人教七年级数学上册-相反数(附习题)
1.2.3 相反数—2024-2025学年人教版数学七年级上册课堂练习(含答案)
1.2.3相反数—2024-2025学年人教版数学七年级上册堂堂练1.-5的相反数是( )A. B. C.5 D.-52.从百年前的“奥运三问”到今天的“双奥之城”,2022年中国与奥运再次牵手,2022年注定是不平凡的一年.数字2022的相反数是( )A.2022B.-2022C.D.3.的相反数是( )A.2B.-2C.D.4.的相反数是( )A. B. C. D.25.下列各对数中,是互为相反数的是( )A.-2与3B.与C.4与-4D.5与6.中国人最早使用负数,可追溯到两千多年前的秦汉时期,的相反数是_________.7.化简:___________;___________;___________.8.如图,小明有8张写着不同数字的卡片,将这8张卡片上的数字在数轴上表示出来,再找出哪些数互为相反数.答案以及解析1.答案:C解析:-5的相反数是5.故选C.2.答案:B解析:2022的相反数是-2022;故选B.3.答案:B解析:去括号是2,2的相反数是-2,故选B.4.答案:C解析:是的相反数是.5.答案:C解析:根据只有符号不同的两个数叫做互为相反数进行判断:-2与3不是只有符号不同的两个数;与化简后都是-3;4与-4是只有符号不同的两个数,是互为相反数;5与符号相同,故选C.6.答案:2解析:,故答案为:2.7.答案:6,-6,-0.73解析:故答案为:6,-6,-0.738.答案:在数轴上表示如图所示:-3.5与3.5,-0.5与0.5互为相反数.。
1.2.3 相反数(同步练习)人教版(2024)数学七年级上册
1.2.3相反数课后·知能演练一、基础巩固1.-2 024的相反数是()A.-2 024B.2 024C.-12024D.120242.在下列各组数中,互为相反数的是()A.-12与-2 B.-1与-(+1)C.-(-3)与-3D.2与123.如图,数轴上A,B两点表示的数互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是________.4.化简:-(-312)=________;+(-415)=________________;-[-(-35)]=________________;-[-(+3)]=________.二、能力提升5.数学课上,李老师和同学们玩一个找原点的游戏.(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.图1①如果点A所表示的数是-5,那么点B所表示的数是________;②请在图1中标出原点O的位置;(2)图2是小敏所画的数轴,请你帮她标出隐藏的原点O的位置,此时点C表示的数是________.图2三、思维拓展6.小明在一张纸上画了一条数轴(原点未标出),有理数a,b,c在数轴上的位置如图所示.表示数a的点与表示数c的点到原点的距离相等,表示数b与-b 的点相距30个单位长度,若表示数a的点与原点的距离是表示数b的点与,则c的值为()原点距离的13A.-2B.-10C.-6D.-5【课后·知能演练】1.B2.C3.-24.312 -415 -35 35.解:(1)①5②如图所示.(2)原点O 的位置如图所示.点C 所表示的数是4.6.D 解析:由表示数a 的点与表示数c 的点到原点的距离相等,知a 与c 互为相反数,即原点在数a 和数c 对应的点中间,如图所示.由b 与-b 互为相反数,且表示数b 与数-b 的点相距30个单位长度,知表示数b 的点到原点的距离为15,表示数a 的点与原点的距离是表示数b 的点与原点距离的13,故a=13×15=5,故c=-5.。
七年级数学上册1.2.3 相反数-相反数的定义 选择题专项练习一(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的定义1.﹣2的相反数是()A.2 B.12C.﹣2 D.以上都不对2.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.﹣1的相反数与1的和是0 D.0是最小的非负数3.的相反数是()A.B.2 C.—2 D.4.-2的相反数是()A.B.2 C.D.-25.﹣9的相反数是()A.9 B.﹣9 C.19D.﹣196.﹣2的相反数是().A.﹣2 B.C.D.2 7.﹣2的相反数等于()A.2 B.﹣C.±2D.8.﹣7的相反数为()A.﹣7 B.C.7 D.﹣0.7 9.-3的相反数是()A .-3B .3C .±3D .1310.﹣2的相反数是( ) A .﹣2B .0C .2D .411.2-的相反数是( ) A .2-B .2C .12D .2±12.﹣2017的相反数是( ) A .﹣2017B .﹣12017C .2017D .1201713.﹣2018的相反数是( ) A .﹣2018B .2018C .±2018D .﹣1201814.一个数的相反数是它本身,则这个数是() A .0 B .正数 C .负数 D .非负数 15.如果a 与3-互为相反数,那么a 等于( )A .3-B .3C .13-D .1316.12018的相反数是( )A .12018-B .12018C .2018-D .201817.9-的相反数是( ). A .19B .19-C .9D .9-18.已知a 是12-,则a 的相反数为( ). A .2B .2-C .12-D .1219.实数5的相反数是( ) A .15B .5C .15-D .5-20.下列四个数中,其相反数是正整数的是( )A.2 B.C.﹣2016 D.﹣参考答案1.A解析:﹣2的相反数是2,选A.2.D解析:利用相反数,有理数的定义,以及有理数加法法则判断即可.详解:A、没有最小的有理数,不符合题意,B、没有最小的整数,不符合题意,C、﹣1的相反数与1的和是2,不符合题意,D、0是最小的非负数,符合题意,故选:D.点睛:本题主要考查相反数,有理数的定义,以及有理数加法法则,掌握相反数,有理数的定义,以及有理数加法法则是解题的关键.3.A解析:试题分析:的相反数是考点:相反数点评:本题难度较低,主要考查学生对相反数知识点的掌握.4.A解析:根据相反数的定义,易得B.5.A解析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此﹣9的相反数是9.故选A.6.D解析:试题分析:根据相反数的定义可知,只有符号不同的两个数互为相反数,即-2的相反数是2.故选D.考点:相反数的定义.7.A解析:试题分析:根据只有符号不同的两个数互为相反数,可得答案.解:﹣2的相反数是2,故选A.考点:相反数.8.C解析:试题分析:根据相反数的概念解答即可.解:﹣7的相反数为7,故选C.考点:相反数.9.B解析:分析:一个数的相反数就是在这个数前面添上“-”号.解答:解:-(-3)=3,故-3的相反数是3.10.C解析:试题分析:根据只有符号不同的两个数叫做互为相反数解答.﹣2的相反数是2考点:相反数11.B解析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:解:2 的相反数是2,故选:B.点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.C解析:试题解析:﹣2017的相反数是:2017.故选C.点睛:只有符号不同的两个数互为相反数.13.B解析:分析:只有符号不同的两个数叫做互为相反数.详解:-2018的相反数是2018.故选B.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.14.A解析:利用相反数的定义判断即可得出结果详解:一个数的相反数是它本身,则这个数为0.故本题答案为:A点睛:此题考查了相反数,熟练掌握其定义是解题的关键.15.B解析:根据相反数的性质即可解答.详解:由题意可得:(3)0a+-=,解得3a=.故选B.点睛:本题主要考查相反数的性质(互为相反数的两个数相加等于0),熟记和掌握相反数的性质是解题关键.16.A解析:直接利用相反数的定义分析得出答案.详解:1 2018的相反数是12018-,故选:A.点睛:此题主要考查了相反数,正确把握相反数的定义是解题关键.17.C解析:根据只有符号不同的两个数互为相反数,可得一个数的相反数. 详解:解:-9的相反数是9. 故选:C . 点睛:本题考查相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 18.D解析:根据相反数的定义即可得出答案. 详解:12-的相反数是12.a 是12-,则a 的相反数为12.故选:D . 点睛:本题考查了相反数,相反数的定义:只有符号不同的两个数是互为相反数. 19.D解析:根据相反数的定义即可求出. 详解:实数5的相反数是-5. 故选:D . 点睛:本题考查相反数.掌握其定义“和是0的两个数互为相反数”是解答本题的关键.20.C解析:试题分析:根据只有符号不同的两个数互为相反数,可得答案.解:A、2的相反数是﹣2,故A不符合题意;B、的相反数是﹣,故B不符合题意;C、﹣2016的相反数是2016,故C符合题意;D、﹣的相反数是,故D不符合题意;故选C.考点:相反数.。
【初中数学】人教版七年级上册1.2.3 相反数 (练习题)
人教版七年级上册1.2.3 相反数(150)1.在数轴上点A表示7,点B,C表示互为相反数的两个数,且点C与点A的距离为2,求点B,C对应的数分别是什么.2.小李在做题时,画一个数轴,数轴上原有一点A,其表示的数是−3,由于一时粗心,把数轴的原点标错了位置,使A点正好落在−3的相反数的位置,想一想:要把这个数轴画正确,原点应向哪个方向移动几个单位长度?3.已知表示数a的点在数轴上的位置,如图所示.(1)在数轴上标出表示数a的相反数的点的位置;(2)若表示数a的点与表示其相反数的点相距20个单位长度,则a表示的数是多少?(3)在(2)的条件下,若表示数b的点与表示数a的相反数的点相距5个单位长度,求b表示的数是多少?4.下列四组数中,互为相反数的一组是()A.+2与−3B.−8与+8C.−(−2)与2D.+(−1)与−(+1)5.化简:−(+8),−(+2.7),−(−3),−(−3).46.下列说法正确的有()①−x一定是负数;②任何一个有理数都有相反数;③只有正数和负数才能互为相反数;④互为相反数的数是指两个不同的数;⑤符号不同的两个数互为相反数A.1个B.2个C.3个D.4个7.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或零C.负数D.负数或零8.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是6个单位长度,那么这个数是()A.6或−6B.3或−3C.6或−3D.−6或39.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反数的是()A.−7B.3C.−3D.210.若x−1与−5互为相反数,则x的值为.11.化简:(1)−[−(+4)](2)−[−(−23)].12.一个数a的相反数是5,则a等于()A.15B.5 C.−15D.−513.下列各组数中,互为相反数的是()A.3和−3B.−3和13C.−3和−13D.13和314.如图,数轴上表示数−2的相反数的点是()A.点PB.点QC.点MD.点N15.如图,表示互为相反数的两个数的点是.16.写出下列各数的相反数: 11.2,9,0,−58,423.17.分别写出5,4,−3的相反数,在数轴上表示出各数及它们的相反数,并说明各对数在数轴上的位置特点.18.−(+5)表示的相反数,即−(+5)=;−(−5)表示的相反数,即−(−5)=.19.化简−(−6)的结果为()A.6B.−6C.16D.−1620.下列各式中,化简正确的是()A.+(−7)=7B.+(+7)=−7C.−(+7)=−7D.−(−7)=−721.如图,数轴上表示3的点是点,表示−3的点是点,它们到原点O的距离,所以3与−3是.22.2的相反数是()A.2B.−2C.−12D.12参考答案1.【答案】:因为数轴上点A 表示7,点C 与点A 的距离为2,所以数轴上点C 表示5或9. 因为点B ,C 表示互为相反数的两个数,所以数轴上点B 表示−5或−9. 所以点B ,C 对应的数分别是−5,5或−9,9【解析】:因为数轴上点A 表示7,点C 与点A 的距离为2,所以数轴上点C 表示5或9. 因为点B ,C 表示互为相反数的两个数,所以数轴上点B 表示−5或−9. 所以点B ,C 对应的数分别是−5,5或−9,92.【答案】:要把这个数轴画正确,原点应向右移动6个单位长度【解析】:要把这个数轴画正确,原点应向右移动6个单位长度3(1)【答案】如图:(2)【答案】a 表示的数是−10(3)【答案】由(2)知−a =10, 当b 在−a 的右边时,b 表示的数是10+5=15; 当b 在−a 的左边时,b 表示的数是10−5=5. 即b 表示的数是5或154.【答案】:B【解析】:根据相反数的定义:A 、+2的相反数是−2,错误;B 、−8的相反数是+8,正确;C 、−(−2)的相反数是−2,错误;D 、+(−1)的相反数是1,错误5.【答案】:因为+8的相反数是−8, 所以−(+8)=−8. 类似地,−(+2.7)=−2.7. 因为−3的相反数是3,所以−(−3)=3. 类似地,−(−34)=34【解析】:因为+8的相反数是−8, 所以−(+8)=−8. 类似地,−(+2.7)=−2.7. 因为−3的相反数是3,所以−(−3)=3. 类似地,−(−34)=346.【答案】:A【解析】:当x 是一个负数时,−x 就是正数,①错;0的相反数是0,③④错;只有符号不同其余完全相同的两个数才互为相反数,⑤错7.【答案】:B【解析】:一个数的相反数不是正数,则这个数的相反数是负数或零,故这个数一定是正数或零8.【答案】:B【解析】:因为这两个互为相反数的数对应的点之间的距离为6个单位长度,并且它们到原点的距离相等,故这两个数为3和−39.【答案】:D【解析】:点C 表示的数是1,向左移动5个单位长度到点B ,则点B 表示的数是−4,点B 向右移动2个单位长度到点A ,则点A 表示的数是−2,−2的相反数是210.【答案】:6【解析】:因为x −1与−5互为相反数,由于−5的相反数是5,所以x −1=5,解得x =611(1)【答案】−[−(+4)]=+4(2)【答案】−[−(−23)]=−2312.【答案】:D【解析】:−5的相反数是5,故a =−5,选 D13.【答案】:A【解析】:从四个选项中选择“只有符号不同的两个数”确定为互为相反数14.【答案】:A【解析】:因为−2的相反数是2,数2在数轴上的对应位置为点P .故选 A15.【答案】:点B 和点C【解析】:点B 和点C16.【答案】:11.2的相反数是−11.2, 9的相反数是−9, 0的相反数是0, −58的相反数是58, 423的相反数是−423【解析】:11.2的相反数是−11.2, 9的相反数是−9, 0的相反数是0, −58的相反数是58, 423的相反数是−42317.【答案】:5,4,−3的相反数分别是−5,−4,3. 在数轴上表示如图所示.各对数在数轴上的位置特点是到原点的距离相等【解析】:5,4,−3的相反数分别是−5,−4,3. 在数轴上表示如图所示.各对数在数轴上的位置特点是到原点的距离相等18.【答案】:5;−5;−5;519.【答案】:A【解析】:−(−6)=6,故答案为 A20.【答案】:C【解析】:看数字前面负号的个数,若有偶数个,则结果为正;若有奇数个,则结果为负21.【答案】:A ;B ;相等;相反数【解析】:AB 相等相反数22.【答案】:B。
