气井产能计算
气井产能计算方法介绍
气井产能计算方法介绍及应用气井产能计算方法介绍及应用摘要:本文介绍了气井产能常用的4种方法,一点法测试、系统试井、等时试井和修正等时试井。
通过实际生产实例来分析计算方法在白马庙气田蓬莱镇组气藏气井产能,白云岩气藏基质酸化后产能预测,苏里格气田特殊开采模式下的气井产能中的应用。
并在综合比较中得出不同气井应采用的计算方法,使理论值与实际值误差缩小,从而指导实际开采工作,提高开采效率和质量。
关键词:气井产能;计算方法;应用;引言:本文介绍了气井产能常用的4种方法,一点法测试、系统试井、等时试井和修正等时试井。
通过实际生产实例来分析所采用的计算方法,使理论值与实际值误差缩小,从而指导实际开采工作,提高开采效率和质量。
一、气井产能试井测试计算方法气井产能试井测试主要包括4种方法,即一点法测试、系统试井、等时试井和修正等时试井。
1.一点法测试一点法测试是测试一个工作制度下的稳定压力。
该方法的优点是缩短测试时间、减少气体放空、节约测试费用、降低资源浪费;缺点是测试资料的分析方法带有一定的经验性和统计性,分析结果有一定的偏差。
经验表明,利用该方法测试,当测试产量为地层无阻流量的0.36倍时,测试结果最可*。
测试流动时间可采用以下计算公式: [1]式中:——稳定时间,h;——排泄面积的外半径,m;——在下的气体黏度,;——储存岩石的孔隙度; K——气层有效渗透率,;——含气饱和度。
2.系统试井系统试井又称为常规回压试井,也称多点测试,是测量气井在多个产量生产的情况下,相应的稳定井底流压。
该方法具有资料多,信息量大,分析结果可*的特点。
但测试时间长,费用高。
系统试井测试产量的确定:①最小产量至少应等于井筒中携液所需要的产量,此外还应该足以使井口温度达到不生成水化物的温度;②最大产量不能破坏井壁的稳定性,对于凝析气藏,还要考虑减少地层中两相流的范围;③测试产量必须保持由小到大的顺序。
3.等时试井等时试井测试,首先以一个较小的产量开井,生产一段时间后关井恢复地层压力,待恢复到地层压力后,再以一个稍大的产量开井生产相同的时间,然后又关井恢复,如此进行4个工作制度。
采气工程(廖锐全)-第四章:气井产能
rw
第一节、气井产能理论公式
考虑表皮效应的达西产能公式
将表皮系数产生的压降合并到总压降中
e wf
1.291 10 3 qsc T Kh
re ln r S w
774.6 Kh e wf qsc re T ln r S w
力表、静重压力计、温度计、取样装置和大气压力计等。 若是生产井试气,一般原有的井场流程设备可以借用。 若是刚完钻的井试气,应准备放喷管线和临界流速流量计。 对于凝析气井和气水井:井内的流体是气液两相,针形阀之后 增加保温或防水合物设备及安装气液分离器、气液取样装置和计 量仪表。 对于含硫化氢的气井:除设备、仪表和管线需要考虑抗硫材质 和采取防硫措施外,应采用撬装式轻型硫装置处理含硫气体。若 气体无法处理,应在远离井口(25m以外)安装离地高度不低于 `12m的火炬管线,在取得环保部门的同意下点火燃烧。
2 2 774.6 Kh( pe pwf ) qsc 0.472re T μ Z (ln s Dqsc ) rw
第一节、气井产能理论公式
利用气井试井资料确定气井产能方程时,可将产
能方程改写成下面形式:
3 2.828 10 γ g ZT 2 0.472re 1.291 10 T μZ 2 p R pwf (ln s)qsc qsc 2 Kh rw rw h 2 -21
第四章 气井产能
气井产能是单位生产压差条件下有多少天然气从气藏流 向井底。与气藏本身的渗流特性、气体性质、气藏压力和 温度等参数有关,一般用产能公式来描述。
描述地层压力,井底流压和产量之间的关系式
产能试井工艺
产能方程
反映气井流入特性的方程,称为产能方程
气井产能计算范文
气井产能计算范文
首先,为了计算气井的产能曲线,需要通过实验或实测数据来获取气井的物性参数。
气井的物性参数包括气井产出的气体组分、气井的进口压力、温度、液体含量等。
这些数据可以通过在气井的测试套管中设置传感器来直接测量,也可以通过实验室对气井产出的气体进行分析来获得。
其次,通过气井的产量数据来进行产能计算。
气井的产量数据可以通过在气井生产过程中记录气井产出的气体的流量、压力等变化来获取。
产量数据的采集可以通过安装传感器、流量计、壁面计等设备来实现。
产量数据的采集需要考虑到气井的不同生产阶段和不同的开发策略。
由于气井产量会随着时间的推移而减小,因此应该选择适当的时间间隔来记录产量数据,以保证数据的准确性。
根据气井产量数据,可以推算出气井的产能曲线。
产能曲线是指气井的产量随时间变化的趋势线。
通过分析产能曲线,可以了解到气井的最大产量、生产持续时间、产量递减速率等。
气井的产能计算对于气田的开发和生产具有重要的意义。
通过合理计算气井的产能,可以确定气井的开发方案,合理安排气井的生产能力,提高气井的生产效率,进而提高气田的整体产量。
同时,气井产能计算还可以为气田的经济评估提供重要的依据。
通过对气井的产能曲线进行分析,可以预测气井的生产潜力和开发效益,对气田的开发方案和投资计划进行评估。
总之,气井产能计算是一个复杂而重要的工作,需要充分考虑气井的物性参数、产量数据等多方面因素。
通过合理计算气井的产能,可以做出合理的开发决策,提高气田的生产效率和经济效益。
结合物质平衡的气井产能计算方法
符号说明 P一 地层压力, P ;e 计算获得地层压力, P ; o M aP 一 Ma P 原始地 i - 层压力, P ;i 累 M aG j 计注气 1‘。 累 n ~ 量, m ; ~ 0 G 计产气量,0f;w 井底流压, aPr一 计算获得井 i lPt r 。 一 MP ;w 底流压, aq 产 气量,0 。d; MP ;s 一 14 / q m 一 计算获得产气
( ) 1 :
4 3
( g q 。 q - g)
式 ( ) A、 4中 B值 为 未 知 参 数 , p 则 一fA, ( B, G) 。A、 B是 否 已知 不影 响 多 目标 函数 的 求解 , 果 如 已知则 可 以增加 求解 的约束 条件 , 求解 更准 确 。 使
如果 单 井 有底 层 压 力 P 的测 试 数据 , 时 利用 。 此
.
月
.
相 z :密 量; 对 一
一 , .
