Matlab 概率论与数理统计

合集下载

第8章Matlab在概率统计中的应用(可编辑修改word版)

第8章Matlab在概率统计中的应用(可编辑修改word版)

第8章M a t l a b在概率统计中的应用概率论与数理统计是研究和应用随机现象统计规律性的一门数学科学。

其应用十分广泛,几乎遍及所有科学领域、工农业生产和国民经济各部门。

本章将利用Matlab 来解决概率统计学中的概率分布、数字特征、参数估计以及假设检验等问题。

8.1数据分析8.1.1几种均值在给定的一组数据中,要进行各种均值的计算,在Matlab 中可由以下函数实现。

mean 算术平均值函数。

对于向量X,mean (X) 得到它的元素的算术平均值;对于矩阵,mean (X)得到X 各列元素的算术平均值,返回一个行向量。

nanmean 求忽略NaN 的随机变量的算术平均值。

geomean 求随机变量的几何平均值。

harmmean 求随机变量的和谐平均值。

trimmean 求随机变量的调和平均值。

8.1.2数据比较在给定的一组数据中,还常要对它们进行最大、最小、中值的查找或对它们排序等操作。

Mtalab 中也有这样的功能函数。

max 求随机变量的最大值元素。

nanmax 求随机变量的忽略NaN 的最大值元素。

min 求随机变量的最小值元素。

nanmin 求随机变量的忽略NaN 的最小值元素。

median 求随机变量的中值。

nanmedian 求随机变量的忽略NaN 的中值。

mad 求随机变量的绝对差分平均值。

sort 对随机变量由小到大排序。

sortrows 对随机矩阵按首行进行排序。

range 求随机变量的值的范围,即最大值与最小值的差(极差)。

8.1.3累和与累积求向量或矩阵的元素累和或累积运算是比较常用的两类运算,在Matlab 中可由以下函数实现。

sum 若X 为向量,sum (X)为X 中各元素之和,返回一个数值;若X 为矩阵,sum (X)为X 中各列元素之和,返回一个行向量。

nansum 忽略NaN 求向量或矩阵元素的累和。

cumsum 求当前元素与所有前面位置的元素和。

返回与X 同维的向量或矩阵。

概率论matlab实验报告

概率论matlab实验报告

概率论与数理统计matlab上机实验报告班级:学号:姓名:指导老师:实验一常见分布的概率密度、分布函数生成[实验目的]1. 会利用MATLAB软件计算离散型随机变量的概率,连续型随机变量概率密度值。

