奥数周期问题练习题

合集下载

小学五年级奥数周期问题及答案

小学五年级奥数周期问题及答案

小学五年级奥数周期问题及答案例1:有249朵花,按5朵红花,9朵黄花,13朵绿花地顺序轮流排列,最后一朵是什么颜色地花?这249朵花中,红花、黄花、绿花各有多少朵?朵花中,红花、黄花、绿花各有多少朵?249÷(5+9+13)=9(组)……6(朵)(朵)这六朵花,前5朵是红花,最后1朵应是黄花。

朵应是黄花。

红花:5×5×99+5=50(朵)黄花:9×9×99+1=82(朵)(朵)绿花:13×13×99=117(朵)(朵)答:最后一朵是黄花。

这249朵花中,红花有50朵,黄花有82朵,绿花有117朵。

朵。

模拟练习:模拟练习: 1、有红、白、黑三种纸牌共158张,按5张红色,3张白色,4张黑色的顺序排列下去,最后一张是什么颜色?第140张是什么颜色?张是什么颜色?158÷(5+3+4)=13(组)......2(张)140÷(5+3+4)=11(组)......8(张)(张)答:最后一张是红色。

第140张是白色。

张是白色。

2、有47盏彩灯,按二盏红灯、四盏蓝灯、三盏黄灯地顺序排列着。

最后一盏灯是什么颜色?三种颜色地灯各占总数地几分之几?颜色?三种颜色地灯各占总数地几分之几?47÷(2+4+3)=5(组)......2(盏)红灯有2×2×5+2=125+2=12(盏)蓝灯有4×4×5=205=20(盏) 黄灯有3×3×5=155=15(盏)答:最后一盏是红灯。

红灯占总数的12/47,蓝灯占总数的20/47;黄灯占总数的15/47。

例2:2002年元旦是星期二,那么,2003年1月1日是星期几?日是星期几?2002年是平年,365+1=366(天) 366÷366÷7=527=52(周)......2(天)答:每个周期的第一天是星期二,所以,2003年1月1日就是星期三。

五年级奥数周期问题练习题

五年级奥数周期问题练习题

五年级奥数周期问题练习题问题1:某个班级有30个学生,其中15个是男生,剩下的是女生。

男生和女生一起组成了几对?请在下面作答:解答1:班级有30个学生,其中15个是男生,剩下的是15个女生。

男生和女生是一对一配对的,所以有15对。

问题2:在一个奥数比赛中,一支队伍需要有4个人。

有9个学生报名参赛。

请问一共有多少种不同的组队方式?请在下面作答:解答2:从9个学生中选出4个来组成一支队伍,可以使用组合的方法来计算。

C(9, 4) = 9! / (4! * (9-4)!) = 126所以一共有126种不同的组队方式。

问题3:一个街区有10幢房子,每幢房子都有不同的颜色。

现在有4个人,每个人都要住在不同颜色的房子里。

请问一共有多少种不同的安排方式?请在下面作答:解答3:第一个人有10种选择,第二个人有9种选择,第三个人有8种选择,第四个人有7种选择。

所以一共有10 * 9 * 8 * 7 = 5040种不同的安排方式。

问题4:某个月有31天,现在要将这31天分成3个连续的周期(每个周期可以不完整)。

请问一共有多少种不同的分法?请在下面作答:解答4:将31天分成3个周期,可以使用组合的方法来计算。

C(31+3-1, 3-1) = C(33, 2) = 33! / (2! * (33-2)!) = 528所以一共有528种不同的分法。

问题5:一个四位数的各位数字互不相同,且是4个奇数。

请问一共有多少个满足条件的四位数?请在下面作答:解答5:个位数字只能是1、3、5、7、9中的一个。

百位数字只能是1、3、5、7、9中的一个,并且不能和个位数字相同,所以有4种选择。

千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字相同,所以有3种选择。

千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字、千位数字相同,所以有2种选择。

所以一共有5 * 4 * 3 * 2 = 120个满足条件的四位数。

四年级奥数周期问题

四年级奥数周期问题
7、一条长900米的马路两侧每隔6米植树一棵,从头到尾一共植树多少棵?
8、一列长230米的火车,以平均速度每秒30米的速度过一座长730米的大桥,完全过桥需要多少秒时间?

课前审核: 家长签字:

日期:年月日日期:年月日
上课班级:
中年级
课பைடு நூலகம்:
周期问题
授课人:

老师




例题1:有一列数5,6,2,4,5,6,2,4 …… (1)第89个数是多少?(2)这89个数相加的和是多少?
2、有一列数1,4,2,8,5,7,1,4,2,8,5,7……(1)第58个数是多少?(2)这58个数相加的和是多少?
3、有一列数是4、5、3、7、4、5、3、7……(1)第80个数是多少?(2)前50个数的和是多少?
5、一些彩笔按2支红色、3支蓝色、5支绿色的顺序依次排列,如果从头到尾一共排了47支,那其中蓝笔比绿笔少多少支?
练习:1、有一列数按6、7、3、4、9、6、7、3、4、9……排列,(1)那么前66个数的和是多少?(2)前88个数字中数字6比数字9多多少个?
2、
















上表中汉字按规律排列,每一列两个汉字组成一组,如第一组“甲春”,第二组“乙夏”……问第20组是什么?第100组又是什么?
3、计算(1)6+10+14+18+22+……+102(2)10000-3-6-9-12-……-90
4、小天和小美一共有500张卡片,如果小天给小美43张,小天还比小美多42张,原来两人各有多少张卡片?

三年级奥数--10周期问题

三年级奥数--10周期问题

训练点10——周期问题例题1 小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?从上图可以看出,珠子是按“两红一白三黑”的规律重复排列,即6个珠子为一周期。

32÷6=5(组)……2(个),32个珠子中含有5个周期多2个,所以第32个珠子就是重复5个周期后的第2个珠子,应为红色。

练习一1,如图,算出第20个图形是什么?○△△□□□○△△□□□○△△……2,“数学趣味题数学趣味题……”依次重复排列,第2001个字是什么?3,把38面小三角旗按下图排列,其中有多少面白旗?例题2 2001年10月1日是星期一,问:10月25日是星期几?思路导航:我们知道,每星期有7天,也就是说以7天为一个周期不断地重复。

从10月1日到10月25日经过25-1=24天,24÷7=3(星期)……3(天),说明24天中包括3个星期还多3天。

所以从10月1日开始过3个星期,最后一天还是星期一,从这最后一天起再过3天就应是星期四。

练习二1,2001年5月3日是星期四,5月20日是星期几?2,2001年8月1日是星期三,8月28日是星期几?3,2001年6月1日是星期五,9月1日是星期几?例题3 100个3相乘,积的个位数字是几?思路导航:这道题我们只考虑积的个位数字的排列规律。

