWG-3-92-G [B16]4. Some referenced deÞnitions have been adapted and modiÞed in order to apply to the context of this recommended practice.3.1.1 accuracy: The freedom from error of a measurement. Generally expressed (perhaps erroneously) as percent inaccuracy. Instrument accuracy is expressed in terms of its uncertaintyÑthe degree of deviation from a known value. An instrument with an uncertainty of 0.1% is 99.9% accurate. At higher accuracy lev-els, uncertainty is typically expressed in parts per million (ppm) rather than as a percentage.1IEC publications are available from IEC Sales Department, Case Postale 131, 3, rue de VarembŽ, CH-1211, Gen•ve 20, Switzerland/ Suisse. IEC publications are also available in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.2IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA.3Information on references can be found in clause 2.4The numbers in brackets correspond to those bibliographical items listed in annex B.2IEEE MONITORING ELECTRIC POWER QUALITY Std 1159-1995 3.1.2 accuracy ratio: The ratio of an instrumentÕs tolerable error to the uncertainty of the standard used to calibrate it.3.1.3 calibration: Any process used to verify the integrity of a measurement. The process involves compar-ing a measuring instrument to a well defined standard of greater accuracy (a calibrator) to detect any varia-tions from specified performance parameters, and making any needed compensations. The results are then recorded and filed to establish the integrity of the calibrated instrument.3.1.4 common mode voltage: A voltage that appears between current-carrying conductors and ground.b The noise voltage that appears equally and in phase from each current-carrying conductor to ground.c3.1.5 commercial power: Electrical power furnished by the electric power utility company.c3.1.6 coupling: Circuit element or elements, or network, that may be considered common to the input mesh and the output mesh and through which energy may be transferred from one to the other.a3.1.7 current transformer (CT): An instrument transformer intended to have its primary winding con-nected in series with the conductor carrying the current to be measured or controlled.a3.1.8 dip: See: sag.3.1.9 dropout: A loss of equipment operation (discrete data signals) due to noise, sag, or interruption.c3.1.10 dropout voltage: The voltage at which a device fails to operate.c3.1.11 electromagnetic compatibility: The ability of a device, equipment, or system to function satisfacto-rily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to any-thing in that environment.b3.1.12 electromagnetic disturbance: Any electromagnetic phenomena that may degrade the performance of a device, equipment, or system, or adversely affect living or inert matter.b3.1.13 electromagnetic environment: The totality of electromagnetic phenomena existing at a given location.b3.1.14 electromagnetic susceptibility: The inability of a device, equipment, or system to perform without degradation in the presence of an electromagnetic disturbance.NOTEÑSusceptibility is a lack of immunity.b3.1.15 equipment grounding conductor: The conductor used to connect the noncurrent-carrying parts of conduits, raceways, and equipment enclosures to the grounded conductor (neutral) and the grounding elec-trode at the service equipment (main panel) or secondary of a separately derived system (e.g., isolation transformer). See Section 100 in ANSI/NFPA 70-1993 [B2].3.1.16 failure mode: The effect by which failure is observed.a3.1.17 ßicker: Impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution fluctuates with time.b3.1.18 frequency deviation: An increase or decrease in the power frequency. The duration of a frequency deviation can be from several cycles to several hours.c Syn.: power frequency variation.3.1.19 fundamental (component): The component of an order 1 (50 or 60 Hz) of the Fourier series of a periodic quantity.b3IEEEStd 1159-1995IEEE RECOMMENDED PRACTICE FOR 3.1.20 ground: A conducting connection, whether intentional or accidental, by which an electric circuit or piece of equipment is connected to the earth, or to some conducting body of relatively large extent that serves in place of the earth.NOTEÑ It is used for establishing and maintaining the potential of the earth (or of the conducting body) or approxi-mately that potential, on conductors connected to it, and for conducting ground currents to and from earth (or the con-ducting body).a3.1.21 ground loop: In a radial grounding system, an undesired conducting path between two conductive bodies that are already connected to a common (single-point) ground.3.1.22 harmonic (component): A component of order greater than one of the Fourier series of a periodic quantity.b3.1.23 harmonic content: The quantity obtained by subtracting the fundamental component from an alter-nating quantity.a3.1.24 immunity (to a disturbance): The ability of a device, equipment, or system to perform without deg-radation in the presence of an electromagnetic disturbance.b3.1.25 impulse: A pulse that, for a given application, approximates a unit pulse.b When used in relation to the monitoring of power quality, it is preferred to use the term impulsive transient in place of impulse.3.1.26 impulsive transient: A sudden nonpower frequency change in the