离散数学 第1章 习题解答
02324离散数学(课后习题解答(详细)
离散数学~习题1.11.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴中国有四大发明。
⑵计算机有空吗?⑶不存在最大素数。
⑷21+3<5。
⑸老王是山东人或河北人。
⑹2与3都是偶数。
⑺小李在宿舍里。
⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以 。
⑾只有6是偶数,3才能是2的倍数。
⑿雪是黑色的当且仅当太阳从东方升起。
⒀如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。
2. 将下列复合命题分成若干原子命题。
⑴李辛与李末是兄弟。
⑵因为天气冷,所以我穿了羽绒服。
⑶天正在下雨或湿度很高。
⑷刘英与李进上山。
⑸王强与刘威都学过法语。
⑹如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。
3. 将下列命题符号化。
⑴他一面吃饭,一面听音乐。
⑵3是素数或2是素数。
⑶若地球上没有树木,则人类不能生存。
⑷8是偶数的充分必要条件是8能被3整除。
⑸停机的原因在于语法错误或程序错误。
⑹四边形ABCD是平行四边形当且仅当它的对边平行。
⑺如果a和b是偶数,则a+b是偶数。
解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:⌝p→⌝q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。
离散数学第1章习题答案
#include<stdio.h>#include<stdlib.h>#include<malloc.h>#define MAX_STACK_SIZE 100 typedef int ElemType; typedef struct{ElemType data[MAX_STACK_SIZE];int top;} Stack;void lnitStack(Stack *S){S->top=-1;}int Push(Stack *S,ElemType x){if(S->top==MAX_STACK_SIZE-1){printf("\n Stack is full!");return 0;}S->top++;S->data[S->top]=x;return 1;}int Empty(Stack *S){return (S->top==-1);}int Pop(Stack *S,ElemType *x){if(Empty(S)){printf("\n Stack is free!");return 0;}*x=S->data[S->top];S_>top__;return 1;}void conversion(int N){int e;Stack *S=(Stack*)malloc(sizeof(Stack));InitStack(S); while(N){Push(S,N%2);"}while(!Empty(S)){Pop(S, &e);printf("%d ",e);}}void main(){ int n;printf(" 请输入待转换的值n: \n");scanf ("%d",&n);conversion(n);1. 判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1) 离散数学是计算机专业的一门必修课。
离散数学习题解答_屈婉玲耿素云高等教育出版社(第一部分)
(10)除非天下大雨,否则他不乘班车上班;
(11)下雪路滑,他迟到了;
(12)2 与 4 都是素数,这是不对的;
(13)“2 或 4 是素数,这是不对的”是不对的.
答:
命题 1
命题 2
(1) p:刘晓月跑得快 q:刘晓月跳得高
命题 3 -
符号化
(2) p:老王是山东人 q:老王是河北人
-
(3)
p:天气冷
(6)
只要俄罗斯不位于南半球,亚洲人口就不是最多
(7)
只要亚洲人口不是最多,俄罗斯就不位于南半球
真值 1 0 1 1 1 0 1
10.设 p:9 是 3 的倍数,q:英国与土耳其相邻,将下面命题用自然语言表述,并指出真值:
(1)
;
(2)
;
(3)
;
(4)
.
答:根据题意,p 为真命题,q 为假命题.
自然语言
的类型.
27.设 A、B 都是含命题变量项 p1,p2,…,pn 的公式,证明:
重言式.
解:
A
B
是重言式当且仅当 A 和 B 都是
(2)p: 是无理数.
(7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以π. (13)p:2008 年元旦下大雪.
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.
(1) 5 是有理数.
答:否定式: 5 是无理数. p : 5 是有理数. q : 5 是无理数.其否定式 q 的真值
0
1
0
0
1
0
1
0
1
0
1
1
0
1
1
1
离散数学第一章命题逻辑习题答案
习题一
1.
利用逻辑联结词把下列命题翻译成符号逻辑形式: (7)不识庐山真面目,只缘生在此山中。 令P:身在此山中; Q:识庐山真面目;译为P ~ Q (8)两个三角形相似当且仅当它们对应角相等或者对应边 成比例。 令P:两个三角形相似; Q:对应角相等; R:对应边成比例;译为 P (Q R) (9)如果一个整数能被6整除,那么它就能被2和3整除。 如果一个整数能被3整除,那么它的各位数字之和也能 被3整除。 令P:被6整除; Q:被2整除; R:被3整除; S:各位数字之和被3整 除。译为(P (Q R)) (R S)
习题一 14.
