第二章基本初等函数(I)单元测试题

合集下载

必修1第二章基本初等函数单元测试题(含参考答案).doc

必修1第二章基本初等函数单元测试题(含参考答案).doc

必修1第二章《基本初等函数》测试题班级 姓名 序号 得分一.选择题.(每小题5分,共60分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m nm na a+= B .11mm aa=C .log log log ()a a a m n m n ÷=-D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4、已知(10)x f x =,则(5)f = ( ) A 、510 B 、105 C 、lg10 D 、lg 55.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 6.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞ 7. 三个数60.7 ,0.76 ,6log 7.0的大小顺序是 ( )A .0.76<6log 7.0<60.7 B. 0.76<60.7<6log 7.0 C. 6log 7.0<60.7<0.76 D. 6log 7.0<0.76<60.78.若1005,102ab==,则2a b += ( )A .0B .1C .2D .39.当a ≠0时,函数y ax b =+和y b ax=的图象只可能是( )10.函数()lg(101)2xxf x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数11.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞12.已知 )2(log ax y a -=(0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题4分,共16分) 13.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 14.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .15.若函数)10(log )(<<=a x x f a 在区间[,2]a a 上的最大值是最小值的3倍,则a = . 16.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共74分) 17.(12分)计算下列各式的值:(Ⅰ)4160.253216(24()849-+-⨯.(Ⅱ)21log 32393ln(log (log 81)2log log 12543+++-.18.(本小题满分12分)解方程:3)23(log )49(log 22+-=-x x19.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .20.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.21.( 12分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.22.(14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数; (Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案二.填空题.13.12 . 14. 1-. 15. 16. ③,④. 三.解答题:17.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.18.解原方程可化为:8log )23(log )49(log 222+-=-x x , 即012389=+⋅-xx .解得:23=x (舍去)或63=x, 所以原方程的解是6log 3=x 19.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =- , (2,3]S T =- .20.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-.21.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即322x -==时,()y f x =有最小值31()24f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.22.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x xf x -=-+.对12,x x R ∀∈,当12x x <时,总有 2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >.∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。

高一数学第一学期必修1第二章基本初等函数(I)单元测试

高一数学第一学期必修1第二章基本初等函数(I)单元测试

高一数学第一学期单元测试(二)(内容:必修1第二章基本初等函数(I ))(满分:100分;考试时间:90分钟)一、选择题:(本大题共10小题. 每小题5分,共50分。

在每小题给出的四个选项中,只有一个项是符合题目要求的)1.下列运算中,正确的是( )A. 236a a a =gB. 235()a a =C. 236()a a -=-34xy =2.指数函数x y a =的图像经过点(2,16)则a 的值是 ( ) A .41 B .21 C .2 D .4 3.化简)31()3)((656131212132b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .29a 4.在区间),0(+∞上不是增函数的是 ( )A.2x y =B. x y 2=C. x y log 2=D.2y x = 5. 若2a b =(b >0,且1b ≠),则有 ( )A. 2log a b =B. 2log b a =C. log 2a b =D. log 2b a =6.式子82log 9log 3的值为 ( ) A.23 B.32C.2D.3 7.定义运算a b ⊕,a b ⊕=⎩⎪⎨⎪⎧ a ,a≤b,b ,a>b. 例如:121⊕=,则函数12xy =⊕的值域 为 ( )A 、(0,1)B 、(-∞,1)C 、[1,+∞)D 、(0,1]8. 设 2.1 2.5 2.11231.2, 1.2,0.9y y y ===,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>9. 已知函数)(x f y =的反函数12()log (2)f x x -=-,则方程()6f x =的解集是 ( )A .{1}B .{2} C.{3} D.{4}10. 已知)2(log ax y a -=(01)a a >≠且在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]二、填空题.(每小题5分,共20分) 11. 2542lg lg lg 563+-= . 12. 函数21()log (2)f x x =-的定义域是 . 13.当a >0且a ≠1时,函数1()1x f x a -=+必过定点 .14.关于函数)R x ,0x (|x |1x lg )x (f 2∈≠+=有下列命题: ①函数)x (f y =的图象关于y 轴对称;②在区间)0,(-∞上,函数)x (f y =是减函数;③函数)x (f 的最小值为2lg ;④在区间),1(∞上,函数)x (f 是增函数.其中正确命题序号为_______________.三、解答题(3小题,共30分)15. 计算下列各式.(2小题,共10分)(1(a >0,b >0); (2)(24log 3log 9+)(39log 4log 2+).16. 设函数421()log 1x x f x x x -⎧<=⎨>⎩, 求((2))f f -的值.(本小题满分8分)17. 已知函数22()lg 2x f x x x+=--,求函数的定义域,并判断它的奇偶性. (本小题满分12分)。

《第2章 基本初等函数(Ⅰ)》2013年单元测试卷

《第2章 基本初等函数(Ⅰ)》2013年单元测试卷

《第2章基本初等函数(Ⅰ)》2013年单元测试卷《第2章基本初等函数(Ⅰ)》2013年单元测试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).2.(5分)已知(a,b,c是常数)的反函数,则().C.4.(5分)函数f(x)的图象与函数g(x)=()x的图象关于直线y=x对称,则f(2x﹣x2)的单调减区间为()5.(5分)函数y=,x∈(0,1)的值域是()6.(5分)设g(x)为R上不恒等于0的奇函数,(a>0且a≠1)为偶函数,则D7.(5分)设f(x)=a x,,h(x)=log a x,实数a满足>0,那么当x>1时必有()8.(5分)函数(a>0)的定义域是()9.(5分)lgx+lgy=2lg(x﹣2y),则的值的集合是()10.(5分)函数的图象是().C D.二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.(6分)按以下法则建立函数f(x):对于任何实数x,函数f(x)的值都是3﹣x与x2﹣4x+3中的最大者,则函数f(x)的最小值等于_________.12.(6分)设函数f(x)=x|x|+bx+c,给出四个命题:①c=0时,y=f(x)是奇函数;②b=0,c>0时,方程f(x)=0只有一个实数根;③y=f(x)的图象关于(0,c)对称;④方程f(x)=0至多有两个实数根;上述命题中正确的命题的序号是_________.13.(6分)我国2000年底的人口总数为M,要实现到2010年底我国人口总数不超过N(其中M<N),则人口的年平均自然增长率p的最大值是_________.14.(6分)在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,a n ,共n个数据.我们规定所测量的“量佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,a n推出的a=_________.三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知log329=p,log2725=q,试用p,q表示lg5.16.(12分)已知a,b∈R+,函数.(1)判断函数f(x)的单调性,并证明你的结论;(2)比较与的大小.17.(12分)已知函数(a、b是常数且a>0,a≠1)在区间[﹣,0]上有y max=3,y min=,试求a和b 的值.18.(12分)已知函数f(x)=lg(ax2+2x+1).(1)若f(x)的定义域是R,求实数a的取值范围及f(x)的值域;(2)若f(x)的值域是R,求实数a的取值范围及f(x)的定义域.19.(14分)某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是该商品的日销售量Q(件)与时间t(天)的函数关系是Q=﹣t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?20.(14分)已知函数f(x)是(x∈R)的反函数,函数g(x)的图象与函数的图象关于直线x=﹣2成轴对称图形,设F(x)=f(x)+g(x).(1)求函数F(x)的解析式及定义域;(2)试问在函数F(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直?若存在,求出A,B 坐标;若不存在,说明理由.《第2章基本初等函数(Ⅰ)》2013年单元测试卷参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).2.(5分)已知(a,b,c是常数)的反函数,则()的反函数,再结合条件求出常数y=,故函数y=再由已知互为反函数可得.C.,≤4.(5分)函数f(x)的图象与函数g(x)=()x的图象关于直线y=x对称,则f(2x﹣x2)的单调减区间为())=()=是减函数,5.(5分)函数y=,x∈(0,1)的值域是()=﹣=﹣,∴<<<﹣6.(5分)设g(x)为R上不恒等于0的奇函数,(a>0且a≠1)为偶函数,则D)是偶函数,则根据函数奇偶性的性质可得出函数为,即7.(5分)设f(x)=a x,,h(x)=log a x,实数a满足>0,那么当x>1时必有()满足满足8.(5分)函数(a>0)的定义域是()9.(5分)lgx+lgy=2lg(x﹣2y),则的值的集合是()•的值,从而得到∴+4=0,∴=410.(5分)函数的图象是().C D.解:函数二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.(6分)按以下法则建立函数f(x):对于任何实数x,函数f(x)的值都是3﹣x与x2﹣4x+3中的最大者,则函数f(x)的最小值等于0.12.(6分)设函数f(x)=x|x|+bx+c,给出四个命题:①c=0时,y=f(x)是奇函数;②b=0,c>0时,方程f(x)=0只有一个实数根;③y=f(x)的图象关于(0,c)对称;④方程f(x)=0至多有两个实数根;上述命题中正确的命题的序号是①②③.=x|x|+c==x|x|+c=可得,则13.(6分)我国2000年底的人口总数为M,要实现到2010年底我国人口总数不超过N(其中M<N),则人口的年平均自然增长率p的最大值是﹣1..故答案为14.(6分)在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,a n,共n个数据.我们规定所测量的“量佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,a n推出的a=.a=故答案为:三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知log329=p,log2725=q,试用p,q表示lg5.,所以,,,.=16.(12分)已知a,b∈R+,函数.(1)判断函数f(x)的单调性,并证明你的结论;(2)比较与的大小.)函数,此时函数此时函数)=因为幂函数.时,.17.(12分)已知函数(a、b是常数且a>0,a≠1)在区间[﹣,0]上有y max=3,y min=,试求a和b 的值.再利用复合函数的单调性求得函数的最,解得解得或18.(12分)已知函数f(x)=lg(ax2+2x+1).(1)若f(x)的定义域是R,求实数a的取值范围及f(x)的值域;(2)若f(x)的值域是R,求实数a的取值范围及f(x)的定义域.x+>))等价于>﹣,)的定义域是(﹣.19.(14分)某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是该商品的日销售量Q(件)与时间t(天)的函数关系是Q=﹣t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?∴20.(14分)已知函数f(x)是(x∈R)的反函数,函数g(x)的图象与函数的图象关于直线x=﹣2成轴对称图形,设F(x)=f(x)+g(x).(1)求函数F(x)的解析式及定义域;(2)试问在函数F(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直?若存在,求出A,B 坐标;若不存在,说明理由.=lg==x=lg=lg的图象上,y=,即(=lg,其定义域为=参与本试卷答题和审题的老师有:zlzhan;minqi5;涨停;sxs123;maths;yhx01248;haichuan;caoqz;xintrl;吕静;wodeqing;席泽林;ying_0011(排名不分先后)菁优网2013年11月6日。