steady-state condition of voltage or current that is unidirectional in polarity (primarily either positive or negative).3.1.27 instantaneous: A time range from 0.5Ð30 cycles of the power frequency when used to quantify the duration of a short duration variation as a modifier.3.1.28 interharmonic (component): A frequency component of a periodic quantity that is not an integer multiple of the frequency at which the supply system is designed to operate operating (e.g., 50 Hz or 60 Hz).3.1.29 interruption, momentary (power quality monitoring): A type of short duration variation. The complete loss of voltage (< 0.1 pu) on one or more phase conductors for a time period between 0.5 cycles and 3 s.3.1.30 interruption, sustained (electric power systems): Any interruption not classified as a momentary interruption.3.1.31 interruption, temporary (power quality monitoring):A type of short duration variation. The com-plete loss of voltage (< 0.1 pu) on one or more phase conductors for a time period between 3 s and 1 min.3.1.32 isolated ground: An insulated equipment grounding conductor run in the same conduit or raceway as the supply conductors. This conductor may be insulated from the metallic raceway and all ground points throughout its length. It originates at an isolated ground-type receptacle or equipment input terminal block and terminates at the point where neutral and ground are bonded at the power source. See Section 250-74, Exception #4 and Exception in Section 250-75 in ANSI/NFPA 70-1993 [B2].3.1.33 isolation: Separation of one section of a system from undesired influences of other sections.c3.1.34 long duration voltage variation:See: voltage variation, long duration.3.1.35 momentary (power quality monitoring): A time range at the power frequency from 30 cycles to 3 s when used to quantify the duration of a short duration variation as a modifier.4IEEE MONITORING ELECTRIC POWER QUALITY Std 1159-1995 3.1.36 momentary interruption:See: interruption, momentary.3.1.37 noise: Unwanted electrical signals which produce undesirable effects in the circuits of the control systems in which they occur.a (For this document, control systems is intended to include sensitive electronic equipment in total or in part.)3.1.38 nominal voltage (Vn): A nominal value assigned to a circuit or system for the purpose of conve-niently designating its voltage class (as 120/208208/120, 480/277, 600).d3.1.39 nonlinear load: Steady-state electrical load that draws current discontinuously or whose impedance varies throughout the cycle of the input ac voltage waveform.c3.1.40 normal mode voltage: A voltage that appears between or among active circuit conductors, but not between the grounding conductor and the active circuit conductors.3.1.41 notch: A switching (or other) disturbance of the normal power voltage waveform, lasting less than 0.5 cycles, which is initially of opposite polarity than the waveform and is thus subtracted from the normal waveform in terms of the peak value of the disturbance voltage. This includes complete loss of voltage for up to 0.5 cycles [B13].3.1.42 oscillatory transient: A sudden, nonpower frequency change in the steady-state condition of voltage or current that includes both positive or negative polarity value.3.1.43 overvoltage: When used to describe a specific type of long duration variation, refers to a measured voltage having a value greater than the nominal voltage for a period of time greater than 1 min. Typical val-ues are 1.1Ð1.2 pu.3.1.44 phase shift: The displacement in time of one waveform relative to another of the same frequency and harmonic content.c3.1.45 potential transformer (PT): An instrument transformer intended to have its primary winding con-nected in shunt with a power-supply circuit, the voltage of which is to be measured or controlled. Syn.: volt-age transformer.a3.1.46 power disturbance: Any deviation from the nominal value (or from some selected thresholds based on load tolerance) of the input ac power characteristics.c3.1.47 power quality: The concept of powering and grounding sensitive equipment in a manner that is suit-able to the operation of that equipment.cNOTEÑWithin the industry, alternate definitions or interpretations of power quality have been used, reflecting different points of view. Therefore, this definition might not be exclusive, pending development of a broader consensus.3.1.48 precision: Freedom from random error.3.1.49 pulse: An abrupt variation of short duration of a physical an electrical quantity followed by a rapid return to the initial value.3.1.50 random error: Error that is not repeatable, i.e., noise or sensitivity to changing environmental factors. NOTEÑFor most measurements, the random error is small compared to the instrument tolerance.3.1.51 sag: A decrease to between 0.1 and 0.9 pu in rms voltage or current at the power frequency for dura-tions of 0.5 cycle to 1 min. Typical values are 0.1 to 0.9 pu.b See: dip.IEEEStd 1159-1995IEEE RECOMMENDED PRACTICE FOR NOTEÑTo give a numerical value to a sag, the recommended usage is Òa sag to 20%,Ó which means that the line volt-age is reduced down to 20% of the normal value, not reduced by 20%. Using the preposition ÒofÓ (as in Òa sag of 20%,Óor implied by Òa 20% sagÓ) is deprecated.3.1.52 shield: A conductive sheath (usually