• 从A、B、C、D4人中派2人出差,要求满足下述条件:如 果A去,则必须在C或D中选一人同去;B和C不能同时去; C和D不能同去。用构造范式的方法决定出选派方案。 若X表示“X去出差”, 可得公式 (A (C D)) ~(B C) ~(C D) (~A (C ~D) (~C D) ) (~B ~C ) (~C ~D ) …… (~A ~B ~C ~D) (~A ~B ~C D) (~A ~B C ~D) (~A B ~C ~D) (A ~B ~C D) (A ~B C ~D) (~A B ~C D) (A B ~C D) 可得派法: {B, D} {A, C} {A, D}
(完整版)离散数学答案(尹宝林版)第一章习题解答
(完整版)离散数学答案(尹宝林版)第一章习题解答第一章命题逻辑习题与解答⒈ 判断下列语句是否为命题,并讨论命题的真值。
⑴ 2x - 3 = 0。
⑵ 前进!⑶ 如果8 + 7 > 20,则三角形有四条边。
⑷ 请勿吸烟!⑸ 你喜欢鲁迅的作品吗?⑹ 如果太阳从西方升起,你就可以长生不老。
⑺ 如果太阳从东方升起,你就可以长生不老。
解⑶,⑹,⑺表达命题,其中⑶,⑹表达真命题,⑺表达假命题。
⒉ 将下列命题符号化:⑴ 逻辑不是枯燥无味的。
⑵ 我看见的既不是小张也不是老李。
⑶ 他生于1963年或1964年。
⑷ 只有不怕困难,才能战胜困难。
⑸ 只要上街,我就去书店。
⑹ 如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐。
⑺ 如果林芳在家里,那么他不是在做作业就是在看电视。
⑻ 三角形三条边相等是三个角相等的充分条件。
⑼ 我进城的必要条件是我有时间。
⑽ 他唱歌的充分必要条件是心情愉快。
⑾ 小王总是在图书馆看书,除非他病了或者图书馆不开门。
解⑴ p :逻辑是枯燥无味的。
“逻辑不是枯燥无味的”符号化为 ?p 。
⑵ p :我看见的是小张。
q :我看见的是老李。
“我看见的既不是小张也不是老李”符号化为q p ?∧?。
⑶ p :他生于1963年。
q :他生于1964年。
“他生于1963年或1964年”符号化为p ⊕ q 。
⑷ p :害怕困难。
q :战胜困难。
“只有不怕困难,才能战胜困难”符号化为q → ? p 。
⑸ p :我上街。
q :我去书店。
“只要上街,我就去书店”符号化为p → q 。
⑹ p :小杨晚上做完了作业。
q :小杨晚上没有其它事情。
r :小杨晚上看电视。
s :小杨晚上听音乐。
“如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐”符号化为s r q p ∨→∧。
⑺ p :林芳在家里。
q :林芳做作业。
r :林芳看电视。
“如果林芳在家里,那么他不是在做作业就是在看电视”符号化为r q p ∨→。
⑻ p :三角形三条边相等。
离散数学 左孝凌 课后习题解答 详细
表 1.33
p q q→p p→(q→p) p q p→q p→(p→q)
00 1
1
11 1
1
01 0
1
10 1
1
10 1
1
01 1
1
11 1
1
00 0
1
8
第1章 习题解答
由上表可见:p→(q→p)和p→(p→q)的真值表完全相同,且都是永真式,所以 p→(q →p)p→(p→q)。
⑹(p↔q)(p∨q)∧(p∧q) 证明:证明(p↔q)和(p∨q)∧(p∧q)的真值表如表 1.34 所示。
表 1.29
p q p→q (p→q) q p∧q
00 1Biblioteka 01001 100
0
10 0
11
1
11 1
00
0
由上表可见:(p→q)和 p∧q 的真值表完全相同,所以(p→q)p∧q。 ⑵p→qq→p 证明:证明 p→qq→p 的真值表如表 1.30 所示。
表 1.30
p q p→q p q q→p
00 1 1 1
3
第1章 习题解答
⑶ p:我们划船;q:我们跑步;原命题符号化为:(p∧q)。 ⑷ p:你来了;q:他唱歌;r:你伴奏;原命题符号化为:p→(q↔r)。 5. 用符号形式写出下列命题。 ⑴假如上午不下雨,我去看电影,否则就在家里读书或看报。 ⑵我今天进城,除非下雨。 ⑶仅当你走,我将留下。 解:⑴ p:上午下雨;q:我去看电影;r:我在家读书;s:我在家看报;原命题符 号化为:(p→q)∧(p→r∨s)。 ⑵ p:我今天进城;q:天下雨;原命题符号化为:q→p。 ⑶ p:你走;q:我留下;原命题符号化为:q→p。
1
离散数学第一章习题解答,屈婉玲耿素云高等教育出版社
习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为1.(2是无理数.答:此命题是简单命题,其真值为1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为1.x+<(4)235答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p:错误!未找到引用源。
是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1是有理数.是无理数.p.q.其否定式q的真值为1.(2不是无理数.答:是有理数. p 不是无理数. q 是有理数. 其否定式q 的真值为1.(3)2.5是自然数.答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值. (1)2与5都是素数答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1.(2)不但π是无理数,而且自然对数的底e 也是无理数.答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数.答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧⌝,其真值为1. (4)3是偶素数.答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数.答:p :4是素数,q :4是偶数,符号化为p q ⌝∧⌝,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数.(4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数.答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ⌝∨⌝,其真值为1.(5) 符号化:r s ⌝∨⌝,其真值为0. 6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ⌝∧∨∧⌝. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p与q同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p与q不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值.(1)只要错误!未找到引用源。
离散数学(第五版)清华大学出版社第
离散数学(第五版)清华大学出版社第1章习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2(1)p:2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命可编辑范本题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。
离散数学第二版邓辉文编著第一章第二节习题答案(可编辑修改版).
