上海高考数学知识点重点详解
上海数学高考知识点汇总
上海数学高考知识点汇总上海作为全国重要的经济和文化中心,其教育水平一直备受关注。
而高考数学作为高中生们最重要的科目之一,更是备受关注和重视。
本文将对上海数学高考的知识点进行一个综合的汇总,希望对即将参加高考的同学们有所帮助。
1. 函数与图像函数与图像是高考数学中的重要内容。
在此部分中,主要要掌握函数的定义和性质,掌握常见函数的图像以及对函数进行映射等。
对于多项式函数、指数函数和对数函数这些常见函数,需要了解其基本性质以及图像的特点。
2. 平面向量与空间向量向量是数学中的一种重要概念,它不仅在几何中有广泛应用,也在物理中有着重要的作用。
在高考数学中,向量的研究主要分为平面向量和空间向量。
需要了解向量的定义、运算规则以及向量的线性相关性等。
3. 三角函数三角函数是高中数学中的一大难点,也是高考中的重点。
需要掌握正弦函数、余弦函数、正切函数的定义,同时要了解它们的周期性质以及图像变化规律。
此外,对于三角函数的性质、运算规则和求解相关问题也要有一定的掌握。
4. 数列与数学归纳法数列是数学中常见的一类数学对象,也是高考数学中的一大考点。
在此部分中,需要了解数列的定义、类型以及数列的求和公式等。
同时,数学归纳法也是数列研究的基础,需要掌握数学归纳法的基本原理和应用方法。
5. 极限与导数极限与导数是微积分的基础概念。
在高考数学中,需要熟练掌握极限的概念和性质,同时要会运用极限去推导和证明相关问题。
而导数是研究函数变化率的重要工具,需要了解导数的定义和性质,掌握常见函数的导数公式,并能灵活运用导数进行函数的研究。
6. 积分与微分方程积分与微分方程是微积分的重要内容,也是高考数学中的考点之一。
需要了解积分的概念、性质以及常见的积分公式,同时要会运用积分进行面积、体积等应用问题的求解。
微分方程则是描述变化过程的数学模型,需要了解微分方程的基本概念、分类和解法。
7. 概率与统计概率与统计是高考数学中的另一个重要内容。
上海高中高考数学知识点总结
上海高中高考数学知识点总结数学是高中阶段的一门重要学科,也是高考的一科必考科目。
上海是我国教育事业发展最为先进的地区之一,其高中高考数学知识点体系较为完备。
下面将对上海高中高考数学知识点进行总结。
一、函数与方程1.一次函数:将函数的定义域与值域、函数图像的性质(斜率、截距、单调性、定义域、值域等)、函数的性质(奇偶性、周期性等)作为重点。
2.二次函数:将函数图像的性质(顶点、对称轴、单调性、定义域、值域等)、零点特征(判别式、根与系数的关系)以及函数与方程的应用问题作为重点。
3.三角函数:将基本函数的定义域与值域、函数图像的性质(周期、对称轴、单调性等)、反函数以及函数与方程的应用问题作为重点。
4.幂函数与指数函数:将函数图像的性质(单调性、定义域、值域等)、乘幂性质、对数函数与指数函数的关系以及函数与方程的应用问题作为重点。
5.对数函数与指数方程:将函数图像的性质(单调性、定义域、值域等)、对数性质、指数方程的解法以及函数与方程的应用问题作为重点。
6.三角方程:将三角函数的性质、解三角方程的方法以及函数与方程的应用问题作为重点。
7.不等式:将一次不等式、二次不等式、分式不等式的解法以及应用问题作为重点。
二、平面解析几何1.直线与圆:将直线的方程(一般式、斜截式、点斜式)、圆的方程(一般式、截距式、标准式)以及直线与圆的应用问题作为重点。
2.曲线的方程:将椭圆、双曲线、抛物线的方程、基本性质(焦点、准线等)以及曲线与方程的应用问题作为重点。
3.空间几何体:将点、线、面的位置关系、截距表示、距离性质以及平面与直线的交点、角度等问题作为重点。
三、立体几何1.空间几何体的计算:对长方体、正方体、圆柱体、圆锥体、球体的体积、表面积以及应用问题进行掌握。
2.空间向量:将向量的定义、线性运算、数量积、向量积、坐标表示以及应用问题作为重点。
四、概率与统计1.概率:将事件的概念、事件的运算、频率与概率的关系、条件概率、独立性、全概率公式、贝叶斯公式以及概率与统计的应用问题作为重点。
上海高考数学知识点总结内容精华版
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:〔1〕理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.〔2〕理解逻辑联结词“或〞、“且〞、“非〞的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法〔集合化简〕、简易逻辑三局部:二、知识回忆:(一) 集合1. 根本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}〔√〕 Z ={全体整数} 〔×〕②集合S 中A 的补集是一个有限集,那么集合A 也是有限集.〔×〕〔例:S=N ; A=+N ,那么C s A= {0}〕 ③ 空集的补集是全集.④假设集合A =集合B ,那么C B A = ∅, C A B = ∅ C S 〔C A B 〕= D 〔 注 :C A B = ∅〕. 3. ①{〔x ,y 〕|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{〔x ,y 〕|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{〔x ,y 〕|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. 〔例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 那么A ∩B =∅〕 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,那么它的逆否命题一定为真. 原命题⇔逆否命题. 例:①假设325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,那么a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:假设255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.根本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法〔零点分段法〕①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+〞;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点〔为什么?〕;④假设不等式〔x 的系数化“+〞后〕是“>0〞,那么找“线〞在x 轴上方的区间;假设不等式是“<0〞,那么找“线〞在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx〔自右向左正负相间〕那么不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;20>∆ 0=∆ 0<∆二次函数c bx ax y ++=2〔0>a 〕的图象原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法 〔1〕标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, 〔2〕转化为整式不等式〔组〕⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法〔1〕公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.〔2〕定义法:用“零点分区间法〞分类讨论.〔3〕几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)〔1〕根的“零分布〞:根据判别式和韦达定理分析列式解之.〔2〕根的“非零分布〞:作二次函数图象,用数形结合思想分析列式解之. 〔三〕简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