七年级数学上册1.2.3 相反数-相反数的应用 填空题专项练习四(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的应用1.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是_______.2.若x+1与x ﹣5互为相反数,则x =_____.3.已知|2a ﹣b|是(b ﹣1)2的相反数,则(a+b )4=_____.4.若a 、b 互为相反数,c 、d 互为倒数,则22a b cd ++=__________. 5.如果a 、b 互为相反数,x 、y 互为倒数,那么(a+b )﹣xy =_____.6.如图,数轴上点Q,点P,点R,点S 和点T 分别表示五个数,如果点R 和点T 表示的数互为相反数,那么这五个点所表示的数中,点________对应的数绝对值最大.7.若m ,n 互为相反数,则5m+5n+3=_____.8.若1与-12x -互为相反数,则(3x+2)2019的值等于______. 9.若a 与b 互为相反数,则2019a b ++=__________.10.如果一个数的相反数等于它本身,那么这个数是_________.11.若a 、b 互为相反数,则(﹣1)a+b+1001=_____.12.若数轴上点A 、B 表示的两个数互为相反数,并且这两点间的距离是12,则该两点表示的数为___________13.若m +1与2互为相反数,则m 的值为_____14.若1m +与-3互为相反数,则m 的值为______________.15.用“⇒”与“⇐”表示一种法则:(a ⇒b )=﹣b ,(a ⇐b )=﹣a ,如(2⇒3)=﹣3,则(2017⇒2018)⇐ (2016⇒2015)=__________16.若a 与1互为相反数,则1+=a _________.17.若a ,b 互为相反数,则22a b -=______.18.如图,已知四个有理数m ,n ,p ,q 在一条缺失了原点和刻度的数轴上对应的点分别为M ,N ,P ,Q ,且m 与p 是相反数,则在m ,n ,p ,q 四个有理数中,绝对值最小的一个是_________.19.132在数轴上对应的点与它的相反数对应的点之间的距离为____.20.若m,n互为相反数,则m-4+n=________.参考答案1.2和−2解析:先根据互为相反数的定义,可设两个数是x和−x(x>0),再根据数轴上两点间的距离等于较大的数减去较小的数列方程计算.详解:解:设两个数是x和−x(x>0),则有x−(−x)=4,解得:x=2.则这两个数分别是2和−2.故答案为:2和−2.点睛:本题考查了数轴和互为相反数的意义,一个数的相反数就是在这个数前面添上“−”号.掌握数轴上两点间的距离的计算方法是解题关键.2.2解析:根据已知条件:代数式x+1和x-5互为相反数,列方程,然后即可求解.详解:解:∵代数式x+1和x-5互为相反数,∴x+1=-(x-5),移项,得x+x=5-1,合并同类项,得2x=4,系数化为1,得x=2.故答案为:2.点睛:本题主要考查学生对解一元一次方程的理解和掌握,解答此题的关键是根据代数式x+1和x-5互为相反数列方程,难度适中.3.8116解析:根据互为相反数的两个数的和等于0列式为|2a ﹣b|+(b ﹣1)2=0,再根据非负数的性质得2a ﹣b=0,b ﹣1=0,求出a=12、b=1,然后代入代数式进行计算得(a+b )4=(12+1)4=8116. 故答案为:8116. 点睛:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,关键是利用非负性列出方程求解出a 、b 的值.4.2详解:解:∵a 与b 互为相反数,∴0a b +=.又∵d 与c 互为倒数,∴1cd =,∴20222a b cd ++=+=.故答案为2.5.-1解析:根据题意得a+b =0,xy =1,然后代入代数式计算即可.详解:解:∵a、b 互为相反数,x 、y 互为倒数,∴a+b=0,xy =1.∴(a+b )﹣xy =0﹣1=﹣1.故答案为﹣1.点睛:本题主要考查的是求代数式的值,求得a+b =0,xy =1是解题的关键.6.Q解析:由点R 和点T 表示的数互为相反数得出原点的位置,即可知Q 点离原点最远,绝对值最大.由点R和点T表示的数互为相反数得出原点的位置,如图所示可知Q点离原点最远,绝对值最大.点睛:此题利用相反数找出原点位置是关键.7.3解析:直接利用相反数的定义分析得出答案.详解:解:∵m,n互为相反数,∴m+n=0,∴5m+5n+3=5(m+n)+3=3.故答案为:3.点睛:此题主要考查了相反数,正确把握相反数的定义是解题关键.8.-1解析:先根据相反数的性质列出关于x的方程,解之求得x的值,再代入计算可得.详解:根据题意,得:1-12x=0,解得:x=-1,则(3x+2)2019 =(-3+2)2019=(-1)2019=-1,故答案为:-1.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1,也考查了相反数的性质.9.2019解析:a与b互为相反数,则相加为0,代入代数式计算.详解:∵a与b互为相反数,∴0a b+=,∴20192019++=.a b点睛:相反数的性质是本题的突破口,牢记互为相反数和为0.10.0解析:根据相反数的性质即可求解.详解:只有0的相反数等于它本身.点睛:此题主要考查相反数,解题的关键是熟知相反数的性质.11.﹣1.解析:由a、b互为相反数,得(﹣1)a+b+1001=(﹣1)1001=﹣1,故答案为:﹣1.12.6和−6解析:因为数轴上点A、B表示的两个数互为相反数,则A、B分别位于原点的两侧,且到原点的距离相等,根据这两点间的距离是12,求解即可.详解:解:∵数轴上点A、B表示的两个数互为相反数,∴A、B分别位于原点的两侧,且到原点的距离相等;又∵这两点间的距离是12,∴该两点表示的数为6和−6,故答案为:6和−6.点睛:此题综合考查了数轴、相反数的有关内容,也可以用几何方法借助数轴来求解,会非常直观.13.-3.解析:根据“m+1与2互为相反数”,得到关于m的一元一次方程,解之即可.详解:根据题意得:m+1+2=0,解得:m=-3,故答案为:-3.点睛:本题考查了相反数,正确掌握相反数的定义是解题的关键.14.2解析:根据互为相反数的两个数相加得0即可列式计算.详解:由题意得:m+1-3=0,m=2,故答案为:2.点睛:此题考查相反数的定义,掌握相反数两个数的和等于0.15.2018.解析:根据题意,(a⇒b)=-b,(a⇐b)=-a,可知(2017⇒2018)=-2018,(2016⇒2015)=-2015,再计算(-2018⇐-2015)即可.详解:解:∵(a ⇒b )=-b ,(a ⇐b )=-a ,∴(2017⇒2018)⇐(2016⇒2015)=(-2018⇐-2015)=2018.故答案为:2018.点睛:本题这是一种新定义问题,间接考查了相反数的概念,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.解题的关键是根据题意掌握规律.16.0解析:根据相反数的性质计算即可;详解:∵a 与1互为相反数,∴10a +=, ∴10a +=;故答案是0.点睛:本题主要考查了相反数的性质应用,准确计算是解题的关键.17.0解析:直接利用平方差公式因式分解进而结合相反数的定义分析即可.详解:∵a ,b 互为相反数,∴a+b=0∴()()220a b a b a b -=+-=,故答案为:0.点睛:本题主要考查的是因式分解结合相反数的定义,正确因式分解是解答本题的关键.18.q解析:根据题意得到m 与p 化为相反数,且中点为坐标原点,即可找出绝对值最小的数. 详解:解:∵m与p是相反数,∴m+p=0,则原点在线段MP的中点处,∴绝对值最小的数是q,故答案为:q.点睛:此题考查了有理数大小比较,数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.19.7解析:解:132-的相反数是132,113(3)22--=7.故答案为7.点睛:本题考查了相反数的定义,两点间的距离公式的知识,熟记互为相反数的两个数的绝对值相等是解题的关键.20.-4解析:根据相反数的定义得m+n=0,代入原式可得答案.详解:解:因为m,n互为相反数,所以m+n=0,所以m-4+n=m+n-4=0-4=-4故答案为:-4点睛:本题考查了相反数的概念,用式子m+n=0表示出m,n是相反数是解题关键。
七年级数学上册《相反数》 习题及答案
七年级数学上册:相反数 习题及答案1.2的相反数是 ( )A.2B.12C.-2D.-122.一个数的相反数是3,则这个数是 ( )A.13B.-13C.3D.-33.在2,-2,8,6这四个数中,互为相反数的是 ( )A.-2与2B.2与8C.-2与6D.6与84.下列说法正确的是 ( )A.符号不同的两个数互为相反数B.互为相反数的两个数必然一个是正数,另一个是负数C.π的相反数是-3.14D.0.5的相反数是-125.有下列说法:①-3是相反数;②-3和+3都是相反数;③-3是+3的相反数;④-3和+3互为相反数;⑤+3是-3的相反数;⑥一个数的相反数必定是另外一个数,其中正确的有 ( )A.2个B.3个C.4个D.5个6.相反数等于它本身的数是 。
7.一个数的相反数不是负数,则这个数一定是 。
8.一个数在数轴上表示的点距原点2.8个单位长度,且在原点的左侧,则这个数的相反数是 。
9.分别写出下列各数的相反数:712,-9,0,+2016,-1.510.已知数轴上点A 和点B 分别表示互为相反数的两个数(点A 在点B 的左侧),并 且A ,B 两点间的距离是10,求点A ,B 所表示的数。
11.-(-2)的值是 ( )A.-2B.2C.±2D.412.下列四组数中,互为相反数的一组是 ( )A.+2与+(-3)B.-(+8)与+8C.-(-2)与2D.+(-1)与-(+1)13.-5的相反数是 ,-(-5)的相反数是 ,−[−(−5)]的相反数是 。
14.化简下列各式:(1)-(+221) (2)+(+7.2)(3)-[−(+3)] (4)-(-543)15.填空:+(-2)= ; -(-371)= ; -(+4.3)= ;+(+5.2)= ;-[−(−213)]= ;-[−(+1)]= ;观察以上结果,总结以下规律:正数的相反数是 ;负数的相反数是 ;一个数的相反数的相反数是 。
七年级数学上册《相反数》同步练习题(附答案)
七年级数学上册《相反数》同步练习题(附答案)一、选择题1、()2021--的相反数是( ) A .2021- B .2021 C .12021D .12021-2、如图,数轴上点A 、B 、C 、D 、表示的数中,表示互为相反数的两个点是( ).A .点B 和点C B .点A 和点C C .点B 和点D D .点A 和点D3、下列说法正确的是( ) A .()8--是8-的相反数 B .()2-+是2-的相反数 C .5+的相反数是()5-- D .12-的相反数是()12+-4、一个数的相反数是非负数,这个数一定是( ) A .零 B .负数 C .正数 D .非正数5、下列说法中,正确的是( ) A .π的相反数是-3.14B .任何一个有理数都有相反数C .符号不同的两个数一定互为相反数D .-(-2)和+(+2)互为相反数6、如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、C 表示的数互为相反数,则图中点B 对应的数是( )A .-1B .0C .1D .3二、填空题7、数轴上在原点左侧与表示数1的点的距离为3的数是a ,则a 的相反数是_________.8、把规定了_________, _________, __________的直线叫数轴.9、所有的有理数都可以用数轴上的一个点来表示,表示正有理数的点都在原点____侧,表示0的点在______,表示负有理数的点都在原点______侧10、如图,D 和B 两点虽然分别在原点的左边和右边,它们与原点的距离相同吗?11、像3和-3,5和-5,35 和-35等这样,_____的两个数叫做互为相反数, 0的相反数为____.12、互为相反数的两个数分别位于原点的_____(0除外);互为相反数的两个数到原点的距离_______.13、一般地,设a 是一个正数,数轴上与原点的距离是a 的点有____个,它们分别在原点的两侧,表示_____,这两点关于_____对称.14、结合数轴思考:0的相反数是_____.一个正数的相反数是一个___.一个负数的相反数是一个___.一个数的相反数是它本身的数是 ______.15、一般地,a的相反数是-a,a可表示任意有理数.求一个数的相反数,只需在这个数前加一个“___”号.16、如果a=﹣a,那么表示数a的点在数轴上的位置是_____﹣三、简答题17、化简下列各数前的符号:(1)﹣[﹣(﹣9)](2)﹣[+(﹣75)]18、如图所示,数轴上的一个单位长度表示2,观察下图,回答问题:(1)若点A与点D表示的数互为相反数,则点D表示的数是多少?(2)若点B与点F表示的数互为相反数,则点D表示的数的相反数是多少?19、在给出的数轴上,标出以下各数及它们的相反数,-1,2,5,-4,并把它们按照从小到大的2顺序用“<”连接起来20、写出下列各数的相反数原数:6,-8,-0.9,52,211-,100,021、化简下列各式:(1)47⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦;(2){[(0.03)]}+-+-;(3){[(5)]}----;(4){[(5)]}---+.参考答案1、A【分析】根据去括号法则以及相反数的定义解题即可.【详解】解:(2021)2021--=,2021∴的相反数为2021-,故选:A.【点睛】本题主要考查相反数的定义以及去括号法则,解题的关键是熟知定义.2、B【分析】根据数轴、相反数的性质分析,即可得到答案.【详解】根据题意,点A表示的数为6-,点B表示的数为0,点C表示的数为6﹣表示互为相反数的两个点是点A和点C故选:B.【点睛】本题考查了有理数的知识;解题的关键是熟练掌握数轴、相反数的性质,从而完成求解.3、A【分析】根据相反数的定义判断选项的正确性.【详解】().8A --是8-的相反数,故A 正确; B .()22-+=-,故B 错误; C .()55+=--,故C 错误; D .()1212-=+-,故D 错误. 故选:A .【点睛】本题考查相反数,解题的关键是掌握相反数的定义. 4、D【分析】一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.由此得出结果. 【详解】解:非负数是指正数或 0,而负数的相反数是正数,0 的相反数是 0,所以这个数一定是负数或 0. 故选:D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 5、B【分析】根据相反数的定义、去括号法则逐项判断即可得. 【详解】A 、π的相反数是π-,此项错误; B 、任何一个有理数都有相反数,此项正确;C 、只有符号不同的两个数一定互为相反数,此项错误;D 、()22--=,()22++=,不是相反数,此项错误; 故选:B .【点睛】本题考查了相反数的定义、去括号法则,熟练掌握相反数的概念是解题关键. 6、C【分析】根据点A 、C 表示的数互为相反数得到数轴原点的位置,读出点B表示的数即可求解. 【详解】解:根据点A 、C 表示的数互为相反数,可得图中点D 为数轴原点,,﹣点B 对应的数是1, 故选:C .【点睛】本题考查数轴上表示的数,根据相反数在数轴上的位置确定原点的位置是解题的关键.7、2【分析】数轴上在原点左侧即是负数,结合与表示数1的点的距离为3的数,即可得到a表示的数是-2,再根据相反数的定义解题.【详解】数轴上在原点的左侧且距离数1为3的数是-2,故-2的相反数为2,故答案为:2.【点睛】本题考查数轴上的点表示有理数、相反数等知识,是基础考点,难度较易,掌握相关知识是解题关键.8、原点、正方向、单位长度.【解析】分析:数轴的三要素为:原点,正方向,单位长度.解:我们把规定了原点,正方向和单位长度的直线叫做数轴.点评:本题考查数轴的定义,是需要熟记的内容.9、①. 右②. 原点③. 左10、相同,它们到原点的距离都是311、①. 只有符号不同②. 012、①. 两侧②. 相等13、①. 两②. a和-a③. 原点14、①. 0 ②. 负数③. 正数④. 015、-16、原点【解析】先求出a的值,再判断即可.【详解】a=-a,a=0,即表示数a的点在数轴上的位置是原点,故答案为原点.【点睛】本题考查了数轴和相反数,能求出a的值是解此题的关键.17、(1)﹣9;(2)75.【分析】根据相反数的定义,可得答案.【详解】(1)原式=﹣[+9]=﹣9;(2)原式=﹣[﹣75]=75.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.18、(1)点D表示的数为5;(2)点D表示的数的相反数为2-【分析】(1)先确定原点,即可确定点D表示的数;(2)先确定原点,可确定点D表示的数,再确定点D表示的数的相反数.【详解】(1)如图:﹣AD=10,点A与点D表示的数互为相反数,﹣点D表示的数为5;(2)如图:﹣点B与点F表示的数互为相反数,﹣点D表示的数为2;﹣点D表示的数的相反数为2-.【点睛】本题主要考查了数轴和相反数的应用,要注意两点,一是单位长度是多少,二是要注意找好原点,利用原点确定所表示的数.19、图见解析,5542112422-<-<-<-<<<<【分析】根据题意利用相反数性质得出并在数轴上表示出各数和它们的相反数,进而从左到右用“<”连接起来即可.【详解】解:-1,2,52,-4的相反数分别为:1,-2,52-,4,各数在数轴上表示为:所以55 42112422-<-<-<-<<<<.【点睛】本题考查的是有理数的大小比较,熟练掌握相反数的定义以及数轴上右边的数总比左边的大是解答此题的关键.20、-6,+8,+0.9,52-,211+,-100,021、(1)47;(2)0.03;(3)5;(4)5-.【分析】根据相反数的定义分别化简即可.【详解】(1)4477⎡⎤⎛⎫--+=⎪⎢⎥⎝⎭⎣⎦.(2){[(0.03)]}0.03+-+-=.(3){[(5)]}5----=.(4){[(5)]}5---+=-.【点睛】本题考查了利用相反数化简,对这类式子进行化简,非0数的正负与前边的正号的个数无关,而与负号的个数有关,当有奇数个负号时,值是负数,当有偶数个负号时,值是正数.。
