原位拉曼光谱在线分析

合集下载

拉曼光谱分析

拉曼光谱分析

n
拉曼原理
n
拉曼位移(Raman Shift) 斯托克斯与反斯托克斯散射光的频率与激发光源频率之差 Δν统称为拉曼位移。 斯托克斯散射的强度通常要比反斯托克斯散射强度强得多, 在拉曼光谱分析中,通常测定斯托克斯散射光线。 拉曼位移取决于分子振动能级的变化,不同的化学键或基 态有不同的振动方式,决定了其能级间的能量变化,因此, 与之对应的拉曼位移是特征的。这是拉曼光谱进行分子结 构定性分析的理论依据。
depth A depth B O
depth C 9
3 6 sputtering time (min)
1332
Counts / a.u.
600
400
200 500 1000 1500 2000 2500 3000 3500 -1 Raman Shift / cm
1574 544
1332
Counts / a.u.
n
n
n n
局限:不适于有荧光产生的样品 解决方案:改变激光的激发波长,尝试 FT-Raman光谱仪
Raman光谱仪
优势:激发波长较长, 可以避免部分荧光产生
局限:黑色样品会产生热背景 薄膜样品的厚度应 >1m 光谱范围:5~4000cm-1
分析方法
n
普通拉曼光谱 一般采用斯托克斯分析
n
反斯托克斯拉曼光谱 采用反斯托克斯分析
有机化学应用
n
在有机化学中主要应用于特殊结构或特征基团的研究。
材料科学应用
n
在固体材料中拉曼激活的机制很多,反映的范围也很广: 如分子振动,各种元激发(电子,声子,等离子体等), 杂质,缺陷等
n
晶相结构,颗粒大小,薄膜厚度,固相反应,细微结构分 析,催化剂等方面

原位在线拉曼光谱仪的用途

原位在线拉曼光谱仪的用途

原位在线拉曼光谱仪的用途
原位在线拉曼光谱仪的用途主要包括以下几个方面:
1.材料研究:在材料科学中,原位拉曼光谱技术可以用来研究材料的结构、晶体缺陷、微观形态等信息,例如可以用来分析纳米颗粒、纤维、高分子等材料的结构信息。

2.化学反应研究:原位拉曼光谱技术还可以用来研究材料的化学反应过程,例如可以用来观察化学反应中的中间体或产物。

在电化学领域,它可以通过原位获取电极上或界面上的变化信息,实现对电池反应机理、界面反应、中间产物等的化学变化研究。

3.生物医学应用:在生物医学领域中,原位拉曼光谱技术可以用来研究生物分子的结构和特性,例如可以用来分析蛋白质、DNA、RNA 等生物分子的结构、构象变化等信息。

4.鉴别物质缺陷:例如在金刚石晶体中,由于内部质点的热振动或受到辐射、高压作用等,通常会存在一些晶格缺陷,如研究较多的缺陷中心即色心。

天然金刚石或人工改造金刚石在形成过程中可能还会存在一些微区结构缺陷,如包裹体、微裂隙等。

缺陷可能分布在金刚石的表面也可能在内部。

以上信息仅供参考,如需了解更多信息,请查阅相关文献资料或咨询专业人士。

拉曼光谱(原)

拉曼光谱(原)

例三、环己烷的红外光谱与拉曼光谱比较图
· 在环己烷红外谱图中,2928cm-1和2863cm-1为CH2的不对称和对称伸缩振 动吸收峰,1460cm-1为CH2的变形振动吸收峰。 · 在环己烷的拉曼光谱中,2938cm-1和2853cm-1为CH2的不对称和对称伸缩 振动吸收峰,其强度相对于红外光谱较弱,而且对称伸缩振动强于不对称伸 缩振动吸收峰; · 1446cm-1CH2的变形振动吸收峰较弱;803cm-1的强峰为环呼吸振动吸收峰, 这些吸收峰在红外光谱中不特征。
5.拉曼光谱仪
拉曼分光光度计有成套的设备,也可以分部件装配 。下图为谱仪的装置示意图,主要有激光光源,外光路 系统及样品装置,单色仪和探测记录装置,如下图。
5.5 傅里叶变换拉曼光谱仪
傅里叶变换拉曼光谱仪的特点: (1)避免了荧光干扰; (2)精度高; (3)消除了瑞利谱线; (4)测量速度快。
例二、丙烯酸甲酯的红外光谱与拉曼光谱比较图
·红外光谱中3030cm-1(m),烯基的C-H伸缩振动;2998cm-1(m),甲基的C-H伸 缩振动;1732cm-1(s),υC=O; 1636cm-1(m), υC=C; 1279cm-1(s),1209 cm1(s), υCOOC ; 1070cm-1(s), υCCO 。 · Raman光谱中3041cm-1 (m),烯基的C-H伸缩振动;2998cm-1(m),甲基的CH伸缩振动; 1728cm-1(m), υC=O; 1636 cm-1(s), υC=C ; ·而IR中的1279cm-1(s),1209 cm-1(s), υCOOC ; 1070 cm-1(s), υCCO 及 δCH2 =CH (988,855 cm-1) 谱带,在Raman光谱中的谱带弱,不特征。