1个3,积的个位是3;2个3相乘积的个位数字是9;3个3相乘积的个位数字是7;4个3相乘积的个位数字是1;5个3相乘积的个位数字是3……可以发现,积的个位数字分别以3、9、7、1不断重复出现,即每4个3积的个位数字为一周期。

100÷4=25(个),因此100个3相乘积的个位数字是第25个周期中的最后一个,即是1。

练习三1,23个3相乘,积的个位数字是几?2,100个2相乘,积的个位数字是几?3,50个7相乘,积的个位数字是几?例题4 有一列数按“432791864327918643279186……”排列,那么前54个数字之和是多少?思路导航:上面一列数中,从第1个数字开始重复出现的部分是“43279186”,周期数是8。

小学四年级奥数-周期问题

小学四年级奥数-周期问题

周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。

在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。

解答这类题目只有找到规律,才能获得正确的方法。

例1.●●○●●○●●○……上面黑、白两色小球按照一定的规律排列着,其中第90个是( )例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。

第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。

三种颜色的弹子各有多少个?例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是( )练习与思考1.根据图中物体的排列规律,填空。

(2)□○△□○△……第55个是( )2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢?3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。

“72”是谁报的?“190”呢?4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。

黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?B ),第26组是什么?周期问题(二)例1.10个2连乘的积的个位数是几?例2.1998年元旦是星期四,1999年元旦是星期几?例3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……例4.把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。

二年级奥数《周期问题》练习题

二年级奥数《周期问题》练习题

第七讲周期问题(必做与选做)1.找出下列图形的规律,根据规律算出第18个图形是()。

A. △B. ○C. ☆D. □解析:这列图形的排列是有一定的规律,它是按照一个○、一个△、一个□、一个☆的次序排列的,也就是每4个图形一组,不断重复出现。

我们算18个图形可以排成几组,18÷4=4(组)……2(个),余数是2,表示第18个图形是第5组的第2个,是△。

2.找出下列图形的规律,根据规律算出第34个图形是()。

A. △B. ◇C. □D. ○解析:这列图形的排列是有一定的规律,它是按照2个△、1个◇、1个□,1个○的次序排列的,也就是每5个图形一组,不断重复出现。

我们算34个图形可以排成几组,34÷5=6(组)……4(个),余数是4,表示第34个图形是第7组的第4个,是□。

3.按照下面的规律画圆,第21个圆应该是()的。

A. 蓝色B. 红色C. 绿色D. 黄色解析:这些圆按照1个蓝色、3个红色、2个绿色、1个黄色的规律排列的,也就是每7个图形一组,不断重复出现。

我们算21个圆可以排成几组,21÷7=3(组),没有余数,表示第21个圆是第3组的最后一个,是黄色的圆。

4.有编号1—20个球,阿派、欧拉、米德、卡尔四人依次按编号顺序拿球,9号球会被()拿到。

A. 阿派B. 米德C. 欧拉D. 卡尔解析:这些球从左到右每4个球为一组,要求9号球被谁拿到,根据9÷4=2(组)……1(个),余数为1,说明9号球应该在阿派手上。

5.二(2)班教室四周挂了60个彩球,按红、黄、绿、蓝、紫的顺序依次排列,那么第28个彩球是()颜色。

A. 红B. 黄C. 绿D. 紫解析:这些彩球按“红、黄、绿、蓝、紫”5个颜色分组,也就是5个彩球分为一组,要知道第28个彩球是什么颜色,根据28÷5=5(组)……3(个),余数是3,说明第28个彩球应该是绿色。

6.如果除0以外的全体自然数如下表排列,第40个应该排在()字母下面。

小学数学奥数测试题-周期问题

小学数学奥数测试题-周期问题

小学奥数应用题专题——周期问题1.在一根绳子上依次穿2个红珠、3个白珠、5个黑珠,并按此方式反复。

如果从头开始数,直到第77颗,那么其中白珠比黑珠少多少颗?2.如图,用红、橙、黄、绿、青、蓝、紫7种彩笔,在一张方格纸中自左上到右下的斜行里按顺序循环涂色.求第20行30列交叉处所涂的颜色。

3.在图所示的表中,将每列上、下两个字组成一组,例如第一组为(共社),第二组为(产会).那么,第340组是什么?4.如图,4只小动物不断交换座位。

一开始,小鼠坐第1号椅子,小猴坐第2号椅子,小免坐第3号椅子,小猫坐第4号椅子。

第1次前后两排交换.第2次是在第1次交换的基础上左右两排交换。

第3次又是前后两排交换.第4次再左右两排交换,……,这样一直换下去。

问:第10次交换座位后,小兔坐在第几号椅子上?5.甲、乙、丙、丁4个停车场里分别停放着10,7,5,4辆车.从停放汽车最多的车场中往另外3个车场各开去一辆汽车,称为一次调整.那么经过1998次这样的调整后,甲场中停放着多少辆汽车?6.500名士兵排成一列横队,第一次从左到右l至5循环报数,第二次反过来从右到左l至6循环报数。

那么,既报l又报6的士兵有多少名?7.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为多少厘米?8.有一些小朋友排成一行。

从左面开始,发给第一个人一个苹果,以后每隔2人发一个苹果;从右面开始,发给第一个人一个橘子,以后每隔4人发一个橘子。

结果有10个小朋友苹果和橘子都拿到。

那么,这些小朋友最多可能有多少人?9.如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈。

现在,一只红跳蚤从标有数“0”的圆圈按顺时针方向跳了1991步,落在一个圆圈里。

一只黑跳蚤也从标有数“0”的圆圈起跳,但它是沿着逆时针方向跳了1949步,落在另一个圆圈里。

2022-2023学年小学四年级奥数测试卷(全国通用)11《周期问题》(解析版)

2022-2023学年小学四年级奥数测试卷(全国通用)11《周期问题》(解析版)

【四年级奥数举一反三—全国通用】测评卷11《周期问题》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2016•创新杯)将某数的3倍减5,计算出答案:将这个答案的3倍减5,计算出答案;⋯;这样反复4次,最后得出的结果是1177,那么原数是()A.14 B.15 C.16 D.17【解答】解:第四次计算后的结果为1177,第三次计算后的结果为:(11775)3394+÷=,第二次计算后的结果为:(3945)3133+÷=,第一次计算后的结果为(1335)346+÷=,原数为:(465)317+÷==.故选:D。