2021年高中数学 第二章 基本初等函数Ⅰ单元测试 新人教A版必修1

2021年高中数学 第二章 基本初等函数Ⅰ单元测试 新人教A版必修1

2021年高中数学 第二章 基本初等函数Ⅰ单元测试 新人教A 版必修1一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列各式:①na n =a ;②若a ∈R ,则(a 2-a +1)0=1;③ 3x 4+y 3=x43+y ;④6-22=3-2.其中正确的个数是( ) A .0 B .1 C .2D .3解析 仅有②正确. 答案 B2.函数f (x )=log a (4x -3)的图象过定点( ) A .(1,0)B .(1,1)C.⎝ ⎛⎭⎪⎫34,0 D.⎝ ⎛⎭⎪⎫34,1 解析 令4x -3=1,得x =1.又f (1)=log a (4×1-3)=log a 1=0,故f (x )=log a (4x-3)的图象过定点(1,0).答案 A3.下列函数在(0,+∞)上是增函数的是( ) A .y =3-xB .y =-2xC .y =log 0.1xD .y =x 12答案 D4.设y 1=40.9,y 2=log 124.3,y 3=⎝ ⎛⎭⎪⎫13 1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2解析 因为y 1=40.9>40=1,y 2=log 124.3<log 121=0,0<y 3=⎝ ⎛⎭⎪⎫13 1.5<⎝ ⎛⎭⎪⎫130=1,所以y 1>y 3>y 2.答案 D5.已知集合A ={y |y =2x,x <0},B ={y |y =log 2x },则A ∩B =( ) A .{y |y >0} B .{y |y >1} C .{y |0<y <1}D .∅解析 A ={y |y =2x,x <0}={y |0<y <1},B ={y |y =log 2x }={y |y ∈R },∴A ∩B ={y |0<y <1}.答案 C6.如果某林区森林面积每年比上一年平均增长10%,经过x 年可以增长到原来的y 倍,那么函数y =f (x )的图象大致是( )解析假设原来森林面积为1,则y=(1+10%)x=1.1x. 答案 D7.已知0<a<1,x=log a2+log a3,y=12log a5,z=log a21-log a3,则( )A.x>y>z B.z>y>x C.y>x>z D.z>x>y解析x=log a2+log a3=log a6=12log a6,z=log a21-log a3=log a7=12log a7.∵0<a<1,∴12log a5>12log a6>12log a7.即y>x>z.答案 C8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=( )A.e x+1 B.e x-1C.e-x+1D.e-x-1解析与曲线y=e x关于y轴对称的曲线为y=e-x,函数y=e-x的图象向左平移一个单位长度即可得到函数f(x)的图象,即f(x)=e-(x+1)=e-x-1.答案 D9.已知四个函数①y=f1(x);②y=f2(x);③y=f3(x);④y=f4(x)的图象如下图:则下列等式中可能成立的是( ) A .f 1(x 1+x 2)=f 1(x 1)+f 1(x 2) B .f 2(x 1+x 2)=f 2(x 1)+f 2(x 2) C .f 3(x 1+x 2)=f 3(x 1)+f 3(x 2) D .f 4(x 1+x 2)=f 4(x 1)+f 4(x 2)解析 结合图象知,A 、B 、D 不成立,C 成立. 答案 C10.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎪⎫12x-3,x ≤0,x 12 ,x >0,已知f (a )>1,则实数a 的取值范围是( )A .(-2,1)B .(-∞,-2)∪(1,+∞)C .(1,+∞)D .(-∞,-1)∪(0,+∞)解析 当a ≤0时,f (a )=⎝ ⎛⎭⎪⎫12a-3>1,解得a <-2;当a >0时,f (a )=a 12>1,解得a >1.综上a 的取值范围是(-∞,2)∪(1,+∞) 答案 B11.若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是( ) A .(0,10)B.⎝ ⎛⎭⎪⎫110,10C.⎝ ⎛⎭⎪⎫110,+∞D.⎝⎛⎭⎪⎫0,110∪(10,+∞) 解析 因为f (x )为偶函数,所以f (x )=f (|x |),因为f (x )在(-∞,0)内单调递减,所以f (x )在(0,+∞)内单调递增,故|lg x |>1,即lg x >1或lg x <-1,解得x >10或0<x <110. 答案 D12.设f (x )是定义在(-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若a =f ⎝⎛⎭⎪⎫log213,b =f ⎝ ⎛⎭⎪⎫log 3 12,c =f (-2),则a ,b ,c 的大小关系是( ) A .a >b >c B .b >c >a C .c >a >b D .c >b >a解析 因为log 2 3<log 2 2=2,0<log32<log33=1, 所以log32<log23<2.因为f (x )在[0,+∞)上单调递增, 所以f (log32)<f (log23)<f (2), 因为f (x )是偶函数,所以a =f ⎝ ⎛⎭⎪⎫log 213=f (-log 2 3)=f (log 2 3), b =f ⎝⎛⎭⎪⎫log312=f (-log 3 2)=f (log 3 2), c =f (-2)=f (2).所以c >a >b .答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数y =log 12x -4的定义域是________.解析 由log 12 (x -4)≥0得0<x -4≤1,∴4<x ≤5.故函数的定义域为(4,5]. 答案 (4,5]14.已知函数y =log a (x +b )的图象如下图所示,则a =________,b =________.解析由图象过点(-2,0),(0,2)知,log a(-2+b)=0,log a b=2,∴-2+b=1,b =a2.∴b=3,a2=3.由a>0,知a= 3.∴a=3,b=3.答案 3 315.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是________.解析根据题意画出f(x)的草图,由图象可知,f(x)>0的x的取值范围是-1<x<0,或x>1.答案(-1,0)∪(1,+∞)16.定义区间[x1,x2](x1<x2)的长度为x2-x1,已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.解析作出函数y=2|x|的图象(如图所示)当x=0时,y=20=1,当x=-1时,y=2-1=2,当x=1时,y=21=2,所以当值域为[1,2]时,区间[a,b]的长度的最大值为2,最小值为1,它们的差为1. 答案 1三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)计算下列各题:(1)0.008114+⎝ ⎛⎭⎪⎫4-43 2+(8)-43 -16-0.75;(2)(lg5)2+lg2·lg50+21+12log 25.解 (1)原式=(0.34)14 +22×⎝ ⎛⎭⎪⎫-34×2 +232×⎝ ⎛⎭⎪⎫-43 -24×(-0.75)=0.3+2-3+2-2-2-3=0.55.(2)原式=(lg5)2+lg2·lg(2×52)+2·2log 25=(lg5)2+lg2·(lg2+2lg5)+2 5 =(lg5+lg2)2+25=1+2 5.18.(本小题满分12分)已知函数f (x )=log 2(ax +b ),若f (2)=1,f (3)=2,求f (5).解 由f (2)=1,f (3)=2,得⎩⎪⎨⎪⎧log 22a +b =1,log 23a +b =2,⇒⎩⎪⎨⎪⎧2a +b =2,3a +b =4,⇒⎩⎪⎨⎪⎧a =2,b =-2.∴f (x )=log 2(2x -2),∴f (5)=log 28=3.19.(本小题满分12分)已知函数f (x )=-2x 12.(1)求f (x )的定义域;(2)证明f (x )在定义域内是减函数.解 (1)∵f (x )=-2x12=-2x ,∴f (x )的定义域为[0,+∞).20.(本小题满分12分)设f (x )=⎩⎪⎨⎪⎧2-x,x ∈-∞,1],log 3x 3·log 3x9,x ∈1,+∞.(1)求f ⎝ ⎛⎭⎪⎫log 232的值;(2)求f (x )的最小值. 解 (1)因为log 232<log 22=1,所以f ⎝⎛⎭⎪⎫log 232==23. (2)当x ∈(-∞,1]时,f (x )=2-x=⎝ ⎛⎭⎪⎫12x 在(-∞,1]上是减函数,所以f (x )的最小值为f (1)=12.当x ∈(1,+∞)时,f (x )=(log 3x -1)(log 3x -2), 令t =log 3x ,则t ∈(0,+∞),f (x )=g (t )=(t -1)(t -2)=⎝⎛⎭⎪⎫t -322-14,所以f (x )的最小值为g ⎝ ⎛⎭⎪⎫32=-14. 综上知,f (x )的最小值为-14.21.(本小题满分12分)已知函数f (x )=lg(a x-b x),(a >1>b >0). (1)求f (x )的定义域;(2)若f (x )在(1,+∞)上递增且恒取正值,求a ,b 满足的关系式.解 (1)由a x -b x>0,得⎝ ⎛⎭⎪⎫a b x>1. ∵a >1>b >0,∴a b>1. ∴x >0.即f (x )的定义域为(0,+∞).(2)∵f (x )在(1,+∞)上递增且恒为正值, ∴f (x )>f (1),只要f (1)≥0. 即lg(a -b )≥0,∴a -b ≥1. ∴a ≥b +1为所求.22.(本小题满分12分)已知函数f (x )=2x-12|x |. (1)若f (x )=2,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x-12x .由条件可知2x -12x =2,即22x -2·2x-1=0,解得2x=1± 2.∵2x>0,∴x =log 2(1+2).(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t-1). ∵22t -1>0,∴m ≥-(22t+1).∵t ∈[1,2],∴-(1+22t)∈[-17,-5],故m 的取值范围是[-5,+∞).25340 62FC 拼 34632 8748 蝈w_33293 820D 舍25702 6466 摦s28381 6EDD 滝38651 96FB 電32122 7D7A 絺27573 6BB5 段27126 69F6 槶~23192 5A98 媘。

高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高中数学必修1第二章基本初等函数单元测试题(含参考答案)高一数学训练题(二)一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m nm na a+= B .11mmaa =C .loglog log ()aa a m n m n ÷=-D 43()mn =2.函数log (32)2a y x =-+的图象必过定点( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为( )A .1B . 2C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( )A .122lg xx x>> B .122lg xx x>> C .122lg x xx>>D .12lg 2xx x>>5.函数(2)log (5)x y x -=-的定义域是 ( )A .(3,4)B .(2,5)C .(2,3)(3,5)UD .(,2)(5,)-∞+∞U6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是( )A .减少1.99%B .增加1.99%C .减少4%D .不增不减 7.若1005,102a b ==,则2a b +=( )A .0B .1C .2D .3 8.函数()lg(101)2x x f x =+-是( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分) 11.计算:459log27log 8log 625⨯⨯=.12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f =. 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -=.14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = .15.已知01a <<,给出下列四个关于自变量x 的函数: ①log x y a =,②2log ay x =, ③31(log)ay x = ④121(log)ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分)16.(12分)计算下列各式的值:(Ⅰ)设集合}21|{<<-=x x A ,}31|{<<=x x B ,求B A ⋂, ()RA B ⋂ð, ()()RRA B ⋃痧..17. (本小题满分15分)已知函数⎩⎨⎧<≥+-=0,,0,4222x x x x x y , (1)画出函数的图像;(2)求函数的单调区间;(3)求函数在区间[]3,2-上的最大值与最小值.18. (本小题满分15分)(1)如果定义在区间(1,0)-的函数3()log (1)af x x =+满足()0f x <,求a 的取值范围; (2)解方程:3log (323)2xx +•=19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21. 某公司生产一种仪器的固定成本为10000元,每生产一台仪器需增加投入200元,已知总收益满足函数⎪⎩⎪⎨⎧>≤≤-=400,100000,4000,21400)(2x x x x x g .其中x 是仪器的月产量(单位:台).(1)将利润表示为月产量x 的函数)(x f ;(2)当月产量x 为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本﹢利润)参考答案一.选择题二.填空题.11. 9 . 12. 12. 13. 1-. 14.4. 15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯. 17.(1)解:ln(x-1)<lne}1|{11-<∈∴+<∴<-∴e x x x e x ex}2log 1|{2log 12log 1)31()31(2)31()2(3131312log 1x 131+<∈∴+<∴>-∴<∴<--x x x x x x 解:1212,101212,11)3(212212<∴-<-<<>∴->->∴>∴⎪⎭⎫ ⎝⎛>----x x x a x x x a a a a a xx x x 时当时当解:.18.解:(Ⅰ)原不等式可化为:212x xaa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =-I , (2,3]S T =-U .19.解:(Ⅰ)11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222xx f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-. 20.解:(Ⅰ)t 的取值范围为区间221[log,log 4][2,2]4=-. (Ⅱ)记22()(log2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即3224x -==时,()y f x =有最小值31()424f g =-=-; 当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==. 21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014b f b -==⇔=(经检验符合题设) .(Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> . ∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >.∴函数()f x 在R 上是减函数.(Ⅲ)∵函数()f x 是奇函数且在R 上是减函数, ∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-. }0|{函数的定义域为,时10当}0|x {函数的定义域为,时1当1a 01(1)a :解22x x <<<>>∴>∴>-x x a x a .)0,()(,10;),0()(,1)2(上递增在时当上递增在时当-∞<<+∞>x f a x f a。