原位拉曼光谱在线分析

原位拉曼光谱在线分析
胡晓红.拉曼光谱的应用及其进展[J]. 分析仪器, 2011(6): 1-4.
原位拉曼光谱-实验应用
紫外共振拉曼光谱
荧光通常出现在 300~700 nm区域或者更长波长区域,而在紫 外区的某一波长以下荧光极少出现。
原位拉曼光谱-实验应用
紫外共振拉曼光谱
由于一些组分在紫外区有明显的吸收,紫外光可以选择性地 激发这些组分相应的信息,从而使与这些组分相关的拉曼信 号大大增强,得到共振拉曼光谱。相对于普通拉曼 (非共振拉 曼),共振拉曼光谱的强度可以增大几个数量级。
25原位拉曼光谱原位拉曼光谱紫外拉曼光谱由于避开了荧光干扰和具有较高的灵敏度利用紫外拉曼以及共振拉曼光谱技术可以非常可靠准确地鉴别出微孔和介孔材料中活性位的结构紫外拉曼光谱在原位研究分子筛合成机理方面显示了强大的优越性将紫外拉曼技术推进到深紫外拉曼技术将会拓展其在分子筛材料杂原子分子筛材料以及宽禁带半导体材料表征方面的应用
探测器
探测器(CCD探测器)
原位拉曼光谱-机理介绍
原位拉曼在催化领域中的优势
➢ 拉曼光谱能够提供催化剂本身以及表面上物种的结构信息; ➢ 较容易实现原位条件(高温、高压、复杂体系)下的催化研究; ➢ 拉曼光谱可用于催化剂制备及反应过程的机理研究,特别是
水相到固相的实时研究。
原位拉曼的不足
荧光干扰和灵敏度较低是阻碍其广泛应用的最主要的问题
仪器分类
➢ 滤光器型拉曼光谱仪 ➢ 色散型拉曼光谱仪 ➢ 傅里叶变换型拉曼光谱仪
原位拉曼光谱-机理介绍
仪器结构
激发光源 采样系统 分光仪 检测器 数据处理系统
激光照射样品之后,样 品的拉曼散射光经过采 样系统输入至分光仪, 检测器将得到的拉曼光 谱数据输入至数据处理 系统进行分析。

原位拉曼光谱 氧吸收

原位拉曼光谱 氧吸收

原位拉曼光谱氧吸收
原位拉曼光谱是一种非常强大的表征材料表面化学性质的方法。

在原位拉曼光谱中,当激光光束照射到材料表面时,部分光子被散射,而另一部分则被材料分子吸收。

这些被吸收的光子会导致材料分子的振动和转动,从而产生拉曼散射信号。

通过分析这些信号,可以得到材料表面的化学组成、结构和反应动力学等信息。

在原位拉曼光谱中,氧吸收是其中一个重要的应用。

由于氧分子在材料表面的吸附和反应可以导致表面化学性质的变化,因此通过原位拉曼光谱可以研究材料表面上的氧分子吸附和反应过程。

例如,在研究催化剂表面的反应机理时,原位拉曼光谱可以用来监测催化剂表面上氧分子的吸附和解离过程,从而揭示催化剂表面的反应机制。

此外,在研究环境污染物的吸附和降解过程时,原位拉曼光谱也可以用来监测污染物分子在材料表面上的吸附和解离过程,从而评估材料的吸附性能和降解效果。

原位拉曼光谱在线分析

原位拉曼光谱在线分析

原位拉曼光谱在线分析引言:原位拉曼光谱在线分析是一种非侵入性的光谱技术,可以通过激光与样品相互作用的方式获取样品的化学信息。

原位意味着该技术可以在样品的实际应用场景中进行在线实时监测,而不需要样品的取出和处理。

本文将介绍原位拉曼光谱在线分析的原理、应用以及存在的挑战。

一、原位拉曼光谱在线分析的原理原位拉曼光谱在线分析主要基于拉曼散射的原理。

当激光被聚焦在样品表面或样品内部时,部分光子与样品中的分子相互作用,产生红外或者紫外光子的散射光谱。

拉曼散射光谱中的每一个峰对应于样品中一些特定化学键的振动频率。

通过测量样品中的散射光谱,我们可以获取样品的拉曼光谱信息,进一步了解样品的组成和结构。

二、原位拉曼光谱在线分析的应用1.化学过程监测:原位拉曼光谱在线分析可以实时监测化学反应过程中的组分变化以及反应产物的生成情况。

这对于实时调控化学反应的反应条件以及选择最佳的反应参数非常重要。

2.制药行业:原位拉曼光谱在线分析可以用于药物制剂的监测和质量控制。

通过监测药物制剂的组分变化,可以及时发现制剂中的异常情况,并采取相应的措施进行纠正。

3.环境监测:原位拉曼光谱在线分析可以用于环境样品的分析,如水质监测、大气中污染物的检测等。

由于原位分析不需要对样品进行取样和处理,可以减少对环境样品的破坏并大大提高监测效率。

4.生化分析:原位拉曼光谱在线分析可以用于生物样品的分析,如细胞生长监测、蛋白质聚集的检测等。

这对于研究生物体内化学过程的变化、生物样品的健康状况等方面具有重要意义。

三、原位拉曼光谱在线分析的挑战尽管原位拉曼光谱在线分析具有广泛的应用前景,但仍面临一些挑战。

1.信号强度:原位拉曼光谱在线分析中,由于激光与样品的相互作用比较弱,所以采集到的拉曼信号较弱。

因此,需要采用增强拉曼技术,如表面增强拉曼光谱(SERS)或拉曼散射共振增强(SERRS)等,来提高信号强度。

2.干扰信号:原位拉曼光谱在线分析中,样品周围的环境会产生干扰信号,使得拉曼信号的检测变得困难。

电化学酰胺化反应中间体的原位质谱分析

电化学酰胺化反应中间体的原位质谱分析

电化学酰胺化反应中间体的原位质谱分析
羊雪;惠人杰;胡军
【期刊名称】《质谱学报》
【年(卷),期】2024(45)1
【摘要】酰胺键是一种广泛存在的重要化学键,既是构建蛋白质和多肽的核心,也是多种药物分子的活性中心。