隙’ e流 [ 聂 夏遗 ‘ 遗 规 种 索 优 度 一 登 6 .传 法 传 茁一 搜 寻 小 粘 ]云 体 庆 ‘ ; 和 划 算 :
…J ‘ 。 一
mP a a・ rP s; 一 非 达 西 流 动 系数 ,1 ad ; 一 , . D (0… / ) 'A - r 一 Om 4 -  ̄ ,
2 产能 方程 优化 计算模 型
( 5 )
如果气井处于稳定流动 , 方程中 :
1 2 1 1 - T r .9× 0 0 Z
通过式() 5建立多 目标优化函数 , 拟合流压 目标 函数( 5 和产量 目 式 ) 标函数 啪( 6 : 。 式 ) ] E mi - n;( ̄ p0 p - w。 '
永安油田永21块地下储气库气井产能的确定
作者简介:徐耀东,男,1979年生,硕士,工程师,胜利油田地质科学研究院助理工程师,主要从事气田开发研永安油田永21块地下储气库气井产能的确定徐耀东中国石化胜利油田分公司地质科学研究院徐耀东. 永安油田永21块地下储气库建设气井产能的确定.天然气工业。
摘 要 为配合我国天然气长输管线网络建设,满足山东地区对天然气的需求,保证山东大中城市安全平稳供气,胜利油气区拟利用永21块废弃气藏建设地下储气库。
由于目前永21块气藏已经水淹,注气过程中很难将含水饱和度恢复到气藏初期含水饱和度,因此气库运行过程中,必然存在气水两相渗流,并且随着气库运行周期的变化,含水饱和度不断变化,气井的产能也不断变化。
利用已投产老井的试气资料,建立了永21块无水条件下的气井产能方程,借鉴室内气驱水物理模拟实验研究,建立了永21块气相相对渗透率与注采倍数的关系方程,通过修正产能方程中的相对渗透率值,建立了永21块不同运行周期的产能方程,解决了储气库带水气井产能的计算难题。
关键词 永安油田 枯竭气藏 水淹气藏 地下储气库 产能DOI :。
永安油气田在山东省东营市永安镇南,构造位置处于东营凹陷东北部,坨-胜-永断裂带的东段。
1965年7月地震勘探发现永南构造,1966年4月钻探永21井发现下第三系沙三段气层,用9mm 气嘴试气获日产19.27×104 m 3工业气流[1]。
永21块有效孔隙度22~30%,平均空气渗透率752×10-3μm 2,含气饱和度70~80%,原始地层压力为18.856MPa ,含气面积为0.8km 2,地质储量3.17×108m 3。
气藏类型是断层遮挡的底水构造气藏,水体活跃。
该块历史上完钻永21、永21-1、永211等3口气井,分别投产于1967年、1978年和1990年,累计产气量为2.63×108m 3,采出程度为82.9 %,目前气井已全部停产,气藏水淹。
由于初期气井的产能方程是在无水条件下获得的,而产水对气井的产能影响很大,若采用无水条件下的产能方程,必然导致储气库产能的预测结果与实际效果偏差较大,因此研究带水条件下的气井的产能预测方程,对于永21块地下储气库的建设具有重要意义。
气井二项式产能方程
气井二项式产能方程
气井二项式产能方程是一种用来预测气井产能的方程。
它由下面两个部分组成:
1.地质因素影响系数:这部分包括了地质因素对气井产
能的影响程度。
例如,油层厚度、岩性、孔隙度、渗
透率等。
2.工程因素影响系数:这部分包括了工程因素对气井产
能的影响程度。
例如,气井深度、气井直径、水平井
长度、气井压力等。
将地质因素影响系数和工程因素影响系数相乘,就得到了气井二项式产能方程。
这个方程可以用来预测气井的产能,并为气井的设计和运营提供参考。
举个例子,假设我们想要预测一口气井的产能。
我们需要收集到这口气井的相关信息,包括地质因素(如油层厚度、岩性、孔隙度、渗透率)和工程因素(如气井深度、气井直径、水平井长度、气井压力)。
然后,我们可以根据气井二项式产能方程计算出该气井的产能。
气水同产水平井产能简易计算新方法
173含水气藏开发过程中,气井产水将会增加渗流阻力,特别是井筒附近,渗流阻力增加更为明显,导致产能大大降低。
国内外学者对产水气井产能进行了深入研究,提出了一系列的计算方法,但大多对参数要求较高,计算复杂[1-3]。
以水平气井二项式产能方程为基础,考虑气井产水时额外增加井筒附近表皮系数,建立了简易计算产水水平气井产能的新方法,并利用实例数据分析了产水对气井产能的影响,可为含水气藏的开发提供一定的理论依据。
1 水平气井单相产能方程气体在水平井井筒周围渗流过程中满足高速非达西流动效应,特别是近井地带尤为明显,同时也受到表皮效应的影响,气井二项式产能方程通常表示为222R wf h h−=+P P Aq Bq (1)其中'eh w h h ln(/)P ªº ¬¼ ZT r r S A ˈh P ZTD B ˈK KD hr˄2˅∈⇨㮣ᓔথ䖛Ёˈ⬅Ѣᑩ∈䫹䖯䖍∈䖯ⱘᕅડˈ∈ᑇѩѩㄦ਼ೈ㸼⦄ߎ⇨∈ϸⳌ⏫⌕ˈѻ∈ᓩ䍋ⱘ䰘ࡴ䰏ৃ⫼㸼Ⲃ㋏᭄S b 㸼⼎ˈेЎb b rg w 11ln ˄˅ r S K r ˄3˅ḍ⇨ѩ∈⥛ϢⳌ⏫݇㋏᳆㒓ˈৃҹᕫࠄ⫳ѻ∈⇨↨Ϣ⇨ⳌⳌᇍ⏫䗣⥛ⱘ݇㋏Ўwgr w wgr g 10000˄˅ WGR R f WGR R B ˈw rg w rw g11+P P f K K ˄4˅ (2) rSK h ˈh 774.6P TD B h ˈw 2.19110 u D b b rg w 11ln ˄˅ rS K r ˄3˅∈⥛ϢⳌ⏫݇㋏᳆㒓ˈৃҹᕫࠄ⫳ѻ∈⇨↨Ϣ⇨ⳌⳌᇍ⏫䗣⥛ⱘ݇㋏Ўwgr w wgr g 10000˄˅ WGR R f WGR R B ˈw rg w rw g 11+P P f K K ˄4˅ 2 气水同产水平井产能方程含水气藏开发过程中,由于底水锥进或边水推进的影响,水平井井筒周围表现出气水两相渗流,因产水引起的附加阻力可用表皮系数S b 表示,即为Sˈh 774.6PTDB hˈg h v -182.19110EJ P u K D ˄2˅ѻ㛑ᮍЁˈ⬅Ѣᑩ∈䫹䖯䖍∈䖯ⱘᕅડˈ∈ᑇѩѩㄦ਼ೈ㸼⦄ߎ⇨∈ϸⱘ䰘ࡴ䰏ৃ⫼㸼Ⲃ㋏᭄S b 㸼⼎ˈेЎb b rg w 11ln ˄˅ r S K r P P f K K ˄4˅ (3)根据气井含水率与相渗关系曲线,可以得到生产水气比与气相相对渗透率的关系为 (4)Tr r S K h ˈh 774.6P TD B hˈg h v w EJ P u K D hr ˄2˅⇨∈ৠѻ∈ᑇѩѻ㛑ᮍ∈⇨㮣ᓔথ䖛Ёˈ⬅Ѣᑩ∈䫹䖯䖍∈䖯ⱘᕅડˈ∈ᑇѩѩㄦ਼ೈ㸼⦄ߎ⇨∈ϸ⏫⌕ˈѻ∈ᓩ䍋ⱘ䰘ࡴ䰏ৃ⫼㸼Ⲃ㋏᭄S b 㸼⼎ˈेЎb rgw 11ln ˄˅ r S r ˄3˅ḍ⇨ѩ∈⥛ϢⳌ⏫݇㋏᳆㒓ˈৃҹᕫࠄ⫳ѻ∈⇨↨Ϣ⇨ⳌⳌᇍ⏫䗣⥛ⱘ݇㋏Ўwgr w wgr g 10000˄˅ WGR R f WGR R B ˈw rg w rw g11+P P f K K 根据以上两式可确定气井日生产水气比与气相相对渗透率的关系,将其代入联式(2),对A进行修正,表皮系数S=S h +S b ,对气井产能方程进行修正,即可得得到产水气井产能计算新方法。
气井Jones方程
2. Jones- Blount-Glaze 方程(气井二项式)2.1方程表达式拟稳态、考虑非达西流动效应的气井二项式产能方程为:P r 2-P wf 2=Aq sc +Bq sc 2 (2-2-1)sc scwfr Bq A q P P +=-22(2-2-2) 系数: A=⎪⎪⎭⎫ ⎝⎛+⋅S r rKh Z T w eg 472.0ln 74.12μ >0 B=D Kh ZT g μ⋅74.12=k w g hr ZT βγ2141016.28⋅⨯- >0 D=wg g k r h K⋅⋅⋅⋅⋅⨯-μγβ141021.22.1101064.7-⋅⨯=K k β参数说明:q sc ---------标准状况下产气量,104m 3/dq max -------气井绝对无阻流量,104m 3/d (当P wf =0)P r ---------平均地层压力,MPaP wf --------井底流压,MPaA---------气层层流系数,(MPa)2/(104m 3/d)B---------气层紊流系数, (MPa/(104m 3/d)) 2S-----------表皮因子,无因次D------------非达西流动系数,(104m 3/d) –1K------------地层流体渗透率,×10-32m μ,即就是mdh 、r w --------地层有效厚度、井径,mμg -----------地层流体粘度,mPa ·sT--------------气层温度,KZ--------------气体压缩因子,无因次2.2求解过程输入数据:P r 、最少4个测试数据(P wf 、q sc ),(四点试井)(1)确定参数A 、B方法1:直接输入A 、B方法2:利用试井数据,进行一元线性回归 在直角坐标系中sc wfr q P P 22-~q sc 呈线性关系,利用(2-2-2)进行一元线性回归,求A 、B(2)确定参数q max :(当P wf =0)当P wf =0,由(2-2-1)得B BP A A q r 2422max ++-= (2-2-3)(3)在0< q sc < q max 范围内连续取q sc ,用(2-2-4)求相应P wf ,做P wf ~q sc 由(2-2-1)解出P wf =()22sc sc r Bq Aq P +- (2-2-4) 2.3实例1. 实例一:拟合(参考文献5,P64,例2-5,四点试井)计算结果:A=0.01275B=0.00029q max =144.7 (104m 3/d) 2.4参考文献1. K.E.布朗,升举法采油工艺卷四,节点分析法使油气井最佳化生产,石油工业出版社,1990.1,P86-107.2. 励学思等,油井生产动态分析,石油工业出版社,1996.12,P48-53.3. 王宏伟等,油气藏动态预测方法,石油工业出版社,2001.10,P29-39.4. 曾庆恒,采气工程,石油工业出版社,1999.8,P22-37.5. 杨继盛,采气工艺基础,石油工业出版社,1992.12,P44-91.6. 李颖川,气井无因次IPR 方程的剖析,天然气工业,1995,vol15,No6,P50-54.7. 雷振中,气井无因次IPR关系式的推导及图版绘制,钻采工艺,1996,vol19,No1,P33-35.8. 陈元千,气井新的无因次IPR方程及应用,油气井测试,1998,vol7,No4,P22-26.9. 李颖川,气井无因次流入动态曲线的特征函数,天然气工业,2002,vol22,No1,P67-69.。
