数值分析报告上机题(matlab版)(东南大学)

合集下载

数值分析上机题

数值分析上机题

数值分析上机题数值分析上机题写在前面:五道上机题分别为:习题2、习题3、习题4、习题5和习题6。

所有程序均在matlab 语言编写,并且在matlab2011a 的环境下编译通过,每个编程题均写了一个函数保存为函数名相同的m 文件。

可在matlab 命令窗口中输入函数名调用每个函数,查看程序运行结果。

习题220.(上机题)Newton 迭代法(1)给定初值0x 及容许误差ε,编制Newton 法解方程()0f x =根的通用程序。

(2)给定方程3()/30f x x x =-=,易知其有三个根13x *=-,20x *=,33x *=。

1.由Newton 方法的局部收敛性可知存在0δ>,当0(,)x δδ∈-时,Newton 迭代序列收敛于根2x *。

试确定尽可能大的δ。

2.试取若干初始值,观察当0(,1)x ∈-∞-,(1,)δ--,(,)δδ-,(,1)δ,(1,)∞时Newton 序列是否收敛以及收敛于哪一个根。

(3)通过本上机题,你明白了什么?******************************************************************************* 编程思路Newton 迭代法的基本原理如下:)()(1k k k k x f x f x x '-=+ 取初值0x ,通过不断迭代求取满足误差ε的根。

M 文件源代码:function Nfun(x0,error); k=1; syms xdy=subs(diff(x*x*x/3-x),x,x0); x1=x0-(x0*x0*x0/3-x0)/dy; while abs(x1-x0)>error x0=x1;dy=subs(diff(x*x*x/3-x),x,x0); x1=x0-(x0*x0*x0/3-x0)/dy; k=k+1;endfprintf('xk=%f\t k=%d\n',x1,k);%error为允许误差,这里取保留4位有效数字,0.000005在matlab命令窗口中输入Nfun函数名,且包含两个参数x0和error,x0是迭代初值,error 是允许误差。

数值分析上机作业(MATLAB)

数值分析上机作业(MATLAB)
代矩阵。根据迭代矩阵的不同算法,可分为雅各比迭代方法和高斯-赛德尔方法。 (a)雅各比算法
将系数矩阵 A 分解为:A=L+U+D
Ax=b
⇔ (D + L +U)x = b ⇔ Dx = −(L + U )x + b ⇔ x = −D −1(L + U )x + D −1b x(k +1) = −D −1 (L + U ) x(k ) + D −1b
输入 A,b 和初始向量 x
迭代矩阵 BJ , BG

ρ(B) < 1?
按雅各比方法进行迭代

|| x (k+1) − x(k) ||< ε ?
按高斯-塞德尔法进行迭代

|| x(k+1) − x (k ) ||< ε ?
输出迭代结果
图 1 雅各布和高斯-赛德尔算法程序流程图
1.2 问题求解
按图 1 所示的程序流程,用 MATLAB 编写程序代码,具体见附录 1。解上述三个问题 如下
16
-0.72723528355328
0.80813484897616
0.25249261987171
17
-0.72729617968010
0.80805513082418
0.25253982509100
18
-0.72726173942623
0.80809395746552
0.25251408253388
0.80756312717373
8
-0.72715363032573
0.80789064377799
9
-0.72718652854079

东南大学数值分析上机题答案

东南大学数值分析上机题答案

东南⼤学数值分析上机题答案数值分析上机题第⼀章17.(上机题)舍⼊误差与有效数设∑=-=Nj N j S 2211,其精确值为)111-23(21+-N N 。

(1)编制按从⼤到⼩的顺序1-1···1-311-21222N S N +++=,计算N S 的通⽤程序;(2)编制按从⼩到⼤的顺序121···1)1(111222-++--+-=N N S N ,计算NS 的通⽤程序;(3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数(编制程序时⽤单精度);(4)通过本上机题,你明⽩了什么?解:程序:(1)从⼤到⼩的顺序计算1-1···1-311-21222N S N +++=:function sn1=fromlarge(n) %从⼤到⼩计算sn1format long ; sn1=single(0); for m=2:1:nsn1=sn1+1/(m^2-1); end end(2)从⼩到⼤计算121···1)1(111222-++--+-=N N S N function sn2=fromsmall(n) %从⼩到⼤计算sn2format long ; sn2=single(0); for m=n:-1:2sn2=sn2+1/(m^2-1); end end(3)总的编程程序为: function p203()clear allformat long;n=input('please enter a number as the n:') sn=1/2*(3/2-1/n-1/(n+1));%精确值为sn fprintf('精确值为%f\n',sn);sn1=fromlarge(n);fprintf('从⼤到⼩计算的值为%f\n',sn1);sn2=fromsmall(n);fprintf('从⼩到⼤计算的值为%f\n',sn2);function sn1=fromlarge(n) %从⼤到⼩计算sn1 format long;sn1=single(0);for m=2:1:nsn1=sn1+1/(m^2-1);endendfunction sn2=fromsmall(n) %从⼩到⼤计算sn2 format long;sn2=single(0);for m=n:-1:2sn2=sn2+1/(m^2-1);endendend运⾏结果:从⽽可以得到N值真值顺序值有效位数2 100.740050 从⼤到⼩0.740049 5从⼩到⼤0.740050 64 100.749900 从⼤到⼩0.749852 3从⼩到⼤0.749900 66 100.749999 从⼤到⼩0.749852 3从⼩到⼤0.749999 6(4)感想:通过本上机题,我明⽩了,从⼩到⼤计算数值的精确位数⽐较⾼⽽且与真值较为接近,⽽从⼤到⼩计算数值的精确位数⽐较低。

东南大学数值分析上机实验题(下)

东南大学数值分析上机实验题(下)

数值分析上机报告XX:学号:2013年12月22日第四章38.(上机题)3次样条插值函数(1)编制求第一型3次样条插值函数的通用程序;端点条件为'0y =0.8,'10y =0.2。