近年来,基于电化学的酰胺化反应以高选择性、环境友好等优势受到广泛关注,然而,受限于反应过程的复杂性以及缺乏适当的分析技术,其原位监测和机理研究却鲜有报道。

本研究通过在纳升电喷雾喷针尖端集成金属工作电极的方式构建了一种新型耦合接口,实现了电化学与质谱的在线联用。

基于该技术原位监测了以三苯基膦为缩合剂的芳伯胺酰胺化反应过程,并实现了其中多种关键中间体,特别是一些短寿命自由基中间体的鉴定。

该电化学-质谱耦合接口具有延迟低、样品耗量小、制备简单等优点,有望成为电有机合成反应快速筛选和机理研究的重要工具。

【总页数】11页(P131-140)
【作者】羊雪;惠人杰;胡军
【作者单位】江南大学生命科学与健康工程学院
【正文语种】中文
【中图分类】O657.63
【相关文献】
1.电化学反应过程中黄铜表面的原位显微拉曼光谱分析
2.2,4,6-三溴苯酚电化学脱溴反应机理的原位红外光谱分析
3.利用原位红外光谱与微分电化学质谱联用技术研究在Pt以及PtRu电极上发生的甲醇氧化反应
4.电化学过程原位质谱分析研究进展
5.不饱和脂质氮杂环丙烷化反应中间体的原位质谱分析
因版权原因,仅展示原文概要,查看原文内容请购买。

拉曼光谱分析

拉曼光谱分析

Intensity (Arb. Units)
TiO2/300℃
20000 228
TiO2/400℃
TiO2/500℃ 0 145 294 404 516 635 TiO2/600℃ 500 800 1000 200 Raman Shift / cm–1
Raman scattering
拉曼原理
n
斯托克斯(Stokes)拉曼散射 分子由处于振动基态E0被激发到激发态E1时,分子获得的能量为ΔE, 恰好等于光子失去的能量:ΔE=E1-E0,由此可以获得相应光子的频 率改变Δν=ΔE/h
n
Stokes散射光线的频率低于激发光频率 。反Stokes线的频率νas=ν0+ ΔE/h,高于激发光源的频率。 拉曼散射的产生与分子的极化率α有关系 α 是衡量分子在电场作用下电荷分布发生改变的难易程度,或诱导偶极 距的大小,即单位电场强度诱导偶极距的大小。 散射光与入射光频率的差值即是分子的振动频率
n
n
n n
局限:不适于有荧光产生的样品 解决方案:改变激光的激发波长,尝试 FT-Raman光谱仪
Raman光谱仪
优势:激发波长较长, 可以避免部分荧光产生
局限:黑色样品会产生热背景 薄膜样品的厚度应 >1m 光谱范围:5~4000cm-1
分析方法
n
普通拉曼光谱 一般采用斯托克斯分析
n
反斯托克斯拉曼光谱 采用反斯托克斯分析
温度范围: 液氮温度(-195℃)至 1000℃ 自动设置变温程序
适于分析随温度变化发生的: 相变 形变 样品的降解 结构变化
样品制备
n
溶液样品 一般封装在玻璃毛细管中测定 固体样品 不需要进行特殊处理
n
材料分析中的应用

【2024版】拉曼光谱分析法--ppt课件

【2024版】拉曼光谱分析法--ppt课件

优 滤光片组
检测系统
Nd-YAG激光光源
点 ➢ 荧光背景出现机会小
➢ 分辨率高 ➢ 波数精度和重现性好 ➢扫描快,操作方便 ➢近红外光的特性(光纤维中传递性能好、可穿透生物组织)
PPT课件
29
✓近红 外激光 光源
Nd-YAG激光器代替可见光激光器; 产生1.064μm近红外激发光,比可见光 长约1倍,影响信噪比,FT技术克服; 激发光能量低于荧光所需阈值。
e
e
e
e
温度升高 概率大!
3振 电
2动 子
1 0
能 级
基 态
e e
Rayleigh 散射 PPT课件
Raman 散射 8
2、 拉曼光谱图
CCl4的散射光谱
Rayleigh scattering
Stocks lines
anti-Stockes lines
PPT课Δ件ν/cm-1
9
CCl4的拉曼光谱
适用于分子结构分析
PPT课件
11
3、拉曼光谱与分子极化率的关系 拉曼活性取决于振动中极化率是否变化。
若分子在电场E(光波的电磁场)中,产生诱导偶极距μ
μ = αE α为极化率
反映了分子中电子云 变形的难易程度
分子极化率是诱导偶极矩与外电场的强度之比
分子中两原子距离最大时,α也最大
拉曼散射强度与极化率成正比例关系
➢干涉滤光片组,由折射率高低不同 的多层材料交替组合而成。
✓检测器
➢室温下的铟鎵砷检测器 ➢液氮冷却的锗检测器
PPT课件
31
三、激光显微拉曼光谱仪
使入射激光通过显微镜聚焦到试样的微小部位 (直径小至5 μm ),可精确获取所照射部位的拉 曼光谱图。 ➢ 共焦显微激光拉曼光谱仪(使用CCD检测器): 显微镜的物镜和目镜的焦点重合于一点,排除了非 焦点处组分对成像的影响,可显示微区的不同深度 和三维结构信息。 ➢ 激光拉曼光纤探针:光导纤维传感技术与显微镜 耦合而成,可对远距离、特殊环境中试样的拉曼散 射进行原位遥感探测。

叠氮化钠原位高压拉曼光谱研究

叠氮化钠原位高压拉曼光谱研究

叠氮化钠原位高压拉曼光谱研究庞晓芬【摘要】在室温条件下,利用金刚石对顶砧高压技术对叠氮化钠进行了原位高压拉曼光谱研究,采用红宝石荧光压标测压,实验的最高压力为37.7 GPa.实验压力范围内拉曼光谱随压力增加发生了丰富的变化.由于多处拉曼峰的出现和消失并伴随频移有拐点,我们判断叠氮化钠在0~0.4 GPa时发生了第一次结构相变,在相变过程中叠氮根的天平振动模式(Eg)出现了振动模式分裂为Ag和Bg,并且伴随着叠氮根离子之间的电荷转移.随着压力继续增加,在14.1 GPa和27.3 GPa分别发生了第二次和第三次结构相变.压致相变的路径为β-NaN3 →a-NaN3 →NaN3 →δ-NaN3.我们的拉曼散射研究,证实了此前的XRD研究.此外,结合计算,我们对常压下-NaN3的拉曼振动进行了指认.【期刊名称】《光散射学报》【年(卷),期】2016(028)004【总页数】5页(P312-316)【关键词】拉曼光谱;高压;叠氮化钠;结构相变【作者】庞晓芬【作者单位】内蒙古交通职业技术学院,赤峰024000;吉林大学,超硬材料国家重点实验室,长春130021【正文语种】中文【中图分类】O433.4金属叠氮化物由于具有特殊的线性叠氮根离子,造就了其独特的晶格动力学、电子结构和晶体结构等物理化学性质,叠氮根离子的氮与氮之间存在σ键,其电子排布可表示,其结构示意图如图1所示。