高中数学 第二章 基本初等函数(Ⅰ)单元测试2(含解析)新人教A版必修1(2021年整理)

高中数学 第二章 基本初等函数(Ⅰ)单元测试2(含解析)新人教A版必修1(2021年整理)

福建省福州市高中数学第二章基本初等函数(Ⅰ)单元测试2(含解析)新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省福州市高中数学第二章基本初等函数(Ⅰ)单元测试2(含解析)新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省福州市高中数学第二章基本初等函数(Ⅰ)单元测试2(含解析)新人教A版必修1的全部内容。

第二章 基本初等函数(Ⅰ)一、选择题:1.3334)21()21()2()2(---+-+----的值 ( )A 437 B 8 C -24 D -82。

函数x y 24-=的定义域为 ( )A ),2(+∞B (]2,∞-C (]2,0D [)+∞,13.下列函数中,在),(+∞-∞上单调递增的是 ( )A ||x y =B x y 2log =C 31x y = D x y 5.0=4.函数x x f 4log )(=与x x f 4)(=的图象 ( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x y =对称5.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )A 2-aB 25-aC 2)(3a a a +-D 132--a a6。

已知10<<a ,0log log <<n m a a ,则 ( )A m n <<1B n m <<1C 1<<n mD 1<<m n7。

已知函数f (x )=2x,则f (1-x )的图象为 ( )A B C D8。

有以下四个结论① l g(l g10)=0 ② l g (l n e )=0 ③若10=l g x ,则x=10 ④ 若e =ln x,则x =e 2, 其中正确的是 ( )A. ① ③ B 。

(完整word版)高中数学必修一第二章基本初等函数(Ⅰ)单元测试题(含答案)

(完整word版)高中数学必修一第二章基本初等函数(Ⅰ)单元测试题(含答案)

第二章综合测试题本试卷分第Ⅰ卷 (选择题 )和第Ⅱ卷 (非选择题 )两部分.满分 150分.考试时间 120 分钟.第Ⅰ卷 (选择题共 60 分 )一、选择题 (本大题共12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:①na n= a;②若 a∈ R,则 ( a2-a+ 1)0= 1;③343- 5x4+ y3= x3+ y;④=6- 5 2.此中正确的个数是()A . 0B. 1C.2D. 32.三个数 log 21, 20.1,20.2的大小关系是()511A . log 25<20.1<20.2B. log25<20.2<20.111C.20.1<20.2<log 25D. 20.1<log25<20.23. (2016 山·东理, 2)设会合 A={ y|y= 2x, x∈ R} , B= { x|x2- 1<0} ,则 A∪ B= () A . (- 1,1)B. (0,1)C.( -1,+∞ )D. (0,+∞ )4.已知 2x= 3y,则x= ()ylg2lg3A.lg3B.lg223C.lg 3D. lg25.函数 f(x)= xln|x|的图象大概是()6.若函数f( x)= 3x+ 3-x与 g(x)= 3x-3-x的定义域均为R ,则 ()A . f(x)与 g(x)均为偶函数B.f(x)为奇函数, g(x)为偶函数C.f(x)与 g(x)均为奇函数D. f(x)为偶函数, g(x)为奇函数17.函数 y= (m2+ 2m- 2)xm-1是幂函数,则m= ()A . 1C .- 3 或1B .- 3D . 28.以下各函数中,值域为(0,+∞)的是( )xA . y = 2-2B . y = 1- 2xC .y = x 2+ x + 11D . y = 3x+119.已知函数:① y = 2x ;② y = log 2 x ;③ y = x -1 ;④ y = x 2;则以下函数图象 (第一象限部分 )从左到右挨次与函数序号的对应次序是()A .②①③④B .②③①④C .④①③②D .④③①②10.设函数 f(x)=1+ log 2 2- xx<1,则 f(- 2)+ f(log 212) = ()-1xx ≥ 12A . 3B . 6C .9D . 12a - 2 x , x ≥ 2, x 1≠ x 2 都有f x 1 -f x 2< 0 成11.已知函数 f( x)=1 x -1, x <2 知足对随意的实数x - x21 2立,则实数 a 的取值范围为()13A . (-∞, 2)B . (-∞, 8 ]C .( -∞, 2]13, 2)D . [ 812. (2016 汉·中高一检测 )假如一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下边的五个点M (1,1), N(1,2), P(2,1), Q(2,2), G(2, 1)中,2 能够是“好点”的个数为()A . 0 个B . 1 个C .2 个D . 3 个第Ⅱ卷 (非选择题共 90 分)二、填空题 (本大题共4 个小题,每题5 分,共 20 分,把正确答案填在题中横线上)1413.已知 a 2(a > 0),则 log 2 a = ________.=9314.已知函数 f(x)=log 2x , x > 0, 1则 f(f( ))= ________.3x , x ≤ 0,415.若函数y = log 1 (3x 2- ax + 5)在 [ - 1,+∞ )上是减函数,则实数a 的取值范围是2________.16.(2016 ·阳高一检测邵 )如图,矩形 ABCD 的三个极点 A ,B ,C 分别在函数y = log 221x ,y = x 2,y = ( 2)x 的图象上,且矩形的边分别平行于两坐标轴.若点 A 的纵坐标为 2,则2点 D 的坐标为 ________.三、解答题 (本大题共 6 个小题, 共 70 分,解答应写出文字说明,证明过程或演算步骤 )1 + ( 1 1lg32- lg9 + 1- lg 1+ 810.5log 35.17. (本小题满分 10 分 )计算:)-3 +0.25 27318. (本小题满分 12 分 )已知函数 f(x)= (12)ax , a 为常数,且函数的图象过点(- 1,2).(1) 求 a 的值;(2)若 g(x)=4 -x - 2,且 g(x)= f(x),求知足条件的 x 的值. 19. (本小题满分 12 分 )已知函数 f(x)= log a (1+ x), g(x)= log a (1- x),(a >0, a ≠ 1).(1)设 a = 2,函数 f(x)的定义域为 [3,63],求 f( x)的最值;(2)求使 f(x)- g(x)> 0 的 x 的取值范围.20. (本小题满分 12 分 )求使不等式 (1)x 2-8>a -2x 建立的 x 的会合 (此中 a>0,且 a ≠ 1).a21. (本小题满分 12 分 )(2016 雅·安高一检测 )已知函数 f(x)= 2x 的定义域是 [0,3] ,设 g(x)= f (2x)- f(x + 2),(1)求 g(x)的分析式及定义域;(2)求函数 g(x)的最大值和最小值.a122. (本小题满分 12 分 )若函数 f(x)知足 f(log a x)=a2-1·(x-x)(此中 a> 0且 a≠1).(1)求函数 f(x)的分析式,并判断其奇偶性和单一性;(2)当 x∈ (-∞, 2) 时, f( x)- 4 的值恒为负数,求 a 的取值范围.参照答案:1.[ 答案 ]B[分析 ]① na n=|a|, n 为偶数, (n>1,且 n ∈ N * ),故①不正确.a , n 为奇数② a 2- a + 1= (a -12)2+ 34>0 ,所以 (a 2- a + 1)0= 1 建立.③ 3 x 4+ y 3没法化简.④ 3 - 5<0 , 6-5 2>0,故不相等.所以选 B.2.[答案 ] A[分析 ]1 0.1<20.2,∵ log 2 <0,0<25∴ log 21<20.1<2 0.2,选A. 53.[答案 ]C[分析 ]A ={ y|y = 2x , x ∈ R} = { y|y>0} .B = { x|x 2- 1<0} = { x|- 1<x<1} ,∴ A ∪ B = { x|x>0} ∪ { x|- 1< x<1} = { x|x>- 1} ,应选 C.4.[答案 ]B[分析 ]由 2x = 3y 得 lg2x = lg3y ,∴ xlg2 = ylg3,x lg3∴ y=lg2.5.[答案 ] A[分析 ] 由 f(- x)=- xln|- x|=- xln|x|=- f(x) 知,函数 f(x)是奇函数,故清除C ,D ,11又 f(e )=- e <0,进而清除 B ,应选 A.6.[答案 ] D[分析 ]- xx= f( x),g( -x)= 3 -xx=- g(x),所以 f(x)是偶函数, g( x)由于 f(- x)= 3 + 3 - 3 为奇函数,应选 D.7.[答案 ]B1[分析 ]由于函数 y = (m 2+2m -2)xm-1是幂函数,所以m 2+ 2m - 2= 1 且 m ≠ 1,解得m =- 3.8.[答案 ] A[分析 ]A , y = 2x- 2 = ( 2)x 的值域为 (0,+ ∞ ). 2B ,由于 1- 2x ≥ 0,所以 2x ≤ 1, x ≤ 0,y = 1- 2x 的定义域是 (-∞ , 0],所以 0< 2x ≤ 1,所以 0≤1- 2x < 1, 所以 y = 1- 2x 的值域是 [0,1) .C ,y = x 2+ x + 1= (x + 1) 2+ 3的值域是 [ 3,+ ∞ ),2441∈ (- ∞ , 0)∪ (0,+ ∞ ),D ,由于 x + 11所以 y =3x+1的值域是 (0,1)∪ (1,+ ∞ ).9.[答案 ] D[分析 ]依据幂函数、指数函数、对数函数的图象可知选D.10.[答案 ] C[分析 ]2212)=2 log 212-1= 2log 26= 6,f( -2)= 1+ log (2 - (- 2))= 3, f(log∴ f(- 2)+ f(log 212)= 9,应选 C. 11.[答案 ] Ba - 2<0,[分析 ]由题意知函数 f(x) 是 R 上的减函数,于是有1由此解得2- 1,a - 2 × 2≤ 213,即实数 a 的取值范围是 (-∞ ,13a ≤ 88 ],选 B.12.[答案 ] C[分析 ]设指数函数为 y = a x(a>0, a ≠ 1),明显可是点 M 、 P ,若设对数函数为 y = log b x(b>0, b ≠ 1),明显可是 N 点,选 C.13.[答案 ] 414[分析 ]∵ a 2= (a > 0),9∴ (a 1)2= [( 2) 2] 2,即 a = (2)4,233∴ log 2 a = log 2 (23)4= 4.33114.[答案 ]9[分析 ]∵1> 0,∴ f(1)= log 21=- 2.4 4 4则 f(1) <0,∴ f(f(1))= 3-2=1.44915.[答案 ] (- 8,- 6]a[ 分析 ] 令 g(x) = 3x 2- ax + 5,其对称轴为直线x = a,依题意,有6≤ - 1, ,即6g - 1 > 0a ≤ - 6, a >- 8.∴ a ∈ (- 8,- 6].16.[答案 ]( 1,1)24[分析 ] 由图象可知,点 A(x2)在函数 y = log 2 x 的图象上,A,2所以 2= log2 x A ,x A = (2 1 )2= .2221点 B(x B,2)在函数 y = x 2的图象上,1所以 2= x B 2, x B = 4.点 C(4, y C )在函数 y = ( 2)x的图象上,2所以 y C =( 2)4= 1.2 4又 x D A1, y DC1,= x =2=y = 4所以点 D 的坐标为 (1,1).241117.[分析 ]原式= + (3-1)-3 + lg3- 1 2 - lg3-1+ (34)0.5log 350.5= 2+ 3+ (1- lg3) + lg3 + 32log 35= 6+ 3log 325= 6+ 25= 31.18.[分析 ]1 - a = 2,解得 a = 1.(1) 由已知得 ( )2(2)由 (1) 知 f(x)= (1)x,又 g( x)= f(x),2则 4-x-2= (12)x,即 (14)x -( 12)x- 2= 0,即 [(1)x ]2 -(1)x- 2= 0,22令 (12)x= t ,则 t 2- t - 2= 0,即 (t -2)( t + 1)= 0,又 t>0 ,故 t = 2,即 (1)x= 2,解得 x =-1. 2 19.[分析 ] (1) 当 a =2 时, f(x)= log 2(1+ x),在 [3,63] 上为增函数,所以当 x =3 时, f(x) 最小值为 2.当 x = 63 时 f(x)最大值为 6.(2)f(x)- g(x)> 0 即 f(x) >g(x)当 a >1 时, log a (1+ x)> log a (1- x)1+ x > 1- x知足 1+ x > 0∴ 0<x < 11- x > 0当 0<a < 1 时, log a (1+ x)> log a (1- x)知足1+ x < 1- x1+ x > 01- x > 0∴- 1<x < 0综上 a > 1 时,解集为 { x|0< x < 1}0< a <1 时解集为 { x|- 1<x < 0} .20.[分析 ]∵(1a ) x 2-8=a 8-x 2,∴原不等式化为 a 8 -x 2>a -2x .当 a>1 时,函数 y = a x 是增函数,∴ 8- x 2>-2x ,解得- 2<x<4;当 0<a<1 时,函数 y = a x 是减函数, ∴ 8- x 2<-2x ,解得 x<- 2 或 x>4.故当 a>1 时, x 的会合是 { x|- 2< x<4} ;当 0<a<1 时, x 的会合是 { x|x<- 2 或 x>4} .21.[分析 ](1) ∵ f(x)=2x ,∴ g(x)= f(2x)- f(x + 2)=22x - 2x +2.由于 f(x)的定义域是 [0,3] ,所以 0≤ 2x ≤3,0≤ x + 2≤3,解得 0≤ x ≤1.于是 g(x)的定义域为 { x|0≤ x ≤1} .(2)设 g(x)=(2 x )2- 4× 2x =(2x - 2)2- 4.∵ x ∈ [0,1] ,∴ 2x ∈ [1,2] ,∴当 2x = 2,即 x = 1 时, g(x)获得最小值- 4; 当 2x = 1,即 x = 0 时, g(x)获得最大值- 3. 22.[分析 ] (1) 令 log a x = t(t ∈ R),则 x =a t ,∴ f(t)= 2a(a t -a -t ). a- 1∴ f(x)= 2-a1(a x - a -x )(x ∈ R).a∵ f(- x)= 2 a - xx ax-a - x)=- f(x),∴ f(x)为奇函数.(a- a )=-2(aa - 1a - 1-a 2当 a >1 时, y = a x 为增函数, y =- a x 为增函数,且 a 2- 1>0,∴ f(x)为增函数.当 0<a < 1 时, y = a x 为减函数, y =- a -x 为减函数,且 a 2 < 0,a 2- 1∴ f(x)为增函数.∴ f(x)在 R 上为增函数.(2)∵ f(x)是 R 上的增函数,∴ y = f( x)- 4 也是 R 上的增函数.由 x < 2,得 f(x)< f(2),要使 f(x)- 4 在 (- ∞, 2)上恒为负数,只要 f(2) - 4≤ 0,即 2 a(a 2- a-2)≤ 4.a - 1aa 4- 1∴a 2-1(a2)≤ 4,∴ a 2+ 1≤ 4a ,∴ a 2- 4a + 1≤ 0, ∴ 2- 3≤ a ≤ 2+ 3.又 a ≠1,∴ a 的取值范围为 [2- 3, 1)∪ (1,2+ 3].。