离散数学第二版邓辉文编著第一章第二节习题答案1.2 映射的有关概念习题1.21. 分别计算⎡1. 5⎤,⎡-1⎤,⎡-1. 5⎤,⎣1. 5⎦,⎣-1⎦,⎣-1. 5⎦.解⎡1. 5⎤=2,⎡-1⎤=-1,⎡-1. 5⎤=-1,⎣1. 5⎦=1,⎣-1⎦=-1,⎣-1. 5⎦=-2.2. 下列映射中,那些是双射? 说明理由.(1)f :Z →Z , f (x ) =3x .(2)f :Z →N , f (x ) =|x |+1.(3)f :R →R , f (x ) =x 3+1.(4)f :N ⨯N →N , f (x 1, x 2) =x 1+x 2+1.(5)f :N →N⨯N , f (x ) =(x , x +1).解 (1)对于任意对x 1, x 2∈Z,若f (x 1) =f (x 2) ,则3x 1=3x 2,于是x 1=x 2,所以f 是单射. 由于对任意x ∈Z,f (x ) ≠2∈Z,因此f 不是满射,进而f 不是双射.(2)由于2, -2∈Z且f (2) =f (-2) =3,因此f 不是单射. 又由于0∈N,而任意x ∈Z均有f (x ) =|x |+1≠0,于是f 不是满射. 显然,f 不是双射.(3)对于任意对x 1, x 2∈R,若f (x 1) =f (x 2) ,则x 1+1=x 2+1,于是x 1=x 2,所以f 是单射. 对于任意y ∈R,取x =(y -1) ,这时1⎡⎤3f (x ) =x +1=⎢(y -1) 3⎥+1=(y -1) +1=y ,⎣⎦33313所以f 是满射. 进而f 是双射.(4)由于(1, 2), (2, 1) ∈N⨯N 且(1, 2) ≠(2, 1) ,而f (1, 2) =f (2, 1) =4,因此f 不是单射. 又由于0∈N,而任意(x 1, x 2) ∈N⨯N 均有f (x 1, x 2) =x 1+x2+1≠0,于是f 不是满射. 显然,f 就不是双射.(5)由于x 1, x 2∈N,若f (x 1) =f (x 2) ,则(x 1, x 1+1) =(x 2, x 2+1) ,于是x 1=x 2,因此f 是单射. 又由于(0, 0) ∈N⨯N ,而任意x ∈N均有f (x ) =(x , x +1) ≠(0, 0) ,于是f 不是满射. 因为f 不是满射,所以f 不是双射.3. 对于有限集合A 和B ,假定f :A →B且|A |=|B |,证明: f 是单射的充要条件是f 是满射. 对于无限集合,上述结论成立吗?举例说明.证(⇒) 因为f 是单射,所以|A |=|f (A ) |. 由于|A |=|B |,所以|f (A ) |=|B |. 又因为B 有限且f (A ) ⊆B ,故f (A ) =B ,即f 是满射.(⇐) 若f 是满射,则f (A ) =B . 由于|A |=|B |,于是|A |=|f (A ) |. 又因为A 和B 是有限集合,因此f 是单射.对于无限集合,上述结论不成立. 例如f :N →N,f (x ) =2x ,f 是单射,但f 不是满射.4. 设f :A →B , 试证明:(1)f I B =f .(2)I A f =f .特别地,若f :A →A,则f I A =I A f =f .证 (1)对于任意x ∈A,由于f (x ) ∈B,所以(f I B )(x ) =I B (f (x )) =f (x ) ,因此f I B =f .(2)对于任意x ∈A,由于I A (x ) =x ,所以(I A f )(x ) =f (I A (x )) =f (x ) ,于是有I A f =f .由(1)和(2)知,若f :A →A,则f I A =I A f =f .5. 试举出一个例子说明f f =f 成立,其中f :A →A且f ≠I A . 若f 的逆映射存在,满足条件的f 还存在吗?解令A ={a , b , c },f (a ) =f (b ) =f (c ) =a ,即对于任意x ∈A,f (x ) =a ,显然f :A →A且f ≠I A . 而对于任意x ∈A,有(f f )(x ) =f (f (x )) =f (a ) =a ,因此f f =f .若f f =f 且f 的逆映射f -1存在,由第3题知f f =f =f I A ,所以-1-1于是利用定理7有(f f ) f =(f f ) I A ,f -1 (f f ) =f -1 (f I A ) ,进而I A f =I A I A ,因此f =I A . 所以若f 的逆映射存在,满足条件的f 不存在.6. 设f :A →B , g :B →C . 若f 和g 是满射,则f g 是满射,试证明.证因为f 是满射,所以f (A ) =B . 又因为g 是满射,所以g (B ) =C . 于是(f g ) (A ) =g (f (A )) =g (B ) =C ,因此f g 是A 到C 的满射.另证对于任意z ∈C,因为g 是满射,于是存在y ∈B使得g (y ) =z . 又因为f 是满射,存在x ∈A使得f (x ) =y . 因此,(f g )(x ) =g (f (x )) =g (y ) =z ,所以f g 是A 到C 的满射.7. 设f :A →B , g :B →C . 试证明: 若f g 是单射,则f 是单射. 试举例说明,这时g 不一定是单射.证对于任意x 1, x 2∈A,假定f (x 1) =f (x 2) ,则显然g (f (x 1)) =g (f (x 2)) ,即(f g )(x 1) =(f g )(x 2) . 因为f g 是单射,所以x 1=x 2,于是f 是单射.例如A ={a , b },B ={1, 2, 3},C ={α,β,γ,δ},令f (a ) =1, f (b ) =2,g (1) =α, g (2) =β, g (3) =β,则显然有(f g )(a ) =g (f (a )) =g (1) =α, (f g )(b ) =g (f(b )) =g (2) =β,于是f g 是A 到C 的单射,但g 显然不是单射.8. 设f :A →B , 若存在g :B →A,使得f g =I A 且g f =I B ,试证明: f 是双射且f -1=g .证因为f g =I A ,而I A 是单射,所以f 是单射. 又因为g f =I B ,而I B 是满射,所以f 是满射. 因此f 是双射.由于f 是双射,所以f而(f -1-1存在. 