metallic) normally applied to instrumentation cables, over the insulation of a conductor or conductors, for the purpose of providing means to reduce coupling between the conductors so shielded and other conductors that may be susceptible to, or that may be generating unwanted electrostatic or electromagnetic fields (noise).c3.1.53 shielding: The use of a conducting and/or ferromagnetic barrier between a potentially disturbing noise source and sensitive circuitry. Shields are used to protect cables (data and power) and electronic cir-cuits. They may be in the form of metal barriers, enclosures, or wrappings around source circuits and receiv-ing circuits.c3.1.54 short duration voltage variation:See: voltage variation, short duration.3.1.55 slew rate: Rate of change of ac voltage, expressed in volts per second a quantity such as volts, fre-quency, or temperature.a3.1.56 sustained: When used to quantify the duration of a voltage interruption, refers to the time frame asso-ciated with a long duration variation (i.e., greater than 1 min).3.1.57 swell: An increase in rms voltage or current at the power frequency for durations from 0.5 cycles to 1 min. Typical values are 1.1Ð1.8 pu.3.1.58 systematic error: The portion of error that is repeatable, i.e., zero error, gain or scale error, and lin-earity error.3.1.59 temporary interruption:See: interruption, temporary.3.1.60 tolerance: The allowable variation from a nominal value.3.1.61 total harmonic distortion disturbance level: The level of a given electromagnetic disturbance caused by the superposition of the emission of all pieces of equipment in a given system.b The ratio of the rms of the harmonic content to the rms value of the fundamental quantity, expressed as a percent of the fun-damental [B13].a Syn.: distortion factor.3.1.62 traceability: Ability to compare a calibration device to a standard of even higher accuracy. That stan-dard is compared to another, until eventually a comparison is made to a national standards laboratory. This process is referred to as a chain of traceability.3.1.63 transient: Pertaining to or designating a phenomenon or a quantity that varies between two consecu-tive steady states during a time interval that is short compared to the time scale of interest. A transient can be a unidirectional impulse of either polarity or a damped oscillatory wave with the first peak occurring in either polarity.b3.1.64 undervoltage: A measured voltage having a value less than the nominal voltage for a period of time greater than 1 min when used to describe a specific type of long duration variation, refers to. Typical values are 0.8Ð0.9 pu.3.1.65 voltage change: A variation of the rms or peak value of a voltage between two consecutive levels sustained for definite but unspecified durations.d3.1.66 voltage dip:See: sag.IEEE MONITORING ELECTRIC POWER QUALITY Std 1159-1995 3.1.67 voltage distortion: Any deviation from the nominal sine wave form of the ac line voltage.3.1.68 voltage ßuctuation: A series of voltage changes or a cyclical variation of the voltage envelope.d3.1.69 voltage imbalance (unbalance), polyphase systems: The maximum deviation among the three phases from the average three-phase voltage divided by the average three-phase voltage. The ratio of the neg-ative or zero sequence component to the positive sequence component, usually expressed as a percentage.a3.1.70 voltage interruption: Disappearance of the supply voltage on one or more phases. Usually qualified by an additional term indicating the duration of the interruption (e.g., momentary, temporary, or sustained).3.1.71 voltage regulation: The degree of control or stability of the rms voltage at the load. Often specified in relation to other parameters, such as input-voltage changes, load changes, or temperature changes.c3.1.72 voltage variation, long duration: A variation of the rms value of the voltage from nominal voltage for a time greater than 1 min. Usually further described using a modifier indicating the magnitude of a volt-age variation (e.g., undervoltage, overvoltage, or voltage interruption).3.1.73 voltage variation, short duration: A variation of the rms value of the voltage from nominal voltage for a time greater than 0.5 cycles of the power frequency but less than or equal to 1 minute. Usually further described using a modifier indicating the magnitude of a voltage variation (e.g. sag, swell, or interruption) and possibly a modifier indicating the duration of the variation (e.g., instantaneous, momentary, or temporary).3.1.74 waveform distortion: A steady-state deviation from an ideal sine wave of power frequency princi-pally characterized by the spectral content of the deviation [B13].3.2 Avoided termsThe following terms have a varied history of usage, and some may have speciÞc deÞnitions for other appli-cations. It is an objective of this recommended practice that the following ambiguous words not be used in relation to the measurement of power quality phenomena:blackout frequency shiftblink glitchbrownout (see 4.4.3.2)interruption (when not further qualiÞed)bump outage (see 4.4.3.3)clean ground power surgeclean power raw powercomputer grade ground raw utility powercounterpoise ground shared grounddedicated ground spikedirty ground subcycle outagesdirty power surge (see 4.4.1)wink。

