误差理论与数据处理答案完整版

合集下载

最新《误差理论与数据处理(第6版)》费业泰—答案(最全)

最新《误差理论与数据处理(第6版)》费业泰—答案(最全)

《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。

答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

《误差理论与数据处理》答案..

《误差理论与数据处理》答案..

《误差理论与数据处理》答案..《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。

答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定 1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

误差理论与数据处理版课后习题答案完整版

误差理论与数据处理版课后习题答案完整版

《误差理论与数据处理》(第六版)完整版第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。

%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。

测得值各为50.004mm ,80.006mm 。

试评定两种方法测量精度的高低。

相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。

21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。

1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

误差理论与数据处理(第6版)费业泰 习题与答案,网上最完整的

误差理论与数据处理(第6版)费业泰 习题与答案,网上最完整的

《误差理论与数据处理》(第六版)习题及参考答案费业泰主编2012-07第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。

%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。

测得值各为50.004mm ,80.006mm 。

试评定两种方法测量精度的高低。

相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。

1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o击精度高? 解:射手的相对误差为:多级火箭的射击精度高。

1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

《误差理论与数据处理》答案

《误差理论与数据处理》答案

误差理论与数据处理》第一章绪论1-1 .研究误差的意义是什么简述误差理论的主要内容。

答:研究误差的意义为:(1) 正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2) 正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3) 正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2 .试述测量误差的定义及分类,不同种类误差的特点是什么答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化) ;随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。

1-3 .试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1) 误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了” 还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1 —5测得某三角块的三个角度之和为180°00' 02” ,试求测量的绝对误差和相对误差解:绝对误差等于:180°0002 180°2相对误差等于:2 2 = 2而180 60 60 _ 6480001-6 .在万能测长仪上,测量某一被测件的长度为50mm已知其最大绝对误差为1卩m试问该被测件的真实长度为多少解:绝对误差=测得值一真值,即:△ L = L—L o 已知:L = 50,A L= 1口m—,测件的真实长度L 0 = L —A L= 50—=( mm1- 7 .用二等标准活塞压力计测量某压力得,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值故二等标准活塞压力计测量值的误差=测得值-实际值,即:— = —( Pa)1-8在测量某一长度时,读数值为,其最大绝对误差为20 m,试求其最大相对1- 9、解:2 由g年冷,得2对gh h i h2,并令Vg , Vh , VT代替dg , dh , dT得从而Vg Vh2VT的最0.00000308641 0.000031%大相对误差为:g h T- 0.00005 门0.00051.042302.0480=10 4%2 I 2由g 4(h2 h2),得T . 4 h,所以T \ g、Vg max Vh max VT max T V^max Vg min T Vh min Vg max由〒不一2〒,有VT max ma X{AB近(〒6-)]小旳共〒p)]}1-10检定级(即引用误差为%的全量程为100V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电压表是否合格该电压表合格1-11为什么在使用微安表等各种表时,总希望指针在全量程的2/3范围内使用答:当我们进行测量时,测量的最大相对误差:△^ X m S% 即:ma x X m S%A0 A0 A0所以当真值一定的情况下,所选用的仪表的量程越小,相对误差越小,测量越准确。

误差理论与数据处理课后习题及答案

误差理论与数据处理课后习题及答案

第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

其测量误差为m μ12±,试比较三种测量方法精度的高低。

相对误差0.01%110111±=±=mm mI μ0.0082%11092±=±=mm mI μ%008.0150123±=±=mmm I μ123I I I <<第三种方法的测量精度最高2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

20.001520.001620.001820.001520.00115x ++++=20.0015()mm =0.00025σ==正态分布 p=99%时,t 2.58=lim t δσ=±21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o2.58=± 0.0003()mm =±测量结果:lim (20.00150.0003)x X x mm δ=+=±2-12某时某地由气压表得到的读数(单位为Pa )为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。

《误差理论与数据处理(第6版)》费业泰-较全答案资料

《误差理论与数据处理(第6版)》费业泰-较全答案资料

《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。

答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm )21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