用所编制程序求车门的3次样条插值函数S(x),并打印出S(i+0.5)(i=0,1,…9)。

解:(1)#include <iostream.h> #include <math.h>floatx1[100],f1[100],f2[99],f3[98],m[100],a[100][101],x,d[100]; float c[99],e[99],h[99],u[99],w[99],y_0,y_n,arr ,s; int i,j,k,n,q;void selectprint(float y) {if ((y>0)&&(y!=1)) cout<<"+"<<y; else if (y==1) cout<<"+"; else if (y<0) cout<<y; }void printY(float y){ if (y!=0) cout<<y; }float calculation(float x){ for (j=1;j<=n;j++) if (x<=x1[j]) {s=(float)(f1[j-1]+c[j-1]*(x-x1[j-1])+m[j-1]/2.0*(x-x1[j-1])*(x-x1[j-1])+e[j-1]*(x-x1[j-1])*(x-x1[j-1])*(x-x1[j-1])); break; }return s; }void main() {do{cout<<"请输入n值:";cin>>n;if ((n>100)||(n<1)) cout<<"请重新输入整数(1..100):"<<endl;}while ((n>100)||(n<1));cout<<"请输入Xi(i=0,1,...,"<<n<<"):";for (i=0;i<=n;i++) cin>>x1[i];cout<<endl;cout<<"请输入Yi(i=0,1,...,"<<n<<"n):";for (i=0;i<=n;i++) cin>>f1[i];cout<<endl;cout<<"请输入第一型边界条件Y'0,Y'n:";cin>>y_0>>y_n;cout<<endl;for (i=0;i<n;i++) h[i]=x1[i+1]-x1[i];for (i=1;i<n;i++) u[i]=(float) (h[i-1]/(h[i-1]+h[i]));for (i=1;i<n;i++) w[i]=(float) (1.0-u[i]);for (i=0;i<n;i++) f2[i]=(f1[i+1]-f1[i])/h[i]; //一阶差商for (i=0;i<n-1;i++) f3[i]=(f2[i+1]-f2[i])/(x1[i+2]-x1[i]); //二阶差商for (i=1;i<n;i++) d[i]=6*f3[i-1]; //求出所有的d[i]d[0]=6*(f2[0]-y_0)/h[0];d[n]=6*(y_n-f2[n-1])/h[n-1];for (i=0;i<=n;i++)for (j=0;j<=n;j++)if (i==j) a[i][j]=2;else a[i][j]=0;a[0][1]=1;a[n][n-1]=1;for (i=1;i<n;i++){a[i][i-1]=u[i];a[i][i+1]=w[i];}for (i=0;i<=n;i++) a[i][n+1]=d[i];for (i=1;i<=n;i++) //用追赶法解方程,得M[i]{arr=a[i][i-1];for (j=0;j<=n+1;j++)a[i][j]=a[i][j]-a[i-1][j]*arr/a[i-1][i-1];}m[n]=a[n][n+1]/a[n][n];for (i=n-1;i>=0;i--) m[i]=(a[i][n+1]-a[i][i+1]*m[i+1])/a[i][i];for (i=0;i<n;i++) //计算S(x)的表达式c[i]=(float) (f2[i]-(1.0/3.0*m[i]+1.0/6.0*m[i+1])*h[i]);for (i=0;i<n;i++)e[i]=(m[i+1]-m[i])/(6*h[i]);for (i=0;i<n;i++){cout<<"X属于区间["<<x1[i]<<","<<x1[i+1]<<"]时"<<endl<<endl;cout<<"S(x)=";printY(f1[i]);if (c[i]!=0){selectprint(c[i]);cout<<"(x";printY(-x1[i]);cout<<")";}if (m[i]!=0){selectprint((float)(m[i]/2.0));for (q=0;q<2;q++){cout<<"(x";printY(-x1[i]);cout<<")";}}if (e[i]!=0){selectprint(e[i]);for (q=0;q<3;q++){cout<<"(x";printY(-x1[i]);cout<<")";}}cout<<endl<<endl;}cout<<"针对本题,计算S(i+0.5)(i=0,1,...,9):"<<endl;for (i=0;i<10;i++){if ((i+0.5<=x1[n])&&(i+0.5>=x1[0])){calculation((float)(i+0.5));cout<<"S("<<i+0.5<<")="<<s<<endl;}else cout<<i+0.5<<"超出定义域"<<endl;};cout<<endl;}(2)编制的程序求车门的3次样条插值函数S(x):x属于区间[0,1]时;S(x)=2.51+0.8(x)-0.0014861(x)(x)-0.00851395(x)(x)(x)x属于区间[1,2]时;S(x)=3.3+0.771486(x-1)-0.027028(x-1)(x-1)-0.00445799(x-1)(x-1)(x-1) x属于区间[2,3]时;S(x)=4.04+0.704056(x-2)-0.0404019(x-2)(x-2)-0.0036543(x-2)(x-2)(x-2)x属于区间[3,4]时;S(x)=4.7+0.612289(x-3)-0.0513648(x-3)(x-3)-0.0409245(x-3)(x-3)(x-3) x属于区间[4,5]时;S(x)=5.22+0.386786(x-4)-0.174138(x-4)(x-4)+0.107352(x-4)(x-4)(x-4) x属于区间[5,6]时;S(x)=5.54+0.360567(x-5)+0.147919(x-5)(x-5)-0.268485(x-5)(x-5)(x-5) x属于区间[6,7]时;S(x)=5.78-0.149051(x-6)-0.657537(x-6)(x-6)+0.426588(x-6)(x-6)(x-6) x属于区间[7,8]时;S(x)=5.4-0.184361(x-7)+0.622227(x-7)(x-7)-0.267865(x-7)(x-7)(x-7) x属于区间[8,9]时;S(x)=5.57+0.256496(x-8)-0.181369(x-8)(x-8)+0.0548728(x-8)(x-8)(x-8) x属于区间[9,10]时;S(x)=5.7+0.058376(x-9)-0.0167508(x-9)(x-9)+0.0583752(x-9)(x-9)(x-9)S(0.5)=2.90856 S(1.5)=3.67843 S (2.5)=4.38147 S(3.5)=4.98819 S(4.5)=5.38328 S(5.5)=5.7237S(6.5)=5.59441 S(7.5)=5.42989 S(8.5)=5.65976 S(9.5)=5.7323第六章21.