(完整版)电能质量指标标准

(完整版)电能质量指标标准

电能质量指标标准1.电能质量指标定义电能质量包括四个方面的相关术语和概念:电压质量(VOLTAGEQUALITY)即用实际电压与额定电压间的偏差(偏差含电压幅值,波形和相位的偏差),反映供电企业向用户供给的电力是否合格;电流质量(CURRENTQUALITY)即对用户取用电流提出恒定频率、正弦波形要求,并使电流波形与供电电压同相位,以保证系统以高功率因数运行,这个定义有助于电网电能质量的改善,并降低网损;供电质量(QUALITYOFSUPPL Y)包含技术含义和非技术含义两个方面:技术含义有电压质量和供电可靠性;非技术含义是指服务质量(QUALITYOFSERVICE)包括供电企业对用户投诉的反应速度和电力价格等;用电质量(QUALITYOFCONSUMPTION)包括电流质量和非技术含义,如用户是否按时、如数缴纳电费等,它反映供用双方相互作用与影响用电方的责任和义务。

一般地,电能质量的定义:导致用户设备故障或不能正常工作的电压、电流或频率偏差。

这个定义简单明晰,概括了电能质量问题的成因和后果。

随着基于计算机系统的控制设备与电子装置的广泛应用,电力系统中用电负荷结构发生改变,即变频装置、电弧炉炼钢、电气化铁道等非线性、冲击性负荷造成对电能质量的污染与破坏,而电能作为商品,人们会对电能质量提出更高的要求,电能质量已逐渐成为全社会共同关注的问题,有关电能质量的问题已经成为电工领域的前沿性课题,有必要对其相关指标与改善措施作讨论和分析。

2.电能质量指标电能质量指标是电能质量各个方面的具体描述,不同的指标有不同的定义,参考IEC标准、从电磁现象及相互作用和影响角度考虑给出的引起干扰的基本现象分类如下:(1)低频传导现象:谐波、间谐波、电压波动、电压与电流不平衡,电压暂降与短时断电,电网频率变化,低频感应电压,交流网络中的直流;(2)低频辐射现象:磁场、电场;(3)高频传导现象:感应连续波电压与电流,单向瞬态、振荡瞬态;(4)高频辐射现象:磁场、电场、电磁场(连续波、瞬态);(5)静电放电现象。

烟草行业电能质量知识点

烟草行业电能质量知识点

国际电工委员会IEC(1000-2—2/4)标准对电能质量定义:电能质量是指供电装置在正常工作情况下不中断和干扰用户使用电力的物理特性。

电能质量现象包括稳态和非稳态两种,其中稳态电能质量现象包括电压偏差、频率偏差、谐波、三相不平衡度等;非稳态电能质量现象包括电压暂升、暂降、短时电压中断、电压波动与闪变等。

衡量电能质量的主要指标有:(1)电压偏差:是电压下跌(电压跌落)和电压上升(电压隆起)的总称,其数学表达式为:电压偏差= (实际电压—系统标称电压)/系统标称电压*100%。

(2)频率偏差:是系统频率的实际值和标称值(50Hz)之差,对频率质量的要求全网相同,不因用户而异,各国对于该项偏差标准都有相关规定.(3)电压三相不平衡:表现为电压的最大偏移与三相电压的平均值超过规定的标准。

(4)谐波和间谐波:含有基波整数倍频率的正弦电压或者电流称为谐波。

含有基波非整数倍频率的正弦电压或者电流称为间谐波,小于基波频率的分数次谐波也属于间谐波。

(5)电压波动和闪变:电压波动是指在包络线内的电压的有规则变动,或者是幅值通常不超出0.9~1.1 倍电压范围的一系列电压随机变化. 闪变则是指电压波动对照明灯的视觉影响。

谐波抑制主要采用无源滤波装置和有源电力滤波器,而无源滤波装置有很大的局限性,因此目前国内对有源电力滤波器的研究十分活跃,技术上已经相当成熟,但仍处于试验阶段,且成本较高。