2.会利用MATLAB软件计算分布函数值,或计算形如事件{X≤x}的概率。

3.会求上α分位点以及分布函数的反函数值。

[实验要求]1.掌握常见分布的分布律和概率密度的产生命令,如binopdf,normpdf2. 掌握常见分布的分布函数命令,如binocdf,normcdf3. 掌握常见分布的分布函数反函数命令,如binoinv,norminv[实验内容]常见分布的概率密度、分布函数生成,自设参数1、X~B(20,0.4)(1)P{恰好发生8次}=P{X=8}(2)P{至多发生8次}=P{X<=8}(1)binopdf(8,20,0.4)ans =0.1797(2)binocdf(8,20,0.4)ans =0.59562、X~P(2)求P{X=4}poisspdf(4,2)ans =0.09023、X~U[3,8](1)X=5的概率密度(2)P{X<=6}(1) unifpdf(5,3,8)ans =0.2000(2) unifcdf(6,3,8)ans =0.60004、X~exp(3)(1)X=0,1,2,3,4,5,6,7,8时的概率密度(2)P{X<=8}注意:exp(3)与教材中参数不同,倒数关系(1)exppdf(0:8,3)ans =Columns 1 through 30.3333 0.2388 0.1711Columns 4 through 60.1226 0.0879 0.0630Columns 7 through 90.0451 0.0323 0.0232(2) expcdf(8,3)ans =0.93055、X~N(8,9)(1)X=3,4,5,6,7,8,9时的概率密度值(2) X=3,4,5,6,7,8,9时的分布函数值(3)若P{X<=x}=0.625,求x(4)求标准正态分布的上0.025分位数(1)normpdf(3:9,8,3)ans =Columns 1 through 30.0332 0.0547 0.0807 Columns 4 through 60.1065 0.1258 0.1330 Column 70.1258(2)normcdf(3:9,8,3)ans =Columns 1 through 30.0478 0.0912 0.1587 Columns 4 through 60.2525 0.3694 0.5000 Column 70.6306(3)norminv(0.625,8,3)ans =8.9559(4)norminv(0.975,0,1)ans =1.96006、X~t(3)(1)X=-3,-2,-1,0,1,2,3时的概率密度值(2)X=-3,-2,-1,0,1,2,3时的分布函数值(3)若P{X<=x}=0.625,求x(4)求t分布的上0.025分位数(1)tpdf(-3:3,3)ans =Columns 1 through 30.0230 0.0675 0.2067 Columns 4 through 60.3676 0.2067 0.0675 Column 70.0230(2)tcdf(-3:3,3)ans =Columns 1 through 30.0288 0.0697 0.1955 Columns 4 through 60.5000 0.8045 0.9303 Column 70.9712(3)tinv(0.625,3)ans =0.3492(4)tinv(0.975,3)ans =3.18247、X~卡方(4)(1)X=0,1,2,3,4,5,6时的概率密度值(2) X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求卡方分布的上0.025分位数(1)chi2pdf(0:6,4)ans =Columns 1 through 30 0.1516 0.1839 Columns 4 through 60.1673 0.1353 0.1026 Column 70.0747(2)chi2cdf(0:6,4)ans =Columns 1 through 30 0.0902 0.2642 Columns 4 through 60.4422 0.5940 0.7127 Column 70.8009(3)chi2inv(0.625,4)ans =4.2361(4)chi2inv(0.975,4)ans =11.14338、X~F(4,9)(1)X=0,1,2,3,4,5,6时的概率密度值(2) X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求F分布的上0.025分位数(1)fpdf(0:6,4,9)ans =Columns 1 through 30 0.4479 0.1566 Columns 4 through 60.0595 0.0255 0.0122 Column 70.0063(2)fcdf(0:6,4,9)ans =Columns 1 through 30 0.5442 0.8218Columns 4 through 60.9211 0.9609 0.9788Column 70.9877(3)finv(0.625,4,9)ans =1.1994(4)finv(0.975,4,9)ans =4.7181实验二概率作图[实验目的]1.熟练掌握MATLAB软件的关于概率分布作图的基本操作2.会进行常用的概率密度函数和分布函数的作图3.会画出分布律图形[实验要求]1.掌握MATLAB画图命令plot2.掌握常见分布的概率密度图像和分布函数图像的画法[实验内容]任选四种分布,自设参数(已画八种分布图像,可熟悉各分布特点)1、X~B(20,0.4)代码:x=0:20;y=binopdf(x,20,0.4)plot(x,y,'.')结果:2、X~exp(3)概率密度图像代码:x=0:0.01:15;y=exppdf(x,3)plot(x,y)结果:分布函数代码:x=-1:0.01:15;y=expcdf(x,3)plot(x,y)结果:3、X~P(4)概率密度图形代码:x=0:10;y=poisspdf(x,4)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10; y=poisscdf(x,4) plot(x,y)结果:4、X~U(3,8)概率密度图形代码:x=0:0.01:10;y=unifpdf(x,3,8)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10;y=unifcdf(x,3,8) plot(x,y)结果:5、X~N(4,9)概率密度图形代码:x=-10:0.01:18;y=normpdf(x,4,3); plot(x,y)结果:分布函数图形代码:x=-10:0.01:18;y=normcdf(x,4,3); plot(x,y)结果:同一坐标系,均值是4,标准差分别为1,2,3的正态分布概率密度图形代码:x=-5:0.01:15;y1=normpdf(x,4,1);y2=normpdf(x,4,2);y3=normpdf(x,4,3);plot(x,y1,x,y2,x,y3)结果:6、X~t(3)概率密度图形代码:x=-10:0.01:10;y=tpdf(x,3);plot(x,y)结果:分布函数图形代码:x=-10:0.01:10; y=tcdf(x,3); plot(x,y)结果:7、X~卡方(4)概率密度图形代码:x=0:0.01:15;y=chi2pdf(x,4);plot(x,y)结果:分布函数图形代码:x=0:0.01:15; y=chi2cdf(x,4); plot(x,y)结果:8、X~F(4,9)概率密度图形代码:x=0:0.001:10;y=fpdf(x,4,9);plot(x,y)结果:分布函数图形代码:x=0:0.001:10; y=fcdf(x,4,9); plot(x,y)结果:实验三数字特征[实验目的]1 加深对数学期望,方差的理解2理解数学期望,方差的意义,以及具体的应用3 加深对协方差,相关系数的理解4 了解协方差,相关系数的具体的应用[实验要求]1 概率与频率的理论知识,MATLAB软件2 协方差,相关系数的理论知识,MATLAB命令cov,corrcoef [实验内容]P101-11代码:exp=[];price=[-200 100];exp(1)=expcdf(1,4)exp(2)=1-exp(1)Ey=exp*price'结果:exp =0.2212exp =0.2212 0.7788Ey =33.6402即平均获利为Ey=e^(-1/4)*300-200=33.6402p101-13代码:Syms x yfxy=(x+y)/3;Ex=int(int(fxy*x,y,0,1),x,0,2)Ey=int(int(fxy*y,y,0,1),x,0,2)Exy=int(int(fxy*x*y,y,0,1),x,0,2)E=int(int(fxy*(x^2+y^2),y,0,1),x,0,2)结果:Ex =Ey =5/9Exy =2/3E =13/6>>P102-22代码:Syms x yfxy=1;Ex=int(int(fxy*x,y,-x,x),x,0,1) Ey=int(int(fxy*y,y,-x,x),x,0,1)Ex2=int(int(fxy*x^2,y,-x,x),x,0,1) Ey2=int(int(fxy*y^2,y,-x,x),x,0,1) Dx=Ex2-Ex^2Dy=Ey2-Ey^2结果:Ex =Ey =Ex2 =1/2Ey2 =1/6Dx =1/18Dy =1/6>>P103-26代码:Syms x yfxy=2-x-y;Ex=int(int(fxy*x,y,0,1),x,0,1);Ey=int(int(fxy*y,y,0,1),x,0,1);Ex2=int(int(fxy*x^2,y,0,1),x,0,1);Ey2=int(int(fxy*y^2,y,0,1),x,0,1);Dx=Ex2-Ex^2;Dy=Ey2-Ey^2;Exy=int(int(fxy*x*y,y,0,1),x,0,1);Covxy=Exy-Ex*Eyrxy=Covxy/(sqrt(Dx)*sqrt(Dy))D=4*Dx+Dy结果:Covxy =-1/144rxy =-1/11D =55/144实验四统计中的样本数字特征实验五两个正态总体均值差,方差比的区间估计[实验目的]1掌握两个正态总体均值差,方差比的区间估计方法2会用MATLAB求两个正态总体均值差,方差比的区间估计[实验要求]两个正态总体的区间估计理论知识[实验内容]P175-27代码:x1=[0.143 0.142 0.143 0.137]x2=[0.140 0.142 0.136 0.138 0.140] x=mean(x1)y=mean(x2)s1=var(x1)s2=var(x2)s=sqrt((3*s1+4*s2)/7)t=tinv(0.975,7)d1=(x-y)-t*s*sqrt(1/4+1/5)d2=(x-y)+t*s*sqrt(1/4+1/5)结果:s =0.0026t =2.3646d1 =-0.0020d2 =0.0061即置信区间为(-0.0020,0.0061)P175-28代码:u=norminv(0.975,0,1)s=sqrt(0.035^2/100+0.038^2/100)d1=(1.71-1.67)-u*sd2=(1.71-1.67)+u*s结果:u =1.9600s =0.0052d1 =0.0299d2 =0.0501>>即置信区间为(0.0299,0.0501)P175-30代码:f1=finv(0.975,9,9)f2=finv(0.025,9,9)f3=finv(0.95,9,9)f4=finv(0.05,9,9)s12=0.5419s22=0.6065d1=s12/s22/f1d2=s12/s22/f2d3=s12/s22/f3d4=s12/s22/f4结果:d1 =0.2219d2 =3.5972d3 =0.2811d4 =2.8403>>即置信区间为(0.2219,3.5972),置信下界为0.2811,置信上界为2.8403实验五假设检验[实验目的]1 会用MATLAB进行单个正态总体均值及方差的假设检验2 会用MATLAB进行两个正态总体均值差及方差比的假设检验[实验要求]熟悉MATLAB进行假设检验的基本命令与操作[实验内容]P198-2原假设H0:平均尺寸mu=32.25;H1:平均尺寸mu<>32.25方差已知,用ztest代码:x=[32.56,29.66,31.64,30.00,31.87,31.03][h,sig,ci,zval]=ztest(x,32.25,1.1,0.05)[h,sig,ci,zval]=ztest(x,32.25,1.1,0.01)(注:h是返回的一个布尔值,h=0,接受原假设,h=1,拒绝原假设;sig表示假设成立的概率;ci为均值的1-a的置信区间;zval为Z统计量的值)结果:h =1sig =0.0124ci =30.2465 32.0068zval =-2.5014h =sig =0.0124ci =29.9699 32.2834zval =-2.5014即a=0.05时,拒绝原假设H0;a=0.01时,接受原假设H0p198-3原假设H0:总体均值mu=4.55;H1:总体均值mu<>4.55方差未知,用ttest代码:x=[4.42,4.38,4.28,4.40,4.42,4.35,4.37,4.52,4.47,4.56][h,sig,ci,tval]=ttest(x,4.55,0.05)结果:h =1sig =6.3801e-004ci =4.3581 4.4759tval =tstat: -5.1083df: 9sd: 0.0823h=1,即拒绝原假设H0p198-10是否认为是同一分布需要分别检验总体均值和方差是否相等原假设H0:mu1-mu2=0;H1:mu1-mu2<>0代码:x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8][h,sig,ci]=ttest2(x,y,0.05)结果:h =sig =0.9172ci =-0.2396 0.2646h=0,即接受原假设H0,mu1-mu2=0,两分布的均值相等;验证方差相等的matlab方法没有找到可采用以下语句整体检验两个分布是否相同,检验两个样本是否具有相同的连续分布[ h ,sig, ksstat]=kstest2(x,y,0.05)原假设H0:两个样本具有相同连续分布H1:两个样本分布不相同代码:x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8][ h ,sig, ksstat]=kstest2(x,y,0.05)结果:h =sig =0.9998ksstat =0.1528>>h=0,即接受原假设H0,两个样本有相同的连续分布。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用
Matlab提供了丰富的概率分布函数,可以帮助学生更好地理解不同的概率分布。