作为典型的含能材料,金属叠氮化物在工业生产和科研研究中都具有重要应用,可用于制作起爆剂和气体发生器[2-5]。

特别是最近十年,高能单键态聚合氮在高压下的发现[6-8],使得富氮体系成为最近高压研究的热点。

其中,叠氮化物是合成单键态聚合氮的理想材料,这是由于叠氮根离子中的氮以双键形式结合(N-=N+=N-),而N = N键键能(418 kJ/mol)明显小于N ≡ N键键能(954 kJ/mol),因而科学家预测N = N键在压力下更容易解离而形成N-N键[9]。

【国家自然科学基金】_原位拉曼光谱_基金支持热词逐年推荐_【万方软件创新助手】_20140803

【国家自然科学基金】_原位拉曼光谱_基金支持热词逐年推荐_【万方软件创新助手】_20140803

推荐指数 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2011年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
科研热词 推荐指数 拉曼光谱 4 高压 2 表面增强拉曼光谱 2 相变 2 光致发光 2 低温拉曼光谱学 2 人工合成包裹体 2 高温高压水 1 静高压 1 钒氧化物 1 金刚石对顶砧 1 荧光寿命 1 自支撑金刚石膜 1 聚焦离子束(fib) 1 聚(2-甲氧基-5-辛氧基)对苯乙炔 1 纳米锥 1 纳米环 1 纳米复合材料 1 纳米tio2 1 紫外拉曼 1 空间限制 1 盐水合物 1 电氧化 1 电催化氧化 1 甲醇 1 甲酸 1 环庚烷 1 热解 1 炭黑燃烧 1 微观结构 1 干酪根 1 多层结构 1 原位生长 1 原位热氧化法 1 原位测量 1 原位测试 1 原位 1 化学气相沉积 1 冷冻方式 1 光物理性能 1 光催化 1 催化剂 1 低温相变 1 中间体co 1 ⅰ型甲烷水合物 1 z字结构纳米线 1 tio2 1 sba-15 1 in2o3 1 gan纳米带 1 cacl2-h2o和mgcl2-h2o体系 1 aucore@ptshell/pt电极 1
2011年 科研热词 推荐指数 拉曼光谱 9 高压 2 金刚石压腔 2 高温 1 风化过程 1 锐钛矿 1 锂离子电池 1 钌 1 金红石 1 部分氧化 1 负极材料 1 表面增强拉曼散射(sers) 1 融合二氧化硅毛细管 1 蛇纹石 1 蒙脱石 1 聚合物电解质 1 羟基 1 结构相变 1 纳米花 1 红外光谱 1 穆斯堡尔谱 1 石英-方解石 1 石膏-重水 1 石墨烯 1 相转变 1 相变 1 界面化学 1 电极-电解质界面 1 电子结构 1 甲烷水合物 1 甲烷 1 焙烧气氛 1 热导率 1 温度 1 水拉曼信号抑制 1 水下原位 1 氧同位素分馏 1 氧化铝 1 氢同位素分馏 1 气敏性能 1 正极材料 1 核磁共振波谱 1 晶态 1 显微拉曼光谱术 1 无机离子 1 方解石 1 振荡 1 拉曼光谱学 1 拉曼位移 1 微结构变化 1 微结构 1 微电子 1

原位远场拉曼光谱

原位远场拉曼光谱

原位远场拉曼光谱
拉曼光谱学是一种重要的光学分析技术,用于研究分子结构和化学组成。

原位远场拉曼光谱技术是其中的一种特殊形式,它能够在保持样品原位的情况下进行无损、非侵入性的分析。

原位远场拉曼光谱技术的基本原理是利用拉曼散射现象。

当光与物质相互作用时,光子与物质分子发生相互作用,导致光子的能量和动量发生变化,这种现象被称为拉曼散射。

通过测量散射光的频率和强度,可以获得关于物质分子结构和化学组成的信息。

原位远场拉曼光谱技术的特点是能够在保持样品原位的情况下进行分析。

这意味着在实验过程中,样品不会被移动或破坏,从而能够保持其原始状态。

这对于一些难以移动或脆弱的样品来说非常有价值,因为它可以避免样品在运输或处理过程中发生损坏或变化。

此外,原位远场拉曼光谱技术还具有高灵敏度和高分辨率的特点。

它能够检测到微小的结构和化学变化,并给出详细的分子结构和化学组成信息。

这使得该技术在化学、生物学、环境科学和医学等领域中得到了广泛的应用。

例如,在化学领域中,原位远场拉曼光谱技术可用于研究化学反应过程中分子的结构和性质变化。

在生物学领域中,它可以用于研究生物大分子的结构和功能,以及细胞和组织的代谢过程。

在环境科学领域中,它可以用于监测空气、水和土壤中的污染物和有毒物质。

在医学领域中,它可以用于研究药物分子的作用机制和生物分子的结构变化。

总之,原位远场拉曼光谱技术是一种强大的分析工具,它能够在保持样品原位的情况下进行无损、非侵入性的分析。

由于其高灵敏度和高分辨率的特点,该技术在各个领域中都有着广泛的应用前景。

第1 页。

拉曼光谱

拉曼光谱

光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分, 统称为喇曼效应。

喇曼效应起源于分子振动(和点阵振动)与转动,因此从喇曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。