(上机题)常微分方程初值问题数值解(1)编制RK4方法的通用程序;(2)编制AB4方法的通用程序(由RK4提供初值);(3)编制AB4-AM4预测校正方法的通用程序(由RK4提供初值);(4)编制带改进的AB4-AM4预测校正方法的通用程序(由RK4提供初值);(5)对于初值问题h=,应用(1)~(4)中的四种方法进行计算,并将计算结果和精确解取步长0.13=+作比较;y x x()3/(1)(6)通过本上机题,你能得到哪些结论?解:#include<iostream.h>#include<fstream.h>#include<stdlib.h>#include<math.h>ofstream outfile("data.txt");//此处定义函数f(x,y)的表达式//用户可以自己设定所需要求得函数表达式double f1(double x,double y){double f1;f1=(-1)*x*x*y*y;return f1;}//此处定义求函数精确解的函数表达式double f2(double x){double f2;f2=3/(1+x*x*x);return f2;}//此处为精确求函数解的通用程序void accurate(double a,double b,double h){double x[100],accurate[100];x[0]=a;int i=0;outfile<<"输出函数准确值的程序结果:\n";do{x[i]=x[0]+i*h;accurate[i]=f2(x[i]);outfile<<"accurate["<<i<<"]="<<accurate[i]<<'\n';i++;}while(i<(b-a)/h+1);}//此处为经典Runge-Kutta公式的通用程序void RK4(double a,double b,double h,double c) {int i=0;double k1,k2,k3,k4;double x[100],y[100];y[0]=c;x[0]=a;outfile<<"输出经典Runge-Kutta公式的程序结果:\n"; do{x[i]=x[0]+i*h;k1=f1(x[i],y[i]);k2=f1((x[i]+h/2),(y[i]+h*k1/2));k3=f1((x[i]+h/2),(y[i]+h*k2/2));k4=f1((x[i]+h),(y[i]+h*k3));y[i+1]=y[i]+h*(k1+2*k2+2*k3+k4)/6;outfile<<"y"<<"["<<i<<"]="<<y[i]<<'\n';i++;}while(i<(b-a)/h+1);}//此处为4阶Adams显式方法的通用程序void AB4(double a,double b,double h,double c) {double x[100],y[100],y1[100];double k1,k2,k3,k4;y[0]=c;x[0]=a;outfile<<"输出4阶Adams显式方法的程序结果:\n";for(int i=0;i<=2;i++){x[i]=x[0]+i*h;k1=f1(x[i],y[i]);k2=f1((x[i]+h/2),(y[i]+h*k1/2));k3=f1((x[i]+h/2),(y[i]+h*k2/2));k4=f1((x[i]+h),(y[i]+h*k3));y[i+1]=y[i]+h*(k1+2*k2+2*k3+k4)/6;}int j=3;y1[0]=y[0];y1[1]=y[1];y1[2]=y[2];y1[3]=y[3];do{x[j]=x[0]+j*h;y1[j+1]=y1[j]+(55*f1(x[j],y1[j])-59*f1(x[j-1],y1[j-1])+37*f1(x[j-2],y1[j-2])-9*f1(x[j-3],y1[ j-3]))*h/24;outfile<<"y1"<<"["<<j<<"]="<<y1[j]<<'\n';j++;}while(j<(b-a)/h+1);}//主函数void main(void){double a,b,h,c;cout<<"输入上下区间、步长和初始值:\n";cin>>a>>b>>h>>c;accurate(a,b,h);RK4(a,b,h,c);AB4(a,b,h,c);}float si(int u,int v){float sum=0; int q;for(q=0;q<k;q++)sum+=a[u][q]*a[q][v];sum=a[u][v]-sum;return sum;}void exchange(int g){int t; float temp;for(t=0;t<n;t++){temp=a[k][t];a[k][t]=a[g][t];a[g][t]=temp;}}void analyze(){int t;float si(int u,int v);for(t=k;t<n;t++)a[k][t]=si(k,t);for(t=(k+1);t<m;t++)a[t][k]=(float)(si(t,k)/a[k][k]);}void ret(){int t,z;float sum;x[m-1]=(float)a[m-1][m]/a[m-1][m-1];for(t=(m-2);t>-1;t--){sum=0;for(z=(t+1);z<m;z++)sum+=a[t][z]*x[z];x[t]=(float)(a[t][m]-sum)/a[t][t];}}(5)由经典Runge-Kutta公式得出的结果列在下面的表格中,以及精确值y(x i)和精确值和数值解的误差:由AB4方法得出的结果为:Y1[0]=3 y1[1]=2.997 y1[2]=2.97619 y1[3]=2.92113 y1[4]=2.81839 y1[5]=2.66467 y1[6]=2.4652 y1[7]=2.23308 y1[8]=1.98495 y1[9]=1.73704 y1[10]=1.50219 y1[11]=1.28876 y1[12]=1.10072 y1[13]=0.93871 y1[14]=0.801135y1[15]=0.685335(6)本次上机作业让我知道了在遇到复杂问题中,无法给出解析式的情况下,要学会灵活使用各种微分数值解法,并且能计算出不同方法的精度大小。