学生可以使用Matlab生成正态分布、二项分布、泊松分布等不同的概率分布,并画出相应的概率密度函数、累积分布函数等图形。

通过实际的计算和绘图,学生可以更直观地看到不同概率分布的特点,加深对概率分布的理解。

Matlab提供了各种统计函数,可以方便地进行数据的描述性统计和推断性统计。

学生可以使用Matlab计算样本的平均值、方差等描述性统计量,还可以使用Matlab进行假设检验、置信区间估计等推断性统计。

通过实际的计算和分析,学生可以更好地掌握统计学中的概念和方法。

Matlab还可以进行模拟实验,帮助学生理解概率和统计的原理。

学生可以使用Matlab 模拟抛硬币的实验,验证概率的定义和性质。

学生还可以使用Matlab模拟中心极限定理,观察样本均值的分布趋于正态分布的情况。

通过实际的模拟实验,学生可以更深入地理解抽样分布和极限定理等重要概念。

Matlab还可以用于数据的可视化。

学生可以使用Matlab绘制直方图、散点图、箱线图等图形,展示数据的分布和变化。

通过可视化的方式,学生可以更好地理解数据的特点和规律,并能够更直观地展示和解释统计分析的结果。

Matlab在《概率论与数理统计》教学中具有广泛的应用价值。

通过利用Matlab进行计算、模拟和可视化等任务,可以帮助学生更好地理解概率和统计的概念和方法,提高学习效果。

在教学中合理地使用Matlab可以有效地促进学生对概率论与数理统计的学习和理解。

概率论和数理统计的Matlab 实现

概率论和数理统计的Matlab 实现
0.6827 更一般地,若观测量取自参数为 和 µ 的正态分布,则它落在该区间中的概率 为 68%。
expcdf 函数 功能:计算累加指数分布函数。 语法:P = expcdf(X,MU) 描述:expcdf(X,MU) 计算参数为 MU 的数据 X 的累加指数分布函数。指数 MU 必须为
正。 累加指数分布函数的计算公式为:
概率论和数理统计的 Matlab 实现
1概 述
自然界和社会上会发生各种各样的现象,其中有的现象在一定条件下是一定要发生的, 有的则表现出一定的随机性,但总体上又有一定的规律可循。一般称前者为确定性事件, 后者为不确定性事件(或称随机事件)。概率论和数理统计就是研究和揭示不确定事件统计 规律性的一门数学学科。
f (x |l) =
lx x!
e-l
I (0,1,K )
(x)
y=
f (x | b) =
x b2
çæ - x 2 ÷ö
eçè 2b2 ÷ø
y
=
f
(x
| v)
=
Gçæ è
v
+ 2
1
÷ö ø
Gçæ è
v 2
÷ö ø
1
1
vp
ççèæ1 +
v +1
x2 v
÷÷øö
2
y=
f (x | N) =
1 N
I (1,..., N ) ( x)
y
=f(x|r,p)
=
ççèæ
r
+
x x
+
1÷÷øö
p
x
q
x
I
(
0,1,...)
(
x)
其中, q = 1 - p

第8章 matlab 概率论与数理统计问题的求解

第8章 matlab 概率论与数理统计问题的求解

8.1.3 概率问题的求解
图4-9
• 例:
>> b=1; p1=raylcdf(0.2,b); p2=raylcdf(2,b); P1=p2-p1 P1 = 0.8449
>> p1=raylcdf(1,b); P2=1-p1 P2 = 0.6065
• 例:
>> syms x y; f=x^2+x*y/3; >> P=int(int(f,x,0,1/2),y,0,1/2) P= 5/192 >> syms x y; f=x^2+x*y/3; P=int(int(f,x,0,1),y,0,2) P= 1
8.1.2.3
பைடு நூலகம்
分布
• 例:
>> x=[-0.5:.02:5]‘; %x=[-eps:-0.02:-0.5,0:0.02:5]; x=sort(x’);替代 >> y1=[]; y2=[]; a1=[1,1,2,1,3]; lam1=[1,0.5,1,2,1]; >> for i=1:length(a1) y1=[y1,gampdf(x,a1(i),lam1(i))]; y2=[y2,gamcdf(x,a1(i),lam1(i))]; end >> plot(x,y1), figure; plot(x,y2)
8.1.2.2 正态分布
正态分布的概率密度函数为:
• 例:
>> x=[-5:.02:5]'; y1=[]; y2=[]; >> mu1=[-1,0,0,0,1]; sig1=[1,0.1,1,10,1]; sig1=sqrt(sig1); >> for i=1:length(mu1) y1=[y1,normpdf(x,mu1(i),sig1(i))]; y2=[y2,normcdf(x,mu1(i),sig1(i))]; end >> plot(x,y1), figure; plot(x,y2)