误差理论与数据处理智慧树知到课后章节答案2023年下陕西理工大学

误差理论与数据处理智慧树知到课后章节答案2023年下陕西理工大学

误差理论与数据处理智慧树知到课后章节答案2023年下陕西理工大学陕西理工大学第一章测试1.误差按照性质分为()A:随机误差、系统误差B:随机误差、粗大误差、偶然误差C:随机误差、系统误差、粗大误差答案:随机误差、系统误差、粗大误差2.有关修正值的描述,正确的是()A:修正值没有误差B:修正值与误差大小相等,符号相反C:修正值就等于误差答案:修正值与误差大小相等,符号相反3.环境误差的影响因素有()A:温度场、电磁场B:工作疲劳C:振动、照明答案:温度场、电磁场;振动、照明4.精确度高则一定()A:系统误差小,随机误差也小B:准确度高C:精密度高答案:系统误差小,随机误差也小;准确度高;精密度高5. 3.14159保留四位有效数字为()A:3.141B:3.142C:3.143答案:3.142第二章测试1.下列计算标准差的方法中,计算精度最高的是()A:别捷尔斯法B:贝塞尔公式法C:最大误差法D:极差法答案:贝塞尔公式法2.适用于发现组内数据系统误差方法是()A:t检验法B:不同公式计算标准差比较法C:秩和检验法D:计算数据比较法答案:不同公式计算标准差比较法3.如果一把米尺的测量结果表示为999.9420±0.0021(mm),则表示测量这把米尺的精度为()A:0.0063mmB:0.0021mmC:0.0007mm答案:0.0021mm4.如果对一钢卷尺的长度进行了三组不等精度测量,其标准差分别为0.05mm,0.20mm,0.10mm,则其三组测量结果的权分别为()A:5,2,10B:10,25,2C:16,1,4答案:16,1,45.下列不属于粗大误差的判别准则的是()A:马利科夫准则B:莱以特准则C:狄克松准则D:罗曼诺夫斯基准则答案:马利科夫准则第三章测试1.误差间的线性相关关系是指它们之间具有的线性依赖关系,其取值范围在()A:-1至1之间B:-1值0之间C:0值1之间答案:-1至1之间2.随机误差的合成可以按照()合成A:相对误差B:极限误差C:标准差答案:极限误差;标准差3.系统误差合成可以按照()合成A:代数和法B:标准差C:极限误差答案:代数和法;标准差;极限误差4.误差分配的步骤有()A:验算调整后的总误差B:按等作用原则分配误差C:按照可能性调整误差答案:验算调整后的总误差;按等作用原则分配误差;按照可能性调整误差5.下列关于误差间的线性相关关系,说法正确的是()A:这种关系有强有弱,联系最强时,在平均意义上,一个误差的取值完全决定了另一个误差的取值,此时两误差间具有确定的线性函数关系。

《误差理论与数据处理》费业泰 习题答案

《误差理论与数据处理》费业泰 习题答案

《误差理论与数据处理》(第七版)习题及参考答案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。

%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2。

5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。

测得值各为50。

004m m,80.006mm.试评定两种方法测量精度的高低。

相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。

1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2c m的靶心,试评述21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。

1—14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

《误差理论与数据处理》费业泰 习题答案

《误差理论与数据处理》费业泰 习题答案

《误差理论与数据处理》(第七版)习题及参考答案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。

%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2。

5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。

测得值各为50。

004m m,80.006mm.试评定两种方法测量精度的高低。

相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。

1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2c m的靶心,试评述21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。

1—14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

(完整版)误差理论与数据处理复习题及答案

(完整版)误差理论与数据处理复习题及答案

《误差理论与数据处理》一、填空题(每空1分,共20分)1.测量误差按性质分为 _____误差、_____误差和_____误差,相应的处理手段为_____、_____和_____。

答案:系统,粗大,随机,消除或减小,剔除,统计的手段2.随机误差的统计特性为 ________、________、________和________。

答案:对称性、单峰性、有界性、抵偿性3. 用测角仪测得某矩形的四个角内角和为360°00′04″,则测量的绝对误差为________,相对误差________。

答案:04″,3.1*10-54.在实际测量中通常以被测量的、、作为约定真值。

答案:高一等级精度的标准给出值、最佳估计值、参考值5.测量结果的重复性条件包括:、、、、。

测量人员,测量仪器、测量方法、测量材料、测量环境6. 一个标称值为5g的砝码,经高一等标准砝码检定,知其误差为0.1mg,问该砝码的实际质量是________。

5g-0.1mg7.置信度是表征测量数据或结果可信赖程度的一个参数,可用_________和_________来表示。

标准差极限误差8.指针式仪表的准确度等级是根据_______误差划分的。

引用9.对某电阻进行无系差等精度重复测量,所得测量列的平均值为100.2Ω,标准偏差为0.2Ω,测量次数15次,则平均值的标准差为_______Ω,当置信因子K =3时,测量结果的置信区间为_______________。