2.(2012•华罗庚金杯)在2012年,1月1日是星期日,并且()A.1月份有5个星期三,2月份只有4个星期三B.1月份有5个星期三,2月份也有5个星期三C.1月份有4个星期三,2月份也有4个星期三D.1月份有4个星期三,2月份有5个星期三【解答】解:因为2012年1月有31天,2月有29天,⋯(天),÷=(星期)33174⋯(天),÷=(星期)12974所以1月份有4个星期三,2月份有5个星期三.故选:D。

3.(2011•其他模拟)鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物依次代表各年的年号,如果公元1年是鸡年,那么公元2005年是()年.A.鸡B.牛C.虎D.兔【解答】解:2005121671÷=⋯,所以,以鸡开始循环的第1种动物是鸡,由此得出,公元2005年是鸡年,故选:A。

4.(2014•迎春杯)为了减少城市交通拥堵的情况,某城市拟定从2014年1月1日起开始试行新的限行规则,规定尾号为1、6的车辆周一、周二限行,尾号2、7的车辆周二、周三限行,尾号3、8的车辆周三、周四限行,尾号4、9的车辆周四、周五限行,尾号5、0的车辆周五、周一限行,周六、周日不限行.由于1月31日是春节,因此,1月30日和1月31日两天不限行.已知2014年1月1日是周三并且限行,那么2014年1月份()组尾号可出行的天数最少.A.1、6 B.2、7 C.4、9 D.5、0【解答】解:依题意可知:1月份共31天,由于1月1日是周三,所以1月份周三、周四、周五共5天,周一、周二共4天.其中1月30日周四、1月31日周五.所以只看周三即可.周三2、7以及3、8限行.故选:B。

小学三年级奥数-周期问题

小学三年级奥数-周期问题
1
2
……
练习1:
01
如图,算出第20个图形是什么?
02
△△□□□○△△□□□○△△……
03
“数学趣味题数学趣味题……”依次重复排列,第2001个字是什么?
04
把38面小三角旗按下图排列,其中有多少面白旗?
【例题2】2001年10月1日是星期一,问:10月25日是星期几?
01
【思路导航】我们知道,每星期有7天,也就是说以7天为一个周期不断地重复。从10月1日到10月25日经过25-1=24天,24÷7=3(星期)……3(天),说明24天中包括3个星期还多3天。所以从10月1日开始过3个星期,最后一天还是星期一,从这最后一天起再过3天就应是星期四。
02
有一列数“……”,请问从左起第2个数字到第25个数字之间(含第2个与第25个数字)所有数字的和是多少?
【例题5】小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字。如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?
【思路导航】已知这本童话书3页插图前后各有1页文字,也就是说这本书是按“1页文字3页插图“的规律重复排列的,把“1页文字3页插图”看作一周期,128页中含有128÷(1+3)=32个周期,所以这本童话书共有插图3×32=96页。
周期问题
单击此处添加副标题
一、知识要点
在日常生活中,有一些按照一定的规律不断重复的现象,如:人的十二生肖,一年有春夏秋冬四个季节,一个星期七天等等。像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。这类问题一般要利用余数的知识来解答。
在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。

周期问题的奥数题目

周期问题的奥数题目

周期问题的奥数题目有关周期问题的奥数题目1、50个7相乘所得积的末位数是多少?2、1991个1991相乘的积与1992个1992相乘的末位数字是多少?3、1992个13边乘的积,个位数字是多少?4、1×1+2×2+3×3+4×4+…1991×1991的末位数字是多少?5、观察1×2×3×4×5=120,积的尾部都有一个零,1×2×3×4×5…×50的积的尾部有多少连续的零?6、自然数3×3×3×…×3─1(有68个3连乘)的.个位数字是多少?7、3×3的末位数字是9,3×3×3的末位数字是7,3×3×3×3的末位数字是1。

35个3相乘的末位数字是多少?8、算式1993×1995×1997×1999─1992×1994×1996×1998的结果的末位数是多少?9、3×13×23×33×43×53×63×73×83×93×103×113×123×…×19903的积的个位数字是多少?10、有一串数,5,55,555,5555,……,555…55(15个5)这一串数的和的末三位数是多少?11、1×2×3×4×…×1993×1994的末位数字是多少?12、 1993个0.7的积与1994个0.8的积相乘末位数字是多少?13、1+1×2+1×2×3+1×2×3×4+1×2×3×4×5×6×7×8×9的值的个位数是多少?14、求1×3×5×7×9×11×…×97×99的值的个位数。