上海高考数学知识点重点详解[资料]
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg高考前数学知识点总结1. 对于集合,一定要抓住集合的元素一般属性,及元素的“确定性、互异性、无序性”。
中元素各表示什么?2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或文氏图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.已知集合A 、B ,当A B ⋂=∅时,你是否注意到“极端”情况:A =∅或B =∅;4. 注意下列性质:(1) 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为n 2,n 21-, n 21-, n 2 2.-()若,;2A B A B A A B B ⊆⇔== (3):空集是任何集合的子集,任何非空集合的真子集。
5. 学会用补集思想解决问题吗?(排除法、间接法)6.可以判断真假的语句叫做命题。
若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨7. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。
8.注意四种条件,判断清楚谁是条件,谁是结论; 9. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)10. 求函数的定义域有哪些常见类型? 11. 如何求复合函数的定义域? 12. 求一个函数的解析式或一个函数的反函数时,需注明函数的定义域。
13. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x ,注意正负的取舍;②互换x 、y ;③反函数的定义域是原函数的值域) 14. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称;②保存了原来函数的单调性、奇函数性; 15. 会用定义证明函数单调性.;用定义法求函数的单调区间。
(word版)上海高考数学知识点总结(大全),文档
上海高中高考数学知识点总结〔大全〕一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集U:如U=R交集:A B {xx A且x B}并集:A B {xx A或x B}补集:C U A {xx U且x A}3.集合关系空集 A子集A B:任意x A x BA B A A B A B B A B注:数形结合---文氏图、数轴4.四种命题原命题:假设p那么q 逆命题:假设q那么p否命题:假设p那么 q 逆否命题:假设q那么p原命题逆否命题否命题逆命题5.充分必要条件p是q的充分条件:P qp是q的必要条件:P qp是q的充要条件:p?q6.复合命题的真值q真〔假〕?“q〞假〔真〕②p、q同真?“p∧q〞真p、q都假?“p∨q〞假全称命题、存在性命题的否认M,p(x〕否认为: M, p(X)M,p(x〕否认为: M, p(X)二、不等式1.一元二次不等式解法假设a 0,ax2bx c0有两实根,(),那么ax2bx c 0解集(, )ax2bx c0解集(, )(,)注:假设a 0,转化为2.其它不等式解法—转化a0情况x a a x a x2a2x a x a或x a x2a2f(x)0f(x)g(x)0g(x)a f(x)a g(x)f(x)g(x)〔a1〕f(x)0log a f(x)log a g(x)f(x)〔0a1〕g(x)3.根本不等式①a2b22aba bab②假设a,bR,那么22ab、ab(a b)2注:用均值不等式a b2求最值条件是“一正二定三相等〞三、函数概念与性质1.奇偶性f(x)偶函数f(x)f(x)f(x)图象关于y轴对称f(x)奇函数f(x)f(x)f(x)图象关于原点对称注:①f(x)有奇偶性定义域关于原点对称②f(x)奇函数,在x=0有定义f(0)=0③“奇+奇=奇〞〔公共定义域内〕2.单调性f(x)增函数:或x1<x 2x 1>x 2f(x f(x1)<f(x2) 1) >f(x2)或f(x 1)f(x 2)x 1x 2f(x)减函数:?注:①判断单调性必须考虑定义域 f(x)单调性判断定义法、图象法、性质法“增+增=增〞③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反3.周期性T 是f(x)周期 f(xT)f(x)恒成立〔常数T0 〕4.二次函数解析式:f(x)=ax2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x)(x-x )12对称轴:xb 顶点:(b ,4acb 2 )2a2a 4a单调性:a>0,(,b]递减,[b ,)递增2a2a当xb4acb 2,f(x)min4a2a2b=0奇偶性:f(x)=ax +bx+c 是偶函数闭区间上最值:配方法、图象法、讨论法---注意对称轴与区间的位置关系注:一次函数 f(x)=ax+b 奇函数 b=0四、根本初等函数1(a0)an1n1.指数式aa m m a na n2.对数式log a Nba b N 〔a>0,a ≠1〕log a MNlog a Mlog a Nlog a Mlog a M log a N Nlog a M n nlog a Mlog alog m b lgb blga log m alog a b log a n b n1log b a注:性质log a10log a a1a log a N N常用对数lgN log10N,lg2lg51自然对数lnN log e N,lne13.指数与对数函数y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x图象关于y=x对称〔互为反函数〕14.幂函数yx2,yx3,yx2,yx1x在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质〔奇偶、单调〕取1010特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负〞y f(x)y f(x h)伸缩:y f(x)每一点的横坐标变为原来的倍yf(1x)对称:“对称谁,谁不变,对称原点都要变〞y f(x)x轴y f(x)y f(x)y轴y f(x)y f(x)原点y f(x)注:yf(x)直线xay f(2a x)翻折:y f(x)y|f(x)|保存x轴上方局部,并将下方局部沿x轴翻折到上方yy=f(x)a obc x a yoy=|f(x)|b c xy f(x)y f(|x|)保存y轴右边局部,并将右边局部沿y轴翻折到左边yyy=f(x)a obc x a o3.零点定理假设f(a)f(b) 0,那么y f(x)在(a,b)内有零点y=f(|x|)b c x 〔条件:f(x)在[a,b]上图象连续不间断〕注:①f(x)零点:f(x)0的实根②在[a,b]上连续的单调函数f(x),f(a)f(b)0那么f(x)在(a,b)上有且仅有一个零点③二分法判断函数零点---f(a)f(b)0?六、三角函数1.概念第二象限角(2k,2k)(k Z)22.弧长lr 扇形面积S1lr23.定义siny x y cos tanrrx其中P(x,y)是终边上一点,POr4.符号 “一正全、二正弦、三正切、四余弦〞 5.诱导公式:“奇变偶不变,符号看象限〞 如Sin(2 ) sin ,cos( /2 ) sin6.特殊角的三角函数值6 4 3sin 012 322 2cos132 1222tg31337.