有关有源电力滤波器的研究主要集中在并联型、混合型,也开始研究串联型。

研究最成熟的是并联型,而且主要以理论研究和实验研究为主.理论上涉及到了功率理论的定义、各种谐波电流的检测方法、有源电力滤波器的稳态和动态特性研究等。

无功补偿技术的发展经历了从同步调相机-开关投切固定电容器—静止无功补偿器(SVC) —静止无功发生器(SVG)的过程. 同步调相机是最早采用的一种无功补偿设备。

它实质上是一种不带机械负载的同步电动机。

由于同步调相机属于旋转设备,损耗、噪声都很大,并且运行维护复杂。

iec电能质量标准

iec电能质量标准

iec电能质量标准IEC电能质量标准。

电能质量是指电能供应系统能够满足用户对电能的要求,不会对用户的设备和系统造成不利影响。

为了确保电能质量达到一定的标准,国际电工委员会(IEC)制定了一系列的电能质量标准,以便对电能质量进行评估和监测。

IEC 61000系列标准是电能质量标准的核心内容,其中包括了对电能质量各种方面的要求和测试方法。

这些标准涵盖了电能质量的多个方面,包括电压波动、电压暂降、电压谐波、电磁兼容性等。

通过这些标准,可以对电能质量进行全面的评估,确保电能供应系统的稳定性和可靠性。

首先,IEC 61000-2-2标准规定了电压波动和闪烁的测量方法和限值。

电压波动是指电压在短时间内的大幅度变化,而闪烁则是由于电压波动引起的光源明暗变化。

这些现象会对用户的视觉和生产设备造成影响,因此需要对其进行监测和评估。

其次,IEC 61000-2-4标准则是针对电压暂降的要求和测试方法。

电压暂降是指电压在短时间内的瞬时下降,可能导致设备的故障或停机。

通过该标准的要求和测试方法,可以对电压暂降进行评估,并采取相应的措施来减少其对设备的影响。

此外,IEC 61000-3-2和IEC 61000-3-4标准分别规定了电能质量中的谐波要求和测试方法。

谐波是指在电力系统中频率是基波整数倍的波动,会对设备和系统的正常运行产生影响。

这两个标准通过对谐波的要求和测试方法,确保了电能质量的稳定性和可靠性。

最后,IEC 61000-4系列标准是针对电磁兼容性的要求和测试方法。

电磁兼容性是指电气设备在电磁环境中能够正常工作而不对周围的其他设备和系统产生不利影响。

通过这些标准,可以对电磁兼容性进行评估,确保设备在电磁环境中的稳定性和可靠性。

总之,IEC电能质量标准为电能供应系统的稳定性和可靠性提供了重要的保障。

通过对电压波动、电压暂降、谐波、电磁兼容性等方面的要求和测试方法,可以全面评估电能质量,确保电能供应系统满足用户的要求,不会对设备和系统造成不利影响。

电能质量国标

电能质量国标

电网电能质量标准随着国民经济和科学技术的蓬勃发展,冶金、化学等现代化大工业和电气化铁路的发展,电网负荷加大,电力系统中的非线性负荷(硅整流设备、电解设备、电力机车)及冲击性、波动性负荷(电弧炉、轧钢机、电力机车运行)使得电网发生波形畸变(谐波)、电压波动、闪变、三相不平衡,非对称性(负序)和负荷波动性日趋严重。

电能质量的下降严重地影响了供用电设备的安全、经济运行,降低了人民的生活质量。

所以在世界各国都十分重视电能质量的管理。

衡量电能质量的主要指标是电网频率和电压质量。

频率质量指标为频率允许偏差;电压质量指标包括允许电压偏差、允许波形畸变率(谐波)、三相电压允许不平衡度以及允许电压波动和闪变。

国家技术监督局已公布了上述电能质量的五个国家标准。

我国《电力法》明确规定"供电企业应当保证供给用户的供电质量符合国家标准,对公用供电设施引起的供电质量问题,应当及时处理",在《供电营业规则》中也明确规定用户的非线性负荷、冲击负荷、波动负荷、非对称负荷对供电质量产生影响或对安全运行构成干扰和妨碍时,用户必须采取措施予以消除,如不采取措施或采取措施不力,达不到国家标准,供电企业可中止对其供电。

在市场经济条件下,供电企业有依法向用户提供质量合格电能产品的责任,用户也有依法用电,不污染电网的义务。

因此如何加强电能质量管理,提高电能质量,是市场经济条件下,电网建设管理中必须认真探讨的重要课题。

本文主要介绍电能质量的具体指标。

1.电网频率我国电力系统的标称频率为50Hz ,GB/T15945-1995《电能质量一电力系统频率允许偏差》中规定:电力系统正常频率偏差允许值为±0.2Hz,当系统容量较小时,偏差值可放宽到±0.5Hz,标准中没有说明系统容量大小的界限。

在《全国供用电规则》中规定"供电局供电频率的允许偏差:电网容量在300万千瓦及以上者为±0.2HZ;电网容量在300万千瓦以下者,为±0.5HZ。

电能质量现用国标介绍

电能质量现用国标介绍
负序分量 negative-sequence component :将不平衡的三相系统的电量按对称分量法分解后其负序对称系统中的分量。
零序分量 zero-sequence component:将不平衡的三相系统的电量按对称分量法分解后其零序对称系统中的分量。
2.6 GB/T 15543-2008 电能质量 三相电压不平衡
2.6 GB/T 15543-2008 电能质量 三相电压允许不平衡度
电网正常运行时,负序电压不平衡度不超过2%。短时不得超过4%;
电力系统公共连接点电压不平衡限值为:
01
根据连接点的负荷状况以及邻近发电机、几点保护和自动装置安全运行要求,该允许值可作适当变动,但必须满足1.的规定。 电压不平衡度限值 短时temporary:用于量化短时间变化持续时间的修饰词,指时间范围为3s~1min。
2.3 GB/T 14549-1993 电能质量 公用电网谐波
术语和定义
基波分量 fundamental component:对周期性交流量进行傅里叶级数分级,得到的频率与工频相同的分量。 间谐波分量 interharmonic component:对周期性交流量进行傅里叶级数分级,得到的频率不等于基波频率整数倍的分量。 间谐波次数 interharmonic order:ih 间谐波频率与基波的比值。 间谐波含有率 interharmonic ratio ;IHR 周期性交流量中含有的第ih次间谐波分量的方均根值与基波分量的方均根之比。 第 ih 次谐波电压含有率以IHRUih 表示第h 次谐波电流含有率以HRIh 表示
频率合格率 frequency qualification rate 实际运行频率偏差在限值范围内累计运行时间与对应的总运行统计时间的百分比。