小学奥数周期性问题精彩试题专项练习

小学奥数周期性问题精彩试题专项练习

小学奥数周期性问题试题专项练习一、填空题(共10小题,每小题3分,满分30分)1.(3分)1992年1月18日是星期六,再过十年的1月18日是星期_________ .2.(3分)黑珠、白珠共102颗,穿成一串,排列如图:这串珠子中,最后一颗珠子应该是_________ 色的,这种颜色的珠子在这串中共有_________ 颗.3.(3分)流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,1白,…继续下去第1993个小珠的颜色是_________ 色.4.(3分)把珠子一个一个地如图按顺序往返不断投入A、B、C、D、E、F袋中.第1992粒珠子投在_________ 袋中.5.(3分)将数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第_________ 行第_________ 列.6.(3分)分数化成小数后,小数点后面第1993位上的数字是_________ .7.(3分)化成小数后,小数点后面1993位上的数字是_________ .8.(3分)在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_________ 和_________ 这两个数字上.9.(3分)1991个9与1990个8与1989个7的连乘积的个位数是_________ .10.(3分)算式(367367+762762)×123123的得数的尾数是_________ .二、解答题(共4小题,满分0分)11.乘积1×2×3×4×…×1990×1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?12.有串自然数,已知第一个数与第二个数互质,而且第一个数的恰好是第二个数的,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?13.表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是_________ .14.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为_________ 厘米.小学奥数周期性问题试题专项练习(一)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)1992年1月18日是星期六,再过十年的1月18日是星期五.考点:日期和时间的推算.分析:在这十年中有3个闰年,所以这10年的总天数是365×10+3,365被7除余1,所以总天数被7除的余数是13﹣7=6,因此10年后的1月18日是星期五.解答:解:(365×10+3)÷7=3653÷7=521(星期)…6(天),因此10年后的1月18日是星期五.故答案为:五.点评:考查了日期和时间的推算,本题得到从1992年1月18日起再过十年的1月18日的总天数是关键,同时还考查了星期几是7天一个循环.2.(3分)黑珠、白珠共102颗,穿成一串,排列如图:这串珠子中,最后一颗珠子应该是黑色的,这种颜色的珠子在这串中共有26 颗.考点:周期性问题.分析:根据图示可知,若去掉第一颗白珠后它们的排列是按“一黑三白”交替循环出现的,也就是这一排列的周期为4,由此即可得出答案.解答:解:因为,(102﹣1)÷4,=101÷4,=25…1,所以,最后一颗珠子是黑色的.又因为,1×25+1=26(颗),所以,这种颜色的珠子在这串中共有26颗;故答案为:黑,26.点评:解答此题的关键是,根据图示,找出珠子排列的周期数,由此即可解答.3.(3分)流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,1白,…继续下去第1993个小珠的颜色是黑色.考点:周期性问题.分析:小木球是依次按5红,4黄,3绿,2黑和1白的规律涂色的,把它看成周期性问题,每个周期为15.由1993÷15=132…13,所以第1993个小球是第133周期中的第13个,按规律涂色应该是黑色,所以第1993个小球的颜色是黑色.解答:解:5+4+3+2+1=15,1993÷15=132…13,所以第1993个小球是第133周期中第13个,应该与第一周期的第13个小球颜色相同,是黑色.答:第1993个小珠的颜色是黑色.故答案为:黑.点评:此题关键是找出周期的规律,然后利用除法算式得出小球是第几周期的第几个,与第一周期的颜色对比即可得出.4.(3分)把珠子一个一个地如图按顺序往返不断投入A、B、C、D、E、F袋中.第1992粒珠子投在 B 袋中.考点:周期性问题.分析:根据题干,可以将已知图形化出分析示意图如下:这样就把这个题目转变成了一个数字排列的问题,由上图中的数字排列可以看出:右边为第一列,下边为第一行,从1开始依次排列;其规律是:每10个数字为一个周期,这10个数字分别所在的列数依次为A→B→C→D→E→F→E→D→C→B;由此规律,只要求出1992是第几周期的第几个数字,即可得出答案.解答:解:根据题干分析可得:上述数字的排列规律为:每10个数字为一个周期,这10个数字分别所在的列数依次为A→B→C→D→E→F→E→D→C→B;1992÷10=199…2,所以1992是第200个周期的第二个数字,与第一周期的第二个数字相同,即是B.答:第1992粒珠子投在B袋中.故答案为:B点评:此题抓住投珠子的方法,把这个实际操作的问题转化成一个单纯的数字问题,可以使分析简洁明了.5.(3分)将数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第24 行第 4 列.考点:周期性问题.分析:为了分析方便,把列数从左到右依次排列为1、2、3、4、5、6,如上图;根据题干可得:①此题是一个等差数列,公差是3;②从排列可以看出,两行为一个周期,即10个数为一个周期,位置分别在的列数为:2、3、4、5、6、5、4、3、2、1;所以只要求出349是这个数列中的第几个数,在第几周期的第几个数字即可得出答案.解答:解:根据题干分析可得:(349﹣1)÷3+1=117,所以349是这列数中的第117个数.117÷10=11…7,所以这个数是第12周期的第7个数字,那么这个数是第1周期的第二行,所以这个数在第12×2=24行,与第一周期的第7个数字位置相同即:在第4列,答:数列中的数349应排在第24行第4列.故答案为:24;4.点评:此题要从两个方面考虑周期①行数,两行一周期,②列数,即10个数字依次排列的列数.6.(3分)分数化成小数后,小数点后面第1993位上的数字是 6 .考点:周期性问题.分析:=,很显然小数点后面的数字循环周期是6,由此只要得出1993在第几周期的第几个数字即可解决问题.解答:解:=,它的循环周期是6,因为1993÷6=332…1,即在第333周期的第一个数字,与第一周期的第一个数字相同,是6.故答案案为:6.点评:此题抓住的循环节,即可解决问题.7.(3分)化成小数后,小数点后面1993位上的数字是7 .考点:周期性问题.分析:题目要求“小数点后面1993位上的数字是多少”,所以就要从化成小数后寻找规律.解答:解:=从小数点后面第二位开始,它的循环周期是6,因为(1993﹣1)÷6=332,则循环节“142857”恰好重复出现332次.所以小数点后面第1993位上的数字是7.故答案为:7.点评:此题考查了小数化分数的方法以及对循环节的掌握情况,同时培养学生寻找规律的能力.8.(3分)在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在 3 和7 这两个数字上.考点:循环小数及其分类.分析:表示循环小数的两个小圆点中,后一个小圆点显然应加在7的上面,且数字“5”肯定包含在循环节中,然后分情况讨论前一个循环节的点应放在哪.解答:解:后一个小圆点应加在7上;前一个小圆点的情况:(1)设前一个小圆点加在“5”的上面,这时循环周期是3,(100﹣4)÷3=32,第100位数字是7.(2)设前一个小圆点加在“4”的上面,这时循环周期是4,(100﹣3)÷4=24…1,第100位数字是4.