因为f g =I A ,于是f -1 (f g ) =f -1 I A . f ) g =f -1 I A 且I B g =f -1,所以有f -1=g .9. 设f :A →B , g :B →C . 若f 和g 是双射,则f g 是双射且(f g ) -1=g -1 f -1.-1-1证根据定理4(1)(2)知,f g 是双射. 下证(f g ) =g f -1. 因为(f g ) (g -1 f -1) =f (g g -1) f -1=f I B f -1=f f -1=I A , (g -1 f -1) (f g ) =g -1 (f -1 f ) g =g -1 I B g =g -1 g =I C ,在上面的推导中多次利用了定理7. 由第7题知,(f g ) -1=g -1 f10. 设G 是集合A 到A 的所有双射组成的集合,证明(1)任意f , g ∈G,有f g ∈G .(2)对于任意f , g , h ∈G,有(f g ) h =f (g h ).(3)I A ∈G且对于任意f ∈G,有I A f =f I A =f .(4)对于任意f ∈G,有f -1-1. ∈G且f f -1=f -1 f =I A .证 (1)由定理5.(2)由定理7.(3)由第3题.(4)由定理4.11. 若A = {a , b , c }, B = {1, 2}, 问A 到B 的满射、单射、双射各有多少个? 试推广你的结论.解将A 中的3个元素对应到B 中的2个元素,相当于将3个元素分成2部分,共有3种分法; 在计算A 到B 的满射个数时还需要将B 中元素进行排列,共有2种排列方式,于是A 到B 的满射共有3⨯2=6个(请自己分别写出A 到B 的6个满射).由于|A |=3, |B |=2,所以A 到B 的单射没有,进而A 到B 的双射也没有. 假设|A |=m , |B |=n .(1) A到B 的满射若m(2) A到B 的单射若m >n ,不存在单射;若m ≤n,由于B 中任意选取m 个m 元素,再将其进行全排列都得到A 到B 的单射,故A 到B 的单射共有C n ⋅m ! 个.(3)A 到B 的双射若m ≠n,不存在双射;若m =n ,此时B 中元素的任意一个排列均可得到一个A 到B 的双射,因此A 到B 的双射共有m ! 个.12. 设A , B , C , D 是任意集合,f 是A 到B 的双射, g 是C 到D 的双射,令h :A ⨯C →B⨯D ,对任意(a , c ) ∈A⨯C , h (a , c ) =(f (a ), g (c )). 证明:h 是双射.证对于任意(a 1, c 1) ∈A⨯C ,(a 2, c 2) ∈A⨯C ,假定h (a 1, c 1) =h (a 2, c 2) ,即(f (a 1), g (c 1)) =(f (a 2), g (c 2)) ,于是f (a 1) =f (a 2) 且g (c 1) =g (c 2) ,根据已知条件有a 1=a 2且c 1=c 2,进而(a 1, c 1) =(a 2, c 2) ,因此h 是单射.任意(b , d ) ∈B⨯D ,则b ∈B , d ∈D,由于f 是A 到B 的双射且g 是C 到D 的双射,于是存在a ∈A , c ∈C使得f (a ) =b , g (c ) =d ,因此h (a , c ) =(f (a ), g (c )) =(b , d ) ,所以h 是满射.故h 是双射.13. 设f :A →B , g :B →C , h :C →A,若f g h =I A ,g h f =I B ,h f g =I C ,则f , g , h 均可逆,并求出f -1, g -1, h -1.证因为恒等映射是双射,多次使用定理6即可得结论.由于f g h =I A ,所以f 是单射且h 是满射. 由于g h f =I B ,所以g 是单射且f 是满射. 由于h f g =I C ,所以h 是单射且g 是满射. 于是f , g , h 是双射,因此f , g , h 均可逆.由于f g h =I A ,所以f -1=g h 且h -1=f g ,进而g -1=h f .14. 已知Ackermann 函数A :N ⨯N →N的定义为(1)A (0, n ) =n +1, n ≥0;(2)A (m , 0) =A (m -1, 1), m >0;(3)A (m , n ) =A (m -1, A (m , n -1)), m >0, n >0.分别计算A (2, 3) 和A (3, 2) .解由已知条件有A (0, 1) =2,A (1, 0) =A (0, 1) =2,于是A (1, 1) =A (0, A (1, 0)) =A (0, 2) =2+1=3,A (1, 2) =A (0, A (1, 1)) =A (0, 3) =3+1=4,由此可进一步得出A (1, n ) =n +2,A (2, 0) =A (1, 1) =3,A (2, 1) =A (1, A (2, 0)) =A (1, 3) =3+2=5,A (2, 2) =A (1, A (2, 1)) =A (1, 5) =5+2=7, A (2, 3) =A (1, A (2, 2)) =A (1, 7) =7+2=9. 因此有A (2, n ) =2n +3,A (3, 0) =A (2, 1) =2⋅1+3=5,A (3, 1) =A (2, A (3, 0)) =A (2, 5) =2⋅5+3=13, A (3, 2) =A (2, A (2, 2)) =A (2,13) =2⋅13+3=29. 所以有A (2, 3) =9, A (3, 2) =29.。
离散数学第1,2章习题答案
第一章习题1.下列哪些语句是命题?(1) 黄山是在安徽省。
(2) 你会做这道题目吗?(3) 月球比地球大。
(4) 请关上窗户!(5) 如果1+2=5,我就去游泳。
(6) 只有6是偶数,3才能被2整除。
解:(1),(3) ,(5) ,(6) 是命题,(2),(4)分别是疑问句和命令句,它们不是命题。
2.给出下面命题的否定命题。
(1) 上海是一座城市。
解:该句的否定命题为:上海不是一座城市。
(2) 1+2=5并且2×3=6。
解:该句的否定命题为:1+2≠5或2×3≠6。
(3) 2是素数或3是偶数。
解:该句的否定命题为:2不是素数并且3不是偶数。
3.将下列命题符号化。