电能质量标准

电能质量标准
确保电力系统和用电设备的正常运行。
瞬态过电压
总结词
瞬态过电压是指短时间内电压急剧上升或下降的情况 ,通常是由雷电、开关操作等因素引起的。
详细描述
瞬态过电压会对电力设备和用电设备造成不利影响, 如造成绝缘损坏、影响设备寿命等。电能质量标准对 瞬态过电压的大小和持续时间也做出了相应规定,以 确保电力系统和用电设备的正常运行。
01
02
Q/GDW 1358-2013:电能质量监测系统运行管理规范
Q/GDW 1357-2013:电能质量监测终端技术规范
04
电能质量标准的具体内容
电压偏差
总结词
电压偏差是电能质量的重要指标之一,指实际电压偏离额定电压的程度。
详细描述
电压偏差的大小取决于电力系统的运行方式和负荷电流的变化。长时间或频繁的电压偏差会对电力设 备和用电设备产生不利影响,如降低设备寿命、增加维护成本、影响生产过程等。因此,电能质量标 准对电压偏差的范围做出了明确规定。
详细描述
电压波动和闪变会对敏感设备和电子设备产 生不利影响,如造成照明设备闪烁、影响通 信质量等。电能质量标准对电压波动和闪变 的程度也做出了相应规定,以确保电力系统 和用电设备的正常运行。
三相不平衡
总结词
三相不平衡是指三相电流或电压幅值不一致 的情况,通常是由不平衡负荷或故障引起的 。
详细描述
三相不平衡会导致电动机过载、发热、振动 和噪声,同时还会对电力系统产生不利影响 ,如引起电压波动、谐波等。电能质量标准 对三相不平衡的程度也做出了相应规定,以
总结词
谐波是指电流或电压波形发生畸变的程度,通常是由非线性负荷引起的。
详细描述
谐波的存在会导致电力系统中的元件过载、发热、振动和噪声,同时还会对电 子设备产生干扰。因此,电能质量标准对谐波的含量水平做出了明确规定,以 确保电力系统和用电设备的正常运行。

电能质量知识点总结

电能质量知识点总结

电能质量知识点总结一、概述随着电力系统的发展,电能质量问题变得越来越重要。

电能质量影响着电力系统的安全稳定运行,同时也会给用户带来不便和损失。

因此,对电能质量的认识和管理变得至关重要。

电能质量指的是在电能传输和使用过程中,电能所具有的适宜的电压、电流、频率等电参数以及适宜的波形和适宜的电磁环境。

在电能质量定义中,适宜是关键词,它表明电能质量没有一个固定的标准,而是要根据不同的应用需求来确定。

电能质量的评估标准主要包括了电压、电流、频率、谐波、电磁兼容等参数。

电能质量问题主要表现为电压波动、谐波、电压暂降和电磁干扰等。

这些问题可能导致设备损坏、产生误差、影响工作效率等负面影响。

因此,对于电能质量的管理变得至关重要。

二、电能质量问题1. 电压波动电压波动是指电压在短时间内出现快速变化,包括瞬时电压波动和持续电压波动。

瞬时电压波动是电压在0.5周周期内的变化,持续时间不超过1分钟;持续电压波动是电压在0.5周周期以上的变化,持续时间可以超过1分钟。

电压波动会对设备的正常运行产生不利影响,特别是对需要稳定电压的设备,如计算机、数控设备等。

因此,对于电压波动问题需要引起足够的重视。

2. 谐波谐波是指在电力系统中存在的一种非整数倍频率的电压或电流成分。

谐波主要来源于非线性负载,如变频器、整流器等设备。

谐波会导致电网和设备的运行异常,包括设备损坏、电能浪费等问题。

因此,对谐波的控制也是电能质量管理的重点之一。

3. 电压暂降电压暂降是指电网中瞬时电压下降的现象,主要来源于短路、开关动作等原因。

电压暂降可能导致设备的跳闸、保护动作等问题,因此也是一个需要关注的电能质量问题。

4. 电磁干扰电磁干扰是指电能系统中出现的对其它电子设备或通信系统产生干扰的现象。

电磁干扰主要来源于电能系统中的电磁场辐射、谐波以及继电保护动作产生的暂态过程等。

电磁干扰会对周围的设备产生不利影响,因此也需要进行控制和管理。

三、电能质量的评价电能质量的评价需要基于一定的测量和分析。

电能质量测量评估常识

电能质量测量评估常识

电能质量测量评估常识在如今这个电器设备满世界跑、电网像蜘蛛网一样错综复杂的时代,电能质量那可是个实打实的关键事儿,就跟人体的血液健康一样重要,稍有差池,设备“闹脾气”不说,整个生产、生活都得跟着乱套。

电能质量测量评估,说白了,就是给电能做个体检,瞅瞅它到底合不合格、健不健康,这里头藏着不少门道,咱今儿个就唠唠这些常识。

先得知道电能质量都看啥指标。

电压可是重中之重,它就像是电路里的“气压”,稳不稳直接决定设备能不能正常运转。

额定电压220V 的灯泡,电压一高,“啪”,灯丝瞬间烧断,报废了;电压低了呢,昏昏暗暗,跟打瞌睡似的,亮度大打折扣。

电压偏差得控制在合理范围,工业生产线上,高精度机床对电压波动敏感得很,稍微晃悠一下,加工精度就“跑偏”了,做出来的零件全成次品,这损失可海了去了。

频率也不能小瞧。

电网频率全国统一,50Hz 雷打不动,它如同心脏跳动的节律,乱了套,电机设备立马“晕头转向”。

家里的风扇,遇上频率异常,转速忽快忽慢,嗡嗡作响,吵得人头疼;工厂的大型异步电机,频率不稳时,转矩跟着“抽风”,机器剧烈抖动,搞不好还会引发机械故障,停工检修,费时费力又费钱。