根本公式同角sin 2cos 21sin tancos和差sinsin cos cos sincoscos cos sin sintan tan tan1 tantan倍角sin2 2sin coscos2 22 21 2cos sin2cos 12sin降幂cos 2α=1cos2sin2α=1cos222叠加sincos2sin()43sincos2sin()6a ) asinbcosa 2b 2sin()(tanb322110 1/ 0/2tan tan221tan8.三角函数的图象性质y=sinx y=cosx y=tanx图象单调性:(,)增(0,)减(,)增2222sinx cosx tanx 值域[-1,1][-1,1]无奇偶奇函数偶函数奇函数周期2π2ππ对称轴xk/2x k无中心k,0/2k,0k/2,0注:kZ9.解三角形根本关系:sin(A+B)=sinC cos(A+B)=-cosCtan(A+B)=-tanC sin AB cosC22正弦定理:a=b csinA=sinCsinBa2RsinA a:b:c sinA:sinB:sinC余弦定理:a2=b2+c2-2bccosA〔求边〕cosA=b2c2a2〔求角〕2bc12注:ABC中,A+B+C=? A B sinA s inBa2>b2+c2?∠A>2七、数列1、等差数列定义:a n1 a n d通项:a n a 1(n1)d求和:S nn(a 1a n )1n(n 1)dna 122a c中项:b 〔a,b,c 成等差〕2性质:假设mnpq ,那么a ma n a p a q2、等比数列定义:an1a n通项:a n求和:S n中项:b 2q(q 0) a 1q n1na 1 (q 1)a 1(1 q n )1)1 (qqac 〔a,b,c 成等比〕性质:假设m n pq那么a m a n a p a q3、数列通项与前n 项和的关系a ns 1 a 1(n 1)s n s n1(n2)4、数列求和常用方法 公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减三角形法那么,平行四边形法那么AB BCAC 首尾相接,OBOC =CB 共始点中点公式:ABAC2ADD 是BC 中点2.向量数量积a ab cosy 1y 2b ==x 1x 2注:①a,b 夹角:00≤θ≤1800②a,b 同向:ab a b3.根本定理 a 1e 12e 2〔e 1,e 2不共线--基底〕平行:a//b a b x1y2x2y1〔b0〕垂直:a b a b0x1x2y1y20模:a=x2y22(ab)2 ab角:cos ab |a||b|注:①0∥a②a b c abc〔合律〕不成立③a b ac b c〔消去律〕不成立九、复数与推理证明1.复数概念复数:z a bi(a,b R),部a、虚部b分:数〔b0〕,虚数〔b0〕,复数集C注:z是虚数a0,b0相等:、虚局部相等共:z a bi模:z a2b2zz2 z复平面:复数z的点(a,b) 2.复数运算加减:〔a+bi〕±(c+di)=?乘法:〔a+bi〕〔c+di〕=?除法:abi=(a bi)(c di)==⋯c di(c di)(c di)乘方:i21,i n i4kr i r 3.合情推理比:特殊推出特殊:特殊推出一般演:一般出特殊〔大前→小前→〕4.直接与接明合法:由因果比法:作差—形—判断—反法:反—推理—矛盾—缺一不可,假必使用分析法:果索因(1) 分析法写格式: (2) 要A 真,只要 B 真,即⋯⋯, (3) 只要 C 真,而 C 真,故 A 必真 (4) 注:常用分析法探索明途径,合法写明程 (5) 5.数学法: (6) 当n=1命成立,(2)假当n=k(kN*,k1)命成立明当n=k+1命也成立, 由(1)(2)知命所有正整数注:用数学法,两步 十、直线与圆1、斜角范0,斜率ky 2 y 1tanx 1x 2注:直向上方向与 x 正方向所成的最小正角斜角90,斜率不存在2、直方程点斜式yy 0 k(x x 0),斜截式y kx by y 1 x x 1,截距式x y 1 两点式y 1x 2x 1 a b y 2一般式Ax By C注意适用范:①不含直 x x 0②不含垂直 x 的直 ③不含垂直坐和原点的直 3、位置关系〔注意条件〕平行 k 1 k 2且b 1b 2垂直k 1k 21垂直A 1A 2B 1B 204、距离公式两点距离:|AB|=(x 1 x 2)2 (y 1 y 2)2点到直距离:dAx 0By 0CA 2B 2n 都成立5、圆标准方程:(xa)2(y b)2r2圆心(a,b),半径r圆一般方程:x2y2Dx Ey F0〔条件是?〕圆心D,E半径r D2E24F2226、直线与圆位置关系位置关系相切相交相离几何特征r dr drd代数特征△0△0△0注:点与圆位置关系(x0a)2(y0b)2r2点Px0,y0在圆外7、直线截圆所得弦长AB2r2d2十一、圆锥曲线一、定义椭圆:|PF1|+|PF|=2a(2a>|F F|)212双曲线:|PF1|-|PF2|=±2a(0<2a<|F1F2|)抛物线:与定点和定直线距离相等的点轨迹二、标准方程与几何性质〔如焦点在x轴〕椭圆x2y21(a>b>0)a2b2双曲线x2y21(a>0,b>0)a2b2中心原点对称轴?焦点F1(c,0)、F2(-c,0)顶点:椭圆(±a,0),(0,±b),双曲线(±a,0)范围:椭圆-axa,-byb双曲线|x|a,y R焦距:椭圆2c〔c=a2b2〕双曲线2c〔c=a2b2〕2a 、2b:椭圆长轴、短轴长, 双曲线实轴、虚轴长 离心率:e=c/a椭圆0<e<1,双曲线e>1注:双曲线x 2y 2 1渐近线yb x a 2b 2a方程mx 2 ny 2 1表示椭圆 m0,nn方程mx 2ny 2 1表示双曲线mn抛物线y 2=2px(p>0)顶点〔原点〕 对称轴〔x 轴〕开口〔向右〕 范围x0离心率e=1焦点F(p,0)准线xp 22十二、矩阵、行列式、算法初步十、算法初步一.程序框图程序框名称功能起止框起始和结束输入和输出的信息输入、输出框赋值、计算处理框判断某一条件是否成立判断框4 循环框重复操作以及运算5 67 二.根本算法语句及格式8 1输入语句:INPUT “提示内容〞;变量 9 2输出语句:PRINT “提示内容〞;表达式 10 3赋值语句:变量=表达式11条件语句“IF —THEN —ELSE 〞语句“IF —THEN 〞语句IF条件THENIF条件THEN语句1语句ELSEENDIF句 2 ENDIF5循句当型循句WHILE 条件DO直到型循句循体循体WENDLOOPUNTIL条件当型“先判断后循〞直到型“先循后判断〞三.算法案例1、求两个数的最大公数 相除法:到达余数 0更相减:到达减数和差相等2、多式f(x)=a n x n +a n-1x n-1+⋯.+a 1x+a 0的求秦九韶算法:v 1=a n x+a n -1v 2=v 1x+a n-2v=vx+an -3v=vx+a32nn -1注:推公式v 0=a n v k =v k -1X +a n -k (k=1,2,⋯n)求f(x),乘法、加法均最多 n 次3、位制的 制数十制数:a n a n1.....a 1a 0(k) a n k n a n1 k n1 ......... a 1 k a 0十制数成 k 制数:“除k 取余法〞 例1相除法求得123和48最大公数3例2f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27v 0=248=1×27+21 v1=2×5-5=5 27=1×21+6 v2=5×5-4=21 21=3×6+3v =21×5+3=1083 6=2×3+0v=108×5-6=5344v 5=534×5+7=2677十三、立体几何 1.三 正、、俯2.直:斜二画法 '''XOY =45平行X 的段,保平行和度平行Y 的段,保平行,度原来一半3.体与面V柱=S底hV锥=1S底h V球=4πR3 33S圆锥侧=rl S圆台侧=(R r)l S球表=4R24.公理与推论确定一个平面的条件:①不共线的三点②一条直线和这直线外一点③两相交直线④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。