(1) 灯泡有故障或开关有故障。
解:P表示:灯泡有故障,Q表示:开关有故障,命题符号化为:P∨Q(2) 今天下大雨和3+3=6。
解:P表示:今天下大雨,Q表示:3+3=6,命题符号化为:P∧Q(3) 虽然天气炎热,老师坚持给我们上课。
解:P表示:天气炎热,Q表示:老师坚持给我们上课,命题符号化为:P∧Q(4) 他一边走路,一边看书。
解:P表示:他走路,Q表示:他看书,命题符号化为:P∧Q(5) 如果天下大雨,他就乘公共汽车上班。
解:P表示:天下大雨,Q表示:他乘公共汽车上班,命题符号化为:P→Q(6) 只有天下大雨,他才乘公共汽车上班。
解:P表示:天下大雨,Q表示:他乘公共汽车上班,命题符号化为:Q→P(7) 2+2=4当且仅当雪是白色的。
解:P表示:2+2=4,Q表示:雪是白色的,命题符号化为:P↔Q4.判断下列各蕴涵式是真是假。
(1) 若一周有八天,则3+2=5。
解:P表示:一周有八天,Q表示:3+2=5,命题符号化为:P→Q由于P为假,Q为真,P→Q为真,故该命题为真命题。
(2) 若一周有七天,则3+2≠5。
解:P表示:一周有七天,Q表示:3+2≠5,命题符号化为:P→Q由于P为真,Q为假,P→Q为假,故该命题为假命题。
(完整版)哈工大《离散数学》教科书习题答案
教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。
解:2210x x ++=的根为1x =-,故所求集合为{1}- 4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆; c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈; e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆; g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆; i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈; k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆; m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真 5.设有n 个集合12,,,n A A A 且121n A A A A ⊆⊆⊆⊆,试证: 12n A A A ===证明:由1241n A A A A A ⊆⊆⊆⊆⊆,可得12A A ⊆且21A A ⊆,故12A A =。
同理可得:134n A A A A ====因此123n A A A A ====6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。
证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。
(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。
那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。
离散数学答案_1-5章
第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p?r)∧(﹁q∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)?(p∧q∧﹁r) ⇔(1∧1∧1) ? (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔ (⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P 中构造下面推理的证明:(2)前提:p →q,⌝(q ∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)? ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)xF∀,在(a)中为假命题,在(b)中为真命题。
离散数学习题与解答
离散数学习题与解答第一章集合、关系与函数习题答案1、用列举法表示下列集合。
(1){x|x是小于20的正偶数}={2,4,6,8,10,12,14,16,18}2(2){x|x是整数,x<80}={0,±1,±2,±3,±4,±5,±6,±7,±8} (3){x|x=3k,k是小于10的素数}={6,9,15,21}(4){x|x是能整除30的正整数}={1,2,3,5,6,10,15,30}(5){x|x是小于30的素数}={2,3,5,7,11,13,17,19,23,29}2、用特征法表示下列集合。
(1){1,3,5,…,99}={x|x是正奇数,x≤99}2(2){1,4,9,16,25}={x|x=k,k是正整数,k≤5}(3){5,10,15,…,100}={x|x=5k,k是正整数,k≤20}?1(4){1,3,2,5,3,7,4}={x|x=k2,k是正整数,k≤7} 2223、设A,B,C是集合,确定下列命题是否正确,并说明理由。
(1)如果A∈B,B?C,则A?C。
? 。
解:不正确。
例如,A={a},B={{a},b},C={{a},b }。
易见A∈B,B?C但A C (2)如果A∈B,B?C,则A∈C。
解:正确。
因为B?C,所以B中元素都属于C,而A∈B,所以A∈C。
(3)如果A?B,B∈C,则A∈C。
解:不正确。
例如,A={a},B={a,b},C={{a,b}}。
易见A?B,B∈C但A?C。
(4)如果A?B,B∈C,则A?C。
? 。
解:不正确。
例如,A={a},B={a,b},C={{a,b}}。
易见A?B,B∈C但A C4、确定下列命题是否正确。
(1)??? 正确。
(2)?∈? 错误。
(3)??{?} 正确。
(4)?∈{?} 正确。
5、设A,B,C是集合。
(1)如果A?B,B?C,是否必有A?C?解:不一定。
离散数学第四版课后标准答案