0.2/sqrt(15),3*0.2/sqrt(15)10.在等精度重复测量中,测量列的最佳可信赖值是_________ 。

平均值11.替代法的作用是_________,特点是_________。

消除恒定系统误差,不改变测量条件12.对某电压做无系统误差等精度独立测量,测量值服从正态分布。

已知被测电压的真值U 0 =79.83 V ,标准差σ(U )= 0.02V ,按99%(置信因子 k = 2.58)可能性估计测量值出现的范围: ___________________________________。

误差理论与数据处理课后作业答案

误差理论与数据处理课后作业答案

第一章 绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:第二章 误差的基本性质与处理2-4 测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,168.59,168.40, 168.50。

试求算术平均值及其标准差、或然误差和平均误差。

解:)(49.168551m A II i i==∑=08.015)(51=--=∑=i I Ii σ05.008.03215)(3251=⨯=--≈∑=i I Ii ρ 06.008.05415)(5451=⨯=--≈∑=i I Ii θ 2—5 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

解:求算术平均值求单次测量的标准差 求算术平均值的标准差 确定测量的极限误差 因n =5现自由度为:ν=n -1=4; α=1-0.99=0.01, 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o极限误差为写出最后测量结果2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm ,若要求测量的允许极限误差为±0.0015mm ,而置信概率P 为0.95时,应测量多少次? 解:根据极限误差的意义,有0015.0≤±=±ntt x σσ根据题目给定得已知条件,有5.1001.00015.0=≤nt查教材附录表3有若n =5,v =4,α=0.05,有t =2.78,24.1236.278.2578.2===nt 若n =4,v =3,α=0.05,有t =3.18,59.1218.3418.3===nt 即要达题意要求,必须至少测量5次。

误差理论与数据处理(费业泰)最全课后答案

误差理论与数据处理(费业泰)最全课后答案

误差理论习题答案1-4 在测量某一长度时,读数值为2.31m ,其最大绝对误差为 20um ,试求其最大相对误差。

解:最大相对误差≈(最大绝对误差)/测得值,所以642010 100%=8.6610%2.31--⨯≈⨯⨯最大相对误差1-5 使用凯特摆时,由公式21224h h g T π+=()给定。

今测出长度12()h h + 为(1.042300.00005)m ±, 振动时间 T 为(2.04800.0005)s ±,试求g 及最大相对误差。

如果12()h h +测出为(1.042200.0005)m ±,为了使g 的误差能小于20.001/m s ,T 的测量必须精确到多少?解:由21224()h h g T π+=得224 1.042309.81053/2.0480g m s π⨯== 对 21224()h h g T π+=进行全微分,令 12h h h =+ 并令g h T ∆∆∆,,代替d d d g h T ,,得222348h h Tg T T ππ∆∆∆=-从而2g h Tg h T∆∆∆=-的最大相对误差为: 4max max max 0.000050.000522 5.362510%1.04230 2.0480g h T g h T -∆∆∆-=-=-⨯=⨯由21224()h h g T π+=,得T =,所以 2.04790T == 1-7 为什么在使用微安表时,总希望指针在全量程的2/3范围内使用?解:设微安表的量程为0~n X ,测量时指针的指示值为X ,微安表的精度等级为S ,最大误差≤%n X S ,相对误差≤%n X S X,一般n X X ≤ ,故当X 越接近n X 相对误差就越小,故在使用微安表时,希望指针在全量程的2/3范围内使用。

1-9 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.1km,优秀选手能在距离50m 远处准确射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:火箭射击的相对误差: 30.1100%10%10000-⨯= 选手射击的相对误差: 20.02100%410%50-⨯=⨯ 所以,相比较可见火箭的射击精度高。

误差理论与数据处理课后习题及答案

误差理论与数据处理课后习题及答案

第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

其测量误差为m μ12±,试比较三种测量方法精度的高低。

相对误差0.01%110111±=±=mm mI μ0.0082%11092±=±=mm mI μ%008.0150123±=±=mmm I μ123I I I <<第三种方法的测量精度最高2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