用虚的上能级概念可以说明了喇曼效应:(图)原理设散射物分子原来处于基电子态,振动能级如图所示。

当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。

设仍回到初始的电子态,则有如图所示的三种情况。

因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为喇曼线。

在喇曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。

附加频率值与振动能级有关的称作大拉曼位移,与同一振动能级内的转动能级有关的称作小拉曼位移:大拉曼位移:(为振动能级带频率)小拉曼位移:(其中B为转动常数)简单推导小拉曼位移:利用转动常数转动能级能级的选择定则为:所以有即(图)拉曼光谱拉曼散射光谱具有以下明显的特征:a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。

c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。

这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。

简单解释:按照波尔兹曼分布律,处于激发态的分子数与处于正常态分子数之比是:其中g为该状态下的简并度,对于振动态,而所以,。

可以解释:温度升高,反斯托克斯线的强度迅速增大,斯托克斯线强度变化不大转动能级中,所以,由于较低和较高的转动态都有显著的布居,所以小拉曼位移两组谱线(反斯托克斯线,斯托克斯线)强度差不多。

原位拉曼光谱和拉曼光谱

原位拉曼光谱和拉曼光谱

原位拉曼光谱和拉曼光谱:原位拉曼光谱和拉曼光谱是两种不同的光谱技术,主要区别在于实验条件和样品处理方式上。

拉曼光谱是一种散射光谱技术,它利用拉曼散射效应来检测分子振动和转动信息,进而分析物质的结构和性质。

在拉曼光谱实验中,样品通常需要在实验前进行预处理,如制备成粉末或液体等,以便更好地进行光谱采集。

采集的拉曼光谱数据可以用于分析物质的分子结构和化学组成等信息。

原位拉曼光谱是在原位反应池中实时进行光谱采集的一种技术。

相比传统拉曼光谱,原位拉曼光谱更注重对样品在自然状态或者特定反应条件下进行实时监测和分析。

在原位拉曼光谱实验中,样品不需要进行过多的预处理,可以直接放置在原位反应池中进行实时监测。

这种技术可以用于研究反应进程、监测化学反应和生物反应等过程。

波谱学课件——拉曼光谱6Raman

波谱学课件——拉曼光谱6Raman

(3)从光的波动性分析拉曼散射的产生
光是电磁波,即它是沿某一方向传播的交变 电磁场。其交变电场可用下式描述:
E=E0cos(2πν′t)
E —在任意t时刻的电场强度; E0—入射光的交变电场强度; ν′为交变电场的频率
样品分子的电子云在交变电场的作用下会诱 导出电偶极矩:
μ=αE
式中 μ—样品分子诱导的偶极矩 E—入射光的交变电场强度 α—分子的极化率(polarizability)
例:
有较大偶极矩 变化的as (-NO2) IR吸收强, Raman谱带弱; 而苯环的骨架 (C=C)极性很 小,出现较强的 Raman谱带和很 弱的IR吸收。
有些谱峰在 两图谱中同时 出现,有些谱 峰只在某一图 谱中出现,两 谱互补,明显 增加了识别和 解释图谱的信 息来源。
Raman光谱适合于研究水溶液体系 水对于红外辐射几乎是完全不透明的,但却是 弱的散射体。这使得拉曼光谱最宜用于研究生 物样品。例:多肽的结构及在水溶液中的构象 测定, Raman光谱可提供重要的信息。
位移是分子振动的特征,是分子振动时极化率发生改 变所致。
(2)从光的粒子性分析Raman散射的产生
光子具有的能量 E=hv h—普朗克常数 v —频率
雷利散射:弹性碰撞,方向改变,能量未变, 散射光的频率也未变; 拉曼散射:非弹性碰撞,方向改变,能量也改 变,光的频率改变;
从分子能级的角度来讨论光子与物质分子的作用
对于结构的变化, Raman有可能比IR更敏感 例如海洛因、吗啡和可待因,三者的主体骨架相 同,仅是环上的取代基有差别。三者的Raman在 600-700cm-1的谱带有明显的不同,1600-1700cm-1 的峰也不同。
FT-Raman光谱也适合做差示光谱 例如要测定片剂中的有效药物成分

拉曼光谱

拉曼光谱

拉曼散射拉曼散射(Raman scattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。

又称拉曼效应。

1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。

1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。

拉曼散射遵守如下规律:散射光中在每条原始入射谱线(频率为v0)两侧对称地伴有频率为v0±vi(i=1,2,3,…)的谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线;频率差vi 与入射光频率v0无关,由散射物质的性质决定,每种散射物质都有自己特定的频率差,其中有些与介质的红外吸收频率相一致。

拉曼散射的强度比瑞利散射(可见光的散射)要弱得多。

以经典理论解释拉曼散射时,认为分子以固有频率vi振动,极化率(见电极化率)也以vi为频率作周期性变化,在频率为v0的入射光作用下,v0与vi两种频率的耦合产生了v0、v0+vi和v0-vi3种频率。

频率为v0的光即瑞利散射光,后两种频率对应拉曼散射谱线。

拉曼散射的完善解释需用量子力学理论,不仅可解释散射光的频率差,还可解决强度和偏振等一类问题。

拉曼散射为研究晶体或分子的结构提供了重要手段,在光谱学中形成了拉曼光谱学的一分支。

用拉曼散射的方法可迅速定出分子振动的固有频率,并可决定分子的对称性、分子内部的作用力等。

自激光问世以后,关于激光的拉曼散射的研究得到了迅速发展,强激光引起的非线性效应导致了新的拉曼散射现象[1]。

拉曼散射共分为两类型:1、共振拉曼散射(resonance Raman scattering):当一个化合物被入射光激发,激发线的频率处于该化合物的电子吸收谱带以内时,由于电子跃迁和分子振动的耦合,使某些拉曼谱线的强度陡然增加,这个效应被成为共振拉曼散射。

共振拉曼光谱是激发拉曼光谱中较活跃的一个领域,原因在于:(1)拉曼谱线强度显著增加,提高了检测的灵敏度,适合于稀溶液的研究,这对于浓度小的自由基和生物材料的考察特别有用;(2)可用于研究生物大分子中的某一部分,因为共振拉曼增强了那些拉曼谱线是属于产生电子吸收的集团,其他部分可能因为激光的吸收而被减弱;(3)从共振拉曼的退偏振度的测量中,可以得到正常拉曼光谱中得不到的分子对称性的信息。