谐波也是电能质量的“捣蛋鬼”。

电网本该输送纯净的正弦交流电,可有些非线性负载,像节能灯里的电子镇流器、电焊机啥的,偷偷往里头塞“杂质”,搅和出谐波。

这谐波就跟河道里的乱流、漩涡似的,看着不起眼,破坏力惊人。

它让线路发热,电能白白损耗在路上;还干扰通信信号,电话里噼里啪啦全是杂音,网络卡得要死要活,数据传输跟蜗牛爬一样。

电能质量测量,得靠专业仪器出马。

示波器就像电能的“显微镜”,把电信号波形放大、定格,电压起伏、频率波动一目了然。

频谱分析仪呢,专揪谐波的“小尾巴”,频谱图一亮,谐波含量、频次全暴露,跟警察抓小偷似的,一个都别想跑。

还有电能质量分析仪,堪称“全能体检医生”,电压、电流、功率因数、谐波一股脑儿检测,数据详细得很,专业人员瞅一眼,电能哪儿有毛病心里门儿清。

电能质量标准常识(国际版)

电能质量标准常识(国际版)

导致用户电力设备故障或误操作的电压电流或频率的静态偏差和动态扰动都统称为电能质量问题。

随着国民经济的发展和人民生活的提高,对电能质量的要求不断提高,对电能质量标准的要求也在不断提高。

那么,电能质量国际标准都有什么呢?下面让我们来看一看吧!IEC及相关技术委员会国际上的三大标准化组织:国际标准化组织(ISO),非政府组织;国际电工委员会(IEC),非政府组织;国际电信联盟(ITU),联合国政府间机构。

IEC成立于1906年,其宗旨是促进电工、电子领域的标准化和国际合作。

我国于1957年加入IEC,并于1980年被选为执行委员国,2011年起是常任理事国。

IEC制定标准的任务是由技术委员会(TC)或分技术委员会(SC)来完成,目前IEC约有125个TC和55个SC。

IEC现行标准5100多个,已被世界各国普遍采用。

IEC及相关技术委员会为了统一各国电气设备或系统的电磁环境,IEC于1973年建立了电磁兼容标准化技术委员会(IEC/TC77)。

IEC/TC77下设三个分技术委员会IEC/SC77A(低频现象,9kHz及以下);IEC/SC77B(高频现象,高于9kHz);IEC/SC77C(瞬时高能现象)。

IEC/TC77的工作成果以IEC61000系列电磁兼容(EMC)标准文件出版,该系列标准,目前包括六大部分(总则、环境、限值、试验与测量、安装与抑制、通用标准)IEC及相关技术委员会IEC出版了大量和电能质量相关的EMC标准文件,其中相当部分已被等同采用为国家标准文件。

应注意的是,EMC水平是为了协调目的而定出的一个参考值,有了这一参考值,便可以采用适当的方法和裕度,确定干扰源发射限值,以及电气设备抗扰限值。

不能把EMC水平完全等同于电能质量的限值。

电能质量标准是针对“电能”是一种产品,规定其考核点上各种指标限值,作为电网运行和供用电合同中相关条款的依据。

两者既有密切联系,又有所区别。

IEC的EMC标准是国际标准,而电能质量标准则不然,各国有所区别。

电能质量——精选推荐

电能质量——精选推荐

电解铝对电能质量的要求一、电能质量定义:IEEE: 国际电力电子工程师协会IEEE对电能质量的定义是:“合格电能质量的概念指给敏感设备提供的电力和设置的接地系统是均适合于该设备正常工作的”,并已正式采用了“Power quality'’(电能质量)这一术语。

这提醒我们,在许多情况下,接地系统对电能质量的确存在很大的影响,而过去并没有引起足够的重视。

但这个定义的缺点是不够直接和简明。

IEC: 国际电工委员会IEC没有采用“Power quality'’这一术语,而是提出使用“EMC'’(电磁兼容)的概念,它对电磁兼容的定义是:“系统或设备在所处的电磁环境中能正常工作,同时不对其它系统和设备造成干扰”。

指出和强调设备与设备之间、电源与设备之间的相互作用和影响,并确定了谐波电压的兼容性水平。

EMC采用“排放”反映电流质量问题,表示设备产生的电磁污染;采用“抗扰”反映电压质量问题,表示设备免除电磁污染的能力。

IEC以此为基础制定了一系列相关的电磁兼容性技术报告和文件。

由于电磁兼容的技术术语与电能质量术语有很大的重叠性,包括了许多同义词,同时EMC提出的计算电气化铁路牵引站注入电网谐波电流允许值的原则和方法,在现场应用中与电网运行的实际情况并不完全吻合,因而也受到一些非议。