人教版七年级上册数学相反数同步训练(含答案)
人教版七年级上册数学1.2.3 相反数同步训练一、单选题1.下列各数中,8的相反数是()A.8B.18C.8-D.18-2.互为相反数的两个数的和为()A.0B.正数C.负数D.无法确定3.若a与-2互为相反数,则a的值是()A.-2B.12-C.12D.24.数轴上表示数为a和a-4的点到原点的距离相等,则a的值为()A.-2B.2C.4D.不存在5.实数a在数轴上的对应点的位置如图,若实数b满足﹣a<b<a,则b的值可以是()A.﹣3B.﹣2C.﹣1D.26.下列各组数中,互为相反数的一组是()A.–(-2)和|-2|B.12和2C.-12和-2D.12和-127.()3--=()A.-3B.3C.3±D.1 3二、填空题8.如果两个数只有________ 不同,那么称其中一个数为另一个数的________,也称这两个数____________ .特别地,0的相反数是___________ .9.若a=13,则﹣a=__10.(4)--的相反数是___.11.数轴上表示互为相反数的两个点之间的距离为6,则这两个数是_________.12.如果数x与﹣20互为相反数,那么x等于_____________.13.a,b互为相反数且a是正数,在数轴上表示a,b的点相距9个单位长度,那么b=______.14.数轴上在原点左侧与表示数1的点的距离为3的数是a,则a的相反数是_________.15.如图,点A 表示的数的相反数是__________.16.若a 与3互为相反数,则2a +的值为______.三、解答题17.化简下列各数:(1)+(﹣3); (2)﹣(+5); (3)﹣(﹣3.4);(4)﹣[+(﹣8)]; (5)﹣[﹣(﹣9)].18.在数轴上标出3、﹣2.5、2、0、12以及它们的相反数.19.已知2a -与6-互为相反数,求21a -的值.20.已知a ,b ,c 为有理数,且它们在数轴上对应点的位置如图所示. (1)试判断a ,b ,c 的正负性.(2)在数轴上标出a ,b ,c 的相反数的对应点的位置.参考答案:1.C2.A3.D4.B5.C6.D7.B8.符号相反数互为相反数09.﹣1310.4-11.3和-312.20-13. 4.514.215.2-16.1-17.(1)3-(2)5-(3)3.4(4)8(5)9-19.1520.(1)a<0,b>0,c>0;答案第1页,共1页。
七年级数学上册1.2.3 相反数-相反数的定义 解答题专项练习二(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的定义一、解答题1.画出数轴,把下列各数及它们的相反数表示在数轴上,并将这些数按从小到大的顺序用“<”连接.2,0,-12,-3.2.求5,0,(4)--的相反数,并将这些数及它们的相反数标在数轴上,按从大到小的顺序用“>”连接.3.探究题:化简下列各数前的符号:(1)﹣[﹣(﹣9)](2)﹣[+(﹣75)]4.在数轴上表示下列各数及其相反数,﹣3,-(-2),12--,再用“<”将它们连接起来5.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0, 5-26.写出下列各数的相反数,并将这些数连同他们的相反数在数轴上表示出来. +3,-1.5,0,104-7.求2,0,12-,3-的相反数,并把这些数及其相反数表示在数轴上,然后将它们按从小到大的顺序用“<”连接.8.把有理数:+1,﹣3.5,﹣2和它们的相反数在下面的数轴上表示出来.9.(1)将数-2,+1,0,122-,134在数轴上表示出来. (2)将(1)中各数用“<”连接起来.(3)将(1)中各数的相反数用“>”连接起来.10.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:-4,-1.5,0,9211.数轴上A 点表示的数为+4,B 、C 两点所表示的数互为相反数,且C 到A 的距离为2,点B 和点C 各表示什么数.12.在数轴上表示下列各数:0,﹣2.5,﹣3,+5,113,4.5及它们的相反数.13.如图,A 表示﹣3,指出B 、C 所表示的相反数.14.在数轴上画出表示下列各数以及它们的相反数的点: -4,0.5,3.15.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.5-,1.5-,52,132,()2--参考答案一、解答题1.数轴见解析,113202322-<-<-<<<<解析:先求出各数的相反数,再在数轴上表示出来,根据数轴上的位置,用“<”连接即可. 详解:解:2的相反数是-2,0的相反数是0,-12的相反数是12,-3的相反数是3,在数轴是表示如图所示,用“<”连接如下:113202322-<-<-<<<<.点睛:本题考查了相反数的意义和在数轴上表示数以及有理数的大小,解题关键是准确求出各数的相反数,在正确的在数轴上表示出来,利用数轴比较大小.2.-5,0,-4,数轴见解析,()54045>-->>->-解析:先求出各数的相反数,再在数轴上表示出来,从右到左用“>”号连接起来即可. 详解:解:5,0,(4)--的相反数分别为:-5,0,-4, 如图所示:用“>”连接为:()54045>-->>->-. 点睛:本题考查的是有理数的大小比较,熟知数轴上右边的是总比左边的大是解答此题的关键.3.(1)﹣9;(2)75.解析:根据相反数的定义,可得答案.详解:(1)原式=﹣[+9]=﹣9;(2)原式=﹣[﹣75]=75.点睛:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.4.数轴见解析,-3<-2<12--<12<-(-2)<3解析:先求出各数的相反数,再在数轴上表示出来,从左到右用“<”把它们连接起来即可.详解:解:-3的相反数为3,-(-2)的相反数为-2,12--的相反数为12,如图所示:用“<”连接为:-3<-2<12--<12<-(-2)<3.点睛:本题考查了有理数大小比较的方法.注意在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.5.见解析解析:先求各个数的相反数,再在数轴上表示出来即可.详解:+3的相反数为:-3,-1.5的相反数为:1.5,0的相反数为:0,5 -2的相反数为:52,在数轴上表示如下:.点睛:本题考查了数轴,正确在数轴上表示各个数,解此题的关键是理解相反数的定义,求得相反数.6.详见解析解析:根据相反数的定义,分别写出,然后在数轴上表示即可.详解:由题意,得相反数依次为:-3,1.5,0,10 4数轴表示如下:点睛:此题主要考查相反数以及用数轴表示数,熟练掌握,即可解题.7.2,0,12-,3-的相反数分别是-2,0,12,3;数轴见解析;-3<-2<12-<0<12<2<3解析:先求出它们的相反数,再在数轴上表示出这些数,然后根据右边的数总比左边的数大,把这些数由大到小用“<”号连接起来即可.详解:2,0,12-,3-的相反数分别是-2,0,12,3,-3<-2<12-<0<12<2<3. 点睛:本题考查了相反数的定义,以及利用数轴比较有理数的大小,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.8.见解析解析:根据题意先把各数的相反数求出,再把有理数从数轴上表示出来即可. 详解:解:+1,﹣3.5,﹣2的相反数分别为:﹣1,3.5,2,如图:点睛:此题考查数轴,相反数,解题关键在于在数轴上表示出各数.9.(1)详情见解析;(2)112201324--+<<<<;(3)112201324-->>>> 解析:(1)画出数轴,然后在数轴上找出各数对应的点即可; (2)根据所画数轴,把各数从左至右依次用“<”连接起来即可; (3)将各数相反数依次求出来,然后进行大小比较即可。
人教版数学七年级上册1.2.3《相反数》训练习题(有答案)
《相反数》基础训练知识点1(相反数的意义)1.[2019四川广元中考]﹣15的相反数是()A.﹣5B.5C.﹣15D.152.给出下列说法:①﹣2是相反数;②2是相反数;③﹣2是2的相反数;④﹣2和2互为相反数.其中正确的有()A.1个B.2个C.3个D.4个3.[2019贵州贵阳中考]在1,﹣1,3,﹣2这四个数中,互为相反数的是()A.1与﹣1B.1与﹣2C.3与﹣2D.﹣1与﹣24.[2019河北唐山开平区期中]如图,表示互为相反数的点是()A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.[2019重庆北碚区兼善教育集团联考]若一个数的相反数比它本身大,则这个数一定是()A.正数B.整数C.负数D.非负数6.(1)若a与﹣2互为相反数,则a= ;(2)若a的相反数是12018,则a= .7.给出下列说法:①只有符号不同的两个数一定互为相反数;②一个数的相反数一定是负数;③若两个数互为相反数,则这两个数一定一正一负.其中正确说法的序号为.8.给出下列说法:①如果两个数互为相反数,则它们的相反数也互为相反数;②在任何一个数前面添加“﹣”号,就变成原数的相反数;③+115与﹣2.2互为相反数;④﹣19与0.1互为相反数.其中错误说法的序号是.9.若A、B两点表示的数互为相反数,且这两点相距8个单位长度,B在A的左边,在数轴上标出A、B两点,并指出A、B两点表示的数.知识点2(多重符号的化简)10.下面两个数互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣0.5与﹣(+0.5)C.﹣1.25与45D.+(﹣0.01)与﹣(﹣1100)11.观察下列各对有理数:①﹣(﹣5)与﹣(+5);②0与0;③﹣(﹣12)与﹣(﹣2);④23与32;⑤﹣1与﹣(﹣1).其中互为相反数的有. (填序号)12.﹣(﹣13)的相反数是.13.化简下列各数:(1)﹣(﹣6);(2)﹣(﹢2.5);(3)﹢(﹢1.8);(4)﹢(﹣12)(5)﹢[﹣(﹢7)];(6)﹣[﹢(﹣1)] (7)﹣[﹣(﹣2)];(8)﹣{﹣[﹢(﹣3)]} 参考答案1.D【解析】15与﹣15只有符号不同,它们是一对相反数,所以﹣15的相反数是15故选D.2.B【解析】相反数是成对出现的,单独的一个数不能说是相反数,所以①②错误,③④正确.故选B.3.A【解析】在1,﹣1,3,﹣2这四个数中,1与﹣1只有符号不同,所以1与﹣1互为相反数.故选A.4.B【解析】观察题中数轴,可知点B表示的数是2,点C表示的数是﹣2,因为2与﹣2互为相反数,所以表示互为相反数的点是点B和点C.故选B.5.C【解析】正数的相反数是负数,所以正数的相反数小于它本身;0的相反数为0,所以0的相反数等于它本身;负数的相反数是正数,所以负数的相反数大于它本身.结合本题条件,可知这个数一定是负数.故选C.6. (1)2;(2)﹣1 20187.①【解析】①的说法符合互为相反数的概念,所以①正确;因为0的相反数是0,而0没有正负之分,所以②③都错误.8.④【解析】在①中,两个数互为相反数,则它们的相反数也满足仅有符号不同.所以它们的相反数也互为相反数,所以①正确;在②中,在任何一个数前面添加“﹣”号,得到的新数和原数仅有符号不同,满足互为相反数的概念,所以②正确;在③中,因为+115=+2.2,+2.2与﹣2.2互为相反数,所以115与﹣2.2互为相反数,所以③正确;在④中,因为0.1=110,﹣19与110不互为相反数,所以﹣19与0.1不互为相反数,所以④错误.9.【解析】因为A,B两点表示的数互为相反数,且这两点相距8个单位长度,所以A,B两点到原点的距离都是4,又数轴上B在A的左边,在数轴上标出A,B两点,如图所示:点4表示的数是4,点B表示的数是﹣4.10.D【解析】选项A,因为﹣(+7)=﹣7,+(﹣7)=﹣7,所以﹣(+7)=+(﹣7),因此﹣(+7)与+(﹣7)不互为相反数,所以A不符合题意;选项B,因为﹣(+0.5)=﹣0.5,所以﹣0.5与﹣(+0.5)不互为相反数,所以B不符合题意;选项C,因为45=0.8. 1.25与0.8不互为相反数,所以C不符合题意;选项D,因为+(﹣0.01)=﹣0.01,﹣(﹣1100)=0.01,﹣0.01与0.01互为相反数,所以D符合题意.故选D.11.①②⑤【解析】因为﹣(﹣5)=5,﹣(+5)=﹣5,5与﹣5互为相反数,所以﹣(﹣5)与﹣(+5)互为相反数;0的相反数是它本身;因为﹣(﹣12)=12,﹣(﹣2)=2,1 2与2不互为相反数,所以﹣(﹣12)与﹣(﹣2)不互为相反数;因为23与32是两个不同的正数,所以23与32不互为相反数;因为﹣(﹣1)=1,﹣1与1互为相反数,所以﹣1与﹣(﹣1)互为相反数.因此互为相反数的有①②⑤.12.﹣13【解析】因为﹣(﹣13)=13,13的相反数是﹣13,所以﹣(﹣13)的相反数是﹣1 3 .13.【解析】(1)﹣(﹣6)=6.(2)﹣(+2.5)=﹣2.5.(3)﹢(﹢1.8)=1.8.(4)+(﹣12)=﹣12⑸+[﹣(+7)]=﹣7.(6)﹣[+(﹣1)]=1.(7)﹣[﹣(﹣2)]=﹣2.(8)﹣{﹣[+(﹣3)]}=﹣3.《相反数》提升训练1.[2019河北保定十三中课时作业]给出下列各数:+(﹣10),﹣(+15),﹣(﹣7),﹣[+(﹣9)],:﹣[﹣(﹣20)].其中负数有()A.0个B.2个C.3个D.4个2.[2019江西师大附中课时作业]下列说法正确的是()A.正数和负数互为相反数B.a的相反数是负数C.相反数等于它本身的数只有0D.﹣a的相反数是正数3.[2019吉林九中课时作业]下列说法正确的有()①π的相反数是﹣3.14;②符号相反的两个数互为相反数;③﹣(﹣3.8)的相反数是3.8;④一个数和它的相反数不可能相等.A.0个B.1个C.2个D.3个4.