东南大学数值分析上机练习后三章

东南大学数值分析上机练习后三章

数值分析上机练习(以VC++6.0为操作平台)第四章(4.38)程序如下:#include<iostream.h>void main(void){float x[11];//存放数组x[j]float y[11];//存放数组y[j]float h[11];//存放数组h[j]float u[11];//存放数组u[j]float v[11];//存放数组v[j]float d[11];//存放数组d[j]float M[11];//存放数组M[j]float b[11];// 存放数组b[j]float t[11],l[11],yy[11],s[4],aa1,aa2,aa3,aa4;float s1[10];int i,j,n;float xx;cout<<"请输入n的值:\n";cin>>n;cout<<"输入数组x:\n";for(i=0;i<=n;i++)cin>>x[i];cout<<"输入数组y:\n";for(i=0;i<=n;i++)cin>>y[i];//输入端点值float df[2];cout<<"输入两个端点值:\n";for(i=0;i<2;i++)cin>>df[i];//求出h[j]的值for(j=0;j<=n-1;j++){h[j]=x[j+1]-x[j];cout<<'h'<<'['<<j<<']'<<'='<<h[j]<<'\t';}cout<<endl;//求出u[j]和v[j]的初值v[0]=1;u[n]=1;for(j=1;j<=n-1;j++){u[j]=h[j-1]/(h[j-1]+h[j]);v[j]=h[j]/(h[j-1]+h[j]);}//求出d[j]的值for(j=1;j<n;j++){d[j]=6*((y[j+1]-y[j])/h[j]-(y[j]-y[j-1])/h[j-1])/(h[j]+h[j-1]);} d[0]=6*((y[1]-y[0])/h[0]-df[0])/h[0];d[n]=6*(df[1]-(y[n]-y[n-1])/h[n-1])/h[n-1];for(j=1;j<=n;j++){cout<<'u'<<'['<<j<<']'<<'='<<u[j]<<'\t';}cout<<endl;for(j=0;j<n;j++){cout<<'v'<<'['<<j<<']'<<'='<<v[j]<<'\t';}cout<<endl;for(j=0;j<=n;j++){cout<<'d'<<'['<<j<<']'<<'='<<d[j]<<'\t';}cout<<endl;//利用书本上的追赶法求解方程组for(i=0;i<=n;i++){b[i]=2;}cout<<endl;t[0]=b[0];yy[0]=d[0];//消元过程for(i=1;i<=n;i++){l[i]=u[i]/t[i-1];t[i]=b[i]-l[i]*v[i-1];yy[i]=d[i]-l[i]*yy[i-1];}//回代过程M[n]=yy[n]/t[n];for(i=n-1;i>=0;i--){M[i]=(yy[i]-v[i]*M[i+1])/t[i];}//将M[j]的值输出for(i=0;i<=n;i++){cout<<'M'<<'['<<i<<']'<<'='<<M[i]<<endl;}//输出插值多项式的系数for(j=0;j<n;j++){s[0]=y[j];s[1]=(y[j+1]-y[j])/h[j]-(M[j]/3+M[j+1]/6)*h[j];s[2]=M[j]/2;s[3]=(M[j+1]-M[j])/(6*h[j]);cout<<"当x的值在区间"<<'x'<<'['<<j<<']'<<"到"<<'x'<<'['<<(j+1)<<']'<<"时,输出插值多项式的系数:\n";for(int k=0;k<4;k++){cout<<'s'<<'['<<k<<']'<<'='<<s[k]<<'\t';}cout<<endl;}}程序结果:详见附图4.38jpg编制的程序求车门的3次样条插值函数S(x):x属于区间[0,1]时;S(x)=2.51+0.8(x)-0.0014861(x)(x)-0.00851395(x)(x)(x)x属于区间[1,2]时;S(x)=3.3+0.771486(x-1)-0.027028(x-1)(x-1)-0.00445799(x-1)(x-1)(x-1) x属于区间[2,3]时;S(x)=4.04+0.704056(x-2)-0.0404019(x-2)(x-2)-0.0036543(x-2)(x-2)(x-2) x属于区间[3,4]时;S(x)=4.7+0.612289(x-3)-0.0513648(x-3)(x-3)-0.0409245(x-3)(x-3)(x-3) x属于区间[4,5]时;S(x)=5.22+0.386786(x-4)-0.174138(x-4)(x-4)+0.107352(x-4)(x-4)(x-4) x属于区间[5,6]时;S(x)=5.54+0.360567(x-5)+0.147919(x-5)(x-5)-0.268485(x-5)(x-5)(x-5) x属于区间[6,7]时;S(x)=5.78-0.149051(x-6)-0.657537(x-6)(x-6)+0.426588(x-6)(x-6)(x-6) x属于区间[7,8]时;S(x)=5.4-0.184361(x-7)+0.622227(x-7)(x-7)-0.267865(x-7)(x-7)(x-7)x属于区间[8,9]时;S(x)=5.57+0.256496(x-8)-0.181369(x-8)(x-8)+0.0548728(x-8)(x-8)(x-8) x属于区间[9,10]时;S(x)=5.7+0.058376(x-9)-0.0167508(x-9)(x-9)+0.0583752(x-9)(x-9)(x-9) S(0.5)=2.90856 S(1.5)=3.67843 S (2.5)=4.38147S(3.5)=4.98819 S(4.5)=5.38328 S(5.5)=5.7237S(6.5)=5.59441 S(7.5)=5.42989 S(8.5)=5.65976S(9.5)=5.7323第六章(6.21)程序如下:#include<iostream.h>#include<fstream.h>#include<stdlib.h>#include<math.h>ofstream outfile("data.txt");//此处定义函数f(x,y)的表达式//用户可以自己设定所需要求得函数表达式double f1(double x,double y){double f1;f1=(-1)*x*x*y*y;return f1;}//此处定义求函数精确解的函数表达式double f2(double x){double f2;f2=3/(1+x*x*x);return f2;}//此处为精确求函数解的通用程序void accurate(double a,double b,double h){double x[100],accurate[100];x[0]=a;int i=0;outfile<<"输出函数准确值的程序结果:\n";do{x[i]=x[0]+i*h;accurate[i]=f2(x[i]);outfile<<"accurate["<<i<<"]="<<accurate[i]<<'\n';i++;}while(i<(b-a)/h+1);}//此处为经典Runge-Kutta公式的通用程序void RK4(double a,double b,double h,double c){int i=0;double k1,k2,k3,k4;double x[100],y[100];y[0]=c;x[0]=a;outfile<<"输出经典Runge-Kutta公式的程序结果:\n";do{x[i]=x[0]+i*h;k1=f1(x[i],y[i]);k2=f1((x[i]+h/2),(y[i]+h*k1/2));k3=f1((x[i]+h/2),(y[i]+h*k2/2));k4=f1((x[i]+h),(y[i]+h*k3));y[i+1]=y[i]+h*(k1+2*k2+2*k3+k4)/6;outfile<<"y"<<"["<<i<<"]="<<y[i]<<'\n';i++;}while(i<(b-a)/h+1);}void AB4(double a,double b,double h,double c){double x[100],y[100],y1[100];double k1,k2,k3,k4;y[0]=c;x[0]=a;outfile<<"输出4阶Adams显式方法的程序结果:\n";for(int i=0;i<=2;i++){x[i]=x[0]+i*h;k1=f1(x[i],y[i]);k2=f1((x[i]+h/2),(y[i]+h*k1/2));k3=f1((x[i]+h/2),(y[i]+h*k2/2));k4=f1((x[i]+h),(y[i]+h*k3));y[i+1]=y[i]+h*(k1+2*k2+2*k3+k4)/6;}int j=3;y1[0]=y[0];y1[1]=y[1];y1[2]=y[2];y1[3]=y[3];do{x[j]=x[0]+j*h;y1[j+1]=y1[j]+(55*f1(x[j],y1[j])-59*f1(x[j-1],y1[j-1])+37*f1(x[j-2], y1[j-2])-9*f1(x[j-3],y1[j-3]))*h/24;outfile<<"y1"<<"["<<j<<"]="<<y1[j]<<'\n';j++;}while(j<(b-a)/h+1);}//主函数void main(void){double a,b,h,c;cout<<"输入上下区间、步长和初始值:\n";cin>>a>>b>>h>>c;accurate(a,b,h);RK4(a,b,h,c);AB4(a,b,h,c);}程序结果:经典Runge-Kutta公式得出的结果列在下面的表格中,以及精确由AB4方法得出的结果为:y1[0]=3 y1[1]=2.997 y1[2]=2.97619 y1[3]=2.92113y1[4]=2.81839 y1[5]=2.66467y1[6]=2.4652 y1[7]=2.23308y1[8]=1.98495y1[9]=1.73704y1[10]=1.5021 y1[11]=1.28876y1[12]=1.10072y1[13]=0.93871y1[14]=0.801135 y1[15]=0.685335通过本上机题我明白了各种求微分方程的数值方法,经典Runge-Kutta公式,AB4方法以及AB4-AM4预测校正方法求解公式的精度是不同的。

东南大学出版社第二版《数值分析》上机作业答案(前三章)