(3)设前一个小圆点加在“3”的上面,这时的循环周期是5,(100﹣2)÷5=19…3,第100位数字正好是5.故答案为:3,7.点评:容易看出后一个小圆点应加在7的上面,但前一个圆点应加在哪个数字上,一下子难以确定,怎么办?唯一的办法就是“试”.因为循环节肯定要包含5,就从数字5开始试.逐步向前移动,直到成功为止.这就像我们在迷宫中行走,不知道该走哪条道才能走出迷宫,唯一的办法就是探索:先试一试这条,再试一试那条.9.(3分)1991个9与1990个8与1989个7的连乘积的个位数是 2 .考点:周期性问题;乘积的个位数.分析:根据题干,要求它们的连乘积的个位数字,可以先求出它们各自的乘积的个位数字是几,由特例不难归纳出:(1)9的连乘积的个位数字按9,1循环出现,周期为2;(2)8的连乘积的个位数字按8,4,2,6循环出现,周期为4;(3)7的连乘积的个位数字按7,9,3,1循环出现,周期为4.由此即可解决问题.解答:解:根据上述分析可以得出1991个9的乘积个位数字、1990个8的乘积个位数字、1989个7的个位数字分别为:(1)因为1991÷2=995…1,所以1991个9的连乘积的个位数字是第996周期的第一个数,与第一周期的第一个数字相同即是9;(2)因为1990÷4=497…2,所以1990个8的连乘积的个位数字是第498周期的第二个数字,与第一周期的第一个数字相同即是4;(3)因为1989÷4=497…1,所以1989个7的连乘积的个位数字是第498周期的第一个数字,与第一周期的第一个数字相同即是7.所以,9×4×7=252,即1991个9与1990个8与1989年7的连乘积的个位数字是2.答:连乘积的个位数是2.故答案为:2.点评:抓住题干,求出9的连乘积、8的连乘积和7的连乘积的个位数字的规律,是解决本题的关键.10.(3分)算式(367367+762762)×123123的得数的尾数是9 .考点:周期性问题.分析:分别找出个位数字7、2、3的连乘积的个位数的循环周期:如7的连乘积,积的尾数以7,9,3,1,循环出现,周期为4,因为367÷4=913,所以,367367的尾数为3;如此类推,…即可解决问题.解答:解:(1)7的连乘积,尾数(个位数字)以7,9,3,1循环出现,周期为4;因为367÷4=91…3,所以,367367的尾数为3.(2)2的连乘积,尾数以2,4,8,6循环出现,周期为4;因为762÷4=190…2,所以,762762的尾数为4.(3)3的连乘积,尾数以3,9,7,1循环出现,周期为4;123÷4=30…3,所以,123123的尾数为7.(4)综上所述,(367367+762762)×123123的尾数就是(3+4)×7的尾数,(3+4)×7=49,答:得数的尾数是9.故答案为:9.点评:此题考查了利用个位数字为7,2,3的连乘积的积的尾数的规律进行解决问题的方法二、解答题(共4小题,满分0分)11.乘积1×2×3×4×…×1990×1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?考点:周期性问题.分析:我们用所有数的乘积除以了495个5之后得到的个位数字是6,那还要除以495个2才可以,因为他们乘到一起变成了495个0,再除以495个2就相当于把末尾的0全部去掉了,那么此时的个位数字就是要求的第一个不为0的数.2的495次方的个位数字是8(2的n次方的个位数字是2,4,8,6四位一周期495÷4=123…3)那么用刚才我们除以495个5之后得到的个位数字6除以8,就会得到最终的个位数字,6÷8的个位数字是2(就是2×8个位数字是6,当然7×8的个位数字也是6,但是注意了2的个数要远多于495个,所以最终的去掉495个0之后的数一定是个偶数,所以只能是2.解答:解:此题中是1991个数字的连乘积,根据题干分析:所有数的乘积除以了495个5之后得到的个位数字是6,那还要除以495个2才可以,因为他们乘到一起变成了495个0,再除以495个2就相当于把末尾的0全部去掉了,那么此时的个位数字就是要求的第一个不为0的数.2的495次方的个位数字是8;2的n次方的个位数字是2,4,8,6四位一周期,495÷4=123…3;那么用刚才我们除以495个5之后得到的个位数字6除以8,就会得到最终的个位数字,6÷8的个位数字是2(就是2×8个位数字是6,当然7×8的个位数字也是6,但是注意了2的个数要远多于495个,所以最终的去掉495个0之后的数一定是个偶数,所以只能是2.点评:将原式进行分组整合讨论,根据个位数字是2、5乘积的个位数字特点进行分析,得出从右边数第一位不为0的数字规律;根据2的连乘积的末位数的出现周期解决问题,是本题的关键所在.12.有串自然数,已知第一个数与第二个数互质,而且第一个数的恰好是第二个数的,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?考点:周期性问题.分析:(1)因为第一个数×=第二个数×,所以第一个数:第二个数=:=3:10.又两数互质,所以第一个数为3,第二个数为10,从而这串数为:3,10,13,23,36,59,95,154,249,403,652,1055…(2)要求这串数的第1991个数被3除所得的余数是几,可以先推理出得出这串数字除以3的余数的规律是什么;由此即可解决问题.解答:解:根据题干分析可得这串数字为:3,10,13,23,36,59,95,154,249,403,652,1055…这串数字被3除所得的余数依次为:0,1,1,2,0,2,2,1,0,1,1,2,所以可以看出这串数字除以3的余数按“0,1,1,2,0,2,2,1”循环,周期为8.因为1991÷8=248…7,所以第1991个数被3除所得余数应是第249周期中的第7个数,即2.答:这串数的第1991个数被3除所得的余数是2.点评:解答此题应注意以下两个问题:(1)由于两个数互质,所以这两个数只能是最简整数比的两个数;(2)求出这串数被3除所得的余数后,找出余数变化的周期,但这并不是这串数的周期.一般来说,一些有规律的数串,被某一个整数逐个去除,所得的余数也具有周期性.13.表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是(好,好).考点:周期性问题.分析:此题分成两部分来看:(1)上面一部分的周期为:四字一周期,分别为:共→产→党→好;那么第340个字在340÷4=85周期最后一个,与第一组中第四个字“好”相同;(2)同样的方法可以得出下面的周期为:五字一周期:社→会→主→义→好,由此即可解决问题.解答:解:根据题干分析:(1)上面四字一周期,分别为:共→产→党→好;那么第340个字在340÷4=85周期的最后一个,与第一组中第四个字“好”相同;(2)下面五字一周期,分别为:社→会→主→义→好,那么第340个字在340÷5=68周期最后一个数字,与第一周期的最后一个字“好”相同;答:由上述推理可得:第340组的数字是(好,好),故答案为:(好,好).点评:此题也可以这样考虑:因为“共产党好”四个字,“社会主义好”五个字,4与5的最小公倍数是20,所以在连续写完5个“共产党好”与4个“社会主义好”之后,将重复从头写起,出现周期现象,而且每个周期是20组数.因为340÷20=17,所以第340组正好写完第17个周期,第340组是(好,好).14.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为75 厘米.考点:公约数与公倍数问题.分析:根据题意甲、乙从同一端点开始涂色,甲按黑、白,黑、白交替进行;乙按白、黑,白、黑交替进行,如图所示.由图可知,甲黑、乙白从同一端点起,到再一次甲黑、乙白同时出现,应是5与6的最小公倍数的2倍,即5×6×2=60厘米,也就是它们按60厘米为周期循环出现,据此可以轻松求解.解答:解:按60厘米为周期循环出现,在每一个周期中没有涂色的部分是,1+3+5+4+2=15(厘米);所以,在3米的木棍上没有涂黑色的部分长度总和是,15×(300÷60)=75(厘米).故答案为:75.点评:此题主要考查最小公倍数问题,注意这里的周期是5与6最小公倍数的2倍,而不是5与6的最小公倍数.。