高一数学第二章《基本初等函数》单元测试卷4

高一数学第二章《基本初等函数》单元测试卷4

高一数学第二章《基本初等函数》单元测试卷班级 学号 姓名一、选择题(每小题5分,共40分) 1.3334)21()21()2()2(---+-+----的值( ) A 437 B 8 C -24 D -8 2.函数x y 24-=的定义域为( )A ),2(+∞B (]2,∞-C (]2,0D [)+∞,13.下列函数中,在),(+∞-∞上单调递增的是( ) A ||x y = B x y 2log = C 31x y = D x y 5.0=4.函数x x f 4log )(=与x x f 4)(=的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x y =对称5.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )A 2-aB 25-aC 2)(3a a a +-D 132--a a6.若函数)1,0)(1(≠>+-=a a b a y x 的图象在第一、三、四象限,则有( )A 1>a 且1<bB 1>a 且0>bC 10<<a 且0>bD 10<<a 且0<b7.已知10<<a ,0log log <<n m a a ,则 ( )A m n <<1B n m <<1C 1<<n mD 1<<m n8.函数⎩⎨⎧>-≤-=--)1(23)1(2311x x y x x 的值域是A )1,2(--B ),2(+∞-C ]1,(--∞D ]1,2(--二、填空题(每小题5分,共20分)9.若n m a a )()(->-ππ,且1>>n m ,则实数a 的取值范围为 。

10.已知函数)(x f 为偶函数,当),0(+∞∈x 时,12)(+-=x x f ,当)0,(-∞∈x 时,=)(x f _____________.11.已知函数⎩⎨⎧<+≥=-),3)(1(),3(2)(x x f x x f x 则=)3(log 2f _________.12.已知)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是_________三、解答题(共40分)13(本题满分10分)计算下列各式的值:(写出化简过程)(1)5.02120)01.0()412(2)532(-⨯+--;(5分)(2)432981⨯;(5分)14.已知函数x y 2=(1)作出其图象;(4分)(2)由图象指出单调区间;(2分)(3)由图象指出当x 取何值时函数有最小值,最小值为多少?(4分)15.已知[]2,1,4329)(-∈+⨯-=x x f x x(1)设[]2,1,3-∈=x t x ,求t 的最大值与最小值;(4分)(2)求)(x f 的最大值与最小值;(6分)16.已知函数.11lg )(xx x f +-= (1) 求证:);1()()(xyy x f y f x f ++=+(4分) (2) 若,2)1(,1)1(=--=++abb a f ab b a f 求)(a f 和)(b f 的值.(6分)《基本初等函数》参考答案一、1~8 CBCD ABAD二、9、{}1-<πa a 10、12)(+-=-x x f11、12112、{}21<<a a三、13、(1)1516(2) 67314、(1)如图所示:(2)单调区间为()0,∞-,[)+∞,0.(3) 由图象可知:当0=x 时,函数取到最小值1min =y15、解:(1)x t 3= 在[]2,1-是单调增函数∴ 932max ==t ,3131min ==-t(2)令x t 3=,[]2,1-∈x ,⎥⎦⎤⎢⎣⎡∈∴9,31t 原式变为:42)(2+-=t t x f ,1xy3)1()(2+-=∴t x f ,⎥⎦⎤⎢⎣⎡∈9,31t ,∴当1=t 时,此时1=x ,3)(min =x f ,当9=t 时,此时2=x ,67)(max =x f 。

(word完整版)高中数学必修1第二章基本初等函数单元测试题(含参考答案)

(word完整版)高中数学必修1第二章基本初等函数单元测试题(含参考答案)
高一数学单元测试题
必修
一.选择题.
1.若m0,
(每小题
0,
班级姓名
5分,共50分)
a0且a1,则下列等式中正确的是
序号
得分
m、n
A-(a)
C. logam logan loga(m n)
3>4
D. ■.m
-4 n
4
(mn)3
2.函数y
loga(3x 2)2的图象必过定点
A.(1,2)
B.(2,2)
C.(2,3)
A.减少1.99%
10%,
后两年每年降低
10%,则四年后的价格与原来价格比较, (
B.增加
1.99%
C.减少4%
D.不增不减
7.若100a5,
10b2,则
2a
8.函数f (x)
A.奇函数
B.1
lg(10x1)x是
2
B.偶函数
C.既奇且偶函数
D.非奇非偶函数
2
9.函数y loga(x 2x) (0 a
3.已知幕函f⑷
的值为
D.8
4.右
x(0,1),
则下列结论正确的是
x
2lgx
1 1
x"B.2xx2
lg x
C.
1
x2
2x
lg x
lg x
2x
5.函数y log(x 2)(5x)的定义域是
A.(3,4)
B.(2,5)
(2,3) U(3,5)
(,2) U (5,
6.某商品价格前两年每年提高 变化的情况是
11.计算:log427log58log9625
a 1)在区间[a,2a]上的最大值是最小值的3倍,则a=

高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

第二章《基本初等函数Ⅰ》测试卷考试时间:120分钟 满分:150分一.选择题.(本大题共12小题,每小题5分,共60分)1.给出下列说法:①0的有理次幂等于0;②01()a a R =∈;③若0,x a R >∈,则0a x >;④11221()33-=.其中正确的是( )A.①③④B.③④C.②③④D. ③ 2.552log 10log 0.25+的值为( )A.0B.1C.2D.4 3.函数2()3x f x =的值域为( )[A.[)0,+∞B.(],0-∞C.[)1,+∞D.(),-∞+∞4.幂函数2()(1),(0,)m f x m m x x =--∈+∞当时为减函数,则m 的值为( ) A.1 B.1- C.12-或 D.25.若函数2013()2012(0,1)x f x a a a -=->≠且,则()f x 的反函数图象恒过定点( ) A.(2013,2011)B.(2011,2013)C.(2011,2012)D.(2012,2013)6.函数22()log (1)()f x x x x R =++∈的奇偶性为( ) A.奇函数而非偶函数 B.偶函数而非奇函数C.非奇非偶函数D.既是奇函数又是偶函数-7. 若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )A. 24B. 22C. 14D. 128.如果60.7a =,0.76b =,0.7log 6c =,则( )A.a b c <<B.c b a <<C.c a b <<D.b c a <<9.函数2()log (1)2f x x =++的单调递增区间为( ) A.()1,-+∞ B.[)0,+∞ C.[]1,2 D.(]0,110.当1a >时,在同一坐标系中,函数x y a -=与log xa y =的图象是下图中的( )}11.对于0,1a a >≠,下列说法中,正确的是( )①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =?A.①②③④B.①③C.②④D.②12.已知R 上的奇函数()f x 和偶函数()g x 满足()()2(0,1)x x f x g x a a a a -+=-+>≠且,若(2),(2)g a f =则的值为( )A.2B.154 C.174D.2a 二.填空题.(本大题共4小题,每小题5分,共20分)13.设12322()((2))log (1)2x e x f x f f x x -⎧<⎪=⎨-≥⎪⎩,,则的值为, . 14.函数215()log (1)f x x =+的单调递减区间为 .15.已知23234(0),log 9a a a =>则的值为 .16.关于函数()2x f x -=,对任意的1212,,x x R x x ∈≠且,有下列四个结论:&()(0)0()0,F x F x F x ∴=⎧⎪=⎨又是a0∴<①当max 1241()()/xf t -⎡∴∈⎢⎣=5.0lg1.5L =+(0)1(2)f ∴=对任意的。