东南大学出版社第二版《数值分析》上机作业答案(前三章)

for (i=k+1;i<N;i++) // { lik=a[i][k]/a[k][k]; //实施消去过程,得到上三角系数增广矩阵 for (j=k;j<M;j++) // { a[i][j]=a[i][j]‐lik*a[k][j]; // } } } cout<<"经列主元高斯消去法得到的数组为:"<<endl; // for (b=0;b<N;b++) // { cout<<endl; //输出经过列主元消去法处理过的系数增广矩阵 for (c=0;c<M;c++) { cout<<setw(7)<<a[b][c]; // } } cout<<endl; double x[N]; // double s; int f,g; x[N‐1]=a[N‐1][M‐1]/a[N‐1][N‐1]; // for (f=N‐2;f>=0;f‐‐) // { s=0; for (g=f+1;g<N;g++) //由上三角形的系数增广矩阵求出方程组的解 { s=s+a[f][g]*x[g]; // } x[f]=(a[f][N]‐s)/a[f][f]; // } cout<<"方程组的解为:"<<endl; for (b=0;b<N;b++) //输出方程组的解 {
1
当 n=10000 时,s3=0.7499 Press any key to continue (分析 S1 的 6 位数字中,有效位数为 4 位; S2 的所有数字都是有效数字。 ) 当 n=1000000 时,s1=‐14.2546 当 n=1000000 时,s2=‐14.2551 当 n=1000000 时,s3=0.749999 Press any key to continue (分析: S1 的 6 位数字中,没有有效数字; S2 的 6 位数字中,没有有效数字。 ) 由运行结果可知,当精度比较低时,按从大数开始累加到小数的计算结果的精度低于按从小数 累加到大数的计算结果的精度。 至于当 n=1000000 时,S1 和 S2 得出了负数结果,可能是由于循环次数过多,导致数据溢出, 从而得出错误结果。 习题 2 20.程序如下: //给定误差限为:0.5e‐6 //经过试算得当 delta 最大取道 0.7745966 时,迭代得到的根都收敛于 0 #include <iostream.h> #include <math.h> void main () { double x,u; int count=0; u=10.0; cout<<"请输入 x 的初值"<<endl; cin>>x; for (count=0;abs(u)>5;count++) { x=x‐(x*x*x‐3*x)/(3*(x*x‐1)); u=10000000*x; if(count>5000) { cout<<"迭代结果不收敛于 0!"<<endl; break; } } cout<<"x="<<x<<endl<<endl;

数值分析上机题Matlab(东南大学)3

数值分析上机题Matlab(东南大学)3

0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72
152 139 128 119 110 103 96 90 85 80 76 72 68 65 62 59 56 53 51 49 47 45 43 41 39 38
========================================================================================================================
======================================================================================================================================================================== 习题 3_36 ======================================================================================================================================================================== Omega n x1 x2 x3 x4 x5 x6 x7 x8 x9
-0.71279 -0.71280 -0.71280 -0.71280 -0.71280 -0.71280 -0.71280 -0.71280 -0.71280 -0.71280 -0.71280 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281 -0.71281

数值计算上机实习题目(matlab编程)

数值计算上机实习题目(matlab编程)

数值计算上机实习题目(matlab编程)非线性方程求根一、实验目的本次实验通过上机实习,了解迭代法求解非线性方程数值解的过程和步骤。

二、实验要求1、用迭代法求方程230x x e -=的根。

要求:确定迭代函数?(x),使得x=?(x),并求一根。

提示:构造迭代函数2ln(3)x ?=。

2、对上面的方程用牛顿迭代计算。

3、用割线法求方程3()310f x x x =--=在02x =附近的根。

误差限为410-,取012, 1.9x x ==。

三、实验内容1、(1)首先编写迭代函数,记为iterate.mfunction y=iterate(x)x1=g(x); % x 为初始值。

n=1;while(abs(x1-x)>=1.0e-6)&(n<=1000) % 迭代终止的原则。

x=x1;x1=g(x);n=n+1;endx1 %近似根n %迭代步数(2)后编制函数文件?(x),记为g.mfunction y=g(x)y=log(3*x.^2);(3)设初始值为0、3、-3、1000,观察初始值对求解的影响。

将结果记录在文档中。

>>iterate(0)>>iterate(3) 等等2、(1)首先编制牛顿迭代函数如下,记为newton.mfunction y=newton(x0)x1=x0-fc(x0)/df(x0); % 牛顿迭代格式n=1;while(abs(x1-x0)>=1.0e-6)&(n<=1000000) % 迭代终止的原则。

x0=x1;x1=x0-fc(x0)/df(x0);n=n+1;endx1 %近似根n %迭代步数(2)对题目中的方程编制函数文件,记为fc.mfunction y=fc(x)y=3*x.^2-exp(x)编制函数的导数文件,记为df.mfunction y=df(x)y=6*x-exp(x)(3)在MATLAB 命令窗计算,当设初始值为0时,newton(0);给定不同的初始值,观察用牛顿法求解时所需要的迭代步数,并与上面第一题的迭代步数比较。

(完整版)matlab上机练习题答案

(完整版)matlab上机练习题答案

(完整版)matlab 上机练习题答案1.计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积>〉 a=[6 9 3;2 7 5]; 〉〉 b=[2 4 1;4 6 8]; 〉〉 a 。

*b ans =12 36 3 8 42 402。

对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。

〉〉 A=[4 9 2;7 6 4;3 5 7]; 〉> B=[37 26 28]’; >〉 X=A\B X = -0.5118 4.0427 1.33183。

⎥⎦⎤⎢⎣⎡-=463521a ,⎥⎦⎤⎢⎣⎡-=263478b ,观察a 与b 之间的六种关系运算的结果 >〉 a=[1 2 3;4 5 6]; 〉> b=[8 –7 4;3 6 2]; >〉 a 〉b ans =0 1 0 1 0 1 〉> a 〉=b ans =0 1 0 1 0 1 >> a 〈b ans =1 0 1 0 1 0 〉> a<=b ans =1 0 1 0 1 0 >〉 a==b ans =0 0 0 0 0 0 〉〉 a~=b ans =1 1 1 1 1 14计算多项式乘法(x 2+2x +2)(x 2+5x +4)>> c=conv ([1 2 2],[1 5 4]) c =1 7 16 18 8 5计算多项式除法(3x 3+13x 2+6x +8)/(x +4) 〉〉 d=deconv ([3 13 6 8],[1 4]) d =3 1 26求欠定方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡5865394742x 的最小范数解〉〉 a=[2 4 7 4;9 3 5 6]; 〉> b=[8 5]’; 〉> x=pinv (a )*b x =—0.2151 0.4459 0。

数值研究分析上机题(matlab版)(东南大学)

数值研究分析上机题(matlab版)(东南大学)

数值分析上机题(matlab版)(东南大学)————————————————————————————————作者:————————————————————————————————日期:数值分析上机报告第一章一、题目精确值为)11123(21+--N N 。

1) 编制按从大到小的顺序11131121222-+⋯⋯+-+-=N S N ,计算S N 的通用程序。

2) 编制按从小到大的顺序1211)1(111222-+⋯⋯+--+-=N N S N ,计算S N 的通用程序。

3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。

(编制程序时用单精度) 4) 通过本次上机题,你明白了什么?二、通用程序clearN=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0);for a=2:N;Sn1=Sn1+1/(a^2-1); endSn2=single(0);for a=2:N;Sn2=Sn2+1/((N-a+2)^2-1); endfprintf('The value of Sn using different algorithms (N=%d)\n',N); disp('____________________________________________________') fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2);disp('____________________________________________________')三、求解结果Please Input an N (N>1):10^2The value of Sn using differentalgorithms (N=100)____________________________________________________Accurate Calculation0.740049Caculate from large to small0.740049Caculate from small to large0.740050__________________________________四、结果分析有效位数n100 10000 1000000顺序从大到小 6 3 3从小到大 5 6 6可以得出,算法对误差的传播又一定的影响,在计算时选一种好的算法可以使结果更为精确。