低渗透气藏气井一点法产能预测公式
低渗透气藏气井一点法产能预测公式王富平;黄全华;孙雷;于智博【摘要】气井一点法产能试井操作简单方便、测试时间短,在气田产能评价中得到相当广泛的应用.但在低渗气藏应用时,计算结果常常偏差较大.针对这一问题,从一点法产能公式推导理论和低渗气藏气体渗流特征出发,基于考虑启动压力影响的产能方程推导出了适合于低渗气藏气井的一点法公式,并建立了由一点法测试资料反推气井产能系数的方法.推导显示:低渗气藏气井一点法产能计算公式与常规的一点法公式相比,式中经验参数由1个变为了2个,并且经验参数α、δ还与启动压力梯度大小有关.通过实例分析,证实了建立的方法是切实可行的.【期刊名称】《新疆石油地质》【年(卷),期】2010(031)006【总页数】3页(P651-653)【关键词】低渗透气藏;气井;一点法;启动压力梯度;产能【作者】王富平;黄全华;孙雷;于智博【作者单位】中国石油西南油气田分公司天然气经济研究所,成都,610051;西南石油大学石油工程学院,成都,610500;西南石油大学石油工程学院,成都,610500;中国石油西南油气田分公司天然气经济研究所,成都,610051【正文语种】中文【中图分类】TE373一点法产能试井方法操作简单方便、测试时间短,已得到相当广泛的认可,不少学者都对它进行了研究[1-4],同时也被应用于低渗气田开发之中,但效果不甚理想。
从理论上分析其原因,目前常用的一点法产能公式是基于常规气井产能方程推导而来的,而低渗气藏由于其低孔低渗的特征,气体在储集层中渗流存在启动压力,产能方程已由常规气井的二项式变为了三项式[5],仍用常规一点法产能公式计算低渗气藏气井产能,势必会导致计算结果可靠性不高。
为能快速、合理地预测低渗气藏气井的产能,实现低渗气田的科学开发,有必要对适合于低渗气藏气井的一点法产能公式进行研究。
1 常规气井一点法产能公式常规气井二项式产能方程可表示为将(1)式整理简化后得式中求解(2)式得(5)式即为陈元千教授推导的常规气井一点法产能公式。
高含CO2气井产能计算新方法
( I O E e o u xl ai n rd co e ac ntu , ei 00 3 C ia SN P C Pt l m E po t nadPo ut nR s r Istt B in 10 8 , hn ) re r o i e h i e jg
Ab ta t P o u t i f a l n S n n n v la i a e e v i i d f c l t r d c s h g 2c n e t sr c : r d c i t o swel i o g a o c n c g sr s r or s i u t o p e i ta ih CO o tn vy g s i
天然 Ltk  ̄ -
第3 2卷 第5 4期
OL & G SG O 0 Y I A E L G 21 0 1年 1 0月
文 章 编 号 :2 3— 9 5 2 1 ) 5— 7 7— 5 0 5 9 8 (0 1 0 0 8 0
_ _ -
-_ _一
Ej 同 Fra bibliotek含 C O2气 井产 能计 算 新 方 法
h sg e ti fu n e n PVT fn t r lg s,e ul n n l r e d f r n e b t e h a u e nd p e it d p o a r a n e c so l o a u a a r s t g i a g i e e c ewe n t e me s r d a r d ce r — i f d ci i Ba e n l b r t r x e i n s t i a e t d e he ef c so e u tvt y. s d o a o ao y e p rme t ,h s p p r su id t f t ftmpe au e, r s u e a d CO2c n— e r t r p e s r n o tn n PVT o a t i h CO2c n e ta d e t b ih d t e rl t n le pr s in fg s vs o i n fc o e to fg swi h g h o t n n sa ls e h ea i a x e so s o a ic st a d Z-a t o y t r s u e f rg swi i e e tCO2c n e t . n w r dc in mo e o sde i o p e s r o a t df r n h f o t n s A e p e ito d l c n i rng PVT v ra in f g s wih a t so a t i o hg ih CO2c n e twa ui a e n g sp r oa in t e r The c s t d e u t n c t ha he p o u t i o t n sb l b s d o a e c l to h o y. t a e su y r s lsi diae t tt r d ci t vy r d c swih t e CO2c n e ti c e sn t e ef c fz f co h n e n p o u t i r dito h u d bec n— e u e t h o t n n r a i g;h fe to /Z a trc a g so r d ci t p e c in s o l o vy sdee e i r d wh n CO2c n e ti bo e 2 o t n s a v 0% ; nd t e i a t fCO2c n e to r d c iiy lwe s t e e h t a h mp cs o o t n n p o u t t o r o a l v lt a v c n b e l c n l t r d c in p ro Th e meh d i c u a e a d pr cia rt ih CO2 c n e tg s a e n ge ti ae p o u t e id. e n w t o sa c r t n a tc lf he h g o o -o t n a
气井产能确定方法归类总结
气井产能确定方法气井产能是进行气井合理配产、评价气田生产能力的重要依据,其评价结果的可靠与否,直接关系到气田能否实现安全平稳生产。
目前常用的气井产能确定方法可分为六大类:一、无阻流量法气井绝对无阻流量是反映气井潜在生产能力的主要参数之一。
利用气井绝对无阻流量百分比大小确定气井产能的方法称为无阻流量法,该方法通常用于新井产能的确定。
气井绝对无阻流量值可通过气井产能测试直接求取,如多点的系统试井(或称为回压试井、稳定试井)、等时试井、修正等时试井及单点测试等方法。
某些条件下,对未进行产能测试的井,可应用已知气井绝对无阻流量与其地层系数或与其储能系数统计回归得到的经验关系式(q AOF ~Kh 、q AOF ~φhS g )来估算,还可采用简化试气经验判别法。
(一)产能测试法有关不同产能测试方法的适用条件及气井绝对无阻流量值求取的方法,请参见行业标准《SY/T 5440 试井技术规范》。
另外,在采用单点测试方法求取气井绝对无阻流量时,除利用已有的一点法公式外,还可根据各自气田的实际情况,建立适合于本地区气田的一点法产能公式,其原理与方法如下:气井的无量纲IPR 曲线的表达式为:()21D D D q q P αα-+= (1)也可变形为:D D D q q P )1(/αα-+= (2)式中: ()222/R wf R D P p p P -= (3)AOF g D q q q /= (4))/(AOF Bq A A +=α (5)(5)式中的A 、B 为气井二项式产能方程系数A 、B 。
由(1)式得: ()αααα-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛-+=1211412D D p q (6)将(4)式代入(6)式得:()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛-+-=1141122D gAOF p q q αααα (7)上面式中的α值,可通过其他井多点产能测试资料计算的二项式产能方程系数A 、B 统计回归确定,见图1。
部分气藏新的气井产能计算方法
部分气藏新的气井产能计算方法
罗炫;鲁友常;李晓平;蒋志;王会强
【期刊名称】《天然气勘探与开发》
【年(卷),期】2010(033)004
【摘要】目前矿场常用三项式平方法进行高压气藏单井产能预测.这种方法虽然考虑了高压气藏高速非达西流的特点,却忽略了气藏储层介质应力敏感变形对产能的影响.因此从研究应力敏感入手,对该类气藏气井的产能计算方法进行研究,推导出了同时考虑孔隙度、渗透率应力敏感和高速非达西流的产能计算方程,并进行了实例应用和检验,证实了该方法的准确性.