20.001520.001620.001820.001520.00115x ++++=20.0015()mm =0.00025σ==正态分布 p=99%时,t 2.58=lim t δσ=±21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o2.58=± 0.0003()mm =±测量结果:lim (20.00150.0003)x X x mm δ=+=±2-12某时某地由气压表得到的读数(单位为Pa )为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。

《误差理论与数据处理》作业答案

《误差理论与数据处理》作业答案
对于位数很多的近似数,当有效位数确定后,其后面多余的数字应予舍去,而保留的有数数字最末一位数字应按下面的舍入规则进行凑整:
1.若舍去部分的数值,大于保留部分末位的半个单位,则末位数加1。
2.若舍去部分的数值,小于保留部分末位的半个单位,则末位数不变。
3.若舍去部分的数值,等于保留部分末位的半个单位,则末位凑成偶数,即当末位为偶数时则末位不变,当末位是奇数时则末位加1。
(3)求圆球的体积的测量不确定度
圆球体积为:
其标准不确定度应为:
确定包含因子。查t分布表t0.01(9)=3.25,及K=3.25
最后确定的圆球的体积的测量不确定度为
U=Kuc=3.25×0.616=2.002cm3
4-2
解:
的不确定度分量:
的不确定度分量:
因此,望远镜的放大率D的合成标准不确定度为:
代入数据得
解得
将x、y代入误差方程式
测量数据的标准差为
求解不定乘数
解得
x、y的精度分别为
方法二:
按矩阵形式计算,由误差方程 ,
上式可以表示为:
可得:
式中:
所以:
将x、y代入误差方程式
测量数据的标准差为
,故
x、y的精度分别为
5-3:
解:按矩阵形式计算,误差方程为
可以表示为:
可得:
式中:
所以:
将 代入误差方程式
合成标准不确定度:
自由度为:
取置信概率P=0.99,查t分布表包含因子 ,则展伸不确定度为:
不确定度修约:
3.不确定度报告
漏电电流为 。其展伸不确定度 ,是由合成标准不确定度 及包含因子 确定的,对应的置信概率P=0.99,自由度 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

误差理论与数据处理答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。

答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =,测件的真实长度L0=L -△L =50-=(mm )1-7.用二等标准活塞压力计测量某压力得 ,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的误差=测得值-实际值, 即:-=-( Pa )21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o1-8在测量某一长度时,读数值为,其最大绝对误差为20m μ,试求其最大相对误差。

1-9、解:由21224()h h g T π+=,得对21224()h h g T π+=进行全微分,令12h h h =+,并令g ,h ,T 代替dg ,dh ,dT 得从而2g h Tg h T=-的最大相对误差为:=0.000050.000521.04230 2.0480--⨯=410%-⨯由21224()hh g T π+=,得T =由max max max 2g h T g h T =-,有max max min min max max{[()],[()]}22h g g hT T T ABS ABS h g h g=-- 1-10检定级(即引用误差为%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?该电压表合格1-11 为什么在使用微安表等各种表时,总希望指针在全量程的2/3 范围内使用?答:当我们进行测量时,测量的最大相对误差:即: 所以当真值一定的情况下,所选用的仪表的量程越小,相对误差越小,测量越准确。

因此我们选择的量程应靠近真值,所以在测量时应尽量使指针靠近满度范围的三分之二以上.1-12用两种方法分别测量L1=50mm ,L2=80mm 。

测得值各为,。

试评定两种方法测量精度的高低。

相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I L 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。

1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:max 00x x %m s A A =△maxx %m s A γ=1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

其测量误差为m μ12±,试比较三种测量方法精度的高低。

相对误差123I I I <<第三种方法的测量精度最高第二章 误差的基本性质与处理2-1.试述标准差 、平均误差和或然误差的几何意义。

答:从几何学的角度出发,标准差可以理解为一个从 N 维空间的一个点到一条直线的距离的函数;从几何学的角度出发,平均误差可以理解为 N 条线段的平均长度;2-2.试述单次测量的标准差 和算术平均值的标准差 ,两者物理意义及实际用途有何不同。