[2019重庆巴蜀中学课时作业]如果一个数在数轴:上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A.5或﹣5B.52或﹣52C.5或﹣52D.﹣5或525.[2019湖北襄阳四中课时作业]如图,数轴上一动点;A向左移动2个单位长度到达点B,再向右移动5个;单位长度到达点C.若点C表示的数为1,则与点A 表示的数互为相反数的是();A.﹣7B.3C.﹣3D.26.[2019山西大同二中课时作业](1)若a=2.5,则﹣a= ;(2)若﹣a=14,则a= ;(3)若﹣(﹣a)=10,则﹣a= ;(4)若a=﹣(+5),则﹣a= .7.[2019陕西咸阳彩虹中学课时作业]数轴上点A表示﹣3,B,C两点所表示的数互为相反数,且点B与点A的距离为3,则点C所表示的数是.8.[2019江西吉安一中课时作业]如图,已知A,B,C,D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数,则原点为;(2)若点B和点D表示的数互为相反数,则原点为;(3)若点A和点D表示的数互为相反数,请在数轴上标出原点O的位置.9.[2019河南郑州五十七中课时作业]小明在做题时,画了一个数轴,在数轴上原有一点A其表示的数是﹣3,由于粗心,小明把数轴的原点标错了位置,使点A 正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?10.[2019安徽合肥三十八中课时作业]已知表示数a的点在数轴上的位置如图所示.(1)在数轴上标出表示数a的相反数的点的位置;(2)若数a与其相反数相距20个单位长度,则a的值是多少?(3)在(2)的条件下,若表示数6的点与表示数a的相反数的点相距5个单位长度,则6的值是多少?参考答案1.C【解析】因为+(﹣10)=﹣10,﹣(+15)=﹣15,﹣(﹣7)=7,﹣[+(﹣9)]=9,﹣[﹣(﹣20)]=﹣20,所以负数有3个.故选C.2.C【解析】选项A,正数和负数不一定互为相反数,如1与﹣2不互为相反数,所以A错误;选项B,a的相反数不一定是负数,如a表示负数,则它的相反数是正数,所以B错误;选项D,若﹣a表示正数,则它的相反数是负数,所以D 错误.故选C.3.A【解析】①π的相反数是﹣π,故①错误;②符号相反的两个数不一定互为相反数,如+2与﹣3不互为相反数,故②错误;③﹣(﹣3.8)=3.8,3.8的相反数是﹣3.8,故③错误;④0的相反数等于0,故④错误.因此正确的说法有0个.故选A.4.B【解析】52与﹣52在数轴上对应点的距离是5个单位长度,且它们互为相反数.故选B.5.D【解析】因为点C表示的数为1,所以点S表示的数为﹣4,所以点4表示的数为所以与点4表示的数互为相反数的是2.故选D.6.(1)﹣2.5;(2)﹣14;(3)﹣10;(4)5【解析】(1)因为a与﹣a互为相反数,a=2.5,所以﹣a=﹣2.5.(2)因为﹣a=14,所以a=﹣14(3)因为﹣(﹣a)=10,所以a=10,所以﹣a=﹣10.(4)因为a=﹣(+5)=﹣5,所以﹣a=5.7.0或6【解析】数轴上点A表示﹣3,点B与点A的距离为3,所以点B所表示的数是0或﹣6.因为B,C两点所表示的数互为相反数,所以点C所表示的数是0或6.8.【解析】(1)点B(2)点C(3)原点O的位置如图所示.9.【解析】由题意知,当原点标错时,点4所表示的数是3,当原点标正确时,点4表示的数是﹣3,所以应将原点向右移动6个单位长度.10.【解析】(1)如图所示.(2)因为数a与其相反数相距20个单位长度,所以表示数a与﹣a的点到原点的距离都等于10.因为a是负数,所以a的值是﹣10.(3)由(2)知a=﹣10,所以数a的相反数为10.当表示数b的点在表示10的点的左侧时,b的值为5;当表示数b的点在表示10的点的右侧时,b的值为15,所以b的值是5或15.《相反数》典型例题相反数是只有符号不同的两个数.(1)从数轴上看,表示互为相反数的两个点,它们分别在原点的两旁且与原点的距离相等.(2)相反数是成对出现的,不能单独存在.(3)“+a”和“-a”互为相反数.这里a可以是正数、负数、也可以是0.我们来看看相反数的两种题型:知识点一:相反数的概念【例1】(1)2(1)7--的相反数是;(2)如果- a=+(-80.5),那么a= .【分析】(1)因为2(1)7--=217,所以此题就是求217的相反数;(2)已知a的相反数求原数的问题.【解】(1)因为2(1)7--=217,所以2(1)7--的相反数是-217.(2)因为-a=+(-80.5)= -80.5,所以a=80.5.变式练习:写出下列各数的相反数:4.5,-3,0,35,58-,-0.03,+7.参考答案:-4.5,3,0,35-,58,0.03,-7.知识点二:利用相反数的概念简化数的符号【例2】化简下列各数:(1)-(+3)(2)-(-2)(3)-(a)(4)+(-a).【分析】在一个数前面加上“+”号,所得数还是原来的数;在一个数前面加上“-”号,表示求这个数的相反数.如:(1)题表示求+3的相反数;(2)、(3)题表示求-2和a的相反数;(4)题表示仍为-a自身.【解】(1)-(+3)= -3;(2)-(-2)=+2;(3)-(a)= -a;(4)+(-a)= -a. 【说明】所谓简化一个数的符号,就是把多重符号化成单一符号,结果是正号则可省略不写.变式练习:化简下列各数:-(-68),-(+0.75),-(35-),-(+3.8).参考答案:68,-0.75,35,-3.8.。
人教版 七年级数学上册 第一章 相反数 同步训练(含答案)
人教版数学2021-2022学七年级上册第一章-1.2.3《相反数》同步训练一、选择题1.下列各组数中,互为相反数的是( )A .2和-2B .-2和12 C .-2和12- D .12和2 2.下列说法正确的是( )A .符号不相同的两个数互为相反数B .1.5的相反数是32-C .π的相反数是-3.14D .互为相反数的两个数必然一个是正数,一个是负数 3.如果一个数的相反数是负数,那么这个数一定是( )A .正数B .负数C .零D .正数、负数、零都有可能 4.a -b 的相反数是( )A .a +bB .-(a +b )C .b -aD .-a -b5.下列说法错误的是( )A .如果m n >,那么m <n --B .如果a -是正数,那么a 是负数C .如果x 是大于1的数,那么x -是小于-1的数D .一个数的相反数不是正数就是负数6.下列说法不正确的是( )A .所有的有理数都有相反数B .正数与负数互为相反数C .在一个数的前面添上“-”,就得到它的相反数.D .在数轴上到原点距离相等的两个点所表示的数是互为相反数7.下列各对数中互为相反数的是( )A .-5与-(+5)B .-(-7)与+(-7)C .-(+2)与+(-2)D .13-与-(-3) 8.如果x +y =0,那么x ,y 两个数一定是( )A .x =y =0B .一正一负C .x 与y 互为相反数D .x 与y 互为倒数二、填空题9.一个数的相反数大于它本身,这个数是___.10.互为相反数的两数在数轴上的两点间的距离为11,这两个数为________ .11.若2x -=,则[]()x ---= _____.12.已知a 与b 互为相反数,b 与c 互为相反数,且c=-6,则a=______.13.相反数等于本身的数有__个,是__.14.一个数a 的相反数是非负数,那么这个数a 与0的大小关系是a______0.15.(1)相反数是成对出现的,不能说某个数是相反数,一般的,a 和___互为相反数.(2)互为相反数的两个数只有______不同,其他的部分都是相同的.因此,求一个数的相反数只需要把这个数的前面的______改变,其他部分不变.(3)正数的相反数是负数,负数的相反数是______,特别地,0的相反数是______.三、解答题16.如果,那么表示的点在数轴上的什么位置?17.在数轴上画出表示-1.5 ,2,-1,-及它们的相反数的点.18.若a+12与-8+b 互为相反数,求a 与b 的和.19.已知不相等的两数,a b 互为相反数,,c d 互为倒数,3m =,求a+b-cd-m 的值.20.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是正数还是负数,图中表示的5个点中,哪一个点表示的数的绝对值最小,最小的绝对值是多少?参考答案1.A【详解】解答:解:A 、2和-2只有符号不同,它们是互为相反数,选项正确;B 、-2和12除了符号不同以外,它们的绝对值也不相同,所以它们不是互为相反数,选项错误; C 、-2和-12符号相同,它们不是互为相反数,选项错误; D 、12和2符号相同,它们不是互为相反数,选项错误. 故选A .2.B解:A . 只有符号不相同的两个数互为相反数,故A 错误;B . 1.5的相反数是32-,正确.C . π的相反数是-π,故C 错误;D . 互为相反数的两个数必然一个是正数,一个是负数,还有0的相反数是0,故D 错误.故选B .3.A解:一个数的相反数为负数,则这个数一定为正数,故选A .点睛:此题主要考查了相反数,关键是掌握相反数的定义.4.C解:a -b 的相反数是-(a -b ).故选C .5.D解:A . 如果m n >,那么m n -<-,正确;B . 如果a -是正数,那么a 是负数,正确;C . 如果x 是大于1的数,那么x -是小于-1的数,正确;D . 0的相反数是0.故D 错误.故选D .6.B解:A . 所有的有理数都有相反数,正确;B . 只有符号不同的两个数互为相反数,故B 错误;C . 在一个数的前面添上“-”,就得到它的相反数,正确;D . 在数轴上到原点距离相等的两个点所表示的数是互为相反数,正确.故选B .点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数,只有符号不同的两个数互为相反数.7.B解:A . -5与-(+5) 相等;B . -(-7)与+(-7)互为相反数;C . -(+2)与+(-2)相等;D . 13-与-(-3)互为负倒数. 故选B .8.C解:∵x +y =0,∴x 与y 互为相反数,故选C .9.负数解:设这个数是x ,则-x >x ,解得:x <0,故答案为负数.10.5.5与-5.5解:设一个正数为x ,则x -(-x )=11,解得,x =5.5,∴-x =-5.5,故答案为5.5和-5.5.点睛:本题考查数轴、相反数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数轴和相反数的知识解答.11.2解:()x ⎡⎤---⎣⎦=x -=2.故答案为2.12.-6【分析】先根据b 与c 互为相反数求出b ,再根据a 与b 互为相反数即可求出【详解】b 与c 互为相反数,且c=-6,∴b=6 a 与b 互为相反数,∴a=-6【点睛】本题考查的是相反数的定义,熟练掌握定义是解题的关键.13.1; 0【解析】相反数等于本身的数有1个,是0.14.≤【分析】根据一个数a的相反数是非负数,那么这个数a是非正数,据此作答.【详解】a的相反数是非负数,∴a是非正数,即a≤0.【点睛】本题考查了相反数的意义,熟练掌握相反数的定义是解题的关键.-符号符号正数015.a【详解】略16.原点处【分析】根据相反数等于本身的数为0即可得到结果.【详解】a=-a表示有理数a的相反数是它本身,那么这样的有理数只有0,所以a=0,表示a的点在原点处.【点睛】本题考查的是相反数的定义,熟练掌握0的相反数是它本身是解题的关键. 17.【解析】考点:数轴;相反数.分析:先根据相反数的定义分别求出这四个数的相反数,再在数轴上找出对应的点即可.解答:如图所示:.点评:本题主要考查了相反数的定义及在数轴上表示点.18.-4【分析】互为相反数的两个数和为0,直接联立等式,使(a+12)+(-8+b)=0,得到a与b的和.【详解】∵a+12与-8+b互为相反数∴(a+12)+(-8+b)=0即a+12-8+b=0,即a+b=-4故答案为-4【点睛】本题考查的是相反数的概念,务必清楚互为相反数的两个数和为0.19.-4或2【分析】根据相反数之和为0,倒数之积等于1,可得a+b=0,cd=1,再根据绝对值的性质可得m=±3,然后代入计算即可.解:由题意可得:a+b=0,cd=1,m=±3,当m=3时,a+b-cd-m=0-1-3=-4,当m=-3时,a+b-cd-m=0-1-(-3)=2.【点睛】此题主要考查了代数式求值,关键是掌握相反数之和为0,倒数之积等于1.20.(1)﹣1,(2)正数,点C表示的数的绝对值最小,最小的绝对值是0.5.【分析】(1)根据相反数的概念,互为相反数的两个数到原点的距离相等,确定原点求解即可.(2)根据相反数的概念,互为相反数的两个数到原点的距离相等,确定原点求解即可.解:(1)因为点A、B表示的数是互为相反数,原点就应该是线段AB的中点,即在C点右边一格,C点表示数﹣1;(2)如果点D、B表示的数是互为相反数,那么原点在线段BD的中点,即C点左边半格,点C表示的数是正数;点C到原点的距离最近,点C表示的数的绝对值最小,最小的绝对值是0.5.。
人教版初一七年级上册数学 相反数 课时练含答案
1.2.3相反数一、选择题1.的相反数是()A .23B .32C .32-D .23-2.下列说法正确的是()A .符号相反的两个数互为相反数B .一个数的相反数一定是正数C .一个数的相反数﹣定比这个数本身小D .一个数的相反数的相反数等于原数3.如图,点A 是数轴上一点,点A ,B 表示的数互为相反数,则点B 表示的数可能是()A .0B .1C .1.5D .2.54.若a 与1互为相反数,那么1a +=()A .1-B .0C .1D .2-5.与2021相加和为零的数是()A .-2021B .12021-C .0D .120216.a b c -+的相反数()A .a b c ---B .a b c--+C .a b c -+-D .a b c +-7.–[–(–3)]化简后是()A .–3B .3C .±3D .以上都不对8.下列几组数中,互为相反数的是().A .-(+3)和+(-3)B .∣-2∣和-(-2)C .-(-12)和-∣-0.5∣D .-2和129.如图,数轴上两点A 、B 表示的数互为相反数,若点B 表示的数为6,则点A 表示的数为()A .6B .﹣6C .0D .无法确定10.数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示有理数,这样就建立起了“数”与“形”之间的联系.同时,数轴也是我们研究相反数、绝对值的直观工具.有理数a ,b ,c 在数轴上的位置如图所示,则a 的相反数是()A .aB .bC .cD .﹣b二、填空题11.化简:()4éù---=ëû________.12.已知m 与n 互为相反数,且m 与n 之间的距离为6,且m <n .则m =_____,n=_______.13.数轴上,若A ,B 表示互为相反数的两个数且A 在B 的右侧,并且这两点的距离为10,则点B 表示的数是______.14.若4a +9与3a +5互为相反数,则a 的值为_____.15.已知m ,n 互为相反数,则m+n-3=_____.三、解答题16.画出数轴,把下列各数及它们的相反数表示在数轴上,并将这些数按从小到大的顺序用“<”连接.2,0,-12,-3.17.阅读理解:因为a 的相反数是-a ,所以①()2-+为+2的相反数,故-(+2)=-2;②()2--为-2的相反数,故()22--=.即利用相反数的意义可以对多重符号进行化简.化简:(1)13æö-+ç÷èø;(2)122æö--ç÷èø;(3)12éùæö-+-ç÷êúèøëû;(4)[(3)]---.18.数轴上有,,A B C 三点.点,A B 表示的数互为相反数,且点A 在点B 的左边,同时点,A B 相距8个单位;点,A C 相距2个单位.点,,A B C 表示的数各是多少?19.如图所示,数轴上的一个单位长度表示2,观察下图,回答问题:(1)若点A 与点D 表示的数互为相反数,则点D 表示的数是多少?(2)若点B 与点F 表示的数互为相反数,则点D 表示的数的相反数是多少?20.如图,在一条不完整的数轴上一动点A 向左移动5个单位长度到达点B ,再向右移动9个单位长度到达点C .(1)①若点A 表示的数为0,则点B 、点C 表示的数分别为:、;②若点C 表示的数为1,则点A 、点B 表示的数分别为:、;(2)如果点A 、C 表示的数互为相反数,求点B 表示的数.21.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置,并将这四个数从小到大排列;(2)若数b与其相反数相距16个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a与数b的相反数表示的点相距4个单位长度,则a表示的数是多少?22.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?23.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A 之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.【参考答案】1.A2.D3.C4.B5.A6.C7.A8.C9.B10.C 11.-412.-3313.-514.-215.-3.16.数轴略,11 3202322-<-<-<<<<17.(1)13-;(2)122;(3)12;(4)3-.18.点A表示的数为4-,点B表示的数为4,点C表示的数为6-或2-19.(1)点D表示的数为5;(2)点D表示的数的相反数为2-20.(1)①-5,4;②-3,-8;(2)点B表示的数为-721.(1)数轴略,b a a b<-<<-;(2)-8;(3)422.(1)略;(2)-10.23.(1)4;(2)①12﹣2t;②原点。