离散数学第四版课后标准答案离散数学第四版课后答案第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析⾸先应注意到,命题是陈述句,因⽽不是陈述句的句⼦都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句⼦是陈述句,但它表⽰的判断结果是不确定。
⼜因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因⽽作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,⽽(13)是由联结词“且”联结起来的复合命题。
这⾥的“且”为“合取”联结词。
在⽇常⽣活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,⽽且……”、“⼀⾯……,⼀⾯……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,⽽不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是⽆理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三⾓形有三条边。
由于p与q都是真命题,因⽽p→q为假命题。
(7)p→q,其中,p:雪是⿊⾊的,q:太阳从东⽅升起。
由于p为假命题,q为真命题,因⽽p→q为假命题。
(8)p:2000年10⽉1⽇天⽓晴好,今⽇(1999年2⽉13⽇)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道⽽已。
(9)p:太阳系外的星球上的⽣物。
它的真值情况⽽定,是确定的。
1(10)p:⼩李在宿舍⾥. p的真值则具体情况⽽定,是确定的。
离散数学课后习题答案
第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
离散数学第三版课后习题答案
由此可得(A\B)\(B\C)(A\B)\C。
3)方法一:(A\C)\C
=A\(B∪C)(根据1))
=A\(C∪B)(并运算交换律)
4)真。因为是集合{}的元素;
5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集;
6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;
7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集;
8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4.对任意集合A,B,C,确定下列命题的真假性:
A′∪B=(A∪A′)∪B(∪的交换律)
A′∪B=X∪B(互补律)
A′∪B=X(零壹律)
方法三:因为A′X且BX,所以根据定理2的3)就有A′∪BX;
另一方面,由于BA′∪B及根据换质位律可得B′A′A′∪B,因此,由互补律及再次应用定理2的3),可得X=B∪B′A′∪B,即XA′∪B;
所以,A′∪B=X。
=(A\C)\B(根据1))
方法二:对任一元素x∈(A\B)\C,可知x∈A,xB,xC。由为x∈A,xC,所以,x∈A\C。又由xB,x∈(A\C)\B。所以,(A\B)\C(A\C)\B。
同理可证得(A\C)\B(A\B)\C。
9.设A、B是Ⅹ全集的子集,证明:
ABA′∪B=XA∩B′=
[解](采用循环证法)
离散数学辅助教材
概念分析结构思想与推理证明
第一部分
集合论
离散数学习题解答
离散数学课后习题答案(第一章)
习题 1-5 (1) 试证下列各式为重言式。 a) (P∧(P→Q))→Q 证明:(P∧(P→Q))→Q ⇔(P∧(┐P∨Q))→Q ⇔(P∧┐P)∨(P∧Q)→Q ⇔(P∧Q)→Q ⇔┐(P∧Q)∨Q ⇔┐P∨┐Q∨Q ⇔┐P∨T ⇔T b) ┐P→(P→Q) 证明:┐P→(P→Q) ⇔P∨(┐P∨Q) ⇔ (P∨┐P)∨Q ⇔T∨Q ⇔T
c) ((P→Q)∧(Q→R))→(P→R) 证明:((P→Q)∧(Q→R))→(P→R) 因为(P→Q)∧(Q→R)⇒(P→R) 所以(P→Q)∧(Q→R)为重言式。 d) ((a∧b)∨(b∧c) ∨(c∧a))↔(a∨b)∧(b∨c)∧(c∨a) 证明:((a∧b)∨(b∧c) ∨(c∧a))↔(a∨b)∧(b∨c)∧(c∨a) 因为((a∧b)∨(b∧c)∨(c∧a)) ⇔((a∨c)∧b)∨(c∧a) ⇔((a∨c)∨(c∧a))∧(b∨(c∧a)) ⇔(a∨c)∧(b∨c)∧(b∨a) 所以((a∧b)∨(b∧c) ∨(c∧a))↔(a∨b)∧(b∨c)∧(c∨a) 为重言式。 (2) 不构造真值表证明下列蕴含式。 a)(P→Q)⇒P→(P∧Q) 解法 1: 设 P→Q 为 T (1)若 P 为 T,则 Q 为 T,所以 P∧Q 为 T,故 P→(P∧Q)为 T (2)若 P 为 F,则 Q 为 F,所以 P∧Q 为 F,P→(P∧Q)为 T 命题得证 解法 2: 设 P→(P∧Q)为 F ,则 P 为 T,(P∧Q)为 F ,故必有 P 为 T,Q 为 F ,所以 P→Q 为 F。 解法 3: (P→Q) →(P→(P∧Q)) ⇔┐(┐P∨Q)∨(┐P∨(P∧Q)) ⇔┐(┐P∨Q)∨((┐P∨P)∧(┐P∨Q)) ⇔T 所以(P→Q)⇒P→(P∧Q) b)(P→Q)→Q⇒P∨Q 设 P∨Q 为 F,则 P 为 F,且 Q 为 F, 故 P→Q 为 T,(P→Q)→Q 为 F,所以(P→Q)→Q⇒P∨Q。
离散数学第一章习题解答,屈婉玲耿素云高等教育出版社
习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为1.(2是无理数.答:此命题是简单命题,其真值为1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为1.x+<(4)235答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p:错误!未找到引用源。