【总页数】5页(P32-35,52)
【作者】罗炫;鲁友常;李晓平;蒋志;王会强
【作者单位】中国石油西南油气田公司川中油气矿;中国石油西南油气田公司川中油气矿;"油气藏地质及开发工程国家重点实验室"·西南石油大学;中国石油西南油气田公司川中油气矿;中国石油西南油气田公司勘探开发研究院
【正文语种】中文
【相关文献】
1.一个新的低渗透气藏气井产能预测公式 [J], 严文德;郭肖;孙雷
2.新的煤层气藏物质平衡方程及其储量计算方法 [J], 徐德权;张烈辉;刘启国
3.强非均质碳酸盐岩气藏开发早期气井产能评价方法 [J], 张楷;杨山;赵翔;严予晗;彭小娟
4.磨溪区块龙王庙组高压气藏气井产能方程及求解方法 [J], 陈春艳;阮基富;吴利华;
刘柳君;杨辉;钟礼萍
5.一种低渗储层凝析气藏气井产能评价方法研究 [J], 谭先红;梁斌;王帅;田波;彭世强;李南;夏阳
因版权原因,仅展示原文概要,查看原文内容请购买。
低渗透气藏气井等时试井及一点法产能公式
低渗透气藏气 井等 时试井及一点法产能公 式
周 娟 王富平 宋维东 李 映霏
成都 60 5 ) 10 1 ( 中国石油西南油气 田公 司天然气经济研究所 ,四川 摘
要 低渗气藏 由于其低孔 、低渗和 高含 水饱和度 的特征 ,气体 必须克服 启动 压差后 才能流动,气井产能
方程 由二项 式变为 了三项式 ,在进 行等 时试 井分析 以及应 用一点 法产能公式 时, 需考虑启 动压 力梯度影响 。为 此 ,建立 了附加 压力损 失值与开 井时间关系式,提 出了处理等时试 井资料的合理 方法,同时基 于考 虑启动 压力影
r =c ( ) / 2
r- ,
() 4
式 中 ,P o:
(0 1)
 ̄t 有如 下关 系式 : 1
: _ 0 L
・
2 一
2
u) (1 1
u ) ( 2 1
笼
)
:
式 中 , 为储层孔 隙度 ;C为综合压缩系数 ,1 MP ; / a
为压 力 影响半 径 ,1;t 开井 时 间 ,h T 为 I 。
r 。= C ( )+ / 2 () 3
式中, 。 , 为气井的无阻流量 ,i /d n o
将式 () 1除以式 () 8 ,且取p 一(.0 ) P 0 11 ,
整 理 可得 : P =( o 1.一 6 ) ( ) ( ) 。 () 9
考 虑 到 远 远小 于 ,上式 可 近似 的表示 为 :
中图分类号 :T 3 E7
文献标识码 :B
O 引 言
随着 近年 来 一 批 低 渗 气 田的 相继 发 现 ,低 渗 气 田 开 发 已成 为 我 国天 然 气 增 产 、稳 产 的 主 攻 方 向 。 低 渗 气 藏 因其 孔 隙度 低 、渗透 率 低 的地 质 特征 以及 含 水 饱 和度 高 的流 体 储 集特 征 ,导 致 气体 在储 层 中 渗 流 时 ,必 须 要 克 服 启 动 压 差 后 才 能 流 动 u 井 ,气 产 能 将 受 到 启 动压 力 梯 度 的影 响 。 为此 ,在 处 理低
酸性气田产水气井产能计算方法
@ 2 0 1 3 S c i . T e c h . E n g r g .
酸性气 田产水气井产能计算方法
韩 玉坤 蒋光迹 黄元 和 汤思斯 谢 亚利
( 中原油 田普光分公司采气厂 , 达州 6 3 6 1 5 0)
摘
要
普光气 田主体为 带边底水 的酸性气藏 , 在开发过程 中, 凝 析水 的析 出和 边底水 的侵入将影 响气井产 能, 另一方 面, 天
硫气 井 在非 达 西 平 面 径 向稳 定 渗 流 条 件 下 的二 项
采用 D r a n c h u k — P u r v i s . R o b i n s o n ( D P R ) 方法计算
气 体 的偏差 系数 z。
式产能方程 , 分析 了硫沉 积对气井产 能的影响 , 结 果表 明常规试井方法 同样适用于含 硫气井。黄小 亮等 考虑井周渗透性变差对气井产能的影 响, 推 导出在不同液相 伤害程度 、 伤害范 围内, 不 同地层
然气 中的酸性气体对气 井产 能计 算有 一定 影响 , 因此 , 准确确定产水气井产 能显得尤其 重要。鉴于没有 实用 的方 法计算酸性 气 田产水气井产能 , 在修 正高含 硫气体基本物性参数 的基础 上, 从无水气井产 能方程 出发 , 利用 气水相对渗透 率 曲线 、 气井产 水率、 生产水 气比的关系 , 修 正表皮 系数 , 从而计算 出酸性 气田产水 气井 的产 能。该方 法不仅 能够 快速 地对 气井产水 后 的产 能进行计算分析 , 还能够预 测未来 不 同生产水 气 比时气 井产 能 的 变化。 实例 证 明, 方 法 能够 准确 评价 酸 性 气 田产 水 气井
和; B为天然气 中 H : s的摩尔分数 。
气井压裂后稳态产能计算
1 模拟的假设条件 假设 : ①气井压裂后形成垂直裂缝,且对称分布于气井的两边 ; ②裂缝剖面为矩形,高度恒定,并等于油层厚度 ; ③裂缝宽度相对于气藏的供给半径来说非常小( 即在进行保角变换可忽略不计) ; ④裂缝内导流能力可以是有限值,也可以是无限值; ⑤气藏及裂缝内均为单 相流动,且气藏中气体的流动符合达西线性定律,而裂缝中的气体流动符合 forchheimer 非达西流动方程 ;⑥稳态渗流 ,且不考虑地层的垂向流动 。
2 数学模型的建立设裂缝的半长为f L ,m ; 宽度为f w , mm( 但在进行保角变换时,认为 f w =0 ) ;油层厚度为e h ,m ;基质有效渗透率为m K e μ310,-;裂缝内支撑剂层的渗透率为2310,m K f μ-,气井压裂后的产量为d m Q f /,3泄油半径为e R 生产压差为p ∆,Mpa ;地下天然气粘度为g μ,mP a ·s ;天然气体积系数为g B ,33/m m ; 在 Z 平面上建立x - y 坐标系如图1所示,其中,线段 AB 表示裂缝。
保角变换示意图取保角变换为chw L z f = (1)其中()2/w w e e chw -+= (2)式中e 为自然对数的底数 。
由保角变换原理可知,保角变换后产量不变,边界上的势不变,变化的仅是 线段 的长短和流动形式。
因此变换后仍可认为裂缝AB 与变换前AB 具有相同的f k 及f w 。
只是f w 值很小,在变换时认为f w =0。
但在W 平 面上联立气藏中流动和裂缝中流动的方程时,认为f w ≠0 。
设'',iy x w iy x z +=+=,则由(1)式得:y chx L x f cos '= ''sin y shx L y f =其中()2/''x x e e shx --=由式(3)和式(4)可知,图1(a)已对应映射为图1(b) (w 平面是宽度为兀的带状地层) 。
气田常用产能计算公式及配产方法
气田常用产能计算公式及配产方法作者:折文旭夏玉琴韩玙田建韩旭李勃阳周维锁文新宽杨燕来源:《中国科技博览》2019年第02期[摘要]目前气田常用的产能计算方法主要包括理论方法和经验公式法,根据气藏的驱动能量及开发阶段不同,气体的流动状态可以分为稳态和拟稳态两类。
合理配产是气井合理生产制度的核心。
常用的配产方法是经验配产法、采气曲线配产法、节点分析配产法。
对气田常用的产能计算公式和配产方法进行总结,便于产量计算需要时使用。
[关键词]产能;气井;经验公式;配产中图分类号:H319 文献标识码:A 文章编号:1009-914X(2019)02-0142-01产能就是油气储层动态特征的一个综合指标,它是油气储层生产潜力和各种影响因素之问在互相制约过程中达到的某种动态平衡。
井筒提供了储层流体和地面管线的流通通道,如果在一定时间内,地层平均压力变化可以忽略,当确定了井口回压或井底流压时,气井的产量可以利用渗流力学方法计算得到。
气井的气井产能评价与预测的方法很多,概括起来主要包括理论方法和经验方法。
1 产能计算理论方法1.1稳定状态流动条件下天然气产量的计算方法气井产能为一定井底回压下的气井供气量。
如果气井采出多少气体外界就补充进等量的气,则气井以恒产量生产一段时间后会达到稳定。
事实上,外界不可能有气源,气井生产一般不存在稳定流,只是在一个短时间内可以把流动视为稳定的。
为了建立气体从外边界留到井底时流入气量与生产压差的关系式,假设气层水平,等厚和均值,气体平面径向流入井底。
气体在渗流过程中,由于压力不断变化,因此气体的体积也在不断变化,由于气体的粘度要比液体要低的多,因此,气体的渗流速度,尤其是井壁附近,比液体要高的多。
一方面压力损失更集中于井壁附近,保护气井不受污染更加重要;另一方面,气体渗流过程中的惯性损失已不能忽略,因此达西定量已经不再适用,此时气井的径向流动状态要利用二项式定律描述:式中A,B分别为达西流动系数和非达西流动系数,并表示如下:式中:Pe—气藏供给边界压力,MPa;Pw—井底流压,MPa;qsc—标准状态下气井产量,m3/d;K—气层有效渗透率,10-3μm2;μg—气体粘度,mPa·s;Z—气体偏差系数;T—气层温度,K;h—气层有效厚度,m;re—泄气半径,m;rw—井底半径,m。
气井产能确定方法归类情况总结
气井产能确定方法气井产能是进行气井合理配产、评价气田生产能力的重要依据,其评价结果的可靠与否,直接关系到气田能否实现安全平稳生产。
目前常用的气井产能确定方法可分为六大类:一、无阻流量法气井绝对无阻流量是反映气井潜在生产能力的主要参数之一。
利用气井绝对无阻流量百分比大小确定气井产能的方法称为无阻流量法,该方法通常用于新井产能的确定。
气井绝对无阻流量值可通过气井产能测试直接求取,如多点的系统试井(或称为回压试井、稳定试井)、等时试井、修正等时试井及单点测试等方法。
某些条件下,对未进行产能测试的井,可应用已知气井绝对无阻流量与其地层系数或与其储能系数统计回归得到的经验关系式(q AOF ~Kh 、q AOF ~φhS g )来估算,还可采用简化试气经验判别法。
(一)产能测试法有关不同产能测试方法的适用条件及气井绝对无阻流量值求取的方法,请参见行业标准《SY/T 5440 试井技术规范》。
另外,在采用单点测试方法求取气井绝对无阻流量时,除利用已有的一点法公式外,还可根据各自气田的实际情况,建立适合于本地区气田的一点法产能公式,其原理与方法如下:气井的无量纲IPR 曲线的表达式为:()21D D D q q P αα-+= (1)也可变形为:D D D q q P )1(/αα-+= (2)式中: ()222/R wf R D P p p P -= (3)AOF g D q q q /= (4))/(AOF Bq A A +=α (5)(5)式中的A 、B 为气井二项式产能方程系数A 、B 。