上海高中高考数学知识点总结
上海高中高考数学知识点总结高中数学是高考重点科目之一,对于上海高中生来说,掌握数学知识点是取得高分的关键。
以下是上海高中高考数学知识点的详细总结。
一、数与代数1.数的性质和运算:-自然数、整数、有理数、实数、复数的概念、性质和运算法则;-科学记数法、比例、百分数;-绝对值及其性质。
2.代数式与方程式:-代数式与方程式的概念、性质和基本运算法则;-一元一次方程及一元一次不等式;-一元二次方程与一元二次不等式;-二次根式、双曲线函数及其应用。
3.数列与数学归纳法:-等差数列、等比数列及其求和公式;-递推数列的概念与性质。
二、函数与方程1.函数的概念与性质:-函数的定义、定义域、值域、图像与性质;-函数间的运算、复合函数、反函数;-奇偶函数、周期函数、映射函数。
2.一元函数的应用:-函数的最值、函数和方程的应用;-一元函数的模型建立与求解。
3.二元函数与平面几何:-二元函数的概念与性质;-点、线、面的几何性质与解析方法;-平面直角坐标系与空间直角坐标系。
三、三角函数1.三角函数的概念:-正弦函数、余弦函数、正切函数和它们的图像、性质;-三角函数间的基本关系式与诱导公式。
2.三角函数的应用:-三角函数在平面几何和立体几何中的应用;-三角函数的和差化积、倍角公式与积化和差公式。
四、数理统计与概率1.数据的收集与整理:-数据的概念与类型、频数分布;-统计图表的制作与分析。
2.统计量的计算:-平均数、中位数、众数、四分位数、标准差、方差;-累计频率与累计相对频率。
3.概率与统计:-概率的基本概念、性质和运算;-事件与样本空间、频率与古典概型;-条件概率与贝叶斯公式。
五、解析几何与立体几何1.平面解析几何:-平面上的点、直线和圆的方程;-解析几何与平面几何的应用。
2.空间解析几何:-空间直角坐标系、空间点、直线的方程与性质;-空间几何体的相交关系与计算。
六、数学思维与数学方法1.探索与证明:-数学问题的探索、发现与解决方法;-数学思维的培养与运用。
上海高考数学知识点重点详解
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg高考前数学知识点总结1. 对于集合,一定要抓住集合的元素一般属性,及元素的“确定性、互异性、无序性”。
中元素各表示什么?2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或文氏图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.已知集合A 、B ,当A B ⋂=∅时,你是否注意到“极端”情况:A =∅或B =∅;4. 注意下列性质:(1) 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为n 2,n 21-, n 21-,n 2 2.- ()若,;2A B A B A A B B ⊆⇔== (3):空集是任何集合的子集,任何非空集合的真子集。
5. 学会用补集思想解决问题吗?(排除法、间接法)6.可以判断真假的语句叫做命题。
若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨7. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。
8.注意四种条件,判断清楚谁是条件,谁是结论; 9. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)10. 求函数的定义域有哪些常见类型? 11. 如何求复合函数的定义域? 12. 求一个函数的解析式或一个函数的反函数时,需注明函数的定义域。
13. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x ,注意正负的取舍;②互换x 、y ;③反函数的定义域是原函数的值域) 14. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称;②保存了原来函数的单调性、奇函数性;15. 会用定义证明函数单调性.;用定义法求函数的单调区间。
(完整版)上海高中高考数学知识点总结(大全),推荐文档
上海高中高考数学知识点总结(大全)一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换 平移:“左加右减,上正下负”α>101<<αα<0)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 67同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a ann通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底)平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x + =+=+2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=?除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=ni r rk i i =+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+-点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +)2a 、2b:椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句 IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF 语句2 END IF5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO循环体 循环体WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2 v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。
上海高考数学教辅知识点
上海高考数学教辅知识点上海高考作为中国最重要的高中生考试之一,数学作为其中一门科目,对于很多考生来说是个挑战。
为了帮助考生更好地备考,下面我将分享一些上海高考数学教辅知识点,以帮助考生更好地理解和掌握数学知识。
一、函数与方程函数与方程是高考数学必备的基础知识点,而在上海高考中更为重要。
考生需要熟悉函数与方程的基本概念和性质,包括一次函数、二次函数、指数函数、对数函数、三角函数等。
此外,考生还需了解方程的解的概念和求解方法,包括一元一次方程、一元二次方程、一元高次方程等。
二、几何与三角上海高考数学中几何与三角题型占比较大,考生需要熟悉和掌握几何图形的性质和相关公式,包括平行线与等角定理、直角三角形与勾股定理、相似三角形与比例定理等。
此外,考生还需了解三角函数的定义和性质,包括正弦、余弦、正切等函数的定义和计算方法。
三、概率与统计概率与统计是上海高考数学中的另一重要知识点。
考生需要了解概率的基本概念和计算方法,包括事件、样本空间、概率的计算等。
此外,考生还需要掌握统计学的基本概念和相关方法,包括数据收集、数据组织、数据分析等。
四、数列与数学归纳法数列与数学归纳法在上海高考数学中也是一个重要的考点。
考生需了解数列的定义、性质和常见数列的求和公式。
此外,考生还需了解数学归纳法的基本原理和应用,以解决关于数列的问题。
五、导数与微分导数与微分在上海高考数学中也是一个重点知识点。
考生需了解导数的定义、性质和相关计算方法,包括函数求导、导数与函数图像的关系等。
此外,考生还需掌握微分的概念和计算方法,包括微分的运算法则和微分方程的基本概念。