是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1是有理数.是无理数.p.q.其否定式q的真值为1.(2不是无理数.答:是有理数. p 不是无理数. q 是有理数. 其否定式q 的真值为1.(3)2.5是自然数.答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值. (1)2与5都是素数答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1.(2)不但π是无理数,而且自然对数的底e 也是无理数.答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数.答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧⌝,其真值为1. (4)3是偶素数.答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数.答:p :4是素数,q :4是偶数,符号化为p q ⌝∧⌝,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数.(4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数.答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ⌝∨⌝,其真值为1.(5) 符号化:r s ⌝∨⌝,其真值为0. 6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ⌝∧∨∧⌝. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p与q同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p与q不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值.(1)只要错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1.11.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴中国有四大发明。
⑵计算机有空吗?⑶不存在最大素数。
⑷21+3<5。
⑸老王是山东人或河北人。
⑹2与3都是偶数。
⑺小李在宿舍里。
⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以 。
⑾只有6是偶数,3才能是2的倍数。
⑿雪是黑色的当且仅当太阳从东方升起。
⒀如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。
2. 将下列复合命题分成若干原子命题。
⑴李辛与李末是兄弟。
⑵因为天气冷,所以我穿了羽绒服。
⑶天正在下雨或湿度很高。
⑷刘英与李进上山。
⑸王强与刘威都学过法语。
⑹如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。
3. 将下列命题符号化。
⑴他一面吃饭,一面听音乐。
⑵3是素数或2是素数。
⑶若地球上没有树木,则人类不能生存。
⑷8是偶数的充分必要条件是8能被3整除。
⑸停机的原因在于语法错误或程序错误。
⑹四边形ABCD是平行四边形当且仅当它的对边平行。
⑺如果a和b是偶数,则a+b是偶数。
解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:⌝p→⌝q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。
⑺p:a是偶数;q:b是偶数;r:a+b是偶数;原命题符号化为:p∧q→r4. 将下列命题符号化,并指出各复合命题的真值。
⑴如果3+3=6,则雪是白的。
⑵如果3+3≠6,则雪是白的。
⑶如果3+3=6,则雪不是白的。
⑷如果3+3≠6,则雪不是白的。
⑸3是无理数当且仅当加拿大位于亚洲。
⑹2+3=5的充要条件是3是无理数。
(假定是10进制)⑺若两圆O1,O2的面积相等,则它们的半径相等,反之亦然。
⑻当王小红心情愉快时,她就唱歌,反之,当她唱歌时,一定心情愉快。
解:设p:3+3=6。
q:雪是白的。
⑴原命题符号化为:p→q;该命题是真命题。
⑵原命题符号化为:⌝p→q;该命题是真命题。
⑶原命题符号化为:p→⌝q;该命题是假命题。
⑷原命题符号化为:⌝p→⌝q;该命题是真命题。
⑸p:3是无理数;q:加拿大位于亚洲;原命题符号化为:p↔q;该命题是假命题。
⑹p:2+3=5;q:3是无理数;原命题符号化为:p↔q;该命题是真命题。
⑺p:两圆O1,O2的面积相等;q:两圆O1,O2的半径相等;原命题符号化为:p↔q;该命题是真命题。
⑻p:王小红心情愉快;q:王小红唱歌;原命题符号化为:p↔q;该命题是真命题。
习题1.21.判断下列公式哪些是合式公式,哪些不是合式公式。
⑴(p∧q→r)⑵(p∧(q→r)⑶((⌝p→q)↔(r∨s))⑷(p∧q→rs)⑸((p→(q→r))→((q→p)↔q∨r))。
解:⑴⑶⑸是合式公式;⑵⑷不是合式公式。
2.设p:天下雪。
q:我将进城。
r:我有时间。
将下列命题符号化。
⑴天没有下雪,我也没有进城。
⑵如果我有时间,我将进城。
⑶如果天不下雪而我又有时间的话,我将进城。
解:⑴⌝p∧⌝q⑵r→q⑶⌝p∧r→q3.设p、q、r所表示的命题与上题相同,试把下列公式译成自然语言。
⑴r∧q⑵¬ (r∨q)⑶q↔ (r∧¬ p)⑷(q→r)∧(r→q)解:⑴我有时间并且我将进城。
⑵我没有时间并且我也没有进城。
⑶我进城,当且仅当我有时间并且天不下雪。
⑷如果我有时间,那么我将进城,反之亦然。
4. 试把原子命题表示为p、q、r等,将下列命题符号化。
⑴或者你没有给我写信,或者它在途中丢失了。
⑵如果张三和李四都不去,他就去。
⑶我们不能既划船又跑步。
⑷如果你来了,那末他唱不唱歌将看你是否伴奏而定。
解:⑴p:你给我写信;q:信在途中丢失;原命题符号化为:(⌝p∧⌝ q)∨(p∧q)。
⑵p:张三去;q:李四去;r:他去;原命题符号化为:⌝p∧⌝q→r。
⑶p:我们划船;q:我们跑步;原命题符号化为:⌝(p∧q)。