(完整版)Matlab概率论与数理统计

(完整版)Matlab概率论与数理统计

Matlab 概率论与数理统计、matlab 基本操作 1. 画图【例01.01】简单画图hold off; x=0:0.1:2*pi; y=sin (x);plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,二维均匀随机数hold off ;x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30;plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100);plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]);xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b');hold on ;'r' ,x,y60, 'r' ,y60,x,'r')'r');'m.')2. 排列组合kC=nchoosek(n,k) : CC n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从 n1 至U n2 的连乘【例01.03】至少有两个人生日相同的概率365 364|||(365 rs 1)rs365365 364 365 rs 1 365 365365rs=[20,25,30,35,40,45,50]; %每班的人数p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs));%用连乘公式计算for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end%用公式计算(改进) for i=1:le ngth(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365); end ; end%用公式计算(取对数) for i=1:le ngth(rs)p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end公式计算P 1n!C NN nN!1 (N n)!1N nN (N 1) (N n 1)、随机数的生成3. 均匀分布随机数rand(m,n);产生m行n列的(0,1)均匀分布的随机数rand(n);产生n行n列的(0,1)均匀分布的随机数【练习】生成(a,b)上的均匀分布4. 正态分布随机数randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma42)上的正态分布5. 其它分布随机数三、一维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布(2) 均匀分布_ k k n k(3) 二项分布:binopdf(x,n,p),若X ~ B(n, p),则P{X k} C n p (1 p),x=0:9 ;n=9;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]当n较大时二项分布近似为正态分布x=0:100; n=100;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')ke⑷泊松分布:piosspdf(x, lambda),若X ~ (),贝U P{ X k}k!x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081,0.0027]k 1⑸几何分布:geopdf (x, p),贝U P{X k} p(1 p)x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ] x=0:10;N=20;M=8; n=4;y= hygepdf(x,N,M, n); plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2. 概率密度函数(1)均匀分布:unifpdf(x,a,b) , f (x)其它a=0;b=1;x=a:0.1:b; y= uni fpdf (x,a,b);1 2 厂(x )2 ■厂ex=-10:0.1:12;mu=1;sigma=4;y= no rmpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); % 产生 10000 个正态分布的随机数 d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a 为横轴,求出10000个正态分布的随机数的频率(6)超几何分布:hygepdf(x,N,M,n),则 P{Xk}C k nM CNC N(2)正态分布:normpdf(x,mu,sigma) , f (x)plot(x,y,'b-',a,b,'r.')1 _x⑶指数分布:exppdf(x,mu), f (x)其它x=0:0.1:10;mu=1/2;■ t京■I_ey= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n i F⑷2分布:chi2pdf(x,n) , f (x; n) 2n ^( n 2) % e x 0hold onx=0:0.1:30;n=4;y= chi2pdf(x, n);plot(x,y,'b');%blue n=6;y= chi2pdf(x, n);plot(x,y,'r');%red n=8;y=chi2pdf(x ,n );plot(x,y,'c');%cya n n=10;y= chi2pdf(x, n);plot(x,y,'k');%black lege nd(' n=4', 'n=6', 'n=8', 'n=10');n 1((n 1) 2) x2 2⑸t 分布:tpdf(x,n) , f (x; n) ------------------ 1 -J n (n. 2) nhold onx=-10:0.1:10;n=2;y= tpdf(x, n);plot(x,y,'b');%bluen=6;y= tpdf(x, n);plot(x,y,'r');%redn=10;y= tpdf(x ,n );plot(x,y,'c');%cya nn=20;y= tpdf(x, n);plot(x,y,'k');%black lege nd(' n=2', 'n=6', 'n=10', 'n=20');((m山m 门2n2) 2)小2% 2 1 5 % 2(n2 2) n2n2x 0(6) F 分布:fpdf(x,n1,n2) , f (x; n「n2) (E 2)0 x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x, n1, n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x, n1, n2);plot(x,y,'r');%red n1=10; n2=6;y= fpdf(x, n1, n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x, n1,n 2);plot(x,y,'k');%black legend(' n仁2; n2=6', ' n1= 6; n2=10', ' n仁10;n2=6', ' n仁10; n2=10');3.分布函数F(x) P{X x}【例03.01】求正态分布的累积概率值设X ~ N(3,22),求 P{2 X 5}, P{ 4 X 10}, P{ X 2}, P{X 3},14.逆分布函数,临界值y F(x) P{X x} , x F (y) , x称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=normin v(y,0,1);【例03.03】求2(9)分布的累积概率值hold offy=[0.025,0.975];x=ch i2in v(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0, n); plot(x0,y0, 'r'); x1=0:0.1:x(1);y1=chi2pdf(x1, n);x2=x(2):0.1:30;y2=chi2pdf(x2 ,n);hold onfill([x1, x(1)],[y1,0], 'b');fill([x(2),x2],[0,y2], 'b');【练习1.1】二项分布、泊松分布、正态分布(1)对n 10, p 0.2二项分布,画出b(n,p)的分布律点和折线;(2)对np,画出泊松分布()的分布律点和折线;(3)对np, 2叩(1 p),画出正态分布N( , 2)的密度函数曲线;(4)调整n, p,观察折线与曲线的变化趋势。

概率论与数理统计MATLAB上机实验报告

概率论与数理统计MATLAB上机实验报告

《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。

了解用matlab解决概率相关问题的方法。

2、增强动手能力,通过完成实验内容增强自己动手能力。

二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。

概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。

答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。

用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。

由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。

因此当n足够大时,可以认为泊松分布与二项分布一致。

4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。

概率与数理统计matlab实验报告1

概率与数理统计matlab实验报告1
>> p=[nchoosek(3,1)*nchoosek(2,1)*nchoosek(9,3)*nchoosek(6,3)]/[nchoosek(12,4)*nchoosek(8,4)]
p =
0.2909
(2).
>> p=[nchoosek(3,1)*nchoosek(9,3)*nchoosek(6,3)]/[nchoosek(12,4)*nchoosek(8,4)]
p =
0.1455
二.1.
>> p=1-0.98^200-nchoosek(200,1)*0.02*0.98^199
p =
0.9106
2.
>> p=normcdf(22,20,1.5)-normcdf(19,20,1.5)
p =
0.6563
三.1.
>> x=-10:0.01:10;
y1=normpdf(x,2,9);y2=normpdf(x,4,9);y3=normpdf(x,6,9);
plot(x,y1,x,y2,x,y3)






(2)
.>> y=-10:0.01:10;
>> x1=normpdf(y,0,1);x2=normpdf(y,0,4);x3=normpdf(y,0,9);
>> plot(x1,y,x2,y,x3,y)




熟练掌握matlab的使用方法。
13-14-2电子信息工程实验报告1
姓名魏丰Βιβλιοθήκη 学号20120506305
班级
1203

matlab概率论部分数学实验指导书

matlab概率论部分数学实验指导书
X Y
1.9
0.8
1.1
0.1
0.1
4.4 5.5 1.6 4.6 3.4
0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0
试就下列两种情况分析这两种药物的疗效有无显示性的差异。 ( α = 0.05 ) 。 ① X 与 Y 的方差相同;② X 与 Y 的方差不同。 (7) 、 已知某一试验, 其温度服从正态分布, 现在测量了温度的五个值为: 1250, 1265,1245,1260,1275。问是否可以认为 µ = 1277 (8) 、其它教材上的题目或自己感兴趣的题目。 ( α = 0.05 ) 。 ?
A =[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 22
20 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16
实验四、样本的统计与计算 实验目的: 熟练使用 matlab 对样本进行基本统计,包括样本的位置统计、分散性统计、样 本中心矩、分布的形状统计。求样本均值、中位数、样本方差,偏度、峰度、 样本分位数和其它数字特征,并能做出频率直方图和经验分布函数。 实验内容: 来自总体的样本观察值如下,计算样本的样本均值、中位数、样本方差、极差, 偏度、峰度、画出频率直方图,经验分布函数图。

MATLAB教程第八章 概率和数理统计

MATLAB教程第八章 概率和数理统计
t 1 10 e f (t ) 10 0
t0 t0
某人到此办事,若等待时间超过15分钟,他就离 去。设此人一个月要去该处10次,试求: (1)恰好有两次有两次离去的概率; (4)离去的次数占多数的概率。
解:首先求任一次离去的概率,
解: p1=Hygepdf(1,500,50,10) p1 = 0.3913 p2=Hygepdf(0,500,50,10)+Hygepdf(1,500,50,10) p2 = 0.7365 p3=1-Hygepdf(0,500,50,10) p3 = 0.6548
例5:计算指数密度函数值
解: y=exppdf(5,1:5) y= 0.0067 0.0410 0.0630 0.0716 0.0736 y=exppdf(1:5,1:5) y= 0.3679 0.1839 0.1226 0.0920 0.0736
分布
例1 :某单位有内线电话300部,假设任意一时刻每部电话打外线电
话的概率为0.01,求在某一时刻恰有4部电话打外线的概率。在某一时 刻打外线电话的最可能部数是多少?
解:设X表示某一时刻该单位打外线电话的电话部数, 则X的统计规律可用二项分布来描述,X~B(300,0.01)。 记A=“某一时刻恰有4部电话打外线”,则所求概率为 p=p(A)=p(X=4)。 p=binopdf(4,300,0.01) p = 0.1689 计算某一时刻打外线电话的最可能部数 y=binopdf([0:300],300,0.01); [pp,m]=max(y) pp = 0.2252 m= 4
概率与分位数的关系 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2.1171 2.5 p=0.9