人教版数学七年级上册1.2.3相反数 作业设计(含解析)
人教版数学七年级上册1.2.3相反数作业设计(含解析)1.2.3相反数一、选择题1.(2022上海中考)8的相反数是()A.8B.C.-8D.-2.(2022山东威海中考)-5的相反数是()A.-5B.5C.D.-3.化简-(+2)的结果是()A.-2B.2C.±2D.04.(2022河南商丘柘城期末)下列表示-5的“相反数”的是()A.-(-5)B.-(+5)C.-[-(-5)]D.-[+(+5)]5.(2023山东德州禹城期中)在-2和它的相反数之间的整数个数为()A.3B.4C.5D.66.(2023山东德州平原期中)下面说法正确的有()①π的相反数是-3.14;②符号相反的两数互为相反数;③-(-3.8)的相反数是3.8;④一个数和它的相反数不可能相等.A.0个B.1个C.2个D.3个7.(2023福建泉州永春期中)下面两个数互为相反数的是()A.+30和-(-30)B.-0.2和-(+0.2)C.-2.5和-D.+(-0.1)和-8.一个数的相反数是它本身,则该数为()A.0B.1C.-1D.±1二、填空题9.(2023湖南衡阳期中)化简:-[+(-6)]=.10.(2023湖北武汉江岸月考)数轴上,若点A、B表示的数互为相反数,A 在B的右侧,并且这两点的距离为8,则A、B表示的数分别是和.11.若a=+2.3,则-a=;若a=-,则-a=;若-a=1,则a=;若-a=-21,则a=;若a=-a,则a=.12.(2022山东泰安东平期末)数轴上点A表示-3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数是.三、解答题13.(2023山东日照月考)若a-5和-7互为相反数,求a的值.14.如图所示的数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数互为相反数,那么点C表示的数是多少(2)如果点D、B表示的数互为相反数,那么点C、D表示的数分别是多少答案全解全析一、选择题1.答案C8的相反数为-8.2.答案B-5的相反数是5.3.答案A根据相反数的定义知-(+2)=-2.4.答案A A.-(-5)=5,是-5的相反数;B.-(+5)=-5;C.-[-(-5)]=-5;D.-[+(+5)]=-5.故选A.5.答案C-2的相反数为2,它们之间的整数有-2,-1,0,1,2,共5个.6.答案A①π的相反数是-π,故原说法错误;②符号相反的两数不一定互为相反数,如1和-3的符号相反,但1和-3不互为相反数,故原说法错误;③-(-3.8)=3.8,3.8的相反数是-3.8,故原说法错误;④0的相反数等于0,故原说法错误.综上,正确的说法有0个,故选A.7.答案D A.-(-30)=30,所以两数相等;B.-(+0.2)=-0.2,所以两数相等;C.-=-2.5,所以两数相等;D.+(-0.1)=-0.1,-=0.1,所以两数互为相反数.故选D.8.答案A因为0的相反数是0,所以若一个数的相反数是它本身,则该数为0.故选A.二、填空题9.答案6解析-[+(-6)]=-(-6)=6.10.答案4;-4解析因为点A、B表示的数互为相反数,且A、B两点的距离为8,所以点A、B到原点的距离均是4,因为A在B的右侧,所以A、B表示的数分别是4和-4.11.答案-2.3;;-1;21;012.答案1或5解析因为点B到点A的距离是2,所以点B表示的数为-1或-5,因为B、C两点表示的数互为相反数,所以点C表示的数是1或5.三、解答题13.解析由题意可知a-5=7,所以a=12.14.解析(1)如图,点O为原点,点C表示的数是-1.(2)如图,点O为原点,点C表示的数是1,点D表示的数是-5.。
人教版七年级上册数学1.2.3相反数练习题
初中数学组卷参考答案与试题解析一.选择题(共46小题)1.﹣的相反数是()A.2 B.﹣2 C.D.±【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:实数﹣的相反数是.故选C.【点评】本题考查了实数的性质,熟记相反数的定义是解题的关键.2.﹣2的相反数是()A.2 B.﹣2 C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.4.﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5.2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.6.﹣的相反数是()A.B.﹣C.2017 D.﹣2017【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:A.【点评】此题主要考查了相反数的定义,正确把握相反数的定义是解题关键.7.﹣的相反数是()A.B.C.D.﹣【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣与是只有符号不同的两个数,∴﹣的相反数是.故选C.【点评】本题考查的是相反数的定义,熟知只有符号不同的两个数叫互为相反数是解答此题的关键.8.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5 B.±0.5 C.﹣0.5 D.5【分析】根据相反数的定义求解即可.【解答】解:﹣0.5的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.9.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.【点评】本题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.10.若a的相反数是﹣3,则a的值为()A.1 B.2 C.3 D.4【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a的相反数是﹣3,则a的值为3,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.11.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【分析】相反数的定义:符号不同,绝对值相等的两个数叫互为相反数.根据定义,结合数轴进行分析.【解答】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【点评】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.12.已知﹣2的相反数是a,则a是()A.2 B.﹣ C.D.﹣2【分析】根据相反数的概念解答即可.【解答】解:∵﹣2的相反数是2,∴a=2.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.13.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0 B.a+b=0 C.ab=1 D.ab=﹣1【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:∵实数a、b互为相反数,∴a+b=0.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.14.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和 C.﹣2和﹣D.0和0【分析】根据只有符号不同的两个数叫做相反数对各选项分析判断即可得解.【解答】解:A、4和﹣(﹣4)=4,是相同的两个数,不是互为相反数,故本选项错误;B、﹣3和,不是互为相反数,故本选项错误;C、﹣2和﹣,不是互为相反数,故本选项错误;D、0和0是互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.15.a与﹣2互为相反数,则a为()A.﹣2 B.2 C.D.【分析】根据相反数的几何意义可知:互为相反数的两数之和为0,列出关于a 的方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a+(﹣2)=0,解得:a=2.故选B【点评】此题考查了相反数的定义,认识相反数应从两个角度出发:1、除0以外,相反数总是一正一负,成对出现;2、在数轴上表示互为相反数(除0外)的两个点分别在原点的两边,且到原点的距离相等.16.与﹣3的和为0的数是()A.3 B.﹣3 C.D.【分析】依据互为相反数的两数之和为0求解即可.【解答】解:﹣3+3=0,∴与﹣3的和为0的数是3.故选:A.【点评】本题主要考查的是相反数的性质,掌握互为相反数的两数之和为0是解题的关键.17.若x=﹣7,则﹣x的相反数是()A.+7 B.﹣7 C.±7 D.【分析】先根据x=﹣7求得﹣x=7,然后再来求7的相反数即可.【解答】解:﹣x的相反数是:﹣(﹣x)=x=﹣7.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.18.如果a与3互为相反数,那么a等于()A.3 B.﹣3 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:如果a与3互为相反数,那么a等于﹣3,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5 C.﹣ D.﹣1【分析】依据相反数的定义列出关于a的方程求解即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)=﹣4,解得:a=﹣5.故选:B.【点评】本题主要考查的是相反数的定义,依据相反数的定义列出关于a的方程是解题的关键.20.如果a与8互为相反数,那么a是()A.B.﹣ C.8 D.﹣8【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:因为﹣8与8互为相反数,所以a为﹣8,故选D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.21.与﹣1的和等于零的数是()A.﹣1 B.0 C.1 D.【分析】依据互为相反数的两数之和为零求解即可.【解答】解:1与﹣1互为相反数,∴1与﹣1的和为零.故选:C.【点评】本题主要考查的是相反数的性质,掌握互为相反数的两数之和为0是解题的关键.22.若a与﹣2互为相反数,则a﹣1的值为()A.﹣3 B.﹣ C.﹣ D.1【分析】先依据相反数的定义求得a的值,然后再依据有理数减法法则计算即可.【解答】解:∵a与﹣2互为相反数,∴a=2,∴a﹣1=2﹣1=1.故选:D.【点评】本题主要考查的是相反数的定义,依据相反数的定义求得a的值是解题的关键.23.a与互为相反数,则a=()A.﹣2 B.2 C.D.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:∵a与互为相反数,∴a=﹣.故选C.【点评】本题考查了相反数,是基础题,熟记概念是解题的关键.24.若一个数的相反数是x﹣y,则这个数是()A.x﹣y B.x+y C.﹣x﹣y D.﹣x+y【分析】根据互为相反数的两数之和为0,即可得出答案.【解答】解:设这个数为A,则根据题意得:x﹣y+A=0,解得:A=﹣x+y.故选D.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.25.下列说法中正确的是()A.+(﹣3)的相反数是﹣3 B.﹣(+6)的相反数是﹣6C.整数的相反数一定是整数D.0没有相反数【分析】利用相反数的定义分别分析得出即可.【解答】解:A、+(﹣3)的相反数是3,故此选项错误;B、﹣(+6)的相反数是6,故此选项错误;C、整数的相反数一定是整数,正确;D、0的相反数是0,故此选项错误;故选:C.【点评】此题主要考查了相反数的定义,正确利用相反数的定义分析是解题关键.26.关于相反数的叙述错误的是()A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零【分析】根据相反数的概念解答即可.【解答】解:A、两数之和为0,则这两个数为相反数,故选项正确;B、如果两数所对应的点到原点的距离相等,这两个数互为相反数,故选项正确;C、符号相反的两个数,一定互为相反数,如5和﹣4,符号相反,它们不是相反数,故选项错误;D、零的相反数为零,故选项正确.故选C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.27.不等于0的两个数互为相反数,则它们()A.积为﹣1 B.积为1 C.商为﹣1 D.商为1【分析】根据相反数的性质求解即可.【解答】解:不等于0的两个数互为相反数,即a=﹣a,则a除以﹣a=﹣1,所以不等于0的两个数互为相反数,则它们商为﹣1.故选C【点评】本题主要考查互为相反数与互为倒数的概念.只有符号不同的两个数互为相反数;乘积是1的两个数互为倒数.28.下面各组数,互为相反数的是()A.B.3.14与﹣πC.D.3与|﹣3|【分析】根据相反数的定义对各项进行逐一分析即可.【解答】解:A、∵﹣0.25=﹣,∴与﹣0.25互为相反数,故本选项正确;B、∵﹣π≈3.14159…,∴3.14与﹣π不互为相反数,故本选项错误;C、∵﹣(﹣2)=2,+(﹣)=﹣,∴﹣(﹣2)与+(﹣)不互为相反数,故本选项错误;D、∵|﹣3|=3,∴3与|﹣3|不互为相反数,故本选项错误.故选A.【点评】本题考查的是相反数的定义,比较简单.29.下列化简错误的是()A.﹣(﹣5)=﹣5 B.﹣(+3.6)=﹣3.6 C.﹣[﹣(﹣4)]=﹣4 D.【分析】根据相反数的定义得到﹣5的相反数为5,即﹣(﹣5)=5;同理有﹣(+3.6)=﹣3.6;﹣[﹣(﹣4)]=﹣(+4)=﹣4;把+(﹣)写成简写形式为﹣.【解答】解:∵﹣(﹣5)=5;﹣(+3.6)=﹣3.6;﹣[﹣(﹣4)]=﹣(+4)=﹣4;+(﹣)=﹣,∴A选项中的化减简是错误的.故选A.【点评】本题考查了相反数:a的相反数为﹣a.30.