奥数周期问题

奥数周期问题

奥数周期问题奥数周期问题奥数周期问题1学校大门有一串彩灯,按"红、黄、绿、白"的规律排列起来,请你算一算:第13只彩灯和第24只彩灯分别是什么颜色?解答:红色、白色这些彩灯按"红、黄、绿、白"四种颜色为一个周期。

先算出13只彩灯有几个这样的周期:13÷4=3…1,余数是1,这只彩灯是第3个周期之后的红色彩灯。

同理,算出24只彩灯有几个这样的周期:24÷4=6,无余数,这只彩灯是第6个周期的最后一个颜色,即白色。

奥数周期问题2在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。

例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。

(1)□△□△□△□△……(2)□△△□△△□△△……分析与解答:第(1)题排列规律是“□△”两个图形重复出现,20÷2=10,即“□△”重复出现10次,所以第20个图形是△。

第(2)题的排列规律是“□△△”三个图形重复出现,20÷3=6…2,即“□△△”重复出现6次后又出现了两个图形“□△”,所以第20个图形是△。

练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第20xx个字是什么字?(3)公园门口挂了一排彩灯泡按“二红三黄四蓝”重复排列,第63只灯泡是什么颜色?第112只呢?例2:有一列数,按5、6、2、4、5、6、2、4…排列。

(1)第129个数是多少?(2)这129个数相加的和是多少?分析与解答:(1)从排列可以看出,这组数是按“5、6、4、2”一个循环依次重复出现进行排列,那么一个循环就是4个数,则129÷4=32…1,可知有32个“5、6、4、2”还剩一个。

小学奥数题目-二年级-应用题类-简单的周期问题

小学奥数题目-二年级-应用题类-简单的周期问题

简单的周期问题(一)概念(1)周期现象:相同的间隔而重复出现的现象(2)周期:连续两次重复出现所经过的时间(二)周期问题的类型(1)图形类(2)数字类(3)时间类(三)解题技巧(1)理解题意、找出变化规律(2)确定循坏周期(3)用总量除以周期(a)如果正好是整数个周期,结果就是周期的最后一个(b)如果比整数个周期多n个,结果为下一个周期的第n个(c)如果不是从第一个开始循坏,可以从总量中减去不是循坏的个数后,再继续计算。

1.【例题1】有23颗糖,王老师按小明、小刘、小红和小杰的顺序依此分发,每人每次分到一颗,请问哪个小朋友分到最后一颗糖?1.(单选题)一批同学排队去领餐后水果,依次按苹果、梨、橘子的顺序领,请问第16个同学领到的是什么水果?A、苹果B、梨C、橘子D、不确定2. 2.(单选题)公园里种了一排树,按两棵杨树、一棵柳树、一棵松树的顺序依次排列,请问第11棵是什么树?A、杨树B、柳树C、松树D、不确定【例题2】一列数字,按57643235764323576432357643235764323…这个规律排列,请问第67个数字是多少?1. 1.(单选题)一列图形按照★▼◆◎○◇★▼◆◎○◇★▼◆◎○◇…这个规律排列,请问第37个图形是什么图形?A、★B、▼C、○D、◇2. 2.一列数字按…5318745318745318745318745318745318…的规律排列,请问从出现的第一个数字(即5)开始数,第44个数字是________?【例题3】国庆节快到了,希望小学挂出了一系列的小彩旗,一共160面,彩旗按5面红旗,3面蓝旗和2面黄旗的规律排列,请问最后一面彩旗是什么颜色?1. 1.(单选题)小红过生日,爸爸妈妈在小红房间里的墙上挂了3排彩色气球,每排18个气球,每排气球又按1个红色、2个黄色、3个蓝色的规律排列,请问从左往右,从上往下数,第42个气球是什么颜色?A、红色B、黄色C、蓝色D、不确定2.(单选题)迪斯尼乐园开始营业,爸爸妈妈、爷爷奶奶们都带着小朋友们去游玩;在买票窗口,游客依次按两个大人、一个小孩、两个大人的顺序排队买票,请问第34个游客是大人还是小孩?A、大人B、小孩C、都有可能D、肯定是爸爸【例题4】2002年3月19日是星期二,请问当年的4月29日是星期几?1. 1.(单选题)2016年10月6日是星期四,请问2016年11月6日是星期几?A、星期日B、星期一C、星期四D、星期六2. 2.1993年出生的人属鸡,生肖的排列顺序是鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪,请问2027年出生的人属________?(这里每个生肖分别对应相应的数字,鼠-1、牛-2、虎-3、兔-4、龙-5、蛇-6、马-7、羊-8、猴-9、鸡-10、狗-11、猪-12,最后的答案填数字即可,例如:回答为1,表示答案是属鼠的)1.2.【例题6】有一串数字4,7,8,6,8,8,4,2,8……从第三个数字开始,每个数字都是前两个数乘积的个位数,那么这串数的第100个数是几?1. 1.有一串数字3,6,8,8,4,2,8,6, 8……从第三个数字开始,每个数字都是前两个数乘积的个位数,那么这串数的第111个数是_______?2. 2.有一串数字3,7,1,7,7,9……从第三个数字开始,每个数字都是前两个数乘积的个位数,那么这串数的第87个数是________?简单的周期问题测试试卷1、(单选题)王伯伯在地里播种,每一排都按连续3个黄豆种子、连续2个绿豆种子依次播种,请问第21个种子是______种子?•A、黄豆•B、绿豆•C、既有可能是黄豆,也有可能是绿豆•D、黑豆2、一列数字按照2568925689256892568925689…的顺序排列,请问第52个数字是_______?3、一列数字按照367142857142857142857142857142857…的顺序排列,请问第63个数字是_______?4、(单选题)小敏买了一袋彩虹糖,每天依次按两颗红色糖、两颗绿色糖、一颗黄色糖的顺序吃,请问吃的第43颗是_______糖?•A、红色•B、绿色•C、黄色•D、三种颜色都有可能5、小明和小亮在玩转盘游戏(顺时针转动),转盘被分成8格,顺时针方向每格依次标号1,2,3,4,5,6,7,8。

奥数试题:余数与周期问题(附参考答案)

奥数试题:余数与周期问题(附参考答案)

余数与周期问题1、假如今天是星期一,从今天数起,第100天是星期几。

()A、星期二B、星期三C、星期五D、星期六2、81除以一个自然数,商是8,余数是1,这个自然数是多少。

()A、7B、8C、9D、103、国庆节挂彩灯按照“红黄蓝白”四种颜色的顺序排列,那么第43盏灯是什么颜色。

()A、红B、黄C、蓝D、白4、小华数左手的手指,大拇指为1,食指为2,中指为3,无名指为4,小拇指为5,然后换方向再数,小拇指为6,无名指为7,中指为8,食指为9,大拇指为10,再次换方向数,大拇指为11,……这样数到55,停在哪个手指上。