高中数学第二章基本初等函数(Ⅰ)章末检测(B)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)章末检测(B)新人教A版必修1

【创新设计】2015-2016学年高中数学 第二章 基本初等函数(Ⅰ)章末检测(B )新人教A 版必修1(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N等于( )A .MB .NC .[0,4)D .[0,+∞)2.函数y =3|x |-1的定义域为[-1,2],则函数的值域为( )A .[2,8]B .[0,8]C .[1,8]D .[-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为( )A .1B .2C .-1 D.124.21log 52 等于( )A .7B .10C .6 D.925.若100a =5,10b =2,则2a +b 等于( )A .0B .1C .2D .36.比较13.11.5、23.1、13.12的大小关系是( )A .23.1<13.12<13.11.5B .13.11.5<23.1<13.12C .13.11.5<13.12<23.1D .13.12<13.11.5<23.17.式子log 89log 23的值为( )A.23 B.32C .2D .38.已知ab >0,下面四个等式中:①lg(ab )=lg a +lg b ;②lg ab =lg a -lg b ;③12lg(ab )2=lg ab ;④lg(ab )=1log ab 10.其中正确命题的个数为( )A .0B .1C .2D .39.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.函数y =2x 与y =x 2的图象的交点个数是( )A .0B .1C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )=⎩⎪⎨⎪⎧ 12x , x ≥4f x +1, x <4,则f (2+log 23)的值为______.14.函数f (x )=log a 3-x 3+x(a >0且a ≠1),f (2)=3,则f (-2)的值为________. 15.函数y =212log (32)x x -+的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x+5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.20.(12分)设函数f (x )=log 2(4x )·log 2(2x ),14≤x ≤4, (1)若t =log 2x ,求t 的取值范围;(2)求f (x )的最值,并写出最值时对应的x 的值.21.(12分)已知f (x )=log a 1+x 1-x(a >0,a ≠1). (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)求使f (x )>0的x 的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数. (1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.章末检测(B)1.C [由题意,得M ={x |x <4},N ={y |y ≥0},∴M ∩N ={x |0≤x <4}.]2.B [当x =0时,y min =30-1=0,当x =2时,y max =32-1=8,故值域为[0,8].]3.D [由f (3x )=log 29x +12, 得f (x )=log 23x +12,f (1)=log 22=12.] 4.B [21log 52 =2·2log 52=2×5=10.]5.B [由100a =5,得2a =lg 5,由10b =2,得b =lg 2,∴2a +b =lg 5+lg 2=1.]6.D [∵13.11.5=1.5-3.1=(11.5)3.1, 13.12=2-3.1=(12)3.1,又幂函数y =x 3.1在(0,+∞)上是增函数,12<11.5<2,∴(12)3.1<(11.5)3.1<23.1,故选D.] 7.A [∵log 89=log 232log 223=23log 23, ∴原式=23.] 8.B [∵ab >0,∴a 、b 同号.当a 、b 同小于0时①②不成立;当ab =1时④不成立,故只有③对.]9.C [y =lg x +310=lg(x +3)-1, 即y +1=lg(x +3).故选C.]10.D [分别作出y =2x 与y =x 2的图象.知有一个x <0的交点,另外,x =2,x =4时也相交,故选D.]11.B [∵f (x )=2x -4(x ≥0),∴令f (x )>0,得x >2.又f (x )为偶函数且f (x -2)>0,∴f (|x -2|)>0,∴|x -2|>2,解得x >4或x <0.]12.A [由f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),可知a >1,而f (-4)=a|-4+1|=a 3,f (1)=a |1+1|=a 2,∵a 3>a 2,∴f (-4)>f (1).]13.124解析 ∵log 23∈(1,2),∴3<2+log 23<4,则f (2+log 23)=f (3+log 23) =23log 312+⎛⎫ ⎪⎝⎭=(12)3·12log 32-=18×13=124. 14.-3解析 ∵3-x 3+x>0,∴-3<x <3 ∴f (x )的定义域关于原点对称.∵f (-x )=log a 3+x 3-x =-log a 3-x 3+x=-f (x ), ∴函数f (x )为奇函数.∴f (-2)=-f (2)=-3.15.(-∞,1)解析 函数的定义域为{x |x 2-3x +2>0}={x |x >2或x <1},令u =x 2-3x +2,则y =12log u 是减函数,所以u =x 2-3x +2的减区间为函数y =()212log 32x x -+的增区间,由于二次函数u =x 2-3x +2图象的对称轴为x =32, 所以(-∞,1)为函数y 的递增区间.16.52 12解析 y =124x --3·2x +5=12(2x )2-3·2x +5. 令t =2x ,x ∈[0,2],则1≤t ≤4,于是y =12t 2-3t +5=12(t -3)2+12,1≤t ≤4. 当t =3时,y min =12; 当t =1时,y max =12×(1-3)2+12=52. 17.解 (1)指数函数f (x )=a x (a >0且a ≠1),则f (x )的反函数g (x )=log a x (a >0且a ≠1).(2)∵g (x )≤log a (2-3x ),∴log a x ≤log a (2-3x )若a >1,则⎩⎪⎨⎪⎧ x >02-3x >0x ≤2-3x,解得0<x ≤12, 若0<a <1,则⎩⎪⎨⎪⎧ x >02-3x >0x ≥2-3x ,解得12≤x <23, 综上所述,a >1时,不等式解集为(0,12]; 0<a <1时,不等式解集为[12,23). 18.解 (1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈[18,1], 故y =2t 2-t -1=2(t -14)2-98,t ∈[18,1], 故值域为[-98,0]. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2ax 2-x -1=0在(0,+∞)上有解.记g (x )=2ax 2-x -1,当a =0时,解为x =-1<0,不成立;当a <0时,开口向下,对称轴x =14a<0, 过点(0,-1),不成立;当a >0时,开口向上,对称轴x =14a>0, 过点(0,-1),必有一个根为正,符合要求.故a 的取值范围为(0,+∞).19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0. 即当1<x <43时,f (x )<g (x ); 当x >43时,f (x )>g (x ). 20.解 (1)∵t =log 2x ,14≤x ≤4,∴log 214≤t ≤log 24, 即-2≤t ≤2.(2)f (x )=(log 24+log 2x )(log 22+log 2x )=(log 2x )2+3log 2x +2,∴令t =log 2x ,则y =t 2+3t +2=(t +32)2-14, ∴当t =-32即log 2x =-32,x =322-时, f (x )min =-14. 当t =2即x =4时,f (x )max =12.21.解 (1)由对数函数的定义知1+x 1-x>0, 故f (x )的定义域为(-1,1).(2)∵f (-x )=log a 1-x 1+x =-log a 1+x 1-x=-f (x ), ∴f (x )为奇函数.(3)(ⅰ)对a >1,log a 1+x 1-x >0等价于1+x 1-x>1,① 而从(1)知1-x >0,故①等价于1+x >1-x 又等价于x >0. 故对a >1,当x ∈(0,1)时有f (x )>0.(ⅱ)对0<a <1,log a 1+x 1-x >0等价于0<1+x 1-x<1,② 而从(1)知1-x >0,故②等价于-1<x <0.故对0<a <1,当x ∈(-1,0)时有f (x )>0.综上,a >1时,x 的取值范围为(0,1);0<a <1时,x 的取值范围为(-1,0).22.解 (1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0⇒b =1.∴f (x )=1-2x 2+2x +1. (2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1, 设x 1<x 2则f (x 1)-f (x 2)=12112121x x -++=()()2112222121x x x x -++. 因为函数y =2x 在R 上是增函数且x 1<x 2,∴22x -12x >0.又(12x +1)( 22x +1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因为f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0.等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13.。

高中数学 第二章 基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1(2021年最新整理)

高中数学 第二章 基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1(2021年最新整理)

高中数学第二章基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1的全部内容。

基本初等函数(I) 测试题(时间:120分钟 满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知2log 3x =,则13x -等于 ( )A 。

2B 。

12C.32 D 。

22.下列函数中,既是单调函数,又是奇函数的是( ) A.y=x 5B .5x y =C .2log y x =D .1y x -=3. 函数()()2log 31x f x =+的值域为( )A. ()0,+∞ B 。

)0,+∞⎡⎣ C.()1,+∞ D. )1,+∞⎡⎣ 4.设2log ,0,()1(),0,3x x x f x x >⎧⎪=⎨≤⎪⎩则1(())8f f 的值 ( )A. 9B. 116C. 27D. 1815。

已知幂函数()y f x =的图象过点13(,)23,则3log (2)f 的值为( )A .12B .-12C .2D .-26.设15log 6a =,0.216b ⎛⎫= ⎪⎝⎭,165c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<7. 给出四个函数,分别满足: ①f(x +y )=f (x )+f (y ) ;② g (x +y )=g (x )g (y ) ;③h (x ·y )=h (x )+h (y ); ④ t (x ·y )=t (x )·t (y ),又给出四个函数图象,它们的正确匹配方案是 ( )A 。