有下列的表述:①与﹣0.5互为相反数;②1+与1﹣互为相反数;③﹣|+5|与+|﹣5|互为相反数;④0没有相反数;⑤正数的相反数是负数;其中说法正确的有()A.0个 B.1个 C.2个 D.3个【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数,根据相反数的定义,①③⑤是正确的.【解答】解:①=0.5,0.5与﹣0.5互为相反数;故正确.②1+=,1=,不是的相反数;故错误.③﹣|+5|=﹣5,+|+5|=5,所以﹣|+5|与+|﹣5|互为相反数;故正确.④0的相反数是0;故错误.⑤正数的相反数是负数;故正确.故选D.【点评】本题考查了相反数的定义,0的相反数是0;一般地,任意的一个有理数a,它的相反数是﹣a,a本身既可以是正数,也可以是负数,还可以是零.31.如图,在数轴上点A所表示的数的相反数是()A.﹣2 B.2 C.0.5 D.﹣0.5【分析】先根据图示的内容求出A表示的数的值,再求出其相反数即可.【解答】解:由题意可知,A=2,所以A的相反数为﹣2.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.32.下列各对数中,属于互为相反数的是()A.﹣2和B.2和C.2和|﹣2|D.2和﹣2【分析】相反数是只有符号不同的两个数,根据概念可找到答案.【解答】解:只要符号不同的两个数叫做相反数.2和﹣2互为相反数.故选D.【点评】本题考查相反数的概念,关键知道只有符号不同的两个数叫做相反数.33.若2与m互为相反数,则下列结论正确的是()A.2﹣m=0 B.C.2m=4 D.2+m=4【分析】此题只需先由2与m互为相反数求得m的值,然后再代入各式判断是否成立.【解答】解:由于2与m互为相反数,则2+m=0,m=﹣2.因此,2﹣m=4;;2m=﹣4;2+m=0.故选B.【点评】本题考查了相反数的定义及求解,关键是先求得m的值,再代入验证即可.34.已知a的相反数是4,则a﹣3的值为()A.﹣5 B.﹣7 C.1 D.【分析】根据相反数的定义求出a的值,然后代入进行计算即可求解.【解答】解:∵a的相反数是4,∴a=﹣4,∴a﹣3=﹣4﹣3=﹣7.故选B.【点评】本题主要考查了相反数的定义,有理数的加法运算,求出a的值是解题的关键.35.﹣5的相反数是a,则a是()A.5 B.C.D.﹣5【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣5的相反数为﹣(﹣5)=5,故a=5.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.36.已知a、b、c均为有理数,则a+b+c的相反数是()A.b+a﹣c B.﹣b﹣a﹣c C.﹣b﹣a+c D.b﹣a+c【分析】根据只有符号不同的数是互为相反数进行解答.【解答】解:a+b+c的相反数是﹣a﹣b﹣c.故选B.【点评】本题主要考查了相反数的定义,熟记概念,只有符号不同的两个数是互为相反数是解题的关键.37.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2b B.a+1和b+1 C.a+1和b﹣1 D.2a和2b【分析】若a,b互为相反数,则a+b=0,根据这个性质,四个选项中,两个数的和只要不是0的,一定不是互为相反数.【解答】解:∵a,b互为相反数,∴a+b=0.A中,﹣2a+(﹣2b)=﹣2(a+b)=0,它们互为相反数;B中,a+1+b+1=2≠0,即a+1和b+1不是互为相反数;C中,a+1+b﹣1=a+b=0,它们互为相反数;D中,2a+2b=2(a+b)=0,它们互为相反数.故选B.【点评】本题考查了互为相反数的意义和性质:只有符号不同的两个数互为相反数,0的相反数是0;一对相反数的和是0.38.如果a与﹣2互为相反数,那么﹣1的值是()A.﹣2 B.﹣l C.0 D.1【分析】首先算出﹣2的相反数,然后用代入法求出﹣1的值.【解答】解:∵a与﹣2互为相反数.∴a=2,把a=2代入代数式得.故选C.【点评】本题主要考查相反数的定义和性质.39.数轴上表示互为相反数的两点之间的距离是4,这两个数是()A.0和4 B.0和﹣4 C.2和﹣2 D.4和﹣4【分析】根据互为相反数的两个数的绝对值相等求解即可.【解答】解:4÷2=2,所以,这两个数是2和﹣2.故选C.【点评】本题考查了相反数的定义,数轴的知识,熟记互为相反数的两个数的绝对值相等是解题的关键.40.已知2x+4与﹣x﹣8互为相反数,则x的值为()A.4 B.﹣4 C.0 D.﹣8【分析】先根据2x+4与﹣x﹣8互为相反数可得出关于x的方程,求出x的值即可.【解答】解:∵2x+4与﹣x﹣8互为相反数,∴2x+4=﹣(﹣x﹣8),解得x=4.故选A.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.41.下列各对数中,不是相反数的是()A.﹣5.2与﹣[+(﹣5.2)]B.﹣14与(﹣1)4C.﹣(﹣8)与﹣|﹣8| D.+(﹣3)与﹣[﹣(﹣3)]【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】解:A、∵﹣[+(﹣5.2)]=5.2,∴﹣5.2与﹣[+(﹣5.2)]互为相反数,故本选项错误;B、∵﹣14,=﹣1,(﹣1)4,=1,∴14与(﹣1)4互为相反数,故本选项错误;C、∵﹣(﹣8)=8,﹣|﹣8|=﹣8,8与﹣8为相反数,故本选项错误;D、∵+(﹣3)=﹣3,﹣[﹣(﹣3)]=﹣3,∴+(﹣3)与﹣[﹣(﹣3)]不互为相反数,故本选项正确.故选D.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.42.在+[﹣(﹣10)]、﹣(+0.1),+(+7)中,相反数为负数的个数是()A.1个 B.2个 C.3个 D.0个【分析】先化简,再根据互为相反数的定义找出相反数是负数的数即可.【解答】解:+[﹣(﹣10)]=10,相反数是﹣10是负数,﹣(+0.1)=﹣0.1,相反数是0.1,是正数,+(+7)=7,相反数是﹣7,是负数,所以,相反数为负数的个数是2.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.43.一个数在数轴上所对应的点向左移2008个单位后,得到它的相反数对应的点,则这个数是()A.2008 B.﹣2008 C.1004 D.﹣1004【分析】设这个数是x,根据向左移减表示出它的相反数,然后列方程求解即可.【解答】解:设这个数是x,根据题意得,x﹣2008=﹣x,解得x=1004.故选C.【点评】本题考查了相反数的定义,以及数轴上的点向左移用减,列出方程是解题的关键.44.若2m﹣1与﹣m+3互为相反数,则m的值是()A.﹣2 B.C.﹣3 D.【分析】根据相反数的定义得到2m﹣1+(﹣m+3)=0,然后解关于m的方程即可.【解答】解:∵2m﹣1与﹣m+3互为相反数,∴2m﹣1+(﹣m+3)=0,即2m﹣1﹣m+3=0,∴m=﹣2.故选A.【点评】本题考查了相反数:a的相反数为﹣a;0的相反数为0.45.下列各组代数式中互为相反数的有()(1)a﹣b与﹣a﹣b;(2)a+b与﹣a﹣b;(3)a+1与1﹣a;(4)﹣a+b与a﹣b.A.(1)(2)(4)B.(2)与(4)C.(1)(3)(4)D.(3)与(4)【分析】互为相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:(1)中,﹣a﹣b=﹣(a+b),它和a﹣b不是互为相反数,错误;(2)中,﹣a﹣b=﹣(a+b),它和a+b是互为相反数,正确;(3)中,1﹣a=﹣(a﹣1),它和a+1不是互为相反数,错误;(4)中,﹣a+b=﹣(a﹣b),它和a﹣b互为相反数,正确.所以互为相反数的有(2)与(4).故选B.【点评】本题主要考查两个代数式互为相反数的条件:一个多项式的各项分别和另一个多项式的各项互为相反数,则这两个代数式也互为相反数.46.在+|﹣3|与﹣3、﹣(+2)与+2、﹣|﹣5|与+(﹣5)、﹣(+7)与+(﹣7)、+(+7)与+(﹣7).这几对数中,互为相反数的有()A.6对 B.5对 C.4对 D.3对【分析】先将各数化简,然后根据相反数的定义,进行判断即可.【解答】解:+|﹣3|=3,3与﹣3互为相反数;﹣(+2)=﹣2,﹣2与+2互为相反数;﹣|﹣5|=﹣5,+(﹣5)=﹣5,﹣5与﹣5不是相反数;﹣(+7)=﹣7,+(﹣7)=﹣7,﹣7与﹣7不是相反数;+(+7)=7,+(﹣7)=﹣7,7与﹣7是相反数.综上可得互为相反数的有3对.故选D.【点评】本题考查了相反数的定义,注意互为相反数的两数之和为0.。
人教版七年级上册数学第一章相反数复习题含答案
人教版七年级上册数学第一章相反数复习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. −5的相反数是()A.−5B.5C.15D.−152. −0.2的相反数是()A.0.2B.±0.2C.−0.2D.23. 一个数的相反数是它本身,则这个数是()A.0B.正数C.负数D.非负数4. 2020的相反数是( )A.−2020B.2020C.202D.120205. |−13|的相反数是()A.|13| B.−13C.3D.−36. 下列不是具有相反意义的量的是()A.收入5000元与支出5000元B.上升5m和下降5mC.身高增加2cm和体重减少2kgD.提前2min与迟到2min7. |−2|的相反数是()A. B.−2 C. D.28. −2的相反数是()A.−2B.2C.12D.−129. −3的相反数是( )A.−3B.3C.−13D.1310. −3的相反数是( )A.±3B.3C.−3D.1311. 有理数2的相反数是________.12. 2的相反数是________.13. 如果代数式2+x 和3+x 互为相反数,那么x =________.14. 若|a −1|与|b +2|互为相反数,则(a +b )2021的值为________.15. 已知代数式6x −12与4+2x 的值互为相反数,那么x 的值等于________.16. 若a ,b 互为相反数,则a 2−b 2=________.17. 绝对值小于2016的所有的整数的和________.18. a 与b 互为相反数,则 a 3+2a 2b +ab 2=_________.19. −3的相反数是________,−2018的倒数是________.20. 已知a ,b 互为相反数,则a +2a +3a+...+49a +50a +50b +49b+...+3b +2b +b =________.21. 20190的相反数是________.22. 已知关于x ,y 的二元一次方程组{−2x −y =m,x +2y =−1的解中的两个数值互为相反数,求m 2020−m 的值.23.已知a 、b 互为相反数,c 、d 互为倒数, |m −3|+|2n −4|=0,x 的绝对值为2.+10x求mn2018(a+b)+12cd24. 化简下列各式.①−(−5);②−(+5);③−[−(+5)];④−{−[−(+5)]}.25. 若−x=−[−(−2)],求x的相反数.26. 化简下列各式的符号,并回答问题:(1)−(−2););(2)+(−15(3)−[−(−4)];(4)−[−(+3.5)];(5)−{−[−(−5)]};(6)−{−[−(+5)]}.问:①当+5前面有2014个负号,化简后结果是多少?②当−5前面有2015个负号,化简后结果是多少?你能总结出什么规律?27. 某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)−4,+7,−9,+8,+6,−5,−2(1)求收工时距A地多远?在A地的什么方向?(2)在第几次纪录时距A地最远,并求出最远距离.(3)若每千米耗油0.3升,问共耗油多少升?28. 有三个同学在一起讨论−a到底是个什么数,甲同学说−a是正数,乙同学说−a是零,丙同学说−a是负数,你认为谁说得对呢?为什么?29. (1)填空:−(+2.5)=________,−(−2.5)=________,−[−(+2.5)]=________,−[+(−2.5)]=________,+[+(−2.5)]=________,+[+(+2.5)]=________ 29. (2)你发现了什么规律?30. 已知3m−2与−7互为相反数,求m的值.参考答案与试题解析人教版七年级上册数学第一章相反数复习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】相反数【解析】此题暂无解析【解答】解:只有符号不同的两个数称互为相反数,所以−5的相反数是5.故选B.2.【答案】A【考点】相反数相反数的意义【解析】该题主要考查了相反数的判断.【解答】解:由于只有符号不同的两个数互为相反数,因此−0.2的相反数为0.2,故选A.3.【答案】A【考点】相反数的意义相反数【解析】此题暂无解析【解答】利用相反数的定义判断即可得出结果一个数的相反数是它本身,则这个数为0.故本题答案为:A4.【答案】A【考点】相反数【解析】此题暂无解析【解答】解:只有符号不同的数叫做互为相反数. 2020的相反数是−2020.故选A.5.【答案】B【考点】相反数【解析】此题暂无解析【解答】解:∵|−13|=13,而13的相反数是−13,∴|−13|的相反数是−13.故选B.6.【答案】C【考点】相反数的意义【解析】根据相反意义的量进行判断即可.【解答】解:C中身高增加和体重减少研究的不是同一事件,不具有相反意义. 故选C.7.【答案】B【考点】相反数绝对值相反数的意义【解析】试题分析:|−2|=2,则2的相反数为−2.【解答】此题暂无解答8.【答案】B【考点】相反数【解析】此题暂无解析【解答】故选B.9.【答案】B【考点】相反数【解析】直接利用相反数的定义分析得出答案.【解答】解:−3的相反数是:3.故选B.10.【答案】B【考点】相反数相反数的意义多边形内角与外角【解析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:−3的相反数是3.故选:B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−2【考点】相反数相反数的意义多边形内角与外角【解析】由相反数的定义:“只有符号不同的两个数互为相反数“可知,2的相反数是−2.【解答】此题暂无解答12.【答案】−2【考点】相反数【解析】根据相反数的性质,互为相反数的两个数和为0,由此求解即可.【解答】解:只有符号不同的两个数叫做互为相反数,互为相反数的两个数和为0.故答案为:−2.13.【答案】−2.5【考点】相反数【解析】因为互为相反数的两个数相加得0,所以让两个代数式相加得0,即可求出x的值. 【解答】解:∵ 2+x与3+x互为相反数,∴ 根据相反数的性质得,2+x+3+x=0,解得x=−2.5.故答案为:−2.5.14.【答案】−1【考点】非负数的性质:绝对值相反数的意义【解析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵|a−1|与|b+2|互为相反数,∴|a−1|+|b+2|=0,∵|a−1|≥0,|b+2|≥0,∴a−1=0,b+2=0,解得a=1,b=−2,所以,(a+b)2021=(1−2)2021=−1.故答案为:−1.15.【答案】1【考点】相反数的意义【解析】此题暂无解析【解答】解:6x−12+4+2x=0,8x=8,x=1.故答案为:1.16.【答案】【考点】相反数【解析】此题暂无解析【解答】解:若a、b互为相反数,则a+b=0,a2−b2=(a+b)(a−b)=0.故答案为:0.17.【答案】【考点】相反数【解析】绝对值小于2016的所有整数为:−2015⋯,0,....2015,故−2015+(−2014)+(−2013+⋯+2013+2014+2015=′′′(−2015+2015)+(−202014)+(−2013+2013)+⋯+(−1(+1=0故答案为:0.【解答】此题暂无解答18.