总结:上海高考数学教辅知识点是考生备考中必备的重要内容。
通过掌握函数与方程、几何与三角、概率与统计、数列与数学归纳法、导数与微分等知识点,考生可以更好地应对高考数学考试。
然而,仅仅掌握这些知识点还不足以确保高分。
考生还需要进行大量的练习,熟悉各类题型的解题方法和思路,并且要注重实际问题的应用,培养自己解决问题的能力。
上海高考数学知识点
上海高考数学知识点高考数学对于每一位考生来说都是至关重要的,而上海高考数学又有着其独特的知识点体系。
以下就为大家详细梳理一下上海高考数学的主要知识点。
一、集合与常用逻辑用语集合是数学中最基本的概念之一。
考生需要理解集合的概念,包括集合的表示方法(列举法、描述法等)、集合之间的关系(子集、真子集、相等)以及集合的运算(交集、并集、补集)。
常用逻辑用语方面,要掌握命题及其关系(原命题、逆命题、否命题、逆否命题),充分条件、必要条件和充要条件的判断,以及逻辑联结词(且、或、非)的运用。
二、函数函数是高中数学的核心内容。
首先要理解函数的概念,包括定义域、值域和对应关系。
常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数等。
考生需要掌握这些函数的图像和性质,如单调性、奇偶性、周期性等。
函数的应用也是重要考点,比如通过建立函数模型解决实际问题,如利润最大、成本最小等优化问题。
三、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
要熟练掌握三角函数的定义、诱导公式、图像和性质。
解三角形是三角函数的重要应用,需要运用正弦定理和余弦定理来求解三角形的边长、角度和面积等问题。
四、数列数列是按照一定顺序排列的数。
等差数列和等比数列是重点,要掌握它们的通项公式、前 n 项和公式,以及数列的性质和递推关系。
数列的综合应用也是常见考点,比如与不等式结合考查。
五、平面向量平面向量包括向量的概念、线性运算(加法、减法、数乘)、数量积等。
要理解向量的坐标表示以及向量在几何问题中的应用,如证明平行、垂直关系,计算夹角和距离等。
六、不等式不等式包括一元一次不等式、一元二次不等式、简单的线性规划和基本不等式。
掌握不等式的解法和应用,特别是基本不等式在求最值问题中的应用。
七、立体几何立体几何主要考查空间几何体的结构特征、表面积和体积的计算,以及空间点、线、面的位置关系。
要掌握直线与平面、平面与平面平行和垂直的判定和性质定理,并能够运用空间向量法解决立体几何问题。
数学高考知识点上海
数学高考知识点上海数学是高考中的一门重要科目,也是很多学生头疼的科目之一。
在高考数学中,数学知识点的熟练掌握是考生获得高分的关键所在。
上海作为一个全国知名的经济、科技中心,其高考数学知识点也有其独特的特点和重点。
下面我们将详细介绍数学高考知识点上海部分的内容。
第一章:函数和方程在数学高考中,函数和方程是数学的基础。
上海的高考试卷中,涉及函数和方程的题目占据很大的比重。
考生需要熟练掌握函数的基本概念和性质,包括函数的定义、定义域、值域、单调性等。
此外,方程的解的求解方法也是考试的重要内容,需要灵活运用方程的性质和解的方法来求解各种类型的方程。
第二章:数列与数学归纳法数列与数学归纳法也是数学高考的重点内容之一。
在上海的高考试卷中,数列与数学归纳法的应用占据一定比例。
考生需要熟练掌握数列的基本概念和性质,包括等差数列、等比数列等常见数列的性质和求和公式。
同时,数学归纳法的运用也是数学高考中常见的题型,需要考生了解数学归纳法的基本原理和推理方法。
第三章:平面向量与坐标系平面向量与坐标系是高考数学中的重要内容。
在上海的高考试卷中,平面向量与坐标系的知识点经常出现在几何题中。
考生需要熟练掌握平面向量的基本概念和运算法则,包括向量的表示、共线性、垂直性等性质。
同时,矩阵的运算和性质也是考试的重点,需要考生理解矩阵的基本运算法则和性质。
第四章:立体几何与空间向量立体几何与空间向量是高考数学中难度较大的知识点之一。
在上海的高考试卷中,立体几何与空间向量的题目要求考生具备较高的空间想象能力和几何推理能力。
考生需要熟练掌握立体几何的基本概念和性质,包括平面与直线的位置关系、多面体的性质等。
同时,空间向量的运算法则和性质也是考试的重点内容,需要考生能够灵活运用空间向量进行几何推理和计算等。
第五章:概率与统计概率与统计是高考数学中的实用内容,也是上海高考试卷中的重点之一。
考生需要熟练掌握概率的基本概念和运算法则,包括事件的概率、条件概率、独立事件等。
(完整word版)上海高中高考数学知识点总结(大全)(良心出品必属精品)
上海高中高考数学知识点总结(大全)一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ 子集B A ⊆:任意B x A x ∈⇒∈B A B B A B A A B A ⊆⇔=⊆⇔=Y I注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真)②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα 02>++c bx ax 解集),(),(+∞-∞βαY注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa 1=- m n m na a = 2.对数式b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= M n M a n a log log =a b b m m a log log log =ablg lg = n a a b b nlog log =ab log 1=注:性质01log=a1log=aaNa N a=log常用对数NN10loglg=,15lg2lg=+自然对数NNelogln=,1ln=e3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x图象关于y=x对称(互为反函数)4.幂函数12132,,,-====xyxyxyxyαxy=在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调)取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”α>101<<αα<0)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方y=f(x)cb aoyxy=|f(x)|cb aoyx→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边y=f(x)cb aoyxy=f(|x|)cb aoyx3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ? 六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21= 3.定义 ry =αsin r x =αcos xy =αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π4π 3π 2π π23π sin α 0 21 22 23 1 0 1-cos α 1 23 22 21 0 1-0 tg α 033 13/0 /7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos μ=± ()βαβαβαtan tan 1tan tan tan μ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α-叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数奇函数 周期2π2ππ 对称轴 2/ππ+=k x πk x =无中心()0,πk()0,2/ππk + ()0,2/πk注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A asin =Bb sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bccosA (求边)cosA=bca cb 2222-+(求角)面积公式:S △=21absinC注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+ 2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn 4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2.