最新东南大学数值分析上机题matlab(前三章)

最新东南大学数值分析上机题matlab(前三章)

数值分析上机题第一章(17题)(1)从2依次累加到N的程序function sn = sum1( n )sn=0;sn=single(sn);for i=2:nai=1/(i^2-1);sn=sn+ai;endend(2)从N依次累加到2的程序function sn = sum2( n )sn=0;sn=single(sn);for i=n:-1:2ai=1/(i^2-1);sn=sn+ai;endend(3)编制求精确值的求和函数sum0function sn = sum0( n )sn=0;sn=single(sn);sn=1/2*(3/2-1/n-1/(n+1));end按第一种顺序得到的值及有效位数如下:N=100时sn0=sum0(100);sn=sum1(100)n=fix(-log10(2*abs(sn-sn0)))得到:sn =0.7400495 n =7N=10e4时sn0=sum0(10e4);sn=sum1(10e4)n=fix(-log10(2*abs(sn-sn0)))得到:sn =0.7498521 n =3N=10e6时sn0=sum0(10e6);sn=sum1(10e6)n=fix(-log10(2*abs(sn-sn0)))得到:sn =0.7498521 n =3按第二种顺序得到的值及有效位数如下:N=100时sn0=sum0(100);sn=sum2(100)n=fix(-log10(2*abs(sn-sn0)))得到:sn =0.7400495 n =7N=10e4时sn0=sum0(10e4);sn=sum2(10e4)n=fix(-log10(2*abs(sn-sn0)))得到:sn =0.7499900 n =7N=10e6时sn0=sum0(10e6);sn=sum2(10e6)n=fix(-log10(2*abs(sn-sn0)))得到:sn =0.7499999 n =7(4)通过这道上机题,我明白了,应用计算机进行求和运算时,求和的顺序不同对结果的精度是有影响的。

数值分析上机题 舍入误差与有效数

数值分析上机题  舍入误差与有效数
7位
(5)通过上述分析可以看出:按从小到大的顺序计算所得的结果与真值接近,而按从大到小的顺序计算所得的结果与真值的误差较大,且有效位数较前者少。
原因:这是由于机器数在进行加法运算时,首先比较两数的阶码,将阶码较小的尾数向右移位,每移一位阶码加一,直至其阶码与另一数的阶码一致为止,且将移位后的尾数多于计算机字长的部分进行四舍五入,之后对尾数进行加减运算,最后将尾数写成规格化的形式,当从大到小的顺序进行计算式,由于越到后面数字越小,就会产生大数吃小数的情况,从而产生误差的累积,最后使计算结果的不准确。
解:(1)从大到小的matlab程序:
functions=myfun1(N)
formatlong;
k=2;
s=single(0);
fork=2:1:N
a=1/(k*k-1);
s=a+s;
end
end
(2)从小到大的matlab程序
functions=myfun2(N)
formatlong;
s=single(0);
fori=N:-1:2
a=1/(i*i-1);
s=a+s;
end
真值
有效位数
0.7400495
0.7400495
0.7400495
大小
7位
小大
7位
0.7498521
0.7499000
0.7499000
大小
4位
小大
7位
0.7498521
0.7499990
0.749999
大小
4位
小大
舍入误差与有效数
东南大学机械工程学院
设SN= ,其精确值为 )。
(1)编制按从大到小的顺序SN= + + +……+ ,计算SN通用的程序;

数值分析matlab上机实验报告

数值分析matlab上机实验报告

数值分析matlab上机实验报告matlab软件实验报告数学上机课实验报告matlab实验报告总结数值分析试卷篇一:《MATLAB与数值分析》第一次上机实验报告标准实验报告(实验)课程名称学生姓名:李培睿学号:2013020904026指导教师:程建一、实验名称《MATLAB与数值分析》第一次上机实验二、实验目的1. 熟练掌握矩阵的生成、加、减、乘、除、转置、行列式、逆、范数等运算操作。

(用.m文件和Matlab函数编写一个对给定矩阵进行运算操作的程序)2. 熟练掌握算术符号操作和基本运算操作,包括矩阵合并、向量合并、符号转换、展开符号表达式、符号因式分解、符号表达式的化简、代数方程的符号解析解、特征多项式、函数的反函数、函数计算器、微积分、常微分方程的符号解、符号函数的画图等。

(用.m 文件编写进行符号因式分解和函数求反的程序)3. 掌握Matlab函数的编写规范。

4、掌握Matlab常用的绘图处理操作,包括:基本平面图、图形注释命令、三维曲线和面的填充、三维等高线等。

(用.m 文件编写在一个图形窗口上绘制正弦和余弦函数的图形,并给出充分的图形注释)5. 熟练操作MATLAB软件平台,能利用M文件完成MATLAB的程序设计。

三、实验内容1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。

并以x,y为坐标显示图像x(n+1) = a*x(n)-b*(y(n)-x(n) ); y(n+1) = b*x(n)+a*(y(n)-x(n) )2. 编程实现奥运5环图,允许用户输入环的直径。

3. 实现对输入任意长度向量元素的冒泡排序的升序排列。

不允许使用sort函数。

四、实验数据及结果分析题目一:①在Editor窗口编写函数代码如下:并将编写的函数文件用“draw.m”储存在指定地址;②在Command窗口输入如下命令:③得到图形结果如下:题目二:①在Editor窗口编写函数代码如下:并将编写的函数文件用“circle.m”储存在指定地址;②再次在Editor窗口编写代码:并将编写的函数文件用“Olympic.m”储存在指定地址;③在Command窗口输入如下指令(半径可任意输入):④按回车执行,将在图形窗口获得五环旗:题目三:①在Editor窗口编写函数代码如下:并用.将编写的函数文件用“qipaofa.m”储存在指定地址;②在Command窗口输入一组乱序数值,则可以得到升序排序结果如下:五、总结及心得体会1. 要熟悉MATLAB编译软件的使用方法,明白有关语法,语句的基本用法,才可以在编写程序的时候游刃有余,不至于寸步难行。

《数值分析》上机实验报告

《数值分析》上机实验报告

数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。

1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。

当前后两个的差<=ε时,就认为求出了近似的根。

本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

数值分析上机实验报告

数值分析上机实验报告

一、实验目的通过本次上机实验,掌握数值分析中常用的算法,如二分法、牛顿法、不动点迭代法、弦截法等,并能够运用这些算法解决实际问题。

同时,提高编程能力,加深对数值分析理论知识的理解。

二、实验环境1. 操作系统:Windows 102. 编程语言:MATLAB3. 实验工具:MATLAB数值分析工具箱三、实验内容1. 二分法求方程根二分法是一种常用的求方程根的方法,适用于连续函数。