【答案】【考点】相反数的意义因式分解的应用【解析】本题主要考查相反数的概念以及因式分解问题.【解答】解:a3+2a2b+ab2=(a3+a2b)+(a2b+ab2)=a2(a+b)+ab(a+b)=(a+b)(a2+ab)=a(a+b)2∵a,b互为相反数∴a+b=0∴a3+2a2b+ab2=0故答案为:0.19.【答案】3,−12018【考点】倒数相反数相反数的意义【解析】利用有理数的相反数和倒数的——求解即可.【解答】解:−3的相反数是3,-2018的倒数是________1201820.【答案】【考点】相反数【解析】根据相反数的概念,a +b =0,继而可求出a +2a +3a+...+49a +50a +50b +49b+...+3b +2b +b =(a +b)+2(a +b)+3(a +b)+...+50(a +b)=0.【解答】解:∵ a ,b 互为相反数,∴ a +b =0.∴ a +2a +3a+...+49a +50a +50b +49b+...+3b +2b +b=(a +b)+2(a +b)+3(a +b)+...+50(a +b)=0.故答案为:0.三、 解答题 (本题共计 10 小题 ,每题 10 分 ,共计100分 )21.【答案】−1【考点】相反数【解析】此题暂无解析【解答】解:因为20190=1,所以1的相反数为−1,故答案为:−1.22.【答案】解:∵ 二元一次方程组的解中的两个数值互为相反数,∴ y =−x ,代入原方程组可得{−x =m,x =1,∴ m =−1.故m 2020−m =(−1)2020−(−1)=1+1=2.【考点】相反数的意义代入消元法解二元一次方程组二元一次方程组的解【解析】由二元一次方程组的解中的两个数值互为相反数,可得y =−x ,代入原方程组可得{−x =m x =1, 得出m 的值,代入m 2020−m 可得出答案.【解答】解:∵ 二元一次方程组的解中的两个数值互为相反数,∴ y =−x ,代入原方程组可得{−x =m,x =1,∴ m =−1.故m 2020−m =(−1)2020−(−1)=1+1=2.23.【答案】解:∵ a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为2,∴ a +b =0,cd =1,x =±2,∵ |m −3|+|2n −4|=0且|m −3|≥0,|2n −4|≥0,∴ m −3=0,2n −4=0,∴ m =3,2n =4,∴ m =3,n =2,∴ 当x =2时,原式=2012,当x =−2时,原式=−1912,∴ 原式=2012或−1912. 【考点】相反数的意义列代数式求值倒数相反数【解析】此题暂无解析【解答】解:∵ a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为2,∴ a +b =0,cd =1,x =±2,∵ |m −3|+|2n −4|=0且|m −3|≥0,|2n −4|≥0,∴ m −3=0,2n −4=0,∴ m =3,2n =4,∴ m =3,n =2,∴ 当x =2时,原式=2012,当x =−2时,原式=−1912,∴ 原式=2012或−1912. 24.【答案】解:①−(−5)=5;②−(+5)=−5;③−[−(+5)]=5;④−{−[−(+5)]}=−5.【考点】相反数【解析】根据去括号的法则,可得化简后的数.【解答】解:①−(−5)=5;②−(+5)=−5;③−[−(+5)]=5;④−{−[−(+5)]}=−5.25.【答案】解:∵ −x =−[−(−2)],∴ −x =−2,即x 的相反数为−2.【考点】相反数【解析】先根据多重符号的化简方法得出−[−(−2)]=−2,即−x =−2,即可求解.【解答】解:∵ −x =−[−(−2)],∴ −x =−2,即x 的相反数为−2.26.【答案】解:(1)−(−2)=2;(2)+(−15)=−15;(3)−[−(−4)]=−4;(4)−[−(+3.5)]=+3.5;(5)−{−[−(−5)]}=5;(6)−{−[−(+5)]}=−5.①当+5前面有2014个负号,化简后结果是+5;②当−5前面有2015个负号,化简后结果是+5,规律:在一个数的前面有偶数个负号,化简结果是本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.【考点】相反数【解析】根据相反数的概念进行化简;①根据相反数的性质进行解答;②根据相反数的性质解答.【解答】解:(1)−(−2)=2;(2)+(−15)=−15;(3)−[−(−4)]=−4;(4)−[−(+3.5)]=+3.5;(5)−{−[−(−5)]}=5;(6)−{−[−(+5)]}=−5.①当+5前面有2014个负号,化简后结果是+5;②当−5前面有2015个负号,化简后结果是+5,规律:在一个数的前面有偶数个负号,化简结果是本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.27.【答案】解:(1)根据题意列式−4+7−9+8+6−5−2=1km .答:收工时距A 地1km ,在A 的东面.(2)由题意得,第一次距A 地|−4|=4千米;第二次距A 地|−4+7|=3千米;第三次距A 地|−4+7−9|=6千米;第四次距A 地|−4+7−9+8|=2千米;第五次距A 地|−4+7−9+8+6|=8千米;第六次距A 地|−4+7−9+8+6−5|=3千米;第五次距A 地|−4+7−9+8+6−5−2|=1千米;所以在第五次纪录时距A 地最远,最远为8km .(3)根据题意得检修小组走的路程为:|−4|+|+7|+|−9|+|+8|+|+6|+|−5|+|−2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升.【考点】绝对值的意义相反数的意义有理数的加减混合运算绝对值正数和负数的识别【解析】(2)收工时距A 地的距离等于所有记录数字的和的绝对值;(1)分别计算每次距A 地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.3升,就是共耗油数.【解答】(1)根据题意列式−4+7−9+8+6−5−2=1km.答:收工时距A地1km,在A的东面.(2)由题意得,第一次距A地|−4|=4千米;第二次距A地|−4+7|=3千米;第三次距A地|−4+7−9|=6千米;第四次距A地|−4+7−9+8|=2千米;第五次距A地|−4+7−9+8+6|=8千米;第六次距A地|−4+7−9+8+6−5|=3千米;第五次距A地|−4+7−9+8+6−5−2|=1千米;所以在第五次纪录时距A地最远,最远为8km.(3)根据题意得检修小组走的路程为:|−4|+|+7|+|−9|+|+8|+|+6|+|−5|+|−2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升.28.【答案】解:由有理数的分类可知,字母a除了可以表示正数和负数外,还可以表示有理数0.【考点】相反数【解析】根据负数的相反数为正数,正数的相反数为负数,0的相反数为0,可知:若a是负数,则−a是正数;若a是0,则−a是0;若a是正数,则−a是负数.【解答】解:由有理数的分类可知,字母a除了可以表示正数和负数外,还可以表示有理数0.29.【答案】−2.5,2.5,2.5,2.5,−2.5,2.5(2)规律:化简的结果只与负号的个数有关,当负号的个数是奇数时,结果是负数,负号的个数是偶数时,结果是正数.【考点】相反数【解析】(1)根据相反数的定义分别化简即可得解;(2)从负号的个数与结果考虑解答.【解答】解:(1)−(+2.5)=−2.5,−(−2.5)=2.5,−[−(+2.5)]=2.5,−[+(−2.5)]=2.5,+[+(−2.5)]=−2.5,+[+(+2.5)]=2.5;(2)规律:化简的结果只与负号的个数有关,当负号的个数是奇数时,结果是负数,负号的个数是偶数时,结果是正数.30.【答案】解:∵3m−2与−7互为相反数,∴(3m−2)+(−7)=0,解得m=3.【考点】相反数【解析】根据互为相反数的两个数的和等于0列出方程求解即可.【解答】解:∵3m−2与−7互为相反数,∴(3m−2)+(−7)=0,解得m=3.。
人教版七年级数学上册 1.2.3相反数 课后练习(含答案)
第1章 有理数 1.2.3相反数一、选择题1.有理数-13的相反数为( ) A .-3 B .-13 C.13 D .32.在1,-1,3,-2这四个数中,互为相反数的是( )A .1与-1B .1与-2C .3与-2D .-1与-23.-(-2)等于( )A .-2B .2 C.12 D .±24.A ,B 是数轴上的两点,线段AB 上的点表示的数中,有互为相反数的是( )5.下列关于相反数的说法正确的是( )A .-15和0.2不互为相反数 B .相反数一定是不相等的两个数C .任何一个有理数都有相反数D .正数与负数互为相反数6.下列各组数中,不相等的是( )A .-(+8)和+(-8)B .-5和-(+5)C .+(-7)和-7D .+(-23)和+23二、填空题7.点A ,B ,C ,D 在数轴上的位置如图所示,其中-2的相反数所对应的点是________.8.(1)-5.4的相反数是________;(2)-(-8)的相反数是________;(3)若a =-a ,则a =________.9.a 的相反数是-9,则a =________.10.若x-1与-5互为相反数,则x的值为________.11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为4个单位长度,则这个数为________.12.化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________.三、解答题13.如图,数轴上每相邻两刻度之间的距离为1个单位长度,请回答下列问题:(1)如果点A,B表示的数互为相反数,那么点C表示的数是多少?(2)如果点E,B表示的数互为相反数,那么点C表示的数是多少?图中其他点表示的数分别是多少?链接听P4例2归纳总结14.规律探索化简下列各数:(1)-(-2);(2)+(-15 );(3)-[-(-4)];(4)-[-(+3.5)];(5)-{-[-(-5)]};(6)-{-[-(+5)]}.问题:当+5前面有2019个负号时,化简后的结果是多少?当-5前面有2020个负号时,化简后的结果是多少?你能总结出什么规律?参考答案1.C 2.A 3.B 4.B5.C 6.D 7.点B8.(1)5.4 (2)-8 (3)09.910.6 [解析] 因为x -1与-5互为相反数,由于-5的相反数是5,所以x -1=5,解得x =6.11.2或-2 [解析] 由题意知这个数到原点的距离为2,所以这个数为2或-2.12.(1)-3 (2)3 (3)3 (4)-3 (5)3(6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.13.解:(1)若点A ,B 表示的数互为相反数,则到A ,B 两点距离相等的点O 是原点,如图.故点C 表示的数是-1.(2)如果点E ,B 表示的数互为相反数,那么到E ,B 两点距离相等的点C 是原点,故点C 表示的数是0,点D 表示的数是-5,点E 表示的数是-4,点A 表示的数是-2,点B 表示的数是4.14.解:(1)-(-2)=2;(2)+(-15)=-15; (3)-[-(-4)]=-4;(4)-[-(+3.5)]=3.5;(5)-{-[-(-5)]}=5;(6)-{-[-(+5)]}=-5.当+5前面有2019个负号时,化简后的结果是-5;当-5前面有2020个负号时,化简后的结果是-5.规律:在一个数的前面有偶数个负号时,化简后的结果是它本身;在一个数的前面有奇数个负号时,化简后的结果是它的相反数.。
数学人教版(2024)版七年级初一上册 1.2.3 相反数 课时练 含答案02
第一章 有理数1.2.3 相反数一、单选题1.34-的相反数是( )A .34B .34-C .43D .43-2.下列化简正确的是( )A .(2)2+-=B .(3)3--=C .(3)3++=-D .(2)2-+=3.下列有关相反数的说法:①符号相反的数叫相反数;②数轴上原点两旁的数是相反数;③()3--的相反数是3-;④a -一定是负数;⑤若两个数之和为0,则这两个数互为相反数; ⑥若两个数互为相反数,则这两个数一定是一个正数一个负数.其中正确的个数有( )A .2个B .3个C .4个D .5个4.下列各组数中互为相反数的是( )A .2与2-B .2与12C .12-与2-D .2-与125.下列各对数中,是互为相反数的是( )A .()7-+与()7+-B .12-与()0.5+-C .114æö--ç÷èø与54--D .()0.01+-与100+6.已知一个数的相反数是5-,那么这个数是( ).A .15-B .5-C .15D .57.32-的相反数是( )A .32B .27C .32-D .23-8.整数5的相反数是( )A .15B .5-C .5-D .15-二、填空题9.(1)()8--= ; (2)1158æö-+=ç÷èø;(3)()6--+=éùëû; (4)35æö++=ç÷èø.10.如果5a +的相反数是3-,那么a =.11.若a 与12-互为相反数,则a 的值为.12.如图,数轴的单位长度为1,若点A 表示的数与点B 表示的数互为相反数,则点C 表示的数是.13.52-的相反数是 .14.56æö--ç÷èø的相反数是.15.在数0.75,34-,13-,0.33,3+,3-中,互为相反数的有 对.16.若3a +的相反数是5-,则a 的相反数是 .三、解答题17.画出数轴,在数轴上表示下列各数.52æö--ç÷èø,3-, 3.5-,0,112-,142-.18.画数轴,在数轴上表示下列各数及它们的相反数.3.5-,0,2.19.已知m 是-6的相反数,n 比m -的相反数大3,求m ,n .20.如图,1个单位长度表示1,观察图形,回答问题:(1)若点B 与点C 所表示的数互为相反数,则点B 所表示的数为_________;(2)若点A 与点D 所表示的数互为相反数,则点D 所表示的数是多少?(3)若点B 与点F 所表示的数互为相反数,则点E 所表示的数的相反数是多少?21.在数轴上,点A 表示数8,点B ,C 表示互为相反数的两个数,且点C 和点A 之间的距离为3,求点B ,C 所表示的数.22.如图所示的数轴的单位长度为1.请回答下列问题:(1)如果点A 、B 表示的数互为相反数,那么点C 表示的数是多少?(2)如果点D 、B 表示的数互为相反数,那么点C 、D 表示的数分别是多少?23.化简下列各数中的符号.(1)123æö--ç÷èø(2)()5-+(3)()0.25--(4)12æö+-ç÷èø(5)()1--+éùëû(6)()a --参考答案1.A 2.B 3.A 4.A 5.C 6.D 7.A 8.B 9. 81158- 63510.2-11.12/0.512.4-13.5214.56-15.216.2-17.解:5522æö--=ç÷èø,18.解: 3.5-的相反数为3.5,0的相反数为0,2的相反数为2-,在数轴上可表示为:19.解:Q m 是-6的相反数,\6m =,6m -=-,\m -的相反数是6,Q n 比m -的相反数大3,\639n =+=.20.解:(1)解:∵点B 与点C 所表示的数互为相反数,且B 与C 之间有2个单位长度,∴可得点B 所表示的数为1-;故答案为:1-(2)∵点A 与点D 所表示的数互为相反数,且它们之间距离为5,∴点D 表示的数为 2.5+;(3)∵点B 与点F 所表示的数互为相反数,且它们之间距离为6,∴点F 所表示的数为3+,∵点E 在点F 左边1个单位,∴点E 所表示的数是2,∴点E 所表示的数的相反数是2-.21.解:∵点A 表示数8,点C 和点A 之间的距离为3,∴点C 表示的数是835-=或8311+=,∵点B ,C 表示互为相反数的两个数,∴点B 表示的数是5-或11-,由上可得,点B ,C 所表示的数是5-和5或11-和11.22.解:(1)解:如图,点O 为原点,点C 表示的数是1-.(2)如图,点O 为原点,点C 表示的数是1,点D 表示的数是5-.23.(1)解:123æö--ç÷èø表示123-的相反数,而123-的相反数是123,所以112233æö--=ç÷èø.(2)解:()5-+表示5+的相反数,即5-, 所以()55-+=-.(3)解:()0.25--表示0.25-的相反数,而0.25-的相反数是0.25,所以()0.250.25--=.(4)解:负数前面的“+”号可以省略,则1122æö+-=-ç÷èø.(5)解:先看中括号内()1-+表示1的相反数,即1-,因此()11--+=--éùëû()而()1--表示1-的相反数,即1,所以()11--+=éùëû.(6)解:()a --表示a -的相反数,即a .所以()--=a a .。