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

word1 / 7第二章 基本初等函数(Ⅰ)注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.()0a a >可以化简为( )A .32aB .18a C .34aD .38a2.三个数21log 5,0.12,0.22的大小关系是( )A .0.10.221log <2<25B .0.20.121log <225<C .0.10.2212<2log 5< D .0.10.2212<log 25< 3.设集合2R {|}x A y y x ∈==,,21{|}0B x x <=-,则A B =( )A .()1,1-B .()0,1C .()1-∞,+D .(0)∞,+4.已知23xy=,则xy=( )A .lg 2lg 3B .lg 3lg 2C .2lg 3D .3lg 25.函数()ln f x x x =的图象大致是( )6.若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则( ) A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数 7.函数121(22)m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .28.下列各函数中,值域为(0)∞,+的是( ) A .22x y -=B .12y x =-C .21y x x =++D .113x y +=9.已知函数:①2xy =;②2log y x =;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()22log ()12f f -+=( )A .3B .6C .9D .1211.已知函数()22()1122xa xx f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠都有word2 / 7()()1212f x f x x x -<0-成立,则实数a 的取值X 围为( )A .()2-∞,B .13,8⎛⎤-∞ ⎥⎝⎦C .(2]-∞,-D .13,28⎡⎫⎪⎢⎣⎭12.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点()1,1M ,()1,2N ,()2,1P ,()2,2Q ,1G 2,2⎛⎫⎪⎝⎭中,可以是“好点”的个数为( ) A .0个 B .1个C .2个D .3个二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知124(0)9a a =>,则23log a =________.14.已知函数2log 0()30xxx f x x >⎧⎪⎨≤⎪⎩,则14f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________. 15.若函数212log (35)y x ax =-+在[)1-∞,+上是减函数,则实数a 的取值X 围是________.16.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数22logy x =,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2, 则点D 的坐标为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)()31320.5log 511lg3lg91lg 812730.25-⎛⎫++-+-+ ⎪⎝⎭.18.(12分)已知函数1()=2axf x ⎛⎫⎪⎝⎭,a 为常数,且函数的图象过点()1,2-.(1)求a 的值;(2)若()42x g x --=,且g (x )=f (x ),求满足条件的x 的值.word3 / 719.(12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值X 围.20.(12分)求使不等式2821x x a a --⎛⎫> ⎪⎝⎭成立的x 的集合(其中a >0,且a ≠1).word4 / 721.(12分)已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(12分)若函数f (x )满足21(log )1a a f x x x a ⎛⎫=⋅- ⎪-⎝⎭ (其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值X 围.word1 / 72018-2019学年必修一第二章训练卷基本初等函数(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】因为0a >,所以B .2.【答案】A【解析】∵21log <05,0.10.2022<<,∴0.10.221log <2<25,故选A .3.【答案】C【解析】{}2R {|}0|x A y y x y y ∈>==,=.2{|}{1011|}B x x x x <<<=-=-, ∴{}0111|{|}{|}AB x x x x x x ><<>=-=-,故选C .4.【答案】B【解析】由23x y =得lg 2lg3x y =,∴lg2lg3x y =,∴lg3lg 2x y =,故选B . 5.【答案】A【解析】由()ln l ()n ||f x x x x x f x --=-=-=-知,函数()f x 是奇函数,故排除C ,D ,又110f e e ⎛⎫=-< ⎪⎝⎭,从而排除B ,故选A .6.【答案】D【解析】因为()()33x x f x f x --=+=,()()33x x g x g x ---==-,所以()f x 是偶函数, ()g x 为奇函数,故选D .7.【答案】B【解析】因为函数121(22)m y m m x -=+-是幂函数,所以2221m m -+=且1m ≠,解得3m =-.故选B .8.【答案】A 【解析】A,22xy x -==⎝⎭的值域为(0)∞,+. B ,因为120x -≥,所以21x ≤,0x ≤,y =(0],-∞, 所以021x <≤,所以0121x ≤-<,所以y =[)0,1. C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是3,4⎡⎫+∞⎪⎢⎣⎭,D ,因为()()1,00,1x ∈-∞+∞+,所以113x y +=的值域是()0,11()∞,+.故选A .9.【答案】D【解析】根据幂函数、指数函数、对数函数的图象可知选D . 10.【答案】C【解析】221log ()(())223f -+--==,()221216log log 2log 12226f -===, ∴()22log (19)2f f -+=,故选C .11.【答案】B【解析】由题意知函数()f x 是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤-⎪ ⎪⎝⎭⎩由此解得138a ≤,即实数a 的取值X 围是13,8⎛⎤-∞ ⎥⎝⎦,选B .12.【答案】C【解析】设指数函数为()01x y a a a >≠=,,显然不过点M 、P ,若设对数函数为()log 01b y x b b >≠=,,显然不过N 点,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)word2 / 713.【答案】4【解析】∵124(0)9a a =>,∴2221223a ⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦,即423a ⎛⎫= ⎪⎝⎭,∴422332log log 4.3a ⎛⎫== ⎪⎝⎭14.【答案】19【解析】∵14>0,∴211log 244f ⎛⎫==- ⎪⎝⎭.则104f ⎛⎫< ⎪⎝⎭,∴211349f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.15.【答案】(]86-,-【解析】令()235g x x ax =-+,其对称轴为直线6a x =,依题意,有()1610ag ⎧≤-⎪⎨⎪->⎩,即68a a ≤-⎧⎨>-⎩,∴86(]a ∈-,-. 16.【答案】11,24⎛⎫⎪⎝⎭【解析】由图象可知,点(),2A A x在函数y x =的图象上,所以2A x =,212A x ==⎝⎭, 点(),2B B x 在函数12y x =的图象上,所以122B x =,4B x =. 点()4C C y ,在函数xy =⎝⎭的图象上,所以414C y ==⎝⎭. 又12D A x x ==,14D C y y ==,所以点D 的坐标为11,24⎛⎫⎪⎝⎭.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析. 【解析】原式3310.5log 5253log 1431(3)231lg3lg3lg3(3()03).5---++=++-++325log 6362531=+=+=.18.【答案】(1)1;(2)-1. 【解析】(1)由已知得122a-⎛⎫= ⎪⎝⎭,解得a =1.(2)由(1)知1()2xf x ⎛⎫= ⎪⎝⎭,又g (x )=f (x ),则1422xx -⎛⎫-= ⎪⎝⎭,即112=42xx⎛⎫⎛⎫--0 ⎪ ⎪⎝⎭⎝⎭,即2112022x x ⎡⎤⎛⎫⎛⎫--=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,令12xt ⎛⎫= ⎪⎝⎭,则t 2-t -2=0,即(t -2)(t +1)=0,又t >0,故t =2,即122x⎛⎫= ⎪⎝⎭,解得x =-1.19.【答案】(1)最小值为2,最大值为6;(2)见解析.【解析】(1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2.当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x )当a >1时,log a (1+x )>log a (1-x ),满足111010x xx x +>-⎧⎪+>⎨⎪->⎩∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ),满足111010x x x x +<-⎧⎪+>⎨⎪->⎩∴-1<x <0综上a >1时,解集为{x |0<x <1},0<a <1时解集为{x |-1<x <0}. 20.【答案】见解析. 【解析】∵22881x x a a --⎛⎫= ⎪⎝⎭,∴原不等式化为282x x a a -->,当a >1时,函数y =a x是增函数,∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x是减函数,∴8-x 2<-2x ,解得x <-2或x >4.故当a >1时,x 的集合是{x |-2<x <4};当0<a <1时,x 的集合是{x |x <-2或x >4}.word3 / 721.【答案】(1)g (x )=2222x x -+,{x |0≤x ≤1}(2)-3,-4. 【解析】(1)∵f (x )=2x,∴g (x )=f (2x )-f (x +2)=2222x x -+.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1. 于是g (x )的定义域为{x |0≤x ≤1}. (2)设g (x )=(2x )2-4×2x=(2x-2)2-4.∵x ∈[0,1],∴2x∈[1,2],∴当2x=2,即x =1时,g (x )取得最小值-4; 当2x=1,即x =0时,g (x )取得最大值-3. 22.【答案】(1)2()()1x x a f x a a a -=-- (x ∈R ),见解析;(2))(21,23⎡+⎣.【解析】(1)令log a x =t (t ∈R ),则x =a t,∴2()()1t ta f t a a a -=--. ∴2()()1x xa f x a a a -=-- (x ∈R ). ∵()22()()()11x xx x a a f x a a a a f x a a ---=-=--=---,∴f (x )为奇函数. 当a >1时,y =a x为增函数,x y a -=-为增函数,且201aa >-,∴f (x )为增函数.当0<a <1时,y =a x为减函数x y a -=-为减函数,且201aa <-, ∴f (x )为增函数.∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即2224()1a a a a --≤-,∴422141a a a a ⎛⎫-≤ ⎪-⎝⎭,∴a 2+1≤4a ,∴a 2-4a+1≤0,∴22a ≤≤a ≠1, ∴a的取值X 围为)(21,23⎡+⎣.。

第二章 基本初等函数(Ⅰ)单元测试(B卷提升篇)(人教A版)(解析版)

第二章 基本初等函数(Ⅰ)单元测试(B卷提升篇)(人教A版)(解析版)