⑷p:你来了;q:他唱歌;r:你伴奏;原命题符号化为:p→(q↔r)。
5. 用符号形式写出下列命题。
⑴假如上午不下雨,我去看电影,否则就在家里读书或看报。
⑵我今天进城,除非下雨。
⑶仅当你走,我将留下。
解:⑴p:上午下雨;q:我去看电影;r:我在家读书;s:我在家看报;原命题符号化为:(⌝p→q)∧(p→r∨s)。
⑵p:我今天进城;q:天下雨;原命题符号化为:⌝q→p。
⑶p:你走;q:我留下;原命题符号化为:q→p。
习题1.31.设A、B、C是任意命题公式,证明:⑴A⇔A⑵若A⇔B,则B⇔A⑶若A⇔B,B⇔C,则A⇔C证明:⑴由双条件的定义可知A↔A是一个永真式,由等价式的定义可知A⇔A成立。
⑵因为A⇔B,由等价的定义可知A↔B是一个永真式,再由双条件的定义可知B↔A 也是一个永真式,所以,B⇔A成立。
⑶对A、B、C的任一赋值,因为A⇔B,则A↔B是永真式,即A与B具有相同的真值,又因为B⇔C,则B↔C是永真式,即B与C也具有相同的真值,所以A与C也具有相同的真值;即A⇔C成立。
2.设A、B、C是任意命题公式,⑴若A∨C⇔B∨C, A⇔B一定成立吗?⑵若A∧C⇔B∧C, A⇔B一定成立吗?⑶若¬A⇔¬B,A⇔B一定成立吗?解:⑴不一定有A⇔B。
若A为真,B为假,C为真,则A∨C⇔B∨C成立,但A⇔B 不成立。
⑵不一定有A⇔B。
若A为真,B为假,C为假,则A∧C⇔B∧C成立,但A⇔B不成立。
⑶一定有A⇔B。
3.构造下列命题公式的真值表,并求成真赋值和成假赋值。
⑴q∧(p→q)→p⑵p→(q∨r)⑶(p∨q)↔(q∨p)⑷(p∧⌝q)∨(r∧q)→r⑸((¬p→(p∧¬q))→r)∨(q∧¬r)解:⑴q∧(p→q)→p的真值表如表1.24所示。
表1.24使得公式q∧(p→q)→p成真的赋值是:00,10,11,使得公式q∧(p→q)→p成假的赋值是:01。
⑵p→(q∨r)的真值表如表1.25所示。
表1.25使得公式p→(q∨r)成真的赋值是:000,001,010,011,101,110,111,使得公式p→(q∨r)成假的赋值是:100。
⑶(p∨q)↔(q∨p)的真值表如表1.26所示。
表1.26所有的赋值均使得公式(p∨q)↔(q∨p)成真,即(p∨q)↔(q∨p)是一个永真式。
⑷(p∧⌝q)∨(r∧q)→r的真值表如表1.27所示。
表1.27111,使得公式(p∧⌝q)∨(r∧q)→r成假的赋值是:100。
⑸((⌝p→(p∧⌝q))→r)∨(q∧⌝r)的真值表如表1.28所示。
表1.28使得公式((⌝p→(p∧⌝q))→r)∨(q∧⌝r)成真的赋值是:000,001,010,011,101,110,111,使得公式((⌝p→(p∧⌝q))→r)∨(q∧⌝r)成假的赋值是:100。
4.用真值表证明下列等价式:⑴⌝(p→q)⇔p∧⌝q证明:证明⌝(p→q)⇔p∧⌝q的真值表如表1.29所示。
表1.29由上表可见:⌝(p→q)和p∧⌝q的真值表完全相同,所以⌝(p→q)⇔p∧⌝q。
⑵p→q⇔⌝q→⌝p证明:证明p→q⇔⌝q→⌝p的真值表如表1.30所示。
表1.30由上表可见:p→q和⌝q→⌝p的真值表完全相同,所以p→q⇔⌝q→⌝p。
⑶⌝(p↔q)⇔p↔⌝q证明:证明⌝(p↔q)和p↔⌝q的真值表如表1.31所示。
表1.31由上表可见:⌝(p↔q)和p↔⌝q的真值表完全相同,所以⌝(p↔q)⇔p↔⌝q。
⑷p→(q→r)⇔(p∧q)→r证明:证明p→(q→r)和(p∧q)→r的真值表如表1.32所示。
表1.32由上表可见:p→(q→r)⇔(p∧q)→r。
⑸p→(q→p)⇔ ⌝p→(p→⌝q)证明:证明p→(q→p)和⌝p→(p→⌝q)的真值表如表1.33所示。
表1.33由上表可见:p→(q→p)和⌝p→(p→⌝q)的真值表完全相同,且都是永真式,所以p→(q →p)⇔⌝p→(p→⌝q)。
⑹⌝(p↔q)⇔(p∨q)∧⌝(p∧q)证明:证明⌝(p↔q)和(p∨q)∧⌝(p∧q)的真值表如表1.34所示。
表1.34由上表可见:⌝(p↔q)和(p∨q)∧⌝(p∧q)的真值表完全相同,所以⌝(p↔q)⇔(p∨q)∧⌝(p∧q)⑺⌝(p↔q)⇔(p∧⌝q)∨(⌝p∧q)证明:证明⌝(p↔q)和(p∧⌝q)∨(⌝p∧q)的真值表如表1.35所示。
表1.35由上表可见:⌝(p↔q)和(p∧⌝q)∨(⌝p∧q)的真值表完全相同,所以⌝(p↔q)⇔(p∧⌝q)∨(⌝p∧q)。
⑻p→(q∨r)⇔(p∧⌝q)→r证明:证明p→(q∨r)和(p∧⌝q)→r的真值表如表1.36所示。
表1.36由上表可见:p→(q∨r)和(p∧⌝q)→r的真值表完全相同,所以p→(q∨r)⇔(p∧⌝q)→r。
5. 用等价演算证明习题4中的等价式。
⑴⌝(p→q)⇔⌝(⌝p∨q) (条件等价式) ⇔p∧⌝q (德·摩根律)⑵⌝q→⌝p⇔⌝⌝q∨⌝p (条件等价式) ⇔q∨⌝p (双重否定律)⇔⌝p∨q (交换律)⇔ p→q (条件等价式)⑶⌝(p↔q)⇔⌝((p→q)∧(q→p)) (双条件等价式) ⇔⌝((⌝p∨q)∧(⌝q∨p)) (条件等价式) ⇔(p∧⌝q)∨(q∧⌝p) (德·摩根律) ⇔((p∧⌝q)∨q)∧((p∧⌝q)∨⌝p) (分配律)⇔(p∨q)∧(⌝q∨⌝p) (分配律)⇔(⌝p∨⌝q)∧(q∨p) (交换律)⇔(p→⌝q)∧(⌝q→p) (条件等价式) ⇔p↔⌝q (双条件等价式) ⑷p→(q→r)⇔⌝p∨(⌝q∨r) (条件等价式)⇔(⌝p∨⌝q)∨r (结合律)⇔⌝(p∧q)∨r (德·摩根律)⇔(p∧q)→r (条件等价式) ⑸p→(q→p)⇔⌝p∨(⌝q∨p) (条件等价式) ⇔T⌝p→(p→⌝q)⇔p∨(⌝p∨⌝q) (条件等价式) ⇔T所以p→(q→p)⇔ ⌝p→(p→⌝q)⑹⌝(p↔q)⇔⌝((p∧q)∨(⌝p∧⌝q)) (例1.17)⇔(p∨q)∧(⌝p∨⌝q) (德·摩根律) ⇔(p∨q)∧⌝(p∧q) (德·摩根律) 所以⌝(p↔q)⇔(p∨q)∧⌝(p∧q)⑺⌝(p↔q)⇔⌝((p→q)∧(q→p)) (双条件等价式) ⇔⌝((⌝p∨q)∧(⌝q∨p)) (条件等价式) ⇔(p∧⌝q)∨(⌝p∧q) (德·摩根律)⑻p→(q∨r)⇔⌝p∨(q∨r) (条件等价式)⇔(⌝p∨q)∨r (结合律)⇔⌝(p∧⌝q)∨r (德·摩根律)⇔(p∧⌝q)→r (条件等价式)6.试用真值表证明下列命题定律。