2-3试分析求服从正态分布、反正弦分布、均匀分布误差落在中的概率2-4.测量某物体重量共8次,测的数据(单位为g)为,,,,,,,,是求算术平均值以及标准差。

2-5用别捷尔斯法、极差法和最大误差法计算2-4,并比较2-6测量某电路电流共5次,测得数据(单位为mA )为,,,,。

试求算术平均值及其标准差、或然误差和平均误差。

或然误差:0.67450.67450.0370.025()x R mA σ==⨯=平均误差:0.79790.79790.0370.030()x T mA σ==⨯=2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为,,,,。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

20.001520.001620.001820.001520.00115x ++++=正态分布 p=99%时,t 2.58=测量结果:lim (20.00150.0003)x X x mm δ=+=±2—7 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,,,,。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

解:求算术平均值求单次测量的标准差 求算术平均值的标准差 确定测量的极限误差 因n =5现自由度为:ν=n -1=4; α=1-=, 查 t 分布表有:ta = 极限误差为 写出最后测量结果2-9用某仪器测量工件尺寸,在排除系统误差的条件下,其标准差mm 004.0=σ,若要求测量结果的置信限为mm 005.0±,当置信概率为99%时,试求必要的测量次数。

正态分布 p=99%时,t 2.58=2-10 用某仪器测量工件尺寸,已知该仪器的标准差σ=,若要求测量的允许极限误差为±,而置信概率P 为时,应测量多少次? 解:根据极限误差的意义,有 根据题目给定得已知条件,有 查教材附录表3有若n =5,v =4,α=,有t =, 若n =4,v =3,α=,有t =,即要达题意要求,必须至少测量5次。

2-12某时某地由气压表得到的读数(单位为Pa )为,,,,,,,,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。

2-13测量某角度共两次,测得值为6331241'''= α,''24'13242=α,其标准差分别为8.13,1.321''=''=σσ,试求加权算术平均值及其标准差。

2-14 甲、乙两测量者用正弦尺对一锥体的锥角α各重复测量5次,测得值如下:试求其测量结果。

甲:20"60"35"20"15"72'72'30"5x ++++=+=甲乙:25"25"20"50"45"72'72'33"5x ++++=+=乙2-15.试证明n 个相等精度测得值的平均值的权为n 乘以任一个测量值的权。

证明:解:因为n 个测量值属于等精度测量,因此具有相同的标准偏差: n 个测量值算术平均值的标准偏差为:P2,则2-16重力加速度的20次测量具有平均值为2/811.9s m 、标准差为2/014.0s m 。

另外30次测量具有平均值为2/802.9s m ,标准差为2/022.0s m 。

假设这两组测量属于同一正态总体。

试求此50次测量的平均值和标准差。

2-17对某量进行10次测量,测得数据为,,,,,,,,,,试判断该测量列中是否存在系统误差。

96.14=x按贝塞尔公式 2633.01=σx σ-=按别捷尔斯法0.2642)110(10253.1101i 2≈-⨯=∑=ivσ由u +=112σσ 得 0034.0112=-=σσu 67.012=-<n u 所以测量列中无系差存在。

2-18对一线圈电感测量10次,前4次是和一个标准线圈比较得到的,后6次是和另一个标准线圈比较得到的,测得结果如下(单位为mH ): ,,,; ,,,,,。

试判断前4次与后6次测量中是否存在系统误差。

使用秩和检验法:排序:T=+7+9+10= 查表 14=-T 30=+T +>T T 所以两组间存在系差2-19对某量进行10次测量,测得数据为,,,,,,,,,,试判断该测量列中是否存在系统误差。

96.14=x按贝塞尔公式 2633.01=σ按别捷尔斯法0.2642)110(10253.1101i 2≈-⨯=∑=ivσ由u +=112σσ 得 0034.0112=-=σσu 67.012=-<n u 所以测量列中无系差存在。

2-20.对某量进行12次测量,测的数据为,,,,,,,,,,,,试用两种方法判断该测量列中是否存在系统误差。

解:(1)残余误差校核法(0.0650.0550.0650.0450.0250.005)(0.0150.0150.0550.0550.0850.065)0.54=--------+++++=-因为显着不为0,存在系统误差。

(2)残余误差观察法残余误差符号由负变正,数值由大到小,在变大,因此绘制残余误差曲线,可见存在线形系统误差。

相关文档
最新文档