211219815_钒磷氧化物的原位拉曼光谱表征

211219815_钒磷氧化物的原位拉曼光谱表征

150顺丁烯二酸酐(顺酐)是一种重要的有机化工原料,自1966年,Bergman和Frisch [1]发现钒磷氧复合氧化物(VPO)在正丁烷氧化制顺酐的高催化性能后,国内外研究者通过多种表征技术围绕钒系催化剂活性中心开展研究,其中拉曼光谱在研究VPO催化剂的晶体结构中发挥了重要的作用,本工作运用原位拉曼光谱技术实时表征了VPO催化剂前体在不同活化条件下的微观晶相结构的变化过程,对理解VPO催化剂如何发挥作用具有参考意义。

1 实验部分1.1 试剂V 2O 5:分析纯,沈阳化工试剂厂;磷酸:分析纯,Sigma Aldrich试剂;异丁醇、苯甲醇:分析纯,国药集团化学试剂有限公司。

1.2 催化剂前体的制备采用有机溶剂还原合成法制备VPO催化剂前体:将一定量的V 2O 5加入到异丁醇和苯甲醇的混合溶剂中,再按P/V原子比为1/1.15添加一定量的焦磷酸,回流反应后得浅蓝色浆液。

将该浆液离心、洗涤、干燥,在250℃下干燥一定时间后,得催化剂前体VOHPO 4·0.5H 2O。

1.3 催化剂的表征拉曼光谱采用RENISHAW公司inVia Qontor显微拉曼光谱仪,光源532nm。

取一定量的催化剂前体样品置于原位池中,活化气氛为不同比例的正丁烷和空气的混合气,加热温度从室温升至400℃(升温速率5℃/min),并于400℃停留4h,以一定的时间间隔进行表征。

2 结果与讨论2.1 高正丁烷浓度低氧气浓度时的活化表征反应池中通入正丁烷(φ=1.45%)和氧气(φ=14.25%)的空气混合气,样品加热升温过程见图1,当氧含量较低时,VPO催化剂表面主要存在(VO)2P 2O 7相,特征峰位于930cm -1和1180cm -1处[2]。

存在的δ-VOPO 4相其特征峰1018cm -1的峰强随温度升高而减弱,300℃后逐渐消失,说明钒磷氧化物的原位拉曼光谱表征商宜美 师慧敏 姜健准 王斌 王焕茹 胡潇雨中石化(北京)化工研究院有限公司 北京 100013摘要:运用原位拉曼光谱实时表征了钒磷氧化物在反应过程中微观晶相结构的动态变化过程,结果表明钒磷氧化物的晶相结构会随着反应条件的变化而变化,反应气氛中正丁烷的存在有稳定V Ⅳ和促进(VO)2P 2O 7含量的趋势,而氧气可以促进V Ⅴ的形成,不同的活化条件下V Ⅳ和V Ⅴ的含量在氧化物中保持特定的平衡。

以合成包裹体作压腔进行高温下NaCl—CO2—H2O混合流体的拉曼光谱原位分析

以合成包裹体作压腔进行高温下NaCl—CO2—H2O混合流体的拉曼光谱原位分析

2 实 验
2 1 包 裹体样 品的合成 .
选取没有缺 陷 的合成 石英 晶体 , 将其 磨成 长约 1 5 m, . 直径 2 5 c . 左右 的小圆柱 。 后通 过 mm 然
高温淬 火使其 产生大 量的裂 纹 , 法是把 它放人 马弗 炉中 , 3O 方 于 5 ℃加 热 约 1 取 出 后 立 即 投 入 到 h, 室 温 蒸 馏 水 中 。最 后将 经 过 淬 火 处 理 过 的 石 英 柱 置 于 烘 箱 中 , 1 0C下 烘 2 h 除 去 裂 纹 中 的 水 在 5" 4,
分 。将 处 理 好 的 石 英柱 装 入 直 径 4 mm 的 铂 管 中 , 入 不 同 配 比 的 物 质 , 氧 化 碳 通 过 高 温 下 草 酸 加 二
银 ( 的 分 解 来 产 生 m] 炔 氧 焰 焊 封 , 重 , 入 8  ̄ 烘 箱 中烘 2 h, 称 重 以 检 验 焊 封 AgC O ) 。用 称 放 0C的 4 再
第 1 9卷
的质 量 。将 焊 封 合 格 的 铂 管 装 入 冷 封 口高 压 容
器 中进 行 实 验 。
实 验 时 先 将 高 压 容 器 的 压 力 加 到 l0 l MP ( 压 介 质 为 蒸 馏 水 ) 在 此 压 力 下 于 3 a传 , h
左 右 将 高 压 容 器 升 温 到 6 0C, 此 条 件 下 反 0 ̄ 在 应 8天 左 右 。反 应 完 成 后 进 行 淬 火 , 维 持 高 在 压 釜压 力的条 件 下 , 压 缩 空气 使 它 冷却 , 用 待


用 合 成 包 裹体 作 为压 腔 , 用显 微 激 光 拉 曼探 针 原 位 分 析 了温 度 达 5 0C的 Na — Oz 0体 系 的 流 5 ̄ CI C — Hz