其基本思想是:从区间[a, b]中选取中点c,判断f(c)的符号,若f(c)与f(a)同号,则新的区间为[a, c],否则为[c, b]。

重复此过程,直至满足精度要求。

2. 牛顿法求方程根牛顿法是一种迭代法,适用于可导函数。

其基本思想是:利用函数在某点的导数值,求出函数在该点的切线方程,切线与x轴的交点即为方程的近似根。

3. 不动点迭代法求方程根不动点迭代法是一种迭代法,适用于具有不动点的函数。

其基本思想是:从初始值x0开始,不断迭代函数g(x)的值,直至满足精度要求。

4. 弦截法求方程根弦截法是一种线性近似方法,适用于可导函数。

其基本思想是:利用两点间的直线近似代替曲线,求出直线与x轴的交点作为方程的近似根。

四、实验步骤1. 二分法求方程根(1)编写二分法函数:function [root, error] = bisection(a, b, tol)(2)输入初始区间[a, b]和精度要求tol(3)调用函数计算根:[root, error] = bisection(a, b, tol)2. 牛顿法求方程根(1)编写牛顿法函数:function [root, error] = newton(f, df, x0, tol)(2)输入函数f、导数df、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = newton(f, df, x0, tol)3. 不动点迭代法求方程根(1)编写不动点迭代法函数:function [root, error] = fixed_point(g, x0, tol)(2)输入函数g、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = fixed_point(g, x0, tol)4. 弦截法求方程根(1)编写弦截法函数:function [root, error] = secant(f, x0, x1, tol)(2)输入函数f、初始值x0和x1,以及精度要求tol(3)调用函数计算根:[root, error] = secant(f, x0, x1, tol)五、实验结果与分析1. 二分法求方程根以方程f(x) = x^2 - 2 = 0为例,输入初始区间[a, b]为[1, 3],精度要求tol 为1e-6。

——数值分析上机题

——数值分析上机题

.......................课程名称:数值分析上机实习报告姓名:学号:专业:联系电话:目录序言 (3)第1章必做题 (4)1.1必做题第一题 (4)1.1.1题目 (4)1.1.2 分析 (4)1.1.3 计算结果 (4)1.1.3 总结 (6)1.2必做题第二题 (6)1.2.1题目 (6)1.2.2分析 (6)1.2.3计算结果 (6)1.2.4结论 (8)1.1必做题第一题....................................................................... 错误!未定义书签。

1.1.1题目 ............................................................................ 错误!未定义书签。

第2章选做题 (8)2.1选做题第一题 (8)2.1.1题目 (8)2.1.2分析 (8)2.1.3计算结果 (8)附录 (10)附录一:必做题第一题程序 (10)附录二:必做题第二题程序 (11)附录三:选做题第一题的程序 (13)序言本次数值分析上机实习采用Matlab数学软件。

Matlab是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。

在数值分析应用中可以直接调用Matlab软件中已有的函数,同时用户也可以将自己编写的实用程序导入到Matlab函数库中方便自己调用。

基于Matlab数学软件的各种实用性功能与优点,本次数值分析实习决定采用其作为分析计算工具。

1.编程效率高MATLAB是一种面向科学与工程计算的高级语言,允许使用数学形式的语言编写程序,且比BASIC、FORTRAN和C等语言更加接近我们书写计算公式的思维方式,用MATLAB编写程序犹如在演算纸上排列出公式与求解问题。

因此,MATLAB语言也可通俗地称为演算纸式科学算法语言。

《数值分析报告》习题解答1东南大学

《数值分析报告》习题解答1东南大学

习题11. 以下各表示的近似数,问具有几位有效数字?并将它舍入成有效数。

(1)*1x =451., 1x =451.01; (2)*2x =-0. 113, 2x =-0. 18; (3)*3x =23.421 3, 3x =23.460 4;(4)*4x =31,4x =0.333 3;(5)*5x =23.496, 5x =23.494; (6)*6x =96×510, 6x =96.1×510; (7)*7x =0.000 96, 7x =0.96×310-; (8)*8x =-8 700, 8x =-8 700.3。

解:(1) =*1x 451. =1x 451.01=-1*1x x 0.01311021-⨯≤,1x 具有4位有效数字。

→1x 451.0(2) -=*2x 0. 113 -=2x 0. 18=-<⨯-2*241021x x 0. 18045113.0-=0.000 06731021-⨯<2x 具有2位有效数字,045.02-→x(3)=*3x 23.4213 =3x 23.4604=-3*3x x =-4604.234213.23=-4213.234604.23110210391.0-⨯≤3x 具有3位有效数字,4.233→x (不能写为23.5)(4) =*4x 31,=4x 0.3333=-4*4x x 41021000033.0-⨯<Λ ,4x 具有4位有效数字,=4x 0.3333(5) =*5x 23.496,=5x 23.494=-5*5x x =-494.23496.2321021002.0-⨯<5x 具有4位有效数字, →5x 23.50 (不能写为23.49)(6) =*6x 51096⨯71096.0⨯= =6x 5101.96⨯710961.0⨯==-6*6x x 710001.0-⨯72101021--⨯⨯≤6x 具有2位有效数字,57610961096.0⨯=⨯=x(7) =*7x 0.00096 371096.0-⨯=x 3*71096.0-⨯=x =-7*7x x 0 7x 精确 (8) 8700*8-=x 8x 3.8700-=8*8x x -010213.0⨯≤= 8x 具有4位有效数字,8x 8700-=精确 2.以下各数均为有效数字: (1) 0.1062 + 0.947; (3)2.747⨯6.83;(2)23.46―12.753; (4)1.473 / 0.064 。

东南大学 数值分析上机题作业 MATLAB版

东南大学 数值分析上机题作业 MATLAB版

东南大学数值分析上机题作业MATLAB版上机作业题报告1.Chapter 11.1题目设S N= Nj=2j2−1,其精确值为11311(-- 。

22N N +1(1)编制按从大到小的顺序S N =(2)编制按从小到大的顺序S N =111,计算S N 的通用程序。

++⋯⋯+22-132-1N 2-1111,计算S N 的通用程++⋯⋯+N 2-1(N -1 2-122-1序。

(3)按两种顺序分别计算S 102, S 104, S 106, 并指出有效位数。

(编制程序时用单精度)(4)通过本次上机题,你明白了什么?1.2程序 1.3运行结果1.4结果分析按从大到小的顺序,有效位数分别为:6,4,3。

按从小到大的顺序,有效位数分别为:5,6,6。

可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。

当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。

因此,采取从小到大的顺序累加得到的结果更加精确。

2.Chapter 22.1题目(1)给定初值x 0及容许误差ε,编制牛顿法解方程f(x=0的通用程序。

3(2)给定方程f (x =x-x =0, 易知其有三个根x 1*=-3, x 2*=0, x 3*=○1由牛顿方法的局部收敛性可知存在δ>0, 当x 0∈(-δ, Newton 迭代序列收敛+δ 时,于根x2*。