第二章基本初等函数(Ⅰ)单元测试(B卷提升篇)(人教A版)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(2018秋•焦作期中)素数也叫质数,部分素数可写成“2n﹣1”的形式(n是素数),法国数学家马丁•梅森就是研究素数的数学家中成就很高的一位,因此后人将“2n﹣1”形式(n是素数)的素数称为梅森素数.已知第20个梅森素数为P=24423﹣1,第19个梅森素数为Q=24253﹣1,则下列各数中与最接近的数为()(参考数据:lg2≈0.3)A.1045B.1051C.1056D.1059【答案】解:2170.令2170=k,则lg2170=lgk,∴170lg2=lgk,又lg2≈0.3,∴51=lgk,即k=1051,∴与最接近的数为1051.故选:B.【点睛】本题考查有理指数幂的运算性质与对数的运算性质,是基础题.2.(2019春•玉林期末)若函数f(x)=a|2x﹣4|(a>0,a≠1),满足f(1),则f(x)的单调递减区间是()A.(﹣∞,2] B.[2,+∞)C.[﹣2,+∞)D.(﹣∞,﹣2]【答案】解:由f(1),得a2,于是a,因此f(x)=()|2x﹣4|.因为g(x)=|2x﹣4|在[2,+∞)上单调递增,所以f(x)的单调递减区间是[2,+∞).故选:B.【点睛】本题考查指数函数的单调性,复合函数的单调性,考查计算能力,是基础题.3.(2019•陆良县二模)已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【答案】解:∵a=30.2>1,b=log64,c=log32,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.【点睛】本题考查了指数函数与对数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.4.(2018秋•丰县期末)幂函数在(0,+∞)时是减函数,则实数m的值为()A.2或﹣1 B.﹣1 C.2 D.﹣2或1【答案】解:由于幂函数在(0,+∞)时是减函数,故有,解得m=﹣1,故选:B.【点睛】本题主要考查幂函数的定义和性质应用,属于基础题.5.(2019•山东模拟)已知函数f(x)=x﹣4,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=a|x+b|的图象为()A.B.C.D.【答案】解:∵x∈(0,4),∴x+1>1∴f(x)=x﹣4x+15≥25=1,当且仅当x=2时取等号,此时函数有最小值1∴a=2,b=1,此时g(x)=2|x+1|,此函数可以看成函数y的图象向左平移1个单位结合指数函数的图象及选项可知A正确故选:A.【点睛】本题主要考察了基本不等式在求解函数的最值中的应用,指数函数的图象及函数的平移的应用是解答本题的关键6.(2018秋•道里区校级月考)若,则()A.x≥y B.x≤y C.xy≥1 D.xy≤1【答案】解:∵,∴即,令f(x),则f()∵f(x)在(0,+∞)上单调递增,且f(x)≥f(),∴,∴xy≥1故选:C.【点睛】本题主要考查了利用对数函数的单调性及复合函数单调性的应用,解题的关键是构造函数并能灵活利用函数的单调性.7.(2018秋•开福区校级月考)已知f(x)是定义在R上的单调函数,满足f[f(x)﹣e x]=1,且f(a)>f (b)>e,若log a b+log b a,则a与b的关系是()A.a=b3B.b=a3C.a=b4D.b=a4【答案】解:∵f(x)是定义在R上的单调函数,满足f[f(x)﹣e x]=1,∴f(x)﹣e x是一个常数,设a=f(x)﹣e x,则f(a)=1,由a=f(x)﹣e x,得f(x)=a+e x,令x=a,得f(a)=a+e a=1,解得a=0,∵f(a)>f(b)>e=f(1),∴a>b>1,∴log b a>1,∵log a b+log b a,∴log b a,解得log b a=4或log b a.(舍去),∴a=b4.故选:C.【点睛】本题考查两个实数的关系的求法,考查对数运算法则等基础知识,考查运算求解能力,是中档题.8.(2018春•定州市校级期末)已知函数f(x)=log a(x2﹣2ax)在[4,5]上为增函数,则a的取值范围是()A.(1,4)B.(1,4] C.(1,2)D.(1,2]【答案】解:由题意可得g(x)=x2﹣2ax的对称轴为x=a①当a>1时,由复合函数的单调性可知,g(x)在[4,5]单调递增,且g(x)>0在[4,5]恒成立则∴1<a<2②0<a<1时,由复合函数的单调性可知,g(x)在[4,5]单调递增,且g(x)>0在[4,5]恒成立则此时a不存在综上可得,1<a<2故选:C.【点睛】本题主要考查了由对数函数及二次函数复合二次的复合函数的单调性的应用,解题中一定要注意对数的真数大于0这一条件的考虑.9.(2019•陆良县一模)已知函数f(x)=ln(|x|+1),则使得f(x)>f(2x﹣1)的x的取值范围是()A.B.C.(1,+∞)D.【答案】解:∵函数f(x)=ln(|x|+1)为定义域R上的偶函数,且在x≥0时,函数单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,两边平方得x2>(2x﹣1)2,即3x2﹣4x+1<0,解得x<1;∴使得f(x)>f(2x﹣1)的x的取值范围是(,1).故选:A.【点睛】本题考查了函数的奇偶性与单调性的应用问题,也考查了转化思想的应用问题,是综合性题目.10.(2019•泸州模拟)设a,b,c都是正数,且3a=4b=6c,那么()A.B.C.D.【答案】解:由a,b,c都是正数,且3a=4b=6c=M,则a=log3M,b=log4M,c=log6M代入到B中,左边,而右边,左边等于右边,B正确;代入到A、C、D中不相等.故选:B.【点睛】考查学生利用对数定义解题的能力,以及换底公式的灵活运用能力.11.(2019春•沙坪坝区校级月考)函数f(x)=log2(ax2+2x+a)的值域为R,则实数a的取值范围为()A.[1,+∞)B.(0,1)C.[﹣1,1] D.[0,1]【答案】解:令g(x)=ax2+2x+a,因为函数f(x)=log2(ax2+2x+a)的值域为R,所以g(x)的值域包含(0,+∞).①当a=0时,g(x)=2x,值域为R⊇(0,+∞),成立.②当a≠0时,要使g(x)的值域包含(0,+∞),则,解得0<a≤1,综上,a∈[0,1].故选:D.【点睛】本题考查了对数函数的值域,二次函数的性质,二次不等式的解法.考查分析解决问题的能力,属于中档题.12.(2018•保定一模)已知函数f(x)既是二次函数又是幂函数,函数g(x)是R上的奇函数,函数,则h(2018)+h(2017)+h(2016)+…+h(1)+h(0)+h(﹣1)+…h(﹣2016)+h(﹣2017)+h(﹣2018)=()A.0 B.2018 C.4036 D.4037【答案】解:函数f(x)既是二次函数又是幂函数,∴f(x)=x2,∴f(x)+1为偶函数;函数g(x)是R上的奇函数,m(x)为定义域R上的奇函数;函数,∴h(x)+h(﹣x)=[1]+[1]=[]+2=2,∴h(2018)+h(2017)+h(2016)+…+h(1)+h(0)+h(﹣1)+…+h(﹣2016)+h(﹣2017)+h(﹣2018)=[h(2018)+h(﹣2018)]+[h(2017)+h(﹣2017)]+…+[h(1)+h(﹣1)]+h(0)=2+2+…+2+1=2×2018+1=4037.故选:D.【点睛】本题考查了函数的奇偶性与应用问题,是中档题.二.填空题(共4小题,满分20分,每小题5分)13.(2019春•福州期末)已知函数y=3a x﹣9(a>0且a≠1)恒过定点A(m,n),则log m n=.【答案】解:∵函数y=3a x﹣9(a>0且a≠1)恒过定点A(m,n),∴m﹣9=0,n=3,则log m n=log93,故答案为:.【点睛】本题主要考查指数函数的单调性和特殊点,属于基础题.14.(2019•吉安一模)函数f(x)=log a(3x﹣2)+2(a>0且a≠1)恒过的定点坐标为(1,2).【答案】解:由于函数y=log a x过定点(1,0),即x=1,y=0故函数f(x)=log a(3x﹣2)+2(a>0且a≠1)中,令3x﹣2=1,可得x=1,y=2,所以恒过定点(1,2),故答案为:(1,2).【点睛】本题主要考查对数函数的单调性和特殊点,利用了函数y=log a x过定点(1,0),属于基础题.15.(2019春•中原区校级月考)已知幂函数f(x)=x a(a∈R)的图象经过点(8,4),则不等式f(6x+3)≤9的解集为[﹣5,4].【答案】解:幂函数f(x)=x a(a∈R)的图象经过点(8,4),则8a=4,解得a,∴f(x),是定义域R上的偶函数,且在[0,+∞)上为增函数,∴不等式f(6x+3)≤9可化为|6x+3|≤27,解得﹣27≤6x+3≤27,即﹣5≤x≤4;∴不等式的解集为[﹣5,4].故答案为:[﹣5,4].【点睛】本题考查了幂函数的定义与应用问题,也考查了偶函数的应用问题,是基础题.16.(2018秋•辛集市校级期中)已知不等式对任意x∈R恒成立,则实数m的取值范围是﹣3<m<5.【答案】解:不等式等价为,即x2+x<2x2﹣mx+m+4恒成立,∴x2﹣(m+1)x+m+4>0恒成立,即△=(m+1)2﹣4(m+4)<0,即m2﹣2m﹣15<0,解得﹣3<m<5,故答案为:﹣3<m<5.【点睛】本题主要考查指数不等式和一元二次不等式的解法,利用指数函数的单调性是解决本题的关键.三.解答题(共6小题,满分70分,17题10分,18-22题每小题12分)17.(2018春•沭阳县期中)计算:(1);(2)已知x+x﹣1=3,(0<x<1),求.【答案】解:(1)原式.(2)因为x2+x﹣2=(x+x﹣1)2﹣2=7,又因为,,所以所以.【点睛】本题考查了对数和指数幂的运算性质,属于基础题.18.(2018秋•驻马店期中)已知幂函数f(x)=x(3﹣k)k(k∈Z)在(0,+∞)上为增函数(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)若函数g(x)=mf(x)+mx+1在区间[0,1]上的最大值为5,求出m的值.【答案】解:(1)∵幂函数f(x)=x(3﹣k)k(k∈Z)在(0,+∞)上为增函数,∴k(3﹣k)>0,解得0<k<3∵k∈Z,∴k=1或k=2k=1或k=2时,f(x)=x2满足题意.∴f(x)=x2(2)∵f(x)=x2,∴g(x)=mx2+mx+1,m=0时,g(x)=1不合题意,m≠0时,函数g(x)的对称轴为直线x,函数g(x)在x∈[0,1]时是单调函数.或,解得m=2.【点睛】本题考查了幂函数的单调性,二次函数的单调性及其应用,属中档题.19.(2018秋•潼关县期末)已知函数f(x)=(a2﹣2a﹣2)a x是指数函数.(1)求f(x)的表达式;(2)判断F(x)=f(x)的奇偶性,并加以证明;(3)解不等式:log a(1+x)<log a(2﹣x).【答案】解:(1)a2﹣2a﹣2=1,可得a=3或a=﹣1(舍去),∴f(x)=3x;(2)F(x)=f(x)3x+3﹣x,∴F(﹣x)=F(x),∴F(x)是偶函数;(3)不等式:log a(1+x)<log a(2﹣x)即log3(1+x)<log3(2﹣x).可化为:2﹣x>1+x>0,∴﹣1<x,即不等式:log a(1+x)<log a(2﹣x)的解集为{x|﹣1<x}.【点睛】本题考查指数函数,考查函数的奇偶性,考查不等式的解法,属于中档题20.(2018秋•南京期中)已知函数y=f(x)为偶函数,当x≥0时,f(x)=x2+2ax+1,(a为常数).(1)当x<0时,求f(x)的解析式:(2)设函数y=f(x)在[0,5]上的最大值为g(a),求g(a)的表达式;(3)对于(2)中的g(a),试求满足g(8m)=g()的所有实数m的取值集合.【答案】解:(1)设x<0,则﹣x>0,所以f(﹣x)=(﹣x)2+2a(﹣x)+1=x2﹣2ax+1;又因为f(x)为偶函数,所以f(﹣x)=f(x),所以当x<0时,f(x)=x2﹣2ax+1;…………(4分)(2)当x∈[0,5]时,f(x)=x2+2ax+1,对称轴x=﹣a,①当﹣a,即a时,g(a)=f(0)=1;②当﹣a,即a时,g(a)=f(5)=10a+26;综上所述,g(a);…………(10分)(3)由(2)知g(a),当a时,g(a)为常函数;当a时,g(a)为一次函数且为增函数;因为g(8m)=g(),所以有或,解得m或,即m的取值集合为{m|m或m}.……(16分)另解(3)①当8m,有m,所以∈(,0),则或,解得m或m,取并集得m;②当8m,有m,所以∈(﹣∞,]∪[0,+∞),则或;解得m或m(舍负);综上所述,m的取值集合为{m|m或m}.【注:最后结果不写集合不扣分】.【点睛】本题考查了函数的定义与应用问题,也考查了分类讨论和转化思想的应用问题,是综合题.21.(2018秋•青浦区期末)定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•()x+()x(1)当a=1,求函数f(x)在(﹣∞,0)上的值域,并判断函数f(x)在(﹣∞,0)上是否为有界函数,请说明理由;(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.【答案】解:(1)当a=1时,f(x)=1+1•()x+()x.令t=•()x,由x<0 可得t>1,f(x)=h(t)=t2+t+1,∵h(t)在(1,+∞)上单调递增,故f(t)>f(1)=3,故不存在常数M>0,使|f(x)|≤M成立,故函数f(x)在(﹣∞,0)上不是有界函数.(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,则当x≥0时,|f(x)|≤3恒成立.故有﹣3≤f(x)≤3,即﹣3≤1+a•()x+()x≤3,即﹣4a2,∴[﹣4•2x]≤a≤[2•2x].∴当x=0时,[﹣4•2x]的最大值为﹣4﹣1=﹣5,[2•2x]的最小值为2﹣1=1,故有﹣5≤a≤1,即a的范围为[﹣5,1].【点睛】本题主要考查指数函数的性质、新定义,函数的恒成立问题,求函数的值域,属于中档题.22.(2018秋•秦州区校级期末)已知函数f(x)的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)(x﹣1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)(x+k)在[2,3]上有解,求k的取值范围.【答案】解:(1)函数f(x)的图象关于原点对称,∴f(x)+f(﹣x)=0,即0,∴()=0,∴1恒成立,即1﹣a2x2=1﹣x2,即(a2﹣1)x2=0恒成立,所以a2﹣1=0,解得a=±1,又a=1时,f(x)无意义,故a=﹣1;(2)x∈(1,+∞)时,f(x)(x﹣1)<m恒成立,即(x﹣1)<m,∴(x+1)<m在(1,+∞)恒成立,由于y(x+1)是减函数,故当x=1,函数取到最大值﹣1,∴m≥﹣1,即实数m的取值范围是m≥﹣1;(3)f(x)在[2,3]上是增函数,g(x)(x+k)在[2,3]上是减函数,∴只需要即可保证关于x的方程f(x)(x+k)在[2,3]上有解,下解此不等式组.代入函数解析式得,解得﹣1≤k≤1,即当﹣1≤k≤1时关于x的方程f(x)(x+k)在[2,3]上有解.【点睛】本题考查函数恒成立问题的解法及对数函数性质的综合运用,属于有一定难度的题,本题考查了数形结合的思想,转化化归的思想,属于灵活运用知识的好题。

《第2章 基本初等函数(Ⅰ)》2012年单元测试卷(南宁外国语学校)

《第2章 基本初等函数(Ⅰ)》2012年单元测试卷(南宁外国语学校)