()A、大拇指B、食指C、无名指D、小拇指5、我国农历用鼠牛虎兔龙马羊蛇猴鸡狗猪这12种动物顺序轮流代表各年的年号。

如果1985年是牛年,那么2005年是什么年。

()A、蛇B、鸡C、猴D、狗6、有一列数:2,3,1,4,2,3,1,4,2,3,1,4,……第28个数是多少。

()A、1B、2C、3D、47、有同样大小的黑、白、红三种颜色的玻璃珠共96个,按先5个红,再4个白,再3个黑的排列着,那么黑色的玻璃珠一共有多少个。

()A、20B、24C、25D、368、按照○⊿⊙○⊿⊙……,排列,第26个图应该是哪个图。

()A、○B、⊿C、⊙9、有382本书,每位同学发6本,可以发给多少位同学,还剩多少本。

()A、64,3B、65,4C、63,4D、63,310、2011年6月1日“儿童节”是星期三,那么这年的7月1日是星期几。

()A、三B、四C、六D、五二、填空题(每小题3分,共30分)1、2004年9月1日是星期三,这一年的12月24日是星期______。

2、昨天是9日,今天是星期三,29日是星期______。

3、有一列数5、4、3、2、1、5、4、3、2、1……第26个数是______,这26个数的和是_____。

4、把一副扑克牌依次发给A、B、C、D四个人,那么最后一张扑克牌应发给______。

小学六年级奥数周期循环与数表规律问题专项强化训练题(高难度)

小学六年级奥数周期循环与数表规律问题专项强化训练题(高难度)

小学六年级奥数周期循环与数表规律问题专项强化训练题(高难度)例题1:小明使用一个周期为3的循环序列{1, 2, 3},按照以下规律将序列中的数分别填入数表中的方格中。

1 2 31 ? ? ?2 ? ? ?3 ? ? ?根据给定的规律,填入正确的数。

解析:根据题目所给的周期循环序列{1, 2, 3},我们可以观察到:第一行的数按照序列的顺序依次填入,即1、2、3;第二行的数也按照序列的顺序填入,但是序列的起始位置向右移动一位,即2、3、1;第三行的数同样按照序列的顺序填入,但是序列的起始位置再向右移动一位,即3、1、2。

因此,填入数表的数字为:1 2 31 12 32 23 13 3 1 2专项练习题:1. 使用一个周期为4的循环序列{2, 4, 6, 8},按照上述规律填入下面的数表中。

3()4()2. 使用一个周期为5的循环序列{5, 3, 7, 1, 9},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()3. 使用一个周期为2的循环序列{4, 7},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()4. 使用一个周期为3的循环序列{9, 2, 5},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()5. 使用一个周期为6的循环序列{7, 8, 9, 5, 6, 3},按照上述规律填入下面的数表中。

3()4()6. 使用一个周期为4的循环序列{1, 3, 2, 4},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()7. 使用一个周期为5的循环序列{6, 8, 4, 2, 7},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()8. 使用一个周期为3的循环序列{3, 6, 9},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()9. 使用一个周期为6的循环序列{4, 2, 8, 5, 9, 6},按照上述规律填入下面的数表中。

小学五年级奥数小升初必考题周期问题及答案

小学五年级奥数小升初必考题周期问题及答案

例1:有249朵花,按5朵红花,9朵黄花,13朵绿花地顺序轮流排列,最后一朵是什么颜色地花?这249朵花中,红花、黄花、绿花各有多少朵?249÷(5+9+13)=9(组)……6(朵)红花:5×9+5=50(朵)黄花:9×9+1=82(朵)绿花:13×9=117(朵)答:最后一朵是黄花。

这249朵花中,红花有50朵,黄花有82朵,绿花有117朵。

模拟练习:1、有红、白、黑三种纸牌共158张,按5张红色,3张白色,4张黑色的顺序排列下去,最后一张是什么颜色?第140张是什么颜色?158÷(5+3+4)=13(组)......2(张)140÷(5+3+4)=11(组)......8(张)答:最后一张是红色。

第140张是白色。

2、有47盏彩灯,按二盏红灯、四盏蓝灯、三盏黄灯地顺序排列着。

最后一盏灯是什么颜色?三种颜色地灯各占总数地几分之几?47÷(2+4+3)=5(组)......2(盏)红灯:2×5+2=12(盏)蓝灯:4×5=20(盏)黄灯:3×5=15(盏)答:最后一盏是红灯。

红灯占总数的12/47,蓝灯占总数的20/47;黄灯占总数的15/47。

例2:2002年元旦是星期二,那么,2003年1月1日是星期几?2002年是平年,365+1=366(天)366÷7=52(周)......2(天)答:每个周期的第一天是星期二,所以,2003年1月1日就是星期三。

模拟练习:1、2008年8月8日是星期五,那么,2008年10月8日星期几?24+30+8=62(天) 62÷7=8(周)......6(天)答:2008年10月8日星期三。

2、2001年10月1日是星期一,那么,2002年1月1日是星期几?31+30+31+1=93(天)93÷7=13(周)……2(天)答:2002年1月1日是星期二。