由(1)式得: ()αααα-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛-+=1211412D Dp q (6) 将(4)式代入(6)式得:()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛-+-=1141122DgAOF p q q αααα (7)上面式中的α值,可通过其他井多点产能测试资料计算的二项式产能方程系数A 、B 统计回归确定,见图1。
考虑吸附气影响的页岩气井三项式产能计算方法
㊀㊀收稿日期:20220622;改回日期:20230216㊀㊀基金项目:国家科技重大专项 彭水地区常压页岩气开发技术政策及气藏工程方案 (2016ZX05061-016);中国石化重大科技项目 南川复杂构造带页岩气勘探开发关键技术 (P19017-3)㊀㊀作者简介:房大志(1984 ),男,副研究员,2006年毕业于中国石油大学(北京)环境科学专业,2009年毕业于该校石油地质专业,获硕士学位,现主要从事非常规油气勘探开发工作㊂DOI :10.3969/j.issn.1006-6535.2023.03.017考虑吸附气影响的页岩气井三项式产能计算方法房大志1,刘㊀洪2,庞㊀进2,谷红陶1,马伟骏1(1.中国石化重庆页岩气公司,重庆㊀408400;2.重庆科技学院,重庆㊀401331)摘要:针对页岩气吸附解吸对生产井产能影响规律不清晰的问题,基于致密气井的渗流特征和产能方程,从气体渗流微分方程出发,结合Langmuir 等温吸附公式,建立考虑页岩气吸附解吸的产能模型,根据页岩气井的钻完井和动态监测资料计算了页岩气井不同解吸时间下的产能和无阻流量,并根据回压试井资料,将吸附气影响转化为附加阻力系数,形成三项式产能计算方程,利用该方程研究了吸附气对页岩气产能计算的影响㊂结果表明:吸附气会导致页岩气井初期产能计算值偏高,解吸10d 后计算的无阻流量相对稳定;吸附气含量对页岩气井产能影响较大,吸附压力对产能影响较小;三项式产能计算结果与解析法模型计算结果误差小于12%,结果较为可靠㊂研究成果可为页岩气井产能评价提供参考㊂关键词:页岩气;产能;三项式;吸附气中图分类号:TE332㊀㊀文献标识码:A ㊀㊀文章编号:1006-6535(2023)03-0137-06A Trinomial Deliverability Calculation Method for Shale Gas Wells Considering the Effect of Adsorbed GasFang Dazhi 1,Liu Hong 2,Pang Jin 2,Gu Hongtao 1,Ma Weijun 1(1.Sinopec Chongqing Shale Gas Company ,Chongqing 408400,China ;2.Chongqing University of Science and Technology ,Chongqing 401331,China )Abstract :To address the problem of the unclear effect law of the shale gas adsorption -desorption on the deliver-ability of production wells ,based on the seepage characteristics and deliverability equation of tight gas wells ,a de-liverability model considering shale gas adsorption -desorption was established with reference to the gas seepage dif-ferential equation and in combination with the Langmuir isothermal adsorption equation ;the deliverability and open flow capacity of shale gas wells under different desorption time were calculated based on the drilling and completion and dynamic monitoring data of shale gas wells ,and the effect of adsorbed gas was transformed into additional re-sistance coefficients based on the information of back -pressure well testing to form a trinomial deliverability calcula-tion equation ,and this equation was used to study the effect of adsorbed gas on shale gas deliverability calculation.The results show that the adsorbed gas will cause a higher initial deliverability calculation value of shale gas wells ,and the calculated open flow capacity is relatively stable after 10d of desorption ;the adsorbed gas content has a greater influence on the deliverability of shale gas wells ,and the adsorption pressure has a smaller influence on thedeliverability ;the error between the results of the trinomial deliverability calculation and the analytical method mod-el calculation is less than 12%,and the results are more reliable.The research results can be used as a reference for the deliverability evaluation of shale gas wells.Key words :shale gas ;deliverability ;trinomial ;adsorbed gas0㊀引㊀言页岩气井产能是衡量页岩气开发效果的重要指标㊂目前,页岩气井产能计算方法主要包括经验公式法㊁解析模型法和数值模拟法㊂经验公式法是基于早期生产数据,通过产量变化规律拟合,预测㊀138㊀特种油气藏第30卷㊀不同时期的产量,常用的经验公式法有PLE㊁SEPD㊁Duong㊁LGM㊁PEPD 等[1-5]方法,但该类方法需要较长时间的产量数据,且只能预测定压生产条件下的产量,具有较大的局限性㊂解析模型法主要以页岩气地层流动和吸附解吸理论为基础,考虑页岩气在基质和裂缝系统中的流动规律,以及页岩气的吸附解吸特征,通过建立解析或者半解析模型来预测不同地质条件和生产条件下的产量[6-22]㊂该类模型通常还考虑了裂缝系统的应力敏感特征,典型的解析模型有Carlson㊁Fisher㊁Hasan㊁任俊杰㊁张烈辉㊁石军太㊁王海涛等[6-12]建立的模型,该类方法应用时需要准确的完井㊁地质和岩石物理参数,但这些参数很难全部获得,且存在预测偏差较大的问题㊂数值模拟法通过建立页岩储层地质模型,研究降压㊁解吸㊁扩散以及应力敏感现象对页岩气产能的影响,典型的数值模拟法有Williamson㊁Bustin㊁Wu㊁Freeman 等[13-16]建立的模拟方法,由于数值模拟器中的参数与实际施工或设计参数存在较大差异,产能评价仍存在较大偏差㊂上述3类产能预测方法均存在应用局限或不足,其主要原因是没有将生产数据与机理模型有机结合起来㊂因此,借鉴致密气流动理论,考虑页岩气的解吸特征,建立页岩气产能数学模型,将页岩气试气阶段的测试数据与页岩气产能数学模型结合,建立改进的页岩气井产能计算方法,为页岩气井产能评价提供科学可行的解释方法㊂1㊀页岩气井产能方程建立页岩气与致密气有相似的渗流理论基础,区别在于致密气井将吸附层的流动阻力考虑为启动压力梯度,而页岩气井中的解吸扩散气体则为页岩气井产量的补充量㊂因此,在致密气藏产能评价方法基础上,针对页岩气解吸㊁扩散特点,推导页岩气水平井产能方程,从而建立起页岩气产能评价方法㊂由于页岩气藏渗透率极低,大多采用水平井多级压裂的方式开采,故从等效压裂体积的角度出发,建立页岩气水平井产能方程㊂页岩气水平井体积压裂后形成网状裂缝,为便于计算,对裂缝系统进行了简化(图1),采用单相流模型㊂作如下假设:①气藏均质,且各向同性;②气藏边界是矩形封闭边界,水平井段位于气藏中心;③渗流过程为等温渗流;④裂缝中的流体流动符合达西渗流规律,同时不考虑裂缝与基质间的微观渗流,只研究流体流动的宏观规律;⑤单相气体渗流,忽略重力和毛管力影响;图1㊀页岩气水平井多级压裂示意图Fig.1㊀The schematic diagram of multi -stagefracturing of shale gas horizontal wells根据微观渗流速度,得到气井的产量:ν=K μ㊃d pd x(1)q x sc =ρg AνB g =ρg K (L f hN )B g μ㊃d pd x(2)从等温压缩定义推导产量公式:q x sc =2(y e -x )x e hϕC g ρg +ρg ρb V L p L(p r x -r e +p L )2τ(y e -x )x e h y e x e hϕC g ρg +ρg ρb V L p L(p r w -r e +p L )2τy e x e hq