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用【摘要】摘要:本文探讨了Matlab在《概率论与数理统计》教学中的应用。

在介绍了研究背景、目的和意义。

在分别阐述了Matlab在概率论教学中的基本概念应用、在数理统计教学中的数据分析应用、在概率论与数理统计教学中的模拟实验设计、在教学案例分析中的应用以及在编程训练中的应用。

结论部分总结了Matlab在教学中的重要性,并展望了未来研究方向。

本文旨在为教师和学生提供更有效的教学和学习工具,以提高教学效果和学习成果。

Matlab在概率论与数理统计教学中的应用将在未来持续发展,并为该领域的研究和实践提供更多可能性。

【关键词】Matlab, 概率论, 数理统计, 教学, 应用, 模拟实验, 数据分析, 编程训练, 教学案例分析, 重要性, 研究方向, 总结1. 引言1.1 研究背景研究背景部分将重点介绍Matlab在概率论与数理统计教学中的应用现状和意义。

通过Matlab软件,学生可以直观地展示概率分布的图像、计算统计量、进行数据拟合和模拟实验等操作。

Matlab的使用不仅提高了教学效果,也使学生在处理大量数据和复杂问题时更加得心应手。

在现代社会,数据分析已经成为一项必不可少的技能。

运用Matlab软件进行概率论与数理统计教学的实践意义愈发重要。

本文将进一步探讨Matlab在概率论与数理统计教学中的具体应用,以期能够为教学改革和学生能力培养提供参考和借鉴。

1.2 目的引言概率论与数理统计是现代数学中非常重要的一门学科,它不仅是其他学科的基础,而且在各个领域都有着广泛的应用。

而在教学中,如何让学生更加直观地理解和应用这些概念,是一个很重要的问题。

本文旨在探讨Matlab在《概率论与数理统计》教学中的应用,通过应用Matlab软件,可以更好地帮助学生理解难点,提高学习的效率和趣味性,从而提高教学质量。

1.3 意义在《概率论与数理统计》教学中,Matlab的应用具有重要的意义。

MATLAB第7章 概率论与数理统计

MATLAB第7章 概率论与数理统计
= F(x2,y2)- F(x1,y2)- F(x2,y1)+ F(x1,y1) 对二维离散型随机变量,称
P{(X,Y)=(xi, yi)}= P{X=xi,Y= yi}=pij, i,j=1,2,..., 为二维离散型随机变量(X,Y)的联合分布律,也称(X,Y)的概率分布。
7.2.5二维随机变量及概率分布
7.6方差分析
在实际中,一种结果往往会受到几种不同因素的影响,如一种产品的 质量可能会受到设备性能和操作人员技能等方面的影响;不同的营销方 式对同一产品的销售量可能产生不同的效果;某一地区居民的消费水平 可能与人均收入、商品价格及广告力度等因素有关;化学合成过程可能 会受到温度、时间和材料成分的影响;农作物产量可能会受到气候、肥 料、品种及土质等因素的影响;等等。方差分析(analysis of variance, 简 写ANOVA)就是对由不同因素变化时所产生的结果进行统计特性的差异分 析,以检验各种因素对所研究对象的某一特性的影响程度,是假设检验 方法的一种多元推广。
基于一维分析方法并通过相关数学运算可以方便地实现二维或多维随 机变量及概率的分析。 【例7-21】 已知二维连续随机变量(X,Y)的联合密度函数为
f (x, y) cex2y,x 0, y 0
试求: 1) 确定常数c; 2)计算概率P{2X+Y≤1}; 3) 求(X,Y)的联合分布函数。
7.2.6随机变量函数的分布
7.5假设检验
假设检验是指先对总体分布中的参数或对总体分布做出某种 假设, 从总体中随机抽取一个样本来检验假设是否接受或拒绝。总 体假设检验分为两类:参数假设检验和总体分布假设检验。总体 假设通常设立原假设H0(或零假设,null hypothesis)和备择假设 H1(或对立假设,alternative hypothesis)。由于要从随机抽取的 一个子样本来检验总体假设是否接受或拒绝,因此可能犯两类错 误:第一类错误为拒绝真,第二类错误是接受假。

第9章概率论与数理统计的MATLAB实现讲稿

第9章概率论与数理统计的MATLAB实现讲稿

第9章 概率论与数理统计的MATLAB 实现MA TLAB 总包提供了一些进行数据统计分析的函数,但不完整。

利用MA TLAB 统计工具箱,可以进行基本概率和数理统计分析,以及进行比较复杂的多元统计分析。

本章主要针对大学本科的概率统计课程介绍工具箱的部分功能。

9.1 随机变量及其分布利用统计工具箱提供的函数,可以比较方便地计算随机变量的分布律(概率密度函数)和分布函数。

9.1.1 离散型随机变量及其分布律如果随机变量全部可能取到的不相同的值是有限个或可列个无限多个,则称为离散型随机变量。

MA TLAB 提供的计算常见离散型随机变量分布律的函数及调用格式: 函数调用格式(对应的分布) 分布律y=binopdf(x,n,p)(二项分布) )()1(),|(),,1,0(x I p p x n p n x f n x n x --⎪⎪⎭⎫ ⎝⎛= y=geopdf(x,p)(几何分布) x p p p x f )1()|(-= ),1,0( =xy=hygepdf(x,M,K,n)(超几何分布) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=n M x n K M x K n K M x f ),,|(y=poisspdf(x,lambda)(泊松分布) λλλ-=e x x f x !)|(),1,0( =x y=unidpdf(x,n)(离散均匀分布) NN x f 1)|(= 9.1.2 连续型随机变量及其概率密度对于随机变量X 的分布函数)(x F ,如果存在非负函数)(x f ,使对于任意实数x 有⎰∞-=x dt t f x F )()(则称X 为连续型随机变量,其中函数)(x f 称为X 的概率密度函数。

MA TLAB 提供的计算常见连续型随机变量分布概率密度函数的函数及调用格式:函数调用格式(对应的分布) 概率密度函数y=betapdf(x,a,b)(β分布) )10()1(),(1),|(11<<-=--x x x b a B b a x f b ay=chi2pdf(x,v)(卡方分布) )2(2)|(2212v exv x f v x v Γ=--)0(≥xy=exppdf(x,mu)(指数分布) μμμxex f -=1)|()0(≥xy=fpdf(x,v1,v2)(F 分布) 2211222121212121111)2()2()2(),|(v v v v v x v x vv v v v v v v x f +-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ΓΓ+Γ= y=gampdf(x,a,b)(伽马分布) b xa a e x ab b a x f --Γ=1)(1),|()0(≥xy=normpdf(x,mu,sigma)(正态分布) 222)(21),|(σμπσσμ--=x ex fy=lognpdf(x,mu,sigma)(对数正态分布) 222)(ln 21),|(σμπσσμ--=x ex x fy=raylpdf(x,b)(瑞利分布) 2222)|(b x e b x b x f -=y=tpdf(x,v)(学生氏t 分布) 2121)2()21()|(+-⎪⎪⎭⎫ ⎝⎛+Γ+Γ=v v x v v v v x f πy=unifpdf(x,a,b)(连续均匀分布) )(1),|(],[x I ab b a x f b a -=y=weibpdf(x,a,b)(威布尔分布) )(),|(),0(1x I eabx b a x f bax b ∞--= 比如,用normpdf 函数计算正态概率密度函数值。