向量数量积 b a ⋅=θcos ⋅⋅b a =2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向: b a b a ⋅=⋅3.基本定理 2211e e a ρρρλλ+=(21,e e ρρ不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a ρ=22y x + Λ=+=+22)(b a b a夹角:=θcos ||||b a ba ⋅注:①0ρ∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z += 2z z z =⋅ 复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i r r k i i =+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……,这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==- 注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x 一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件)平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:0022Ax By Cd A B++=+5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r 圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭ 半径2242D E Fr +-=6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外 7、直线截圆所得弦长222AB r d =-位置关系 相切 相交 相离几何特征 d r =d r <d r >代数特征 0=△0>△0<△十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b:椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1 焦点)0,2(p F准线2p x -=十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式程序框 名称 功能起止框 起始和结束输入、输出框 输入和输出的信息 处理框 赋值、计算判断框 判断某一条件是否成立循环框重复操作以及运算1输入语句:INPUT “提示内容”;变量2输出语句:PRINT“提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF语句2END IF5循环语句当型循环语句直到型循环语句WHILE 条件 DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a1x+a0的求值秦九韶算法: v1=a n x+a n-1 v2=v1x+a n-2v3=v2x+a n-3 v n=v n-1x+a0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3 S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。
上海数学新高考知识点归纳
上海数学新高考知识点归纳上海数学新高考知识点归纳涵盖了高中数学的多个重要领域,包括但不限于代数、几何、概率统计、函数与导数等。
以下是对这些知识点的详细归纳:一、代数基础1. 集合与逻辑:集合的概念、运算,逻辑联结词,命题的真假判断。
2. 函数:函数的概念、性质、图像,反函数,复合函数,分段函数。
3. 序列:数列的概念,等差数列和等比数列的性质和求和公式。
二、函数与导数1. 导数:导数的定义、几何意义、基本导数公式。
2. 微分:微分的概念、基本微分公式。
3. 函数的单调性与极值:导数与函数单调性的关系,极值的求法。
4. 函数的凹凸性:二阶导数与凹凸性的关系。
三、几何与解析几何1. 平面几何:直线、圆、椭圆、双曲线、抛物线的基本性质。
2. 空间几何:空间直线、平面、多面体、旋转体的性质。
3. 解析几何:坐标系的建立,点、线、面在坐标系中的表示。
四、三角函数与三角恒等变换1. 三角函数:正弦、余弦、正切等基本三角函数的定义和性质。
2. 三角恒等变换:和差化积、积化和差、倍角公式、半角公式等。
五、概率与统计1. 概率:随机事件的概率、条件概率、独立事件。
2. 统计:数据的收集、整理、描述,包括均值、方差、标准差等。
六、数列与级数1. 数列:数列的通项公式、递推关系、数列的极限。
2. 级数:级数的概念、收敛性、无穷级数的求和。
七、向量与空间解析几何1. 向量:向量的概念、运算、向量的数量积和向量积。
2. 空间解析几何:空间中的向量表示,向量在几何问题中的应用。
八、复数与多项式1. 复数:复数的概念、运算、复平面上的表示。
2. 多项式:多项式的概念、运算、因式分解、根的性质。
九、圆锥曲线与极坐标系1. 圆锥曲线:椭圆、双曲线、抛物线的方程和性质。
2. 极坐标系:极坐标系的定义、转换公式、极坐标系中的曲线表示。
十、数学建模与应用1. 数学建模:将实际问题转化为数学问题的过程。
2. 应用:数学在物理、经济、工程等领域的应用。
上海高考数学知识点重点详解
31.熟练掌握同角三角比关系和诱导公式了吗?
32(1)名的变换:化弦或化切(2)次数的变换:升、降幂公式(3)形的变换:统一函数形式,注意运用代数运算。
33.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?三角形的面积公式。
56.立体几何中平行、垂直关系证明的思路清楚吗?
线面平行的判定:
(缺一不可)
线面平行的性质:
三垂线定理(及逆定理):
线面垂直:
57.异面直线所成的角的定义及求法
一作、二证、三求、四结论(注意范围)
58.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
40.对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)
41.不等式恒成立问题,常用的处理方式是什么?(转化为最值问题)
;a<f(x)有解 a<f(x)的最大值
;a>f(x)有解 a>f(x)的最小值
42.等差数列的定义与性质
0的函数)
(6)求 的最值一般通过 的正负分界项来求出。
24.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?
24.熟记三角函数的定义,单位圆中三角函数线的定义
25.迅速画出正弦、余弦、正切函数的图象,并由图象能写出单调区间、最值,对称点、对称轴。
作图。
27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
10.求函数的定义域有哪些常见类型?11.如何求复合函数的定义域?