二、我国电能质量标准我过电能质量标准主要有六个,即:《电能质量——公用电网谐波》 GB/T 14549——93;《电能质量——供电电压允许偏差》 GB 12325——90;《电能质量——电压允许波动和闪变》 GB 12326——2000;《电能质量——三相电压允许不平衡度》 GB/T 15543——95;《电能质量——电力系统频率允许偏差》 GB 15945——95;《电能质量——暂时过电压和瞬态过电压》 GB/T 18481——2001;根据我国电能质量标准,主要从以下几个方面对电能质量进行了分析:1、供电电压允许偏差供电电压允许偏差是电能质量的一项基本指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导致用户电力设备故障或误操作的电压电流或频率的静态偏差和动态扰动都统称为电能质量问题。

随着国民经济的发展和人民生活的提高,对电能质量的要求不断提高,对电能质量标准的要求也在不断提高。

那么,电能质量国际标准都有什么呢?下面让我们来看一看吧!
IEC及相关技术委员会
国际上的三大标准化组织:
国际标准化组织(ISO),非政府组织;
国际电工委员会(IEC),非政府组织;
国际电信联盟(ITU),联合国政府间机构。

IEC成立于1906年,其宗旨是促进电工、电子领域的标准化和国际合作。

我国于1957年加入IEC,并于1980年被选为执行委员国,2011年起是常任理事国。

IEC制定标准的任务是由技术委员会(TC)或分技术委员会(SC)来完成,目前IEC约有125个TC和55个SC。

IEC现行标准5100多个,已被世界各国普遍采用。

IEC及相关技术委员会
为了统一各国电气设备或系统的电磁环境,IEC于1973年建立了电磁兼容标准化技术委员会(IEC/TC77)。

IEC/TC77下设三个分技术委员会
IEC/SC77A(低频现象,9kHz及以下);
IEC/SC77B(高频现象,高于9kHz);
IEC/SC77C(瞬时高能现象)。

IEC/TC77的工作成果以IEC61000系列电磁兼容(EMC)标准文件出版,该系列标准,目前包括六大部分(总则、环境、限值、试验与测量、安装与抑制、通用标准)
IEC及相关技术委员会
IEC出版了大量和电能质量相关的EMC标准文件,其中相当部分已被等同采用为国家标准文件。

应注意的是,EMC水平是为了协调目的而定出的一个参考值,有了这一参考值,便可以采用适当的方法和裕度,确定干扰源发射限值,以及电气设备抗扰限值。

不能把EMC水平完全等同于电能质量的限值。

电能质量标准是针对“电能”是一种产品,规定其考核点上各种指标限值,作为电网运行和供用电合同中相关条款的依据。

两者既有密切联系,又有所区别。

IEC的EMC标准是国际标准,而电能质量标准则不然,各国有所区别。

标准限值的协调
IEC及相关技术委员会
IEC/TC77是专注于EMC的标准化,主要是针对电气设备的发射水平与抗扰水平以及电气产品质量认证制定的。

为适应电网的发展和电力市场化改革的需要,从2003年开始,IEC/TC8工作范围由原来“电压、电流等级和频率标准化”扩展到电能质量领域,即“电能供应系统范围”(SystemAspectsofElectricalEnergySupply),其发布的标准框架中包括:术语、电力系统可靠性、连接规程、运行、电网职责、计量、通信、电能供应的特性(包括电压、电流、频率标称值及其变动范围,供电的连续性,电压暂降、过电压/欠电压,电压不平衡,电压波动以及谐波和间谐波等)。

2008年6月发布的“电特性的标准化”技术报告,已等同采用为国标指导性技术文件(GB/Z26854—2011
IEC及相关技术委员会
国家电网公司承担了“高压直流输电技术”(IEC/TC115)和“智能电网用户接口项目”(IEC/PC118)两个技术委员会秘书处工作。

为加强新能源并网技术国际标准化工作,我国已向IEC提出申请成立“可再生能源并网技术
委员会”。

IEC的电能质量标准
IEC62586的检测方法主要依据IEC61000-4-30(Powerqualitymeasurementmethods)。

IEC61000-4-30用于测量基于50HZ和60HZ供电系统的电能质量参数,主要包括:
IEC的电能质量标准
IEC61000-4-30所包括的测量方法被定义为三个等级(A、S、B)。

IEC标准
国际电工委员会(IEC)电能质量标准体系
IEC标准
欧洲标准
欧洲标准
美国IEEE标准
美国的国家标准主要由美国国家标准化委员会ANSI和IEEE制定
美国IEEE标准
美国IEEE标准
IEEE电压幅值容限曲线
IEEE电压幅值容限曲线ITIC曲线的优点:
日本标准
日本标准
日本标准
日本标准南非标准
南非标准
南非标准
俄罗斯标准。

相关文档
最新文档