建模百科四:matlab与概率统计

建模百科四:matlab与概率统计

matlab在概率统计中的应用概率统计概述要处理的问题:如何处理自然界和社会生活中的随机现象?研究内容:包含概率论和数理统计两大块概率论——是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。

数理统计——是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证局限性。

使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。

统计的任务是由样本推断总体。

主要内容:概率论:概率论的基本概念(随机试验、样本空间、随机事件频率与概率等可能概型(古典概型)几何概率概率的一般定义条件概率独立性)随机变量及其分布多维随机变量及其分布随机变量的数字特征大数定律及中心极限定理等数理统计:样本及抽样分布参数估计假设检验方差分析及回归分析实验设计等排列组合:随机排列所有排列testperm.m随机变量问题:如何产生各种常见的随机变量?如何计算分布函数和分位数及其统计特性?***rnd表示产生某种分布的随机数,***cdf表示x处的分布函数,***inv表示此分布的分位数(即分布函数为p时对应的x的值),***pdf表示分布的密度函数。

***stat表示分布的均值和方差testRandVariable.m综合例子:(随机向量)如何产生布朗运动?随机变量的抽样特性:样本均值,样本方差,数据集中度度量(P132),数据变异性度量,数据分布特性度量testsample.m统计估计(参数的点估计与区间估计)问题:如何通过有限的抽样样本,来得到未知参数的估计值(最可能的值)?如何衡量估计的好坏?(无偏性,均方误差准则)如何给出参数的某个范围并知道这个范围包含真实参数的可信度?方法:参数的矩估计法、极大似然估计法点估计思想:矩估计法的思想是用样本矩=真实矩,求方程或方程组得到;极大似然是使得似然函数最大的参数作为真实参数。

MATLAB 在概率论与数理统计课程教学过程中的应用

MATLAB 在概率论与数理统计课程教学过程中的应用

MATLAB 在概率论与数理统计课程教学过程中的应用作者:韩静来源:《发明与创新(职业教育)》 2020年第9期【作者简介】韩静(1983—),女,硕士研究生,研究方向:概率论与数理统计,图论。

韩静(山西大学商务学院,山西太原030031)摘要:在大学本科经济管理、理工类课程中,概率论与数理统计是重要内容,同时也是基础课程,其学习质量直接影响学生对数学原理的理解与应用能力。

在传统课堂上,教师在讲解概率论与数理统计课程时,一般会重视理论的讲解,在数学统计软件编程实现上缺少实操性投入。

MATLAB是数学三大软件之一,将之用于概率论与数理统计教学,能够帮助学生与教师从繁琐的计算中解脱出来,有更多的时间学习数学原理知识。

关键词:概率论与数理统计;MATLAB软件;应用概率论与数理统计这一课程是经济管理、工科及理科等诸多专业的数学基础必修课,山西大学在授课中,将这一课程划分为两部分内容,前面是对概率论的讲解,重点在于探讨理论知识,如概率论概念、相关定理及公式的介绍、对随机过程及统计过程中的问题加以解决,后面是将概率论作为基础,探索试验结果作为依据的统计推断方法,如回归分析、方差分析、假设检验、参数估计及非参数检验等。

在这一课程的教学过程中,教师需要借助案例演示,为理论教学提供支撑,激发学生理解能力与动手能力,增强学生对相关知识的掌握,各种专业软件是直观演示概念的重要工具。

一、MATLAB软件介绍在解决数学问题时,常用的软件包括符号运算、统计及数值计算软件,而MATLAB是这些常用软件中,最易操作、应用最广泛的工具。

MATLAB软件具有较高数值计算能力,且可用于图形处理,用户界面友好,工具包丰富,在各领域均可得到应用。

MATLAB软件具有可扩展性,它具备的工具箱,就是特定功能下的函数集合,主要包括数学和优化、控制系统分析与设计、统计与数据分析、图形处理、分布式计算、金融建模、信号处理及通信等。

这些工具箱多数为开放式语言写就,便于用户查看源代码,结合自身需要,创建或修改自定义函数。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用1. 引言1.1 研究背景概率论与数理统计作为现代科学研究的基础,广泛应用于物理、生物、经济、工程等各个领域。

在教学中,传统的概率论与数理统计教学往往通过纸笔计算和手工绘图进行,这样的方式在一定程度上限制了学生对概念的理解和实际应用能力的培养。

而引入Matlab这样的数学计算软件,可以极大地提高教学效率,使学生更直观地理解抽象的数学概念,提高他们的学习兴趣和动手能力。

通过将Matlab与概率论与数理统计相结合,可以更好地展示概率分布、统计分析、随机模拟等概念,加深学生对这些内容的理解和掌握。

研究Matlab在概率论与数理统计教学中的应用具有重要意义。

本文将探讨Matlab在概率论与数理统计教学中的具体应用,分析其在教学中的优势和未来发展方向。

1.2 研究意义概率论与数理统计作为数学学科中重要的分支,旨在研究事件的发生规律以及数据的分布特征,对现代科学、技术和社会管理等领域都具有重要的应用价值。

在教学中,采用Matlab作为工具可以加深学生对概率与统计理论的理解,提高他们的计算和分析能力,培养他们解决实际问题的能力。

通过引入Matlab,学生可以更加直观地掌握数学模型的建立和计算方法,提高他们对概率与统计学习的兴趣和积极性,进一步激发他们学习的潜力。

Matlab在教学中的应用也有助于培养学生的动手能力和实际解决问题的能力,提高他们的实践能力和创新思维。

教师可以结合具体案例,引导学生运用Matlab工具分析问题,并进行模拟实验和数据处理,使学生在实践中不断探索、思考和总结,从而提高他们的学习效果和实际应用能力。

Matlab在概率论与数理统计教学中的应用具有重要的意义和价值。

2. 正文2.1 Matlab在概率论教学中的基本概念应用Matlab可以用来计算概率。

通过编写简单的代码,可以计算各种随机事件发生的概率,例如掷硬币、抛骰子等。

这样的实践可以帮助学生深入理解概率的概念,同时提高他们的计算能力。

Matlab在概率统计教学中的作用

Matlab在概率统计教学中的作用

Matlab在概率统计教学中的作用陕西汉中职业技术学院教育系司艳堂1,引言Matlab是美国Mathworks公司自20世纪80年代中期推出的数学软件,其优秀的数值计算能力和卓越的数据可视化能力使其在众多的数学软件中脱颖而出,到目前为止该软件已成为多学科多种工作平台的功能强大的大型软件,在欧美高校,Matlab已成为线性代数,自动控制理论,概率论与数理统计等高级课程的基本数学工具,是大学生必须掌握的基本技能。

概率论与数理统计是理工科学生的一门重要的必修课程,需要进行大量的数值计算,许多学校把概率论与数理统计放在一个学期完成,学时较紧,如何在较短的时间内让学生能使用数学软件处理相关的概率统计问题,目前已成为一个教改研究问题,如果在教学实践中有意识地引入Matlab软件应用于概率统计教学,使概率统计中的数据处理,数值计算变得轻而易举,就将极大提高教学效率,增强学生的学习兴趣,为了体会Matlab在概率统计中的作用,本文举例加以阐述。