《第2章基本初等函数(Ⅰ)》2012年单元测试卷(南宁外国语学校)《第2章基本初等函数(Ⅰ)》2012年单元测试卷(南宁外国语学校)一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确).Cx4.(5分)设,则a,b,c的大小关系是()5.(5分)(2011•天津)已知,则()2(﹣7.(5分)(2009•福建)下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)8.(5分)(2010•安徽)设,则a,b,c的大小关系是()10.(5分)(2010•北京)给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()11.(5分)(2007•辽宁)函数的单调增区间为().D .B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上)13.(5分)(2012•上海)方程4x﹣2x+1﹣3=0的解是_________.14.(5分)(2008•重庆)已知(a>0),则=_________.15.(5分)(2012•陕西)设函数发f(x)=,则f(f(﹣4))=_________.16.(5分)(2010•江苏)设函数f(x)=x(e x+ae﹣x)(x∈R)是偶函数,则实数a=_________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各题:(Ⅰ);(Ⅱ)lg22+lg5+lg5lg2.18.(12分)已知函数.(Ⅰ)求f(x)的值域;(Ⅱ)讨论f(x)的奇偶性.19.(12分)已知函数.(Ⅰ)求f(x)的反函数f﹣1(x);(Ⅱ)讨论f(x)的奇偶性.20.(12分)已知函数是幂函数,且图象关于y轴对称.(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[0,+∞)时,求f﹣1(x)并讨论其单调性.21.(12分)(2007•江西)已知函数f(x)=满足f(c2)=.(1)求常数c的值;(2)解不等式f(x)>.22.(12分)函数.(Ⅰ)求函数的定义域;(Ⅱ)求函数的单调区间.《第2章基本初等函数(Ⅰ)》2012年单元测试卷(南宁外国语学校)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确).C=x4.(5分)设,则a,b,c的大小关系是()解:因为是单调增函数,所以5.(5分)(2011•天津)已知,则()进行化简,得到2进行比较大小,=b2>3,(﹣±x=﹣7.(5分)(2009•福建)下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)8.(5分)(2010•安徽)设,则a,b,c的大小关系是()解:∵在又∵10.(5分)(2010•北京)给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调些函数类型的图象和性质;①为增函数,②中的函数是由函数11.(5分)(2007•辽宁)函数的单调增区间为().D的单调增区间为(﹣.B.C.D.时,二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上)13.(5分)(2012•上海)方程4x﹣2x+1﹣3=0的解是x=log23.14.(5分)(2008•重庆)已知(a>0),则=3.次乘方,得到解:已知∴15.(5分)(2012•陕西)设函数发f(x)=,则f(f(﹣4))=4.=16.(5分)(2010•江苏)设函数f(x)=x(e x+ae﹣x)(x∈R)是偶函数,则实数a=﹣1.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各题:(Ⅰ);(Ⅱ)lg22+lg5+lg5lg2.18.(12分)已知函数.(Ⅰ)求f(x)的值域;(Ⅱ)讨论f(x)的奇偶性.,由∵得∵19.(12分)已知函数.(Ⅰ)求f(x)的反函数f﹣1(x);(Ⅱ)讨论f(x)的奇偶性.)由,∴,得,得∴∵20.(12分)已知函数是幂函数,且图象关于y轴对称.(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[0,+∞)时,求f﹣1(x)并讨论其单调性.)因为,得:∴,∴∴.即21.(12分)(2007•江西)已知函数f(x)=满足f(c2)=.(1)求常数c的值;(2)解不等式f(x)>.=c=)><时,∴时,,∴综上所述:{x|22.(12分)函数.(Ⅰ)求函数的定义域;(Ⅱ)求函数的单调区间.,根据函数.参与本试卷答题和审题的老师有:qiss;733008;caoqz;wsj1012;wodeqing;qicai;liuerq;minqi5;孙佑中;sxs123;sdwdlcy;wyz123;wdlxh;蔡华侨;gongjy;zlzhan;394782(排名不分先后)菁优网2013年11月15日。

高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高中数学必修1第二章基本初等函数单元测试题(含参考答案)高一数学单元测试题必修1第二章《基本初等函数》班级姓名序号得分一.选择题.(每小题5分后,共50分后)1.若m?0,n?0,a?0且a?1,则下列等式中正确的是()(a)?aa.mnm?n41344logam?logan?loga(m?n)d.mn?(mn)3b.a?mc.a1m2.函数y?loga(3x?2)?2的图象必过定点()a.(1,2)b.(2,2)c.(2,3)d.(,2)233.已知幂函数y?f(x)的图象过点(2,2),则f(4)的值为()2a.1b.2c.1d.824.若x?(0,1),则以下结论恰当的就是()a.2x?lgx?xb.2x?x?lgxc.x?2x?lgxd.lgx?x?2x5.函数y?log(x?2)(5?x)的定义域就是()a.(3,4)b.(2,5)c.(2,3)?(3,5)d.(??,2)?(5,??)6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是()a.减少1.99%b.增加1.99%c.减少4%d.不增不减7.若100?5,10?2,则2a?b?()a.0b.1c.2d.38.函数f(x)?lg(10?1)?xab12121212x就是()2a.奇函数b.偶函数c.既奇且偶函数d.非奇非偶函数9.函数y?loga(x?2x)(0?a?1)的单调递增区间是()a.(1,??)b.(2,??)c.(??,1)d.(??,0)10.未知y?log2(2?ax)(a?0且a?1)在[0,1]上就是x的减至函数,则a的值域范围就是()2a.(0,1)b.(0,2)c.(1,2)d.[2,??)一.选择题(每小题5分,共50分)题号答案12345678910二.填空题.(每小题5分,共25分)11.排序:log427?log58?log9625?.12.未知函数f(x)??(x>0)?log3x,1,则f[f()]?.x32,(x?0)?2313.若f(x)?aln(x?1?x)?bx?2,且f(2)?5,则f(?2)?.14.若函数f(x)?logax(0?a?1)在区间[a,2a]上的最大值是最小值的3倍,则a=.15.已知0?a?1,给出下列四个关于自变量x的函数:①y?logxa,②y?logax,③y?(log1x)④y?(log1x).aa2312其中在定义域内是增函数的有.三.解答题(6小题,共75分)16.(12分)计算下列各式的值:1?160.25(ⅰ)(32?3)?(2?2)?4?()2?42?8.49643(ⅱ)ln(ee)?log2(log381)?21?log23?log32?2log35.11log9?log31254317.谋以下各式中的x的值(共15分后,每题5分后)1(1)ln(x1)1(2)31?x?2?01(3)a2x1ax?2,其中a?0且a?1.18.(共12分)(ⅰ)解不等式a2x?11?()x?2(a?0且a?1).ax(ⅱ)设立子集s?{x|log2(x?2)?2},子集t?{y|y?()?1,x??2}谋s?t,s?t.122xx119.(12分后)设立函数f(x)??.logxx?1?4(ⅰ)求方程f(x)?1的求解.4(ⅱ)求不等式f(x)?2的解集.20.(13分后)设立函数f(x)?log2(4x)?log2(2x)的定义域为[,4],(ⅰ)若t?log2x,谋t的值域范围;(ⅱ)求y?f(x)的最大值与最小值,并求出最值时对应的x的值.21.(14分后)未知定义域为r的函数(ⅰ)谋b的值;(ⅱ)证明函数f?x?在r上是减函数;(ⅲ)若对任一的t?r,不等式f(t?2t)?f(2t?k)?0恒设立,谋k的值域范围.2214?2x?bf(x)?x?1是奇函数.2?222.已知函数f(x)?loga(a?1)(a?0且a?1),(1)求f(x)的定义域;(2)讨论函数f(x)的增减性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学第二章单元测试题
姓名: 班级: 学号:
一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、若0a >,且,m n 为整数,则下列各式中正确的是 ( )
A 、
m
m n
n
a a a ÷= B 、n m n m a a a ⋅=⋅ C 、()n
m m n a a += D 、
01n n a a -÷= 2、已知函数=-=+-=)(.)(.11lg )(a f b a f x
x
x f 则若 ( )
A .b
B .-b
C .b
1
D .-
b
1 3、.若集合M={y|y=2—x }, P={y|y=1x -}, M ∩P= ( )
A .{y|y>1}
B .{y|y ≥1}
C .{y|y>0 }
D .{y|y ≥0} 4、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低3
1,
则现在价格为8100元的计算机经 年后降为2400元. ( )
A .14
B .15
C .16
D .17
5、函数22log (1)y x x =+≥的值域为 ( )
A 、()2,+∞
B 、(),2-∞
C 、[)2,+∞
D 、[)3,+∞
6、设 1.5
0.9
0.48
12314,8
,2y y y -⎛⎫=== ⎪
⎝⎭
,则 ( )
A 、312y y y >>
B 、213y y y >>
C 、132y y y >>
D 、123y y y >> 7、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a <<
8、有以下四个结论 ○
1 l g(l g10)=0 ○
2 l g(l ne)=0 ○3若10=l gx,则x=10 ○4 若e=l nx,则x=e 2
, 其中正确的是 ( ) A.○
1○3 B.○2○4 C.○1○2 D. ○3○4
9、已知函数f(x)=2x ,则f(1-x)的图象为 ( )
A
B
C
D
10、已知f(x)是偶函数,它在[0,+∞)上是减函数,若)1()(lg f x f >,则x 的取值范围是
( )
A. )1,101(
B.),1()101,0(+∞⋃
C.)10,10
1
( D.(0,1)∪(10,+∞) 11、世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个 ( ) A.新加坡(270万) B.香港(560万) C.瑞士(700万) D.上海(1200万) 12、若函数()l o g (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为
( ) A 、
4 B 、2
C 、14
D 、12
二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 13、()
0.75
22
3
10.25816--⎛⎫+- ⎪
⎝⎭
-lg25-2lg2=___________ ____;
14、1log 3
2
<a (a>0且a ≠1),a 的取值范围为 ;
15、已知函数f(x)=log 2(x-2)的值域是[1,log 214],那么函数f(x)的定义域是 ; 16、设0≤x ≤2,则函数5234
)(2
1+∙-=-x x x f 的最大值是________,最小值是______.
三、解答题:(本题共4小题,共50分,解答应写出文字说明,证明过程或演算步骤.) 17、(12分)已知f(x)=log a x
1x 1-+ (a>0, 且a ≠1)
(1) 求f(x)的定义域
(2) 求使 f(x)<0的x 的取值范围.
18. (12分)某电器公司生产A 型电脑,1993年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备与加强管理.使生产成本逐年降低.到1997年,尽管A 型电脑出厂价是1993年的80%,但却实现了50%纯利润的高效益. (1) 求1997年每台A 型电脑的生产成本;
(2) 以1993年的生产成本为基数,求成1993年至1997年生产成本平均每年降低的百分数
(精确度0.01以下数据可供参考:)449.26,236.25==
19、(12分)若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫
=-
⎪⎝⎭
(1)求()1f 的值; (2)若()61f =,解不等式()132f x f x ⎛⎫
+-< ⎪⎝⎭

20.(14分)已知函数f(x 2
-3)=l g 6
x x 22
(1) 求f(x)表达式及定义域 ;(2)判断函数f(x)的奇偶性.
21.(选做题)函数f (x )=log a (x -3),当点P (x ,y )是函数y =f (x )图象上的点时,Q (x -2,-y )是函数y =g (x )图象上的点. (1)写出函数y =g (x )的解析式. (2)若f(x)>g(x),求x 的取值范围.。

相关文档
最新文档