sc(3)式中:q x sc 为x 处在标准状态下的质量流量,kg /s;A为裂缝渗流截面总面积,m 2;q sc 为标准状态下产气量,m 3/s;K 为气层的有效渗透率,D;h 为气层的有效厚度,m;μ为气体黏度,mPa㊃s;Z 为气体偏差因子;ρg 为标准状况下气体密度,kg /m 3;C g 为天然气压缩系数,1/MPa;ρb 为页岩密度,kg /m 3;y e 为裂缝半长,m;x 为距井中心的距离,m;L f 为裂缝宽度,m;N 为裂缝条数,条;x e 为射孔段长度,m;τ为解吸时间,d;v 为气体渗流速度,m /s;ϕ为孔隙度;p L 为Langmuir 压力常数,MPa;V L 为Langmuir 体积常数,m 3/kg;d p /d x 为压力梯度,MPa /m;p r x -r e 为气层边界到距离x 处的平均压力,MPa;p r w -r e 为井底㊀第3期房大志等:考虑吸附气影响的页岩气井三项式产能计算方法139㊀㊀到气层边界的压力,MPa;B g 为体积系数㊂将式(2)代入式(3),引入表皮系数S ㊂同时,考虑页岩气井中的解吸扩散气体对能量的补充,引入解析扩散能量补充系数D ,得到产量表达式:q sc =246.7KL f hNρg ʏp e p wf2p μZd p +ʏp e p wfρb V L p L (p r w-r e+p L )2τ㊃1C g ϕ㊃2p μZ éëêêùûúúd p {}Tʏy e(1-xy e)d x +ʏy e 0ρb V L p L(p r x -r e +p L )2τ㊃1C g ϕ(1-x y e )éëêêùûúúd x +S +Dq sc {}(4)㊀㊀对式(4)整理㊁化简得到页岩气井产能方程:Δψ1+Δψ2=Aq sc +Bq 2sc(5)Δψ1=ʏp ep wf2p μZd p (6)Δψ2=ʏp e p wfρb V L p L(p r x -r e +p L )2τ㊃1C g ϕ㊃2pμZd p (7)ω1=4.05ˑ10-3T KL f hNρgʏy e 0(1-xy e 2)d x +ʏy eρb V L p L (p r x -r e +p L )2τ㊃1C gϕ(1-x y e 2)éëêêùûúúd x +S {}(8)ω2=4.05ˑ10-3TKL f hNρgD(9)式中:p wf 为井底流压,MPa;Δψ1为地层拟压力,MPa;Δψ2为井底拟压力,MPa;ω1为与渗流有关的阻力系数;ω2为与解吸扩散有关的阻力系数;D 为解吸扩散能量补充系数;S 为表皮系数;T 为井底温度,K ;p e 为气层边界压力,MPa㊂式(6)㊁(7)代入式(5)并整理得:(1+β)μZ ʏp e p wf2p d p =ω1q sc +ω2q 2sc(10)β=ρb V L p L(p r w -r e +p L )2τ㊃1C g ϕ(11)式中:β为代换常数,μ为气体平均黏度,mpa.s;Z 为气体平均偏差因子㊂由于β为常数,说明页岩气的产能公式仍可采用二项式表达,只是由于解吸的作用使得拟压力差增大,产量增加㊂由于页岩气储层往往具有超低渗特征,无法真正满足拟稳态要求,实际使用过程中该产能方程易出现 负斜率 的现象,从而导致气井产能无法计算㊂因此,在使用该方法计算时,若出现斜率为负时,则与常规方法类似,引入修正系数C ,再继续求解,此时产能方程为三项式的形式:p 2r -p 2wf =ω1q sc +ω2q 2sc +C(12)式中:p r 为地层压力,MPa㊂在进行(p 2r -p 2wf -C )/q sc 与q sc 关系的线性回归时,首先给定C 的初值,然后通过调整C 值,使得(p 2r -p 2wf -C )/q sc 与q sc 线性相关系数最高,从而确定最终的C 值㊂2㊀产能方程可靠性分析利用上述基于致密气产能方程改进的页岩气三项式产能方程对某南川页岩气田东胜气区不同生产制度试气井的产能进行预测,确定各井产能方程,计算6口井的无阻流量为15.90ˑ104~51.81ˑ104m 3/d(表1)㊂同时,根据6口井的完井和动态监测等基础数据,应用式(5) (9)计算6口井的无阻流量为15.01ˑ104~58.00ˑ104m 3/d,计算误差为-11.95%~10.55%,说明利用三项式产能解释方法计算页岩气井无阻流量是可行的㊂由于页岩气井产能影响因素复杂,气井的地质㊁表1㊀页岩气无阻流量计算㊀140㊀特种油气藏第30卷㊀完井等参数很难准确获取,导致计算产能方程系数ω1㊁ω2较为困难㊂利用三项式页岩气井产能计算方法的优点在于,不需要直接通过产能方程系数表达式计算模型参数ω1和ω2,而利用开井超过10d的回压试井数据,通过三项式非线性回归的形式计算产能方程系数,进而计算页岩气井产能㊂应用该方法时假设了测试过程地层压力不变或变化较小,对于测试时间较短的低压㊁常压页岩气井能够满足该条件㊂对于高压页岩气井,测试期间地层压力变化较大,直接应用上述方法会产生较大偏差㊂3㊀实例应用某页岩气井(SY1HF 井)原始地层压力为52.29MPa,地层温度为109.23ħ,渗透率为3.63ˑ10-2mD,裂缝宽度为68.7m,气层的有效厚度为45.3m,裂缝条数为14条,气体密度为0.572kg /m 3,裂缝半长为86.46m,页岩密度为2.6g /cm 3,Langmuir 体积常数为1cm 3/g,Langmuir 压力常数为5.60MPa,孔隙度为0.0527,天然气压缩系数为0.0083MPa -1,表皮系数为0,解吸扩散能量补充系数为3.5㊂利用式(8)㊁(9)分别计算不同解吸附时间的系数A ㊁B ,再由式(5)计算不同解吸时间的产能,进而计算不同解吸附时间的无阻流量㊂图2为Langmuir 体积常数对不同解吸时间无阻流量的影响㊂由图2可知:相同Langmuir体积常图2㊀Langmuir 体积常数对不同时间无阻流量的影响Fig.2㊀The effect of Langmuir volume constanton open flow capacity at different time数下,随着解吸时间的延长,气井无阻流量逐渐减小,最终趋于恒定值;相同解吸时间下,Langmuir 体积常数越大,气井无阻流量越高,但随着Langmuir体积常数不断增大,同一时间气井的无阻流量增量逐渐变小㊂图3为Langmuir 压力常数对不同解吸时间无阻流量的影响㊂由图3可知:Langmuir 压力常数对气井无阻流量的影响较小;相同Langmuir 压力常数下,随着解吸附时间的延长,气井无阻流量逐渐减小,最终趋于恒定值;相同解吸附时间下,Lang-muir 压力常数越大,气井无阻流量越高,但随着Langmuir 压力常数不断增大,同一时间气井的无阻流量增量逐渐变小㊂图3㊀Langmuir 压力对不同时间无阻流量的影响Fig.3㊀The effect of Langmuir pressureon open flow capacity at different time由于页岩储层致密的天然特征,决定了不同页岩存在吸附特征的差异㊂由图2㊁3可知:当吸附时间少于10d 时,无阻流量差异很大;当吸附时间超过10d 时,无阻流量基本稳定㊂使用开井初期的测试数据所解释的无阻流量值会偏大,开井时间超过10d 后所计算的无阻流量更稳定㊂因此,计算页岩气井产能时,应采用至少开井10d 以后的测试数据㊂以SY1HF 井放喷测试为例,放喷测试不同阶段井口套压㊁日产气量和日产水量见表2(表中Ω=(p r 2-p wf 2)/q sc ),开井10d 后3种不同尺寸油嘴放喷测试曲线如图4所示㊂根据Beggs &Brill 多相管流模型计算对应测试时刻的井底流压,按照常规二项式解释的步骤,(p r 2-p wf 2)/q 作与q 的关系曲线,发现数据点并不在一条直线上㊂因此,引入修正系数C 来修正吸附气引起的附加阻力影响,形成三项式产能方程,并利用试算法回归求解产能方程系数ω1㊁ω2㊁C ㊂通过不断试算发现,当SY1HF 井C 值为28时,拟合情况最好,图5为通过试算C 值后SY1HF 井获得的产能曲线㊂利用线性回归拟㊀第3期房大志等:考虑吸附气影响的页岩气井三项式产能计算方法141㊀㊀表2㊀SY1HF放喷测试产能分析数据图4㊀SY1HF放喷测试曲线Fig.4㊀The blowout test curve of Well SY1HF合得到SY1HF井的产能方程系数ω1=0.465,ω2= 99.272,产能方程为p r2-p wf2=0.465q sc2+99.272q sc +28㊂3种不同尺寸油嘴放喷测试平均无阻流量为24.46ˑ104m3/d,与产能公式解吸附40d计算的无阻流量25.62ˑ104m3/d相比,两者相差4.5%,且曲线总体形状相近(图6),表明引入修正系数C值来修正吸附气引起的附加阻力项对IPR曲线和无阻流量的计算影响,方法具有较强的适用性㊂图5㊀SY1HF井放喷测试三项式产能曲线Fig.5㊀The trinomial deliverability curve of Well SY1HF blowout test图6㊀SY1HF井产能计算与测试解释IPR曲线对比Fig.6㊀The comparison of deliverability calculation and test interpretation IPR curves of Well SY1HF 4㊀结㊀论(1)基于致密气渗流特征,考虑页岩气的解吸扩散特征,建立了页岩气井产能模型,通过模型求解,利用钻完井和动态监测数据,得到产能方程系数和气井无阻流量㊂(2)解吸时间较短,计算无阻流量偏高;开井解吸10d后,计算的无阻流量相对可靠㊂(3)吸附气含量对页岩气井产能影响较大,吸附气含量越高,页岩气井产能越大;吸附压力对页岩气井产能影响较小㊂(4)根据开井10d后回压测试获得的产量和压力,利用页岩气井三项式产能方程计算出页岩气井产能与产能模型计算的结果偏差小于12.00%,产能计算结果相对可靠㊂参考文献:[1]DILHAN Ilk,STEPHANIE Marie Currie,DAVE Symmons,etal.Hybrid rate-decline models for the analysis of production per-formance in unconventional reservoirs[C].SPE135616,2010:1-㊀142㊀特种油气藏第30卷㊀39.