上海高考数学知识点重点详解
上海高考数学知识点重点详解近几年来,上海高考数学的难度水平逐渐提高,要想在上海高考取得好成绩,对数学知识点的掌握至关重要。
下面将详细介绍上海高考数学的一些重点知识点。
一、函数与方程函数与方程是上海高考数学的基础,也是数学的核心概念。
在这个知识点中,主要包括函数的定义与理解、函数的性质、函数与方程的关系等内容。
对于函数的定义要求学生理解函数的自变量、函数值和函数关系的概念,并能够正确运用这些概念进行问题解决。
此外,函数与方程的关系也是该知识点中的重点内容,要求学生能够通过方程推断函数的性质,并通过函数绘图找到方程的解。
二、数列与数列的极限数列与数列的极限是高中数学的经典知识点,也是上海高考数学中的重点内容。
在数列与数列的极限这一知识点中,要求学生熟练掌握数列的定义、数列的性质和数列的收敛性等内容。
学生需要能够判断数列的递增性或递减性,找到数列的通项公式,并能够根据数列的性质进行数列极限的证明。
此外,学生还需要掌握数列极限的计算方法,包括夹逼准则、数列极限的性质等。
三、平面几何与立体几何平面几何与立体几何是上海高考数学中的另一个重点知识点。
在这个知识点中,要求学生熟练掌握平面几何与立体几何的基本概念和理论,并能够灵活运用这些概念进行问题解决。
其中,平面几何主要包括平面图形的性质、平面几何的条件判断和平面图形的计算等内容;立体几何主要包括空间几何的基本概念、空间几何的判定条件和空间几何的计算等内容。
学生需要能够正确运用平面几何与立体几何的理论和方法,进行相关问题的解决。
四、概率与统计概率与统计是上海高考数学中的必考内容,也是数学中的重要组成部分。
在这个知识点中,学生需要掌握概率与统计的基本概念、概率与统计的计算方法以及概率与统计的应用等内容。
其中,概率主要包括事件的概率、事件的运算法则和概率的计算方法等内容;统计主要包括统计的基本概念、统计的参数估计和统计的假设检验等内容。
学生需要能够正确运用概率与统计的知识,解决实际问题。
上海高三数学各章节知识点
上海高三数学各章节知识点在上海高三数学课程中,学生将接触到许多重要的章节和知识点。
本文将针对这些章节和知识点进行详细介绍,帮助学生更好地理解和掌握数学知识。
一、函数与极限1. 函数的定义与性质:介绍函数的概念、定义和常见的函数类型,包括一次函数、二次函数、指数函数、对数函数等。
2. 极限与连续:讲解极限的概念与判断方法,以及函数的连续性与间断点的判定。
二、导数与微分1. 导数的定义与计算:介绍导数的概念、几何意义和计算方法,包括导数的四则运算、求导法则等。
2. 函数的单调性与极值:讲解函数的单调性、最大值和最小值的判定方法,以及应用题的解题思路。
三、数列与数学归纳法1. 等差数列和等比数列:介绍等差数列和等比数列的概念、通项公式、前n项和公式等。
2. 数列极限与无穷级数:讲解数列的极限概念与判定方法,以及无穷级数的收敛性与求和公式。
四、三角函数与向量1. 三角函数的定义与性质:介绍正弦函数、余弦函数、正切函数等的定义、周期性与图像。
2. 向量的基本概念与运算:讲解向量的定义、坐标表示、数量积、向量夹角等。
五、平面解析几何与立体几何1. 平面几何基础知识:介绍平面内的基本图形、相交关系、相似与全等等。
2. 空间几何基本知识:讲解空间内的基本图形、平行与垂直关系、投影等。
六、概率与统计1. 概率基本概念:介绍随机事件、样本空间、概率的定义与性质等。
2. 统计基本知识:讲解统计学中的样本调查、数据分析、频率分布等。
总结:上海高三数学课程中的各章节和知识点涵盖了函数与极限、导数与微分、数列与数学归纳法、三角函数与向量、平面解析几何与立体几何、概率与统计等方面。
通过学习这些内容,学生能够全面理解数学的基本概念与方法,提高数学解题能力,为高考和未来的学习打下坚实的数学基础。
上海高考数学知识点整理
上海高考数学知识点整理数学是高考的一门必考科目,对于考生而言,掌握数学知识点是非常重要的。
下面是上海高考数学知识点的整理,供考生参考。
一、集合与函数1.集合的概念与表示方法2.集合的关系与运算3.函数的概念与表示方法4.函数的性质与运算5.函数的方程与不等式二、数与式1.实数的运算性质2.代数式的基本概念与运算3.幂的运算与性质4.根式的概念与运算5.分式的概念与运算三、方程与不等式1.一元一次方程与不等式2.一次函数方程与不等式3.一元二次方程与不等式4.二元一次方程与不等式5.二次函数方程与不等式四、函数与图像1.直线与线性函数2.圆与二次函数3.函数的增减性与最值4.指数函数与对数函数5.三角函数与图形的性质五、解析几何与向量1.点和直线的位置关系2.圆的方程与性质3.直角坐标系中的向量4.向量的运算与性质5.平面向量与几何应用六、数列与数学归纳法1.等差数列与等比数列2.数列的通项公式与递推关系式3.数列的求和公式与递归公式4.数列的极限与无穷5.数学归纳法的应用七、概率与统计1.随机事件与概率2.概率的运算与性质3.概率的应用(排列组合、容斥原理等)4.统计与调查5.参数与抽样八、导数与微分1.函数的导数与微分2.导数的应用(切线、极值、凹凸性等)3.高阶导数与函数的性质4.微分中值定理与泰勒公式5.微分方程与应用九、积分与不定积分1.定积分的概念与性质2.不定积分与原函数3.定积分的计算方法(换元法、分部积分法等)4.微积分基本公式与高阶导数的意义5.微分方程与应用这是一份相对全面的上海高考数学知识点整理,考生在备考过程中可以根据这些知识点进行有针对性的复习和练习。
此外,高考数学还需要注重综合运用能力和解题技巧的培养,平时多做一些真题和模拟题,加强对知识点的理解和应用能力。
希望考生们能够加油备战,取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg高考前数学知识点总结1. 对于集合,一定要抓住集合的元素一般属性,及元素的“确定性、互异性、无序性”。
中元素各表示什么?2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或文氏图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.已知集合A 、B ,当A B ⋂=∅时,你是否注意到“极端”情况:A =∅或B =∅;4. 注意下列性质:(1) 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为n 2,n 21-, n 21-,n 2 2.- ()若,;2A B A B A A B B ⊆⇔== (3):空集是任何集合的子集,任何非空集合的真子集。
5. 学会用补集思想解决问题吗?(排除法、间接法)6.可以判断真假的语句叫做命题。
若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨7. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。
8.注意四种条件,判断清楚谁是条件,谁是结论; 9. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)10. 求函数的定义域有哪些常见类型? 11. 如何求复合函数的定义域? 12. 求一个函数的解析式或一个函数的反函数时,需注明函数的定义域。
13. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x ,注意正负的取舍;②互换x 、y ;③反函数的定义域是原函数的值域) 14. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称;②保存了原来函数的单调性、奇函数性; 15. 会用定义证明函数单调性.;用定义法求函数的单调区间。