七年级数学上册1.2.3 相反数-相反数的定义 填空题专项练习四(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的定义一、填空题1.如图,数轴的单位长度为1,如果点A与点B表示的数是互为相反数,那么点A表示的数是___________.2.若a与4互为相反数,则a=_________________.3.3m+与12m-互为相反数,则m=__________.4.()6--的相反数是__________.5.2020的相反数是__________.6.45的相反数是_____.7.有理数2018的相反数是______________.8.若m的相反数是3,那么m=________.9.如果一个数的相反数等于它本身,那么这个数是____.10.若m是6-的相反数,则m的值是__________.11.﹣9的相反数是________.12.如图,数轴上的单位长度为1,有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是_________.13.数轴上在原点左侧与表示数1的点的距离为3的数是a,则a的相反数是_________.14.-2019的相反数是________.15.的相反数是____.16.π的相反数是___________.17.23-的相反数是______.18.5的相反数是_____.19.−2的相反数是_______,−3的倒数是_______,绝对值等于5的数是___________.20.8的相反数是________.21.15-的相反数是____________.22.12018的相反数____.23.17-的相反数是_____.24.2019的相反数是_____.25.34-的相反数是________,数a的相反数是________.参考答案一、填空题1.-2解析:试题分析:2的相反数是﹣2,故A点表示﹣2,故答案为﹣2.考点:1.相反数;2.数轴.2.−4解析:根据a的相反数是−a得出即可.详解:∵a与4互为相反数,∴a=−4,故答案为:−4.点睛:本题考查了相反数的应用,注意:a的相反数是−a.3.4解析:根据相反数得出方程,求出方程的解即可.详解:∵m+3与1−2m互为相反数,∴m+3+1−2m=0,m=4,故答案为:4.点睛:本题考查了解一元一次方程,相反数的应用,能根据题意得出方程是解此题的关键.4.-6解析:根据正负数的意义先化简()6--,然后根据相反数的定义即可得出结论.详解:解:()66--=,6的相反数为-6∴()6--的相反数是-6故答案为:-6.点睛:此题考查的是正负数的意义和求一个数的相反数,掌握正负数的意义和相反数的定义是解决此题的关键.5.-2020解析:根据相反数的代数意义:只有符号不同的两个数互为相反数,即可解答.详解:解:2020的相反数是-2020故答案为:-2020.点睛:此题考查的是求一个数的相反数,掌握相反数的代数意义是解决此题的关键.6.4 5 -解析:有相反数定义解答即可. 详解:解:45的相反数时45-故答案为:4 5 -点睛:本题考查了相反数的定义,解答关键是按照相反数定义回答问题即可.详解:试题分析:当两个数只有符号不同时,则两数互为相反数,则2018的相反数为-2018.8.-3解析:根据相反数的定义求解.详解:解:由题意可知m是3的相反数,所以m=-3,故答案为-3.点睛:本题考查相反数的定义,熟练掌握相反数的定义是解题关键.9.0解析:根据相反数的定义解答即可详解:如果一个数的相反数等于他的本身那么这个数就是0.点睛:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.10.6解析:直接利用相反数的定义得出答案.详解:解:∵m与-6互为相反数,-6的相反数是6,∴m=6.故答案为:6.点睛:此题主要考查了相反数,正确掌握定义是解题关键.11.9解析:根据相反数的定义即可求解.﹣9的相反数是9故答案为:9.点睛:此题主要考查相反数的求解,解题的关键是熟知有理数的性质.12.1解析:首先确定原点位置,可得B点对应的数,进而可得C点对应的数.详解:解:∵点A、B对应的数互为相反数,∴线段AB的中点为数轴的原点,∵AB=6,∴B点对应的数为3,∵BC=2,且C点在B点左侧,∴点C对应的数为1.故答案为:1点睛:本题主要考查了数轴,正确确定原点位置是解答此题的关键.13.2解析:数轴上在原点左侧即是负数,结合与表示数1的点的距离为3的数,即可得到a表示的数是-2,再根据相反数的定义解题.详解:数轴上在原点的左侧且距离数1为3的数是-2,故-2的相反数为2,故答案为:2.点睛:本题考查数轴上的点表示有理数、相反数等知识,是基础考点,难度较易,掌握相关知识是解题关键.14.2019解析:根据相反数的定义可直接得出答案.详解:解:-2019的相反数是2019,故答案为:2019.点睛:此题考查了相反数的定义,只有符号不同的两个数,称为互为相反数,其中的一个数是另一个的相反数.15.解析:试题分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:的相反数是,故答案为.考点:相反数.16.的相反数是17.2 3解析:试题解析:根据只有符号不同的两个数互为相反数,可得23-的相反数是2318.-5;解析:根据相反数的定义:“只有符号不同的两个数互为相反数”可知,5的相反数是-5. 故答案为-5.19.2 −13±5解析:根据相反数,绝对值,倒数的概念及性质解题.详解:-2的相反数是2;3的倒数是13;绝对值等于3的数是±3.故答案为:2,13,±3.点睛:考查了相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.-8解析:根据只有符号不同的两个数互为相反数即可解答.详解:∵8和-8是只有符号不同的两个数,∴8的相反数是-8.故答案为-8.点睛:本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解题的关键.21.1 5解析:根据相反数的定义,即可解答.详解:解:-15的相反数是15,故答案为15.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.22.12018解析:根据相反数的定义即可求出.详解:1 2018+(-12018)=0,故12018的相反数是-12018.点睛:本题主要考查了相反数的基本概念,解本题的要点在于了解相反数的相关知识点.23.1 7解析:根据相反数的定义:只有符号不同的两个数互为相反数解答即可.详解:-17的相反数是17.故答案为:17.点睛:本题考查相反数的意义,只有符号不同的两个数互为相反数,a的相反数是-a.属于基础题型,比较简单.24.-2019解析:根据相反数的意义,直接可得结论.详解:解:2019的相反数是﹣2019,故答案为:﹣2019.点睛:考查了相反数的意义.理解a的相反数是﹣a,是解决本题的关键.25.34-a解析:互为相反数的两个数符号不同,也就是说一个数的相反数就是在这个数前面添上-号,由此求出各个数的相反数.详解:解:34的相反数是34,数a的相反数是-a,故答案为:34,-a.点睛:本题主要考查互为相反数的概念.只有符号不同的两个数互为相反数,难度较小.。
七年级初一上册数学人教版《 相反数》 练习试题 测试卷(含答案)()(1)
《1.2.3 相反数》课时练命题点 1 相反数 1.互为相反数是指( )A .具有相反意义的两个量B .一个数的前面添上“-”号所得的数C .正整数与负整数D .只有符号不同的两个数,0的相反数是0 2.a 的相反数为-3,则a 等于 ( ) A .-3B .3C .±3D .133.如图,数轴上A ,B 两点表示的数互为相反数,则点B 表示的数为( )A .-6B .6C .0D .无法确定4.如图,数轴上能表示互为相反数的两个数的点是( )A .点A 和点DB .点B 和点C C .点A 和点CD .点B 和点D 5.下列各对数中,互为相反数的是 ( ) A .0.01和1.00B .25和-0.4C .87和-78D .2和126.在-212和它的相反数之间的整数个数为 ( )A .3B .4C .5D .67.有下列说法:①如果a=-13,那么-a=13;②如果a=-1,那么-a=-1;③如果a 是负数,那么-a 是正数;④如果a 是负数,那么-a 在数轴上所对应的点在原点的左边.其中正确的是( )A .①③B .①②C .②③D .③④8.填表:原数-534-(-9.2)0413相反数3-79.若a=-13,则-a=;若m=-m,则m=.10.数轴上点A表示-3,B,C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数是.命题点2利用相反数的意义化简多重符号11.化简下列各式:①-(-6);②-(+6);③-[-(+6)];④-{-[-(+6)]}.想一想:当-6前面有2020个正号时,化简后的结果为;当-6前面有2021个负号时,化简后的结果为;当+6前面有2021个负号时,化简后的结果为.12.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得木棒的长为cm.(2)图中点A表示的数是,点B表示的数是.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.13.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A,B表示的数互为相反数,那么点C表示的数是多少?(2)如果点D,B表示的数互为相反数,那么点C,D表示的数分别是多少?参考答案1.D2.B3.B4.C5.B6.C7.A8.解:填表如下:原数-534-3-(-9.2)04137相反数5343-9.20-413-79.1310.5或1[解析] 因为数轴上点A表示的数是-3,点B到点A的距离是2,所以点B表示的数是-5或-1.因为B,C两点表示的数互为相反数,所以点C表示的数是5或1.11.解:①-(-6)=6.②-(+6)=-6.③-[-(+6)]=6.④-{-[-(+6)]}=-6.想一想:-66-612.解:(1)5 (2)1015(3)借助数轴,B表示爷爷的年龄,A表示小红的年龄,把小红与爷爷的年龄差看作木棒AB.当爷爷的年龄是小红现在的年龄时,即将B向左移至与点A重合,此时小红的年龄为-40岁;当小红的年龄是爷爷现在的年龄时,即将A向右移至与点B重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).13解:(1)点C表示的数是-1.(2)点C表示的数是0.5,点D表示的数是-4.5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则2x + 1 = 6,
∴x =
5 2
.
拓展延伸
3. a-3的相反数可以表示为__3_-__a___,x + y的相反数可以表示为-_x_-__y____, -{-[- (-3)]} =___3____.
课堂小结
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4 5
归纳 一般地,设a是一个正数,数轴上与原点的
a
-5 -4 -3 -2 -1 0 1 2 3 4 5
归纳 一般地,设a是一个正数,数轴上与原点的
距离是a的点有两个,它们分别在原点左右,表示 为-a和a,我们说这两个点关于原点对称.
相反数:只有符号不同的两个数叫做互为 相反数.特别地,0的相反数是0.
你能再举出几组互为相反数的数的例子吗?
小游戏:一个学生说出一个数,然后指定 另一名学生回答它的相反数,两人再交换出题, 比一比,看哪组回答得又快又准.
你能说出正数、负数和零的相反数分别是 什么吗?a的相反数怎么表示?
正数的相反数是负数,负数的相反数是正 数,0的相反数是0,a的相反数是-a.
思考 设a表示一个数,-a一定是负数吗?
不一定,因为a可以是正数,也可以是负数, 或0.
结论
当a是正数时,a的相反数-a是负数;当a 是负数时,a的相反数-a是正数.0的相反数是0.
a可表示任意数——正数、负数、0,求任 意一个数的相反数就可以在这个数前加一个 “-”号.
如:5的相反数是-5; -7的相反数是- (-7);
若两个数a、b互为相反数,就可得到a+b =0 ;
反之,若a+b=0,则a、b互为相反数.
知识点2 用相反数化简
如何进行符号化简呢?你能自己总结出简 化符号的规律吗? 简化符号:
距离是a的点有两个,它们分别在原点左右,表示 为-a和a,我们说这两个点关于原点对称.
-(-34)=___3_4____;
-(- 1 2
1 ) ____2____.
归纳
括号外的符号与括号内的符号同号,则化简
符号后的数是正数;括号内、外符号异号,则化
简符号后的数是负数.
练习 教科书第10页
1.判断下列说法是否正确: (1)-3是相反数;错误(2)+3是相反数;错误
(3)3是-3的相反数;(4)-3与+3互为相反数.
正确
正确
2. 写出下列各数的相反数:
6,-8,-3.9,52
, 2 11
,100 ,0 .
-6 8 3.9 5 2 -100 0 2 11
3.如果a=-a,那么表示a的点在数轴上
的什么位置?
原点位置
4. 化简下列各数:
-(-68),
-(+0.75),
3 5
,-(+3.8 ).
Байду номын сангаас
68
-0.75
-(-6)=___6___; +(-6)=__-__6____;
-(+0.73)=_-_0_._7_3__;-0=___0_____;
-(-34)=___3_4____; -(-1 2
1 ) __2______.
-(-6)=____6__; +(-6)=___-__6___;
-(+0.73)=_-__0_.7_3__;-0=____0____;
1.2 有理数 1.2.3 相反数
新课导入 在数轴上找到表示-2,2和-3 ,3的点.
-5 -4 -3 -2 -1 0 1 2 3 4 5
这两组点在数轴上有什么特殊的位置关系? 结论:表示每组中两个数的点都位于原点的两 旁,且与原点的距离相等. 你还能举出数轴上其它点的例子吗?
• 学习目标: 1. 能说出相反数的意义. 2. 知道求一个已知数的相反数的方法. 3. 能运用数形结合思想理解相反数的几何意义.
3
-3.8
5
基础巩固
随堂演练
1.下列说法中正确的是( C )
A.符号相反的两个数是相反数
B.位于原点左右的两个点对应的数一定是互 为相反数
C.互为相反数的两个数在数轴上对应的点到 原点的距离一定相等
D.0没有相反数
综合应用
2.若2x + 1与 -6 互为相反数,求 x 的值.
解:∵2x + 1与-6互为相反数,
推进新课
知识点1 相反数的概念
观察数轴,说出在数轴上与原点的距离是 2 的点有几个?这些点各表示哪些数?
-5 -4 -3 -2 -1 0 1 2 3 4 5
数轴上与原点的距离是 2的点有两个,表 示为-2和2.
探究
设a是一个正数,数轴上与原点的距离等于a
的点有几个?这些点表示的数有什么关系?
-a