[2]PETER P,VALKO W,JOHN Lee.A better way to forecast pro-duction from unconventional gas wells [C ].SPE134231-MS,2010:1-16.[3]ANH N D.An unconventional rate decline approach for tight andfracture -dominated gas wells [C].SPE137748-MS,2010:1-15.[4]AARON James Clark,LARRY Wayne Lake,TADEUSZ WiktorPatzek.Production forecasting with logistic growth models [C].SPE144790-MS,2011:1-11.[5]陈元千,徐佳倩,傅礼兵,等.对SEPD 模型和YM -SEPD 方法的评论及PEPD 模型的建立与应用[J].断块油气田,2020,27(6):766-769.CHEN Yuanqian,XU Jiaqian,FU Libing,et al.Review for SEPDmodel and YM -SEPD method,as well as establishment and appli-cation of PEPD model[J].Fault -Block Oil &Gas Field,2020,27(6):766-769.[6]CARLSON Eric S,MERCER James C.Devonian shale gas produc-tion:mechanisms and simple models [J].Journal of Petroleum technology,1991,43(4):476-482.[7]MARC Kevin Fishe,CHRISTOPHER A Wright,BRIAN MichaelDavidso,et al.Integrating fracture mapping technologies to im-prove stimulations in the Barnett shale[J].SPE Production &Fa-cilities,2005,20(2):85-93.[8]AL -AHMA H A,WATTENBARGER R A.Triple -porosity mod-els:one further step towards capturing fractured reservoirs hetero-geneity[C].SPE149054-MS,2011:1-21.[9]任俊杰,郭平,王德龙,等.页岩气藏压裂水平井产能模型及影响因素[J].东北石油大学学报,2012,36(6):76-81.REN Junjie,GUO Ping,WANG Delong,et al.Productivity model of fractured horizontal wells in shale gas reservoirs and analysis ofinfluential factors[J].Journal of Northeast Petroleum University,2012,36(6):76-81.[10]ZHAO Yulong,ZHANG Liehui,ZHAO Jinzhou,et al. Triple po-rosity modeling of transient well test and rate decline analysis for multi -fractured horizontal well in shale gas reservoirs[J].Journal of Petroleum Science and Engineering,2013,110(9):253-262.[11]SHI Juntai,ZHANG Lei,LI Yuansheng,et al.Diffusion and flowmechanisms of shale gas through matrix pores and gas production forecasting[C].SPE167226-MS,2013:1-19.[12]WANG Haitao.Performance of multiple fractured horizontal wellsin shale gas reservoirs with consideration of multiple mechanisms[J].Journal of Hydrology,2014,510(4):299-312.[13]董鹏,陈志明,于伟.压裂后页岩油藏多裂缝直井产能模型:以鄂尔多斯盆地页岩油井为例[J].大庆石油地质与开发,2022,41(1):155-165.DONG Peng,CHEN Zhiming,YU Wei.Study on productivitymodel for multiple -fracture vertical well in shale oil reservoirs af-ter fractured:a case of shale oil wells in Ordos Basin[J].Petrole-um Geology &Oilfield Development in Daqing,2022,41(1):155-165.[14]邱凯旋,李恒,张丽霞,等.考虑定压生产的陆相页岩气藏多层窜流产能模型[J].非常规油气,2023,10(1):104-110.QIU Kaixuan,LI Heng,ZHANG Lixia,et al.Continental shale gasreservoir interlayer crossflow production model considering con-stant pressure condition[J].Unconventional Oil &Gas,2023,10(1):104-110.[15]姜瑞忠,刘秀伟,王星,等.煤层气藏多分支水平井非稳态产能模型[J].油气地质与采收率,2020,27(3):48-56.JIANG Ruizhong,LIU Xiuwei,WANG Xing,et al.Unsteady pro-ductivity model for multi -branched horizontal wells in coalbed methane reservoir[J].Petroleum Geology and Recovery Efficien-cy,2020,27(3):48-56.[16]郑亚军,刘宝成,张旭泽,等.数据驱动与地质规律融合的超低渗油藏产能预测方法[J].石油地质与工程,2022,36(4):75-81.ZHENG Yajun,LIU Baocheng,ZHANG Xuze,et al.Productivityprediction method of ultra -low permeability reservoir based ondata -driven and geological law[J].Petroleum Geology &Engi-neering,2022,36(4):75-81.[17]赵迪斐,郭英海,朱炎铭,等.深层海相页岩储层精准评价与开发选层的评价体系问题评述[J].非常规油气,2022,9(2):1-7.ZHAO Difei,GUO Yinghai,ZHU Yanming,et ments onthe evaluation system of accurate evaluation and selection of deepmarine shale reservoirs[J].Unconventional Oil &Gas,2022,9(2):1-7.[18]赵国翔,姚约东,王链,等.页岩油藏微尺度流动特征及应力敏感性分析[J].断块油气田,2021,28(2):247-252.ZHAO Guoxiang,YAO Yuedong,WANG Lian,et al.Microscale transport behaviors of shale oil and stress sensitivity analysis[J].Fault -Block Oil &Gas Field,2021,28(2):247-252.[19]FRANTZ J H,WILLIAMSON J R.Evaluating Barnett Shale pro-duction performance -using an integrated approach [C ].SPE96917-MS,2005:1-18.[20]BUSTIN A M M,BUETIN R M,CUI Xiaojun.Importance of fabricon the production of gas shale[C].SPE114167-MS,2008:1-29.[21]WU Yushu,MORIDIS George,BAI Baojun,et al.A multi -contin-uum method for gas production in tight fracture reservoirs[C].SPE118944.2009:1-16.[22]FREEMAN Craig Moridis,GEORGE J,DILHAN Ilk,et al.A nu-merical study of transport and storage effects for tight gas and shale gas reservoirs[C].SPE131583,2009:1-20.编辑㊀姜广义。
气井产能计算优选文档
适用于
拟压力法
全压力区间
μZ
P2 法
P const
Z
P法
14.7 21.3
P(MPa)
拟压力法适用于整个压力区间。
塔里木克拉201井测试井段为3665.03695.0,气层中部压力73.84MPa,压力系数 高达2.1,克拉201井属于异常高压气井,用 传统压力平方法,得到无阻流量为49.04万方 /天:
压,最后在以一个小产 量(最好油嘴用第二产 量油嘴)。生产达到稳
pR
p
pwf1
pwf2
定,并得稳定流压 ,
记录Pwf 5每个产量以及其结 束时刻的井底流压 .