2,利用Matlab的工具进行概率论与数理统计实验Matlab软件提供了工具箱,里面有大量的概率统计函数可直接应用,无需编程就可以在该软件上实现,这从根本上简化了计算过程的繁杂与查表工作。

比如随机数的产生,各种概率密度函数,分布函数的计算,求期望,方差和相关系数等,直接调用这些函数可方便地得到结果。

下面就Matlab在概率论中具体应用举例。

2.1 常用的随机变量可直接调用函数例1,一个质量检验员每天检验500个零件。

如果1%的零件有缺陷,一天内检验员没有发现缺陷零件的概率是多少?检验员发现有缺陷零件的数量最多可能是多少?解:本题可归纳为参数n=500,p=0.01的二项分布问题,故可调用工具箱中的binopdf 命令求解。

计算一天内检验员没有发现缺陷零件的概率p:>>p=0.0066计算检验员发现有缺陷零件的数量:y=binopdf ([0:500],500,0.01)>>[x,i]=max(y)x=0.1764i=6例2,设随机变量X在(1,5)服从均匀分布,则期望与方差可直接调用函数unifstat。

(完整版)Matlab概率论与数理统计

(完整版)Matlab概率论与数理统计

(完整版)Matlab概率论与数理统计Matlab 概率论与数理统计⼀、matlab基本操作1.画图【例01.01】简单画图hold off;x=0:0.1:2*pi;y=sin(x);plot(x,y,'-r');x1=0:0.1:pi/2;y1=sin(x1);hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,⼆维均匀随机数hold off;x=[0,60];y0=[0,0];y60=[60,60];x1=[0,30];y1=x1+30;x2=[30,60];y2=x2-30;xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0];fill(xv,yv,'b');hold on;plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r');plot(x1,y1,'r',x2,y2,'r');yr=unifrnd (0,60,2,100);plot(yr(1,:),yr(2,:),'m.')axis('on');axis('square');axis([-20 80 -20 80 ]);2. 排列组合C=nchoosek(n,k):kn C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从n1到n2的连乘【例01.03】⾄少有两个⼈⽣⽇相同的概率公式计算nn nn NNn N N N N n N N N C n p )1()1(1)!(!1!1+--?-=--=-=365364(3651)365364365111365365365365rs rs rs ?-+-+=-=-?rs=[20,25,30,35,40,45,50]; %每班的⼈数 p1=ones(1,length(rs)); p2=ones(1,length(rs));% ⽤连乘公式计算for i=1:length(rs)p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end% ⽤公式计算(改进) for i=1:length(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365);end ;end% ⽤公式计算(取对数) for i=1:length(rs)⼆、随机数的⽣成3.均匀分布随机数rand(m,n); 产⽣m⾏n列的(0,1)均匀分布的随机数rand(n); 产⽣n⾏n列的(0,1)均匀分布的随机数【练习】⽣成(a,b)上的均匀分布4.正态分布随机数randn(m,n); 产⽣m⾏n列的标准正态分布的随机数【练习】⽣成N(nu,sigma.^2)上的正态分布5.其它分布随机数三、⼀维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布 (2) 均匀分布(3) ⼆项分布:binopdf(x,n,p),若~(,)X B n p ,则{}(1)k k n kn P X k C p p -==-,x=0:9;n=9;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]‘当n 较⼤时⼆项分布近似为正态分布 x=0:100;n=100;p=0.3; y= binopdf(x,n,p); plot(x,y,'b-',x,y,'r*')(4)泊松分布:piosspdf(x, lambda),若~()Xπλ,则{}! k eP X kkλλ-==x=0:9; lambda =3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081, 0.0027 ] (5)⼏何分布:geopdf (x,p),则1 {}(1)kP X k p p-==-(6)超⼏何分布:hygepdf(x,N,M,n),则{}k n kM N MnNC CP X kC--==x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ]x=0:10;N=20;M=8;n=4;y= hygepdf(x,N,M,n);plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2.概率密度函数(1)均匀分布:unifpdf(x,a,b),1()a x bf x b a≤≤=-其它a=0;b=1;x=a:0.1:b;y= unifpdf (x,a,b);(2)正态分布:normpdf(x,mu,sigma),221()2()2xf x eµσπσ--=x=-10:0.1:12;mu=1;sigma=4;y= normpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); %产⽣10000个正态分布的随机数d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a为横轴,求出10000个正态分布的随机数的频率plot(x,y,'b-',a,b,'r.')(3)指数分布:exppdf(x,mu),11()xe a x bf xθθ-≤≤=?其它x=0:0.1:10;mu=1/2;y= exppdf(x,mu);plot(x,y,'b-',x,y,'r*')(4)2χ分布:chi2pdf(x,n),12221(;)2(2)00n xnx e xf x n nx--≥=Γ<hold onx=0:0.1:30;n=4;y= chi2pdf(x,n);plot(x,y,'b');%blue n=6;y= chi2pdf(x,n);plot(x,y,'r');%redn=8;y= chi2pdf(x,n);plot(x,y,'c');%cyan n=10;y= chi2pdf(x,n);plot(x,y,'k');%black legend('n=4', 'n=6', 'n=8', 'n=10');(5)t分布:tpdf(x,n),22((1)2)(;)1(2)n xf x nnn nπ-Γ+=+?Γ?hold onx=-10:0.1:10;n=2;y= tpdf(x,n);plot(x,y,'b');%blue n=6;y= tpdf(x,n);plot(x,y,'r');%redn=10;y= tpdf(x,n);plot(x,y,'c');%cyann=20;y= tpdf(x,n);plot(x,y,'k');%black legend('n=2', 'n=6', 'n=10', 'n=20');(6)F分布:fpdf(x,n1,n2),112122212112121222(()2)10(;,)(2)(2)00n n nnn n n nx x xf x n n n n n nx+--Γ++≥=?ΓΓ<hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x,n1,n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x,n1,n2);plot(x,y,'r');%redn1=10; n2=6;y= fpdf(x,n1,n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x,n1,n2);plot(x,y,'k');%blacklegend(' n1=2; n2=6', ' n1=6; n2=10', ' n1=10; n2=6', ' n1=10; n2=10');3.分布函数(){}F x P X x=≤【例03.01】求正态分布的累积概率值设2~(3,2)X N,求{25},{410},{2},{3}P X P X P X P X<<-<<>>,p1=normcdf(5,3,2)- normcdf(2,3,2)=0.5328p1=normcdf(1,0,1)- normcdf(-0.5,0,1) =0.5328p2=normcdf(10,3,2)- normcdf(-4,3,2)=0.9995p3=1-(normcdf(2,3,2)- normcdf(-2,3,2))=0.6977p4=1-normcdf(3,3,2)=0.5004. 逆分布函数,临界值(){}y F x P X x ==≤,1()x F y -=,x 称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=norminv(y,0,1);【例03.03】求2(9)χ分布的累积概率值hold offy=[0.025,0.975]; x=chi2inv(y,9); n=9;x0=0:0.1:30;y0=chi2pdf(x0,n); plot(x0,y0,'r');x1=0:0.1:x(1);y1=chi2pdf(x1,n); x2=x(2):0.1:30;y2=chi2pdf(x2,n); hold onfill([x1, x(1)],[y1,0],'b'); fill([x(2),x2],[0,y2],'b');函数名调⽤形式注释sort sort(x),sort(A) 排序,x 是向量,A 是矩阵,按各列排序 sortrows sortrows(A) A 是矩阵,按各⾏排序 mean mean(x) 向量x 的样本均值 var var(x) 向量x 的样本⽅差 std std(x) 向量x 的样本标准差 median median(x) 向量x 的样本中位数 geomean geomean(x) 向量x 的样本⼏何平均值 harmmean harmmean(x) 向量x 的样本调和平均值 rangerange(x)向量x 的样本最⼤值与最⼩值的差【练习1.1】⼆项分布、泊松分布、正态分布(1)对10,0.2n p ==⼆项分布,画出(,)b n p 的分布律点和折线;(2)对np λ=,画出泊松分布()πλ的分布律点和折线;(3)对2,(1)np np p µσ==-,画出正态分布2(,)N µσ的密度函数曲线;(4)调整,n p ,观察折线与曲线的变化趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab 概率论与数理统计
一、matlab 基本操作
1. 画图
【例
【例
2. C=nchoosek(n,k):k
n C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20.
prod(n1:n2):从n1到n2的连乘
【例01.03】至少有两个人生日相同的概率
公式计算n
n n
n N
N
n N N N N n N N N C n p )1()1(1)!
(!
1!1+--⋅-=--=-
=
二、随机数的生成
3.均匀分布随机数
rand(m,n); 产生m行n列的(0,1)均匀分布的随机数rand(n); 产生n行n列的(0,1)均匀分布的随机数
【练习】生成(a,b)上的均匀分布
4.正态分布随机数
randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma.^2)上的正态分布
三、一维随机变量的概率分布
1. 离散型随机变量的分布率
(1) 0-1分布 (2) 均匀分布
(3) 二项分布:binopdf(x,n,p),若~(,)X B n p ,则{}(1)k k n k
n P X k C p p -==-,
(4) 泊松分布:piosspdf(x, lambda),若~()X πλ,则{}!
k e P X
k k λ
λ-==
(5) 几何分布:geopdf (x,p ),则1
{}(1)
k P X k p p -==-
(6) 超几何分布:hygepdf(x,N,M,n),则{}k n k M N
M
n
N
C C P X k C --== 2. 概率密度函数
(1) 均匀分布:unifpdf(x,a,b),1()0
a x b
f x b a
⎧≤≤⎪
=-
⎨⎪⎩其它
(2) 正态分布:normpdf(x,mu,sigma),221
()2()
x f x μσ
--=
(3) 指数分布:exppdf(x,mu),11()0
x e a x b f x θθ
-⎧≤≤⎪
=⎨⎪⎩
其它
(4) 2
χ分布:chi2pdf(x,n),12221
0(;)2(2)
00
n x n x e x f x n
n x --⎧≥⎪=Γ⎨⎪<⎩
(5) t 分布:tpdf(x,n),2
2
(;)1x f x n n
-