Raman拉曼光谱

Raman拉曼光谱

于瑞利线旳位移表达旳拉曼光谱
h0
波数与红外光谱旳波数相一致。
入射
散射
h
h
E1
红外吸收 拉曼散射
E0
拉曼光谱与红外光谱

同属分子振(转)动光谱
异红:外红:外合用于分研子究对不同红原外子光旳旳极性吸键收振动 -O强H,度-由C分=子O,偶-极C距-决X定
拉异曼::拉合曼用于分研子究同对原激子光旳非旳极散性射键振动 -N-强N度-由, -分C子-C极-化,率C决=定C
瑞利散射: 弹性碰撞;无能量互换,仅变化方向;频率不发生变化 旳辐射散射(u=u0);强度与l0旳四次方成反比
拉曼散射:非弹性碰撞;方向变化且有能量互换; 频率发生变化旳辐射散射(u=u0△u)
光旳 散射
光旳散射
样 透过光λ不变
品 池
拉曼散射λ变
λ减小 λ增大
瑞利散射λ不变
二、拉曼散射旳产生
样品分子中旳电子首先被一
激光器示意图
工作2物质
产生激光振荡旳一种主 要条件:两个反射镜之间旳 光必须是驻波,波节在两个 反射镜处。
全反1 射镜
部分4反射镜
激光器旳选频作用
鼓励3 能源
激光旳特征: 单色性好,相位一致,方向性好,亮度高
第三节 激光拉曼光谱原理
一、光旳散射
光散射是自然界常见旳现象.当一束光照射介质时,除被吸收之外, 大部分被反射或透过,另一部分光被介质向四面八方散射.在散射光 中,大部分是瑞利散射,小部分是拉曼散射.
110 ℃干燥
500 ℃焙烧
Mo/Al2O3旳拉曼光谱
成果表白,在低负载 量时即有汇集态Mo物种 存在。随负载量提升,其 汇集度逐渐增大。
Mo/Al2O3催化剂旳Raman表征
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用自行设计的可用于原位研究水热合成过程的原位紫外拉 曼光谱池,对几种典型分子筛(X型分子和Fe-ZSM-5)的合成过 程实现了拉曼光谱研究。
范峰滔, 李灿.催化材料的紫外拉曼光谱研究[J]. 催化学报, 2009, 30(8): 717-739.
原位拉曼光谱-实验应用
Fe-ZSM-5合成机理的紫外拉曼光谱研究
姜承志.拉曼光谱数据处理与定性分析技术研究[D]. 长春:中国科学院大学, 2014.
原位拉曼光谱-机理介绍
拉曼对CCI4浓度的定量分析
含量/%
100 90 80 70 60 50 40 30 20 10 0
6000
26000
46000
峰面积
66000
原位拉曼光谱-机理介绍
技术分类
显微共焦拉曼光谱技术 共振增强拉曼光谱技术 傅里叶变换拉曼光谱技术
原位拉曼光谱-实验应用
Fe-ZSM-5合成机理的紫外拉曼光谱研究
利用激发线 (244 nm) 的紫外拉曼光谱 可以选择性地激发得到铁物种的相应 信息。
在Fe-ZSM-5 形成的初期已经存 在大量四面体配位的Fe-(OSi)4, 但它们的配位环境不如在晶化完 全的分子筛骨架中那么刚性化
分子筛骨架的结晶度不断提高
表面增强拉曼光谱技术 高温拉曼在线分析技术 紫外拉曼光谱技术
仪器分类
➢ 滤光器型拉曼光谱仪 ➢ 色散型拉曼光谱仪 ➢ 傅里叶变换型拉曼光谱仪
原位拉曼光谱-机理介绍
仪器结构
激发光源 采样系统 分光仪 检测器 数据处理系统
激光照射样品之后,样 品的拉曼散射光经过采 样系统输入至分光仪, 检测器将得到的拉曼光 谱数据输入至数据处理 系统进行分析。
不同晶化时间的 Fe-ZSM-5 (Si/Fe=152)在244nm 紫外拉曼光谱
原位拉曼光谱-实验应用
Fe-ZSM-5合成机理的紫外拉曼光谱研究
拉 曼 光 谱 结 果 表 明 , FeZSM-5 骨 架 的 形 成 是 从 样 品核心开始的,然后由内 到外逐渐晶化。
Fe-ZSM-5 的晶化机理 范峰滔, 李灿.催化材料的紫外拉曼光谱研究[J]. 催化学报, 2009, 30(8): 717-739.
原位拉曼光谱-展望
➢ 一方面是新一代激光技术的发展,基于超快激光的非线性 拉曼光谱技术已经越来越成熟了,推动了表面光谱技术的 发展。
➢ 另一方面就是纳米科技的迅猛发展,它使得基于纳米结构 的表面增强拉曼光谱(SERS)和针尖增强拉曼光谱(TERS) 在超高灵敏度检测方面取得了长足的进步。
拉曼光谱分析因其灵敏度高、快速、无损伤及分析效率高的 特点而越来越受到关注。
拉曼散射光由于受到了物质结构的调制,因此携带了 物质的信息。
姜承志.拉曼光谱数据处理与定性分析技术研究[D]. 长春:中国科学院大学, 2014.
原位拉曼光谱-机理介绍
根据玻耳兹曼 ( Boltzman ) 分 布 定 律,由于热平衡,处 于低能级的分子数总 是大于次高能级的分 子数,因此斯托克斯 拉曼散射光的强度总 是大于反斯托克斯拉 曼散射光的强度。
张思华, 王亚明. 原位测试技术在催化研究中的应用[J]. 工业催化, 2009, 17(2):15-20.
原位拉曼光谱-背景介绍
发展历程
➢ 1928 年印度科学家 C.V.Raman 首次发现拉曼效应; ➢ 20世纪 60 年代随着激光技术的发展使拉曼光谱得以复兴 ➢ 20 世纪 70 年代以后,随着显微拉曼光谱技术的发展,拉
拉曼光谱(TERS)在超高灵敏度检测方面蓬勃发展。
原位拉曼光谱-机理介绍
拉曼活性是由于极化率改变产生的。对于双原子,其分子振动期 间电荷分布ρ变化引起电子极化率α(ρ)的变化。α(Q)作为简正坐标 Q的函数及随Q在平衡位置Q0处做微小振动示意。
原位拉曼光谱-机理介绍
光散射的过程:激光入射到样品,产生散射光。
原位拉曼光谱-实验应用