Pwfi
q4 q3
pwf3
pwf4
图9-4 等时试井示意图
q5
t
pwf5
t
等时试井的分析方法仍然有指数式和二项 式分析方法,而且分别还有压力法、压力平 方法和拟压力法。
a。绝对无阻流量为
qAO F
a24b(PR20.1012)32 a5 2b
估算地层参数:
注意上式中的系数A是在产量用万方/天时 得到的。
第二节 气井等时试井分析
有理论基础(均质渗流理论)
用4—5个产量,由小
到大。生产相同时间
q
(等时)如8hr或12hr,
q1
q2
每个产量结束后关井使
地层压力恢复到气层静
式产能方程系数c,n(方法与回压试井一样),从而
得产能方程:
二、二项式产能方程
PR2Pwf2 aqbq2
P2 a bq
q
q 在直角坐标系中,作点:(
i
,p
2 R
P2 wfi
q
)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拟压力法
全压力区间
μZ
P2
法
P法
P const Z
14.7
21.3
P(MPa)
拟压力法适用于整个压力区间。
塔里木克拉201井测试井段为3665.03695.0,气层中部压力73.84MPa,压力系数 高达2.1,克拉201井属于异常高压气井,用 传统压力平方法,得到无阻流量为49.04万方 /天:
拟压力法:
压力平方法:
第三节 修正等时试井 严格等时试井,要求每个生产制度关井 后压力要达到地层静压,在低渗透油气藏试 井中,关井压力达到稳定,仍需要很长时间, 为使问题简化和节约时间,可以采用修正等 时试井,修正等时试井分析方法是一种经验 近似方法。
修正等时试井要求每个产量生产时间和其 后的关井时间一样。比如开井生产8小时,关 8小时(或开12小时,关12小时)。测量开井 时刻和关井时刻的压力以及最后一个产量达到 井底流压稳定时的压力,如下图示意:
令修正值C=-0.6,即地层压力=15.78 ,便 得到正向的曲线,此时
Qaof=14.1 万方/d
涩20,90年11月18日测试,指数式压力平方法
"涩20-901118井生产信息" 气产量(万 方 /天 ) 1 1.0881 油产量 (万方/ 天) 0 水产量 (方 / 天 ) 1.2 井底压力 (兆帕) 3.745
PR Pwf aq bq
2
2
2
2
P a bq q p 在直角坐标系中,作点:( q i ,
2 R
2 Pwfi
qi
)
利用前四个不稳定点,作出不稳定产能曲 线,再作出最后一个稳定点。并过此点作不稳 定产能直线的平行线。得到稳定产能直线,从 而确定二项式产能方程的系数a,b,如下图示意:
气井产能试井
稳定试井:
1.回压试井
2.等时试井
3.改进等时试井 4.一点法试井
回压试井
改变几个工作制度,一般4~5个,产量由 小到大,控制回压达到流量稳定。同时井底流压 也达稳定。记录每个工作制度下的稳定气产量q 和稳定的井底流压P如下图示意。
气井产能试井传统叫做“回压试 井”(back pressure test)
一、一点法:测取一个稳定产量q和该产量下的 稳定井底流压,以及当时的气层静压,过目前 稳定点作原产能曲线的平行线。便得现在的产 能直线,以稳定试井二项式分析为例,如下图 示意:
原稳定产能曲线
△P2/q
现测稳定点
q
注意的是,现稳定产量的压差用现在地层压力 减现在井底稳定流压。
二,经验法-----统计法 本井原没有产能方程,但本气田,本区块其它一批 井有产能数据,可据这些产能方程,确定一个无阻 流量 经验式,在本井只测一个稳定点,便可估算该 井的 q AOF
7. 层间干扰; 8. 地层渗透率发生变化;
为什么产能方程出现 n>1 或 B<0 的情况: (庄惠农书 P89) 对于指数式,n 称为湍流指数,0.5<n≤1: n=0.5…完全湍流, n=1 完全层流 对于n>1时按 n=1处理,如 FAST软件。
对于二项式方程中,出现 B<0(直线反向) 问题,原因多方面: (1) 气井初开井时,井底没有得到充分的 冲刷,具有较大表皮,使最初低产量下流 压偏低,显示较大的生产压差; (2) 测试井井底积液,而压力计又未能下 到气层部位,使生产压差不准。
现场改进等时试井实测资料:
1、先稳定生产,得产量数据 2、关井测压力恢复,基本恢复到气层静压 (测试时间7-10天) 3、开井生产24hr,关24 hr,4开4关 不测最后一个稳定点,稳定点是关井 测压恢的关井点。
压力法
指数式 压力平方法:
拟压力法:
压力法 二项式 压力平方法:
拟压力法:
拟压力法:
2
示意。 得到一直线产能曲线,斜率为b,截距为 a。绝对无阻流量为
q AOF a 4b( PR 0.101325 2 ) a
2 2
2b
估算地层参数:
注意上式中的系数A是在产量用万方/天时 得到的。
第二节 气井等时试井分析
有理论基础(均质渗流理论)
用4—5个产量,由小 到大。生产相同时间 (等时)如8hr或12hr, 每个产量结束后关井使 地层压力恢复到气层静 压,最后在以一个小产 量(最好油嘴用第二产 量油嘴)。生产达到稳 定,并得稳定流压 , Pwf 5 记录每个产量以及其结 束时刻的井底流压 .
气井等时试井全历史拟合
目的:获得更可靠结果 原理:不稳定试井 变产量迭加
试井之星软件解释:
试井之星软件解释:
关于二项式直线反向问题:
系统试井曲线异常原因: 1. 测试资料不准确; 2. 测试时间不够长,井底压力未达到稳定;
3. 井底有积液;
4. 钻井液侵泡或井底有堵塞物;
5. 底水的影响; 6. 凝析油的析出,井底造成污染;
二项式压力平方法 指数式压力平方法
663880
490414 495877 21.534 20.660
指数式方程
一、指数式方程
在完全层流的情况下,气井稳定流动的砂面 产量公式为:
qs
786kh( p
2
r
p wf )
2
re zT [ln 0.5] rw
qs
即
786kh( p
2
r
p wf )
得:
陈元千据川南16口气井稳定试井资料统计,取
0.25
长庆靖边气田的单点产能计算公式
利用19口稳定试井资料绘制无因次IPR曲线,如 下图:
式进行二项式回归分析后得:
由上式可知,长庆靖边气田的 统计值为 0.2585
式得长庆靖边气田的单点计算公式为:
经验式2:
q AOF
q Pwf 2 0.6594 1.0434[1 ( ) ] PR
2 R 2 wfj
(i=1,2,3,4)的关系曲线的不稳定产能曲线AB
2 q p 再在图上作出最后一个稳定流动点C( 5 , 5 ) ,
过C点作AB 直线的平行线,便得真正需要的稳 定产能曲线D线,通过稳定产能直线可确定指数 式产能方程系数c,n(方法与回压试井一样),从而 得产能方程:
二、二项式产能方程
得:
p p 2 pR
2 R
2 wf
q qAOF
(1 )(
q qAOF
)2
式中:
A A BqAOF
2 2 pR pwf pD 2 pR
若令:
qD
q qAOF
得无因次IPR方程
pD qD (1 )(qD )
2
取不同的
值,就有不同的一点法经验公式。
Pwfi
q q1 q2 q4 q3 q5
pR p pwf1
t
pwf2 pwf3
pwf4
pwf5
图9-4 等时试井示意图
t
等时试井的分析方法仍然有指数式和二项 式分析方法,而且分别还有压力法、压力平 方法和拟压力法。
指数式分析法:
q C(P P )
2 R 2 wf
n
用压力平方法时,绘制
log( p p )与log(qg )
2 3 4 原始井底压 力:
1.1814 1.2772 1.1 13.488
0 0 0
1.65 1.88 0
2.55 3.07 2.767
涩20-901118 指数式压力平方法分析结果:
产能公式:
2n
2
2 n
气井绝对无阻流量是气井产能重要 参数,它是配产的重要依据,一般可按 绝对无阻流量的三分之一或四分之一配 产。对于涩北气田,由于是疏松砂岩, 极易出砂,配产应按绝对无阻流量的四 分之一或更小进行。
2、可以预测某一流压下的产量
n=0.8065 接近=1,基本是层流
二、二项式产能方程
在气体高速流时,惯性和湍流效应(IT效应) 变得十分显著,已不符合达西线性渗流规律。在 此种情况下 ForChheimer(1901) 提出了对达西 线性渗流方程的二阶修正式:
压力平方法:
注意: 作各点的压差时与等时试井不同:
要作成:
Pwsj Pwfj
而不是:
Pr Pwfj
注意:
Pwsj Pwfj
试井之星软件处理结果:
试井之星软件处理结果:
试井之星软件处理结果:
凝析油处理
将凝析油折算成等量气加到产气量中。
第四节 一点法试井
一口井已获得产能方程后,经过一段时 间的开采 ,产能可能发生变化,为了进行产 能校正,可进行一点法试井。
现在统一叫:产能试井
Deliverability tests
回压试井又叫稳定试井。其处理方法有 指数式, 二项式。
另外又分别有 压力法, 压力平法 拟压力法。
压力法, 指数式 压力平方法 拟压力法。
压力法,
二项式 压力平方法
拟压力法。
适用于 压力法 压力平方法
高压气井(>21.3MPa)
适用于
得到c、n后,便得到了气井产能方程
气井产能方程有如下用途。 1、计算无阻流量: 绝对井底无阻流压为 0.101325MPa (表压为 0MPa)。此时的产量称为无阻流量(潜产能), 用q(Absolute Open Flow)(qAOF)表示。
qAOF c( PR 0.101325 ) cPR
涩4-2-990926 改进等时试井 二项式反向:
指数n=1.65 >1 ,这不正常,无阻 流量偏大。进行指数式校正:
修正方法1:认为地层压力给的大了一点(原地层 压力为:16.38),采用 Qg=C((Pr+Cj)2-Pwf2)n , 取修正值Cj=-0.485,便得到一条 n=0.995 的 指数式产能直线,这时:Qaof=16.17万方/天。 修正值Cj=-0.485