试确定尽可能大的δ。

○2试取若干初始值,观察当x 0∈(-∞, -1, (-1, -δ, (-δ, +δ, (δ, 1, (1, +∞ 时Newton 序列的收敛性以及收敛于哪一个根。

(3)通过本上机题,你明白了什么?2.2程序2.3运行结果(1)寻找最大的δ值。

算法为:将初值x0在从0开始不断累加搜索精度eps ,带入Newton 迭代公式,直到求得的根不再收敛于0为止,此时的x0值即为最大的sigma 值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析上机报告
第一章
一、题目
精确值为)1
1123(21+--N N 。

1)
编制按从大到小的顺序11
131121222-+
⋯⋯+-+-=N S N ,计算S N 的通用程序。

2)
编制按从小到大的顺序1
21
1)1(111222-+
⋯⋯+--+-=
N N S N ,计算S N 的通用程序。

3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。

(编制程序时用单精度) 4) 通过本次上机题,你明白了什么?
二、通用程序
三、求解结果
四、结果分析
可以得出,算法对误差的传播又一定的影响,在计算时选一种好的算法可以使结果更为精确。

从以上的结果可以看到从大到小的顺序导致大数吃小数的现象,容易产生较大的误差,求和运算从小数到大数算所得到的结果才比较准确。

第二章
一、题目
(1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。

(2)给定方程03
)(3
=-=x x x f ,易知其有三个根3,0,3321=*=*-
=*x x x
a)
由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收
敛于根x 2*。

试确定尽可能大的δ。

b)试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。

(3)通过本上机题,你明白了什么?
二、通用程序
1.运行search.m 文件
结果为:
The maximum delta is 0.774597
即得最大的δ为0.774597,Newton 迭代序列收敛于根*
2x =0的最大区间为
(-0.774597,0.774597)。

2.运行Newton.m 文件
在区间(,1),(1,),(,),(,1),(1,)δδδδ-∞----++∞上各输入若干个数,计算结果如下:
区间(,1)-∞-上取-1000,-100,-50,-30,-10,-8,-7,-5,-3,-1.5
x。

结果显示,以上初值迭代序列均收敛于-1.732051,即根*
1
在区间(1,)δ--即区间(-1,-0.774597)上取-0.774598,-0.8,-0.85,-0.9,-0.99,计算结果如下:
计算结果显示,迭代序列局部收敛于-1.732051,即根*1x ,局部收敛于1.730251,即根*
3x 。

在区间(,)δδ-即区间(-0.774597,0.774597)上,由search.m 的运行过程表明,在整个区间上均收敛于0,即根*
2x 。

在区间(,1)δ即区间(0.774597,1)上取0.774598,0.8,0.85,0.9,0.99,计算结果如
计算结果显示,迭代序列局部收敛于-1.732051,即根*
1x ,局部收敛于1.730251,即根*
3x 。

上取100,60,20,10,7,6,4,3,1.5,计算结果如下: 区间(1,)
x。

结果显示,以上初值迭代序列均收敛于1.732051,即根*
3
综上所述:(-∞,-1)区间收敛于-1.73205,(-1,δ)区间局部收敛于1.73205,局部收敛于-1.73205,(-δ,δ)区间收敛于0,(δ,1)区间类似于(-1,δ)区间,(1,∞)收敛于1.73205。

通过本上机题,明白了对于多根方程,Newton法求方程根时,迭代序列收敛于某一个根有一定的区间限制,在一个区间上,可能会局部收敛于不同的根。

第三章
一、题目
列主元Gauss 消去法对于某电路的分析,归结为求解线性方程组
RI V =。

其中
31130
001000013359011000009311000000001079300009000305770500
0007473000000003041000
0005002720009000229R --⎛⎫ ⎪--- ⎪ ⎪-- ⎪--- ⎪ ⎪=--- ⎪
-- ⎪ ⎪- ⎪
-- ⎪ ⎪--⎝⎭
()15,27,23,0,20,12,7,7,10T
T V =----
(1) 编制解n 阶线性方程组Ax b =的列主元高斯消去法的通用程序; (2) 用所编程序线性方程组RI
V =,并打印出解向量,保留5位有效数;
二、通用程序
%% 列主元Gauss 消去法求解线性方程组%% %%参数输入
n=input('Please input the order of matrix A: n='); %输入线性方程组阶数n b=zeros(1,n);
A=input('Input matrix A (such as a 2 order matrix:[1 2;3,4]) :'); b(1,:)=input('Input the column vector b:'); %输入行向量b b=b';
C=[A,b]; %得到增广矩阵 %%列主元消去得上三角矩阵
for i=1:n-1 [maximum,index]=max(abs(C(i:n,i))); index=index+i-1; T=C(index,:); C(index,:)=C(i,:); C(i,:)=T;
for k=i+1:n %%列主元消去 if C(k,i)~=0
C(k,:)=C(k,:)-C(k,i)/C(i,i)*C(i,:); end end
end
%% 回代求解 %%
x=zeros(n,1);
x(n)=C(n,n+1)/C(n,n);
for i=n-1:-1:1
x(i)=(C(i,n+1)-C(i,i+1:n)*x(i+1:n,1))/C(i,i);
end
A=C(1:n,1:n); %消元后得到的上三角矩阵
disp('The upper teianguular matrix is:')
for k=1:n
fprintf('%f ',A(k,:));
fprintf('\n');
end
disp('Solution of the equations:');
fprintf('%.5g\n',x); %以5位有效数字输出结果
以教材第123页习题16验证通用程序的正确性。

执行程序,输入系数矩阵A 和列向量b,结果如下:
三、求解结果
执行程序,输入矩阵A(即题中的矩阵R)和列向量b(即题中的V),得如下结果:
由上述结果得:
第四章一、题目
二、通用程序
三、求解结果
1、数据输入
Input n: n=10
Input x:[0 1 2 3 4 5 6 7 8 9 10]
Input y:[2.51 3.30 4.04 4.70 5.22 5.54 5.78 5.40 5.57 5.70 5.80] Input the derivative of y(0):0.5
Input the derivative of y(n):0.2
2、计算结果
第五章一、题目
二、通用程序
三、运行结果
第六章一、题目
二、通用程序
1、RK4方法的通用程序
2、AB4方法的通用程序
3、AB4- AB4预测校正方法的通用程序
4、带改进的AB4- AB4预测校正方法的通用程序
三、结果比较
四、结论。

相关文档
最新文档