紫外拉曼光谱优势
紫外拉曼光谱由于避开了荧光干扰和具有较高的灵敏度 利用紫外拉曼以及共振拉曼光谱技术可以非常可靠、准
确地鉴别出微孔和介孔材料中活性位的结构 紫外拉曼光谱在原位研究分子筛合成机理方面显示了强
大的优越性 将紫外拉曼技术推进到深紫外拉曼技术将会拓展其在分子筛 材料、杂原子分子筛材料以及宽禁带半导体材料表征方面的 应用。将紫外拉曼技术与时间分辨技术相结合将会进一步扩 展时间分辨光谱在光催化材料结构及其催化反应机理等方面 的应用研究。
原位拉曼光谱-实验应用
紫外共振拉曼光谱
由于一些组分在紫外区有明显的吸收,紫外光可以选择性地 激发这些组分相应的信息,从而使与这些组分相关的拉曼信 号大大增强,得到共振拉曼光谱。相对于普通拉曼 (非共振拉 曼),共振拉曼光谱的强度可以增大几个数量级。
中科院大连化物所催化基础实验室利用紫外拉曼以及共振拉 曼光谱技术研究了分子筛合成机理以及氧化物表面相结构。
Dalian University of Technology College of the Environment
原位拉曼光谱
报 告 人: 指导老师: 报告时间:
原位拉曼光谱
1
背景介绍
2
机理介绍
3
实验应用
4
展望
原位拉曼光谱-背景介绍
原位分子光谱表征手段
(1) 原位透射红外方法 (2) 原位发射光谱方法 (3) 原位漫反射光谱方法 (4) 原位拉曼光谱方法
姜承志.拉曼光谱数据处理与定性分析技术研究[D]. 长春:中国科学院大学, 2014.
原位拉曼光谱-机理介绍
激发光源 激发光区域
激光波长 激光器类型
可见区
近红外 紫外
514nm 633nm 785nm 1064nm
325nm
Ar+ He-Ne 半导体 YAG
He-Cd
原位拉曼光谱-机理介绍
采样系统
利用激发线 (325 nm) 的紫外拉曼光谱 可以选择性地激发得到骨架结构的相 应信息。
➢ 五元环和六元环的Si–O–Si结构增加, 合成中期形成该次级结构单元
➢ 形成了大量的具有MFI 结构的晶体 ➢ 四面体配位铁物种附近的Si–O–Si结
构变得刚性化
不同晶化时间的 Fe-ZSM-5 (Si/Fe=152)在325 nm 紫外拉曼光谱
30300000
35350000
原位拉曼光谱-机理介绍
定量分析
拉曼散射的强度与分子的浓度、入射光强度等因素有关,并考 虑到量子力学修正,拉曼散射强度 ������������可用下式表达:
������������
=
24������3 45 × 32������4
×
ℎ������������������(������0 − ������)4 ������������(1 − ������−ℎ������������������)
中红外光谱
生物、有机材料为主 对极性键敏感 需简单制样 光谱范围:400~4000cm-1
拉曼光谱
无机、有机、生物材料 对非极性键敏感 无需制样 光谱范围:50~3500cm-1
局限:含水样品
局限:有荧光样品
原位拉曼光谱-背景介绍
红外及拉曼光谱仪对比
一些在红外光谱中的弱谱带,在拉曼光谱中可能为强谱带, 如: 同分子非极性键S―S,C=C,N=N,C≡C等; 由C≡N,C=S,S―H等组成的伸缩振动谱带; 环状化合物的对称伸缩振动; X=Y=Z,C=N=C,O=C=O类对称伸缩振动; C-C伸缩振动; 某些醇类和烷拉烃曼。光谱是对红外光谱检测的补充
(5) 双分子探针方法 (6) 程序升温质谱方法 (7) 化学捕获和同位素标记方法
原位红外技术在催化剂原位表征中占主导地位。
张思华, 王亚明. 原位测试技术在催化研究中的应用[J]. 工业催化, 2009, 17(2):15-20.
原位拉曼光谱-背景介绍
红外及拉曼光谱仪对比
共性:测定分子结构,同属振动光谱 各自特点
曼光谱技术已可以对微米量级的样品进行分析; ➢ 20 世纪 80 年代以后,纤维光学探针被引入拉曼光谱技术,
使得拉曼光谱的远程测量成为可能; ➢ 20 世纪 90 年代以后,出现的傅里叶变换拉曼光谱仪可以
显著降低甚至消除样品的荧光背景,提高光谱信噪比; ➢ 基于纳米结构的表面增强拉曼光谱(SERS)和针尖增强
通常使用的拉曼散射都是指斯托克斯拉曼散射
原位拉曼光谱-机理介绍
定性分析
物质的拉曼位移与入射光的频率无关,仅取决于分子固有的 振动和转动的能级结构。因此,每一种具有拉曼活性的物质 具有其特定的拉曼位移,具有拉曼活性物质的拉曼特征峰 中,只具有单一拉曼活性振动形式的物质体现在拉曼谱图上 只有单一的峰,具有多种拉曼活性的振动形式体现在拉曼谱 图上有多个峰。
原位拉曼光谱
45(������������ ′)2的基础是测得的分析物拉曼峰强度与 分析物浓度间有线性比例关系。分析拉曼峰面积(累积强度) 与分析物浓度间的关系曲线是直线,这种曲线称为标定曲线。 通常对标定曲线应用最小二乘方拟合以建立一方程式,从拉曼 峰面积计算得到分析物浓度。
水相到固相的实时研究。
原位拉曼的不足
荧光干扰和灵敏度较低是阻碍其广泛应用的最主要的问题
胡晓红.拉曼光谱的应用及其进展[J]. 分析仪器, 2011(6): 1-4.
原位拉曼光谱-实验应用
紫外共振拉曼光谱
荧光通常出现在 300~700 nm区域或者更长波长区域,而在紫 外区的某一波长以下荧光极少出现。
➢ 耦合光路(收集散射光) ➢ 瑞利滤光片(去除瑞利散射光)
分光仪
单光栅光谱仪(复杂的散射光分解成光谱线 用于检测)
探测器
探测器(CCD探测器)
原位拉曼光谱-机理介绍
相关文档
最新文档