=
+⎪

(6) F 分布:fpdf(x,n1,n2),1
1212
22
12112121222
(()2)10(;,)(2)(2)00
n n n n n n n n x x x f x n n n n n n x +-
-⎧⎛⎫⎛⎫
Γ+⎪⎪+≥ ⎪
⎪=⎨ΓΓ⎝⎭⎝⎭

<⎪⎩
3. 分布函数(){}F x P X x =≤ 【例03.01】求正态分布的累积概率值
设2
~(3,2)X N ,求{25},{410},{2},{3}P X P X P X P X <<-<<>>,
4. 逆分布函数,临界值(){}y F x P X x ==≤,1
()x F y -=,x 称之为临界值 【例03.02】求标准正态分布的累积概率值
【例03.03】求2
(9)χ分布的累积概率值
【练习1.1】二项分布、泊松分布、正态分布
(1) 对10,0.2n p ==二项分布,画出(,)b n p 的分布律点和折线; (2) 对np λ=,画出泊松分布()πλ的分布律点和折线;
(3) 对2,(1)np np p μσ==-,画出正态分布2(,)N μσ的密度函数曲线; (4) 调整,n p ,观察折线与曲线的变化趋势。

已知某种股票现行市场价格为100元/股,假设该股票每年价格增减是以0.4,10.6
=-=呈20%与
p p
-10%两种状态,(1)求10
n=年后该股票价格的分布,画出分布律点和折线;(2)求n年之后的平均价格,画出平均价格的折线。

a=[1.2,1.2^2,1.2^3,1.2^4,1.2^5,1.2^6,1.2^7,1.2^8,1.2^9,1.2^10];
b=[0.9^10,0.9^9,0.9^8,0.9^7,0.9^6,0.9^5,0.9^4,0.9^3,0.9^2,0.9];
x=100*a.*b;
m=1:10;
n=10;p=0.4;
y=binopdf(m,n,p);
plot(x,y,'b-',x,y,'r.')
x2=x.*y
x3=geomean(x2)
x4=[x3,x3];
y4=[0,0.3];
hold on
plot(x4,y4,'b-')
设数X 在(0,1)上随机取值,当观察到,(01)X x x =<<时,数Y 在区间(,1)x 上随机取值,(1)求Y 的密度函数()Y f y ,画出密度函数曲线;(2)模拟该过程,产生10000n =个随机数X ,在根据每个X 的值,产生一个随机数Y (共有10000n =),画出Y 的样本密度曲线。

【练习1.4】 二项分布、正态分布、切比雪夫不等式
在每次实验中,事件A 发生的概率是0.5,求在1000次独立实验中,事件A 发生的次数在475~525之间的概率。

(1)用二项分布公式精确计算;(2)用正态分布近似计算;(3)用切比雪夫不等式进行估计。

> k=475:525;
y=0.5.^k.*0.5.^(1000-k); >> sum(y) ans = 4.7596e-300
(2)
y1=normrnd(500,sqrt(250),1,1000) ; j=0;
for k=1:1000;
if y1(k)>=475&&y1(k)<=525 j=j+1; end ; end ; m=j/1000
m = 0.8920
(3)
y1=binornd(1000,0.5,1,1000) ; y2=ones(1,1000); for k=1:1000;
y2(k)=(y1(k)-500)^2; end ;
y=sum(y2)/25^2/1000
y = 0.4192
【练习1.5】 正态分布
对正态分布的3σ法则进行演示,设22~(,)(1,2)X N N μσ=, (1)画出其密度函数曲线()X f x ;(2)分别对(),μσμσ-+,()2,2μσμσ-+,()3,3μσμσ-+进行填充;(3)分别求出随机变量X 落在这三个区间内的概率;(4)产生10000n =个随机数,计算其分别落在这三个区间的频率。

x=rand(1,10000); for k=1:10000;
y=x(k)+(1-x(k)).*rand(1,10000); end
x1=0.05:0.05:1; for k=0;j=1:20; for i=1:10000;
if y(i)>=j&&y(i)<=j+0.1 k=k+1; end ; end ;
p1(j)=k/1000; end ;
plot(x1,p1,'b-')。

相关文档
最新文档