(完整版)三年级奥数周期问题练习题

(完整版)三年级奥数周期问题练习题

(完整版)三年级奥数周期问题练习题【例 1】⼩兔和⼩松⿏做游戏,他们把⿊、⽩两⾊⼩球按下⾯的规律排列:●●○●●○●●○…你知道它们所排列的这些⼩球中,第90个是什么球?第100个⼜是什么球呢?【巩固】美美有⿊珠、⽩珠共102个,她想把它们做成⼀个链⼦挂在⾃⼰的床头上,她是按下⾯的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠⼦中,最后⼀个珠⼦应是什么颜⾊吗?美美怕这种颜⾊的珠⼦数量不够,你能帮她算出这种颜⾊在这串珠⼦中共有多少个吗?【例 2】⼩倩有⼀串彩⾊珠⼦,按红、黄、蓝、绿、⽩五种颜⾊排列.⑴第73颗是什么颜⾊的?⑵第10颗黄珠⼦是从头起第⼏颗?⑶第8颗红珠⼦与第11颗红珠⼦之间(不包括这两颗红珠⼦)共有⼏颗珠⼦?【巩固】奥运会就要到了,京京特意做了⼀些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【巩固】节⽇的校园内挂起了⼀盏盏⼩电灯,⼩明看出每两个⽩灯之间有红、黄、绿各⼀盏彩灯.也就是说,从第⼀盏⽩灯起,每⼀盏⽩灯后⾯都紧接着有3盏彩灯.那么第73盏灯是什么颜⾊的灯?【例 3】节⽇的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后⼜是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜⾊?⑵前200盏彩灯中有多少盏蓝灯?【巩固】在⼀根绳⼦上依次穿2个红珠、2个⽩珠、5个⿊珠,并按此⽅式反复,如果从头开始数,直到第50颗,那么其中⽩珠有多少颗?【巩固】⼩莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是⼏分硬币⑵这200枚硬币⼀共价值多少钱?【巩固】桌⼦上摆了很多硬币,按⼀个⼀⾓,两个五⾓,三个⼀元的次序排列,⼀共19枚硬币.问:最后⼀个是多少钱的?第⼗四个是多少钱的?【巩固】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后⼀朵是什么颜⾊的花?这249朵花中,什么花最多,什么花最少?最少的花⽐最多的花少⼏朵?【例 4】如图所⽰,每列上、下两个字(字母)组成⼀组,例如,第⼀组是“我,A”,第⼆组是“们,B⑴写出第62组是什么?⑵如果“爱,C”代表1991年,那么“科,D”代表1992年……问2008年对应怎样的组?【巩固】在图所⽰的表中,将每列上、下两个字组成⼀组,例如第⼀组为(新奥),第⼆组为(北林),【例 5】如右图,是⼀⽚刚刚收割过的稻⽥,每个⼩正⽅形的边长是1⽶,A 、B 、C 三点周围的阴影部分是圆形的⽔洼。

六年级奥数周期问题(含答案 )

六年级奥数周期问题(含答案    )
考 时间与钟面。1665141 点:
分 分针旋转一周为1小时,旋转1991周为1991小时;一天24小时, 析: 1991÷24=82(天)…23(小时),1991小时共82天又23小时;现
在是14时正,经过82天仍然是14时正,再过23小时,正好是13 时.
解 解:1991÷24=82天…23小时,1991小时共82天又23小时. 答: 14+23﹣24=13小时,
12.1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的 和末两位数是多少?
13. n=
,那么n的末两位数字是多少?
14.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同 时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开, 那1(周)…5(天), 5+2=7,所以再过十年的12月5日是星期日. 故答案为:日.
点 本题是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主 评: 要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根
据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百 数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数 才是闰年. 3.(3分)按如图摆法摆80个三角形,有 39 个白色的.
答:有39个白色的. 故答案为:39.
点 看出规律,找到周期,是解决这类题的关键. 评:
4.(3分)节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯 之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏 白灯后面都紧接着有3盏彩灯,小明想第73盏灯是 白 灯.
考 简单周期现象中的规律。1665141 点:
可见1989后面的数总是不断循环重复出现286884,每6个一组,即 循环周期为6.因为(1989﹣4)÷6=3305,所以286884的第四个数 字为8,所求数字是8.

小学奥数周期问题专题训练(含答案)

小学奥数周期问题专题训练(含答案)

小学奥数周期问题专题训练姓名:1.公路一侧插满了彩旗,它们的规律是“红、黄、红、蓝、蓝、紫、红、黄、红、蓝、蓝、紫……”请问,第97根旗是什么颜色的?2.如下图摆法摆251个图形,其中有几个正方形?△□○○□☆◇△□○○□☆◇……2化成小数后第351位是几?3.把74.某闰年二月的最后一天是星期日,那么同年的7月1日是星期几?5.21999n,n的最后一位是多少?=6.下表是11位数,任意相邻的三个数字之和是17,请将剩下几位填完。

7.下表中,每列上下的两个汉字成为一组,如第一组为“学做”、第二组为“习接”,那么第649组是什么?8.循环小数··51238.0与··522348944.0首次出现该数位的数字都是5是在小数点后的哪一位?9.2001年的植树节是星期一,那么这年的国庆节是星期几?10.一本童话书,每2页文字之间有3页插图,也就是说3页插图前后各有1页文字,如果这本书有128页,而第1页是文字,这本书共有插图多少页?11.100个3相乘,得数的个位是几?12.小张工作3天休息1天,小李工作4天休息一天,小刘工作7天休息一天,假设今天他们都休息,那么下次都休息是在几天以后?小学奥数周期问题专题训练(答案)1.公路一侧插满了彩旗,它们的规律是“红、黄、红、蓝、蓝、紫、红、黄、红、蓝、蓝、紫……”请问,第97根旗是什么颜色的?97÷6=16(组)……1(根)答:第97根旗是红颜色的。

2.如下图摆法摆251个图形,其中有几个正方形?△□○○□☆◇△□○○□☆◇……251÷7=35(组)……6(个) 35×2+2=72(个)答:其中有72个正方形。

3.把72化成小数后第351位是几?2÷7=``485712.0 351÷6=58(组)……3(位) 答:把72化成小数后第351位是5。

4.某闰年二月的最后一天是星期日,那么同年的7月1日是星期几?31×2+30×2+1=123(天) 123÷7=17(周)……4(天)答:同年的7月1日是星期四5.21999=n ,n 的最后一位是多少?规律:2个位2,2²个位4,2³个位8,24个位6,25个位2又开始循环1999÷4=499(组)……3(位) 答:n 的最后一位是8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数练习题(周期问题)
1、明明把折的200朵纸花按先3朵红花,再2朵黄花、最后4朵紫花这样的顺序一直往下排.第180朵是什么颜色的花这200朵花中三种颜色的花各有多少朵
2、在
3、6、8、9四个数字组成不同的四位数,把它们从小到大排列,第16个是多少
3、在2、5、7、8四个数字组成不同的四位数,把它们从大到小排列,第15个是多少
4、有一个80位的数,各位数字都是1,这个数除以6,商的末位数字是几
5、今年(2016年)1月1日是星期五,9月1日是星期几
6、2008年8月8日是星期五,2009年8月8日是星期几
7、1—5五个数字共能排120个五位数,把它们从小到大排列,第52个是多少
8、东东把积存下来的硬币按先3个1分,再5个2分,最后2个5分这样的顺序一直往下排.他排到第120个是几分硬币这120个硬币合起来是多少元钱
9、同学们排队,按照最前面站2个三年级学生,中间站5个五年级学生,后面跟3个四年级学生的顺序一直往后排,小明排在第100位,小明是几年级的学生。

相关文档
最新文档