(设量、作差、因式分解,判正负) 16. 如何判断复合函数的单调性?(将增函数看成正号,减函数看成负号,利用乘法原理判断) 17. 函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
()若是奇函数且定义域中有原点,则。
2f(x)f(0)0=18. 你熟悉周期函数的定义吗?1f (x)f (x a);f (x)T 2a f (x a)=-+=±⇒=+19.函数的对称性:(1)如果函数()y f x =对于一切x R ∈,都有()()f a x f a x +=-,那么函数()y f x =的图象关于直线x a =对称⇔()=+y f x a 是偶函数;(2)若都有()()f a x f b x -=+,那么函数()y f x =的图象关于直线a bx 2+=对称; 函数()y f a x =-与函数()y f b x =+的图象关于直线a bx 2-=对称;特例:函数()y f a x =+与函数()y f a x =-的图象关于直线0=x 对称.(3) 如果函数()y f x =对一切x R ∈,有f a x f a x 2b ++-=()(),那么()y f x =关于点(a b ,)对称. (4)奇函数对称区间单调性相同;偶函数对称区间单调性相反。
20.掌握常用的图象变换了吗?(理解八爪图) 21.熟练掌握初等函数的图象和性质()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b k x a k O a b =≠=+-≠'()的双曲线。
()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a =++≠=+⎛⎝ ⎫⎭⎪+-应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴∆ 的两个交点,也是二次不等式解集的端点值。
ax bx c 200++><()②求二次函数闭区间[m ,n ]上的最值和单调性。
③求二次函数区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
()()指数函数:,401y a a a x =>≠()()对数函数,501y x a a a =>≠log (注意底数的限定!)(6)幂函数ay x ,a Q =∈ 由第一象限图象画其他象限图象!(7)ay x x=+的图像和性质 22.基本运算上常出现错误指数运算:,a a aaa pp 01010=≠=≠-(())aaa a aa m nmn m nmn=≥=>-((010)),()对数运算:·,log log log a a a M N M N M N =+>>00log log log log log aa a a n a M N M N M n M =-=,1a log x 0a a x;log 10,a 1=== 23. 掌握求函数值域的常用方法了吗?(分离常数法,二次函数法(配方法),函数有界性,换元法,基本不等式法,利用函数单调性法,数形结合法等。
) 24. 你记得弧度的定义吗?能写出圆心角为α,半径为R 的弧长公式和扇形面积公式吗?(·,··)扇l l ===ααR S R R 1212224. 熟记三角函数的定义,单位圆中三角函数线的定义25.迅速画出正弦、余弦、正切函数的图象,并由图象能写出单调区间、最值,对称点、对称轴。
()()[]26. y =Asin x +正弦型函数的图象和性质要熟记。
或ωϕωϕy A x =+cos()振幅,周期12||||A T =πω 作图。
()根据图象求解析式。
(求、、值)3A ωϕ()∆正切型函数,y A x T =+=tan ||ωϕπω27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
对数换底公式:log log log log log a c c a n a b b a b nmb m =⇒=()五点作图:令依次为,,,,,求出与,依点202322ωϕππππx x y +28. 用反三角函数表示角时要注意角的范围,单调性。
29.在用反三角函数表示直线的倾斜角、两向量的夹角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意义?①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次是0,,[0,],[0,]22ππ⎛⎤π ⎥⎝⎦; ②直线的倾斜角、1l 与2l 的夹角的取值范围依次是[0,),[0,]2ππ;③向量的夹角的取值范围是[0,π]30.会求三角不等式,三角方程。
31. 熟练掌握同角三角比关系和诱导公式了吗?32. 熟练掌握两角和、差、倍、降次公式及其逆向应用(1)名的变换:化弦或化切(2)次数的变换:升、降幂公式(3)形的变换:统一函数形式,注意运用代数运算。
33. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?三角形的面积公式。
34. 不等式的性质有哪些?(),100a b c ac bcc ac bc >>⇒><⇒<(),2a b cd a c b d >>⇒+>+(),300a b c d ac bd>>>>⇒>(),4011011a b a b a b a b >>⇒<<<⇒>(),50a b a b a b n n n n >>⇒>>()(),或60||||x a a a x a x a x a x a <>⇔-<<>⇔<->35. 利用基本不等式:ab b a 222≥+;+∈≥+R ab ab b a ,2(一正、二定、三相等)36.熟练掌握一元一次和一元二次不等式的解的各种情况。
()370.()()解分式不等式的一般步骤是什么?f x g x a a >≠(移项通分,分子分母因式分解,x 的系数变为1,标根法解得结果。
)38. 用“标根法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始39. 解含有参数的不等式要注意对字母参数的讨论如:对数或指数的底分或讨论a a ><<101 40. 对含有两个绝对值的不等式如何去解?(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。
)41. 不等式恒成立问题,常用的处理方式是什么?(转化为最值问题)如:恒成立的最小值a f x a f x <⇔<()() ;a<f (x )有解⇔a<f(x)的最大值 a f x a f x >⇔>()()恒成立的最大值;a>f (x )有解⇔a>f(x)的最小值42. 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111()等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n dn n =+=+-11212{}性质:是等差数列a n()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =--{}例如:数列中,,,求a a a a n n a n n n n1131==++()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+0的函数)(6)求nS 的最值一般通过na 的正负分界项来求出。
43. 等比数列的定义与性质定义:(为常数,),a a q q q a a q n nn n +-=≠=1110等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q q q n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+=(),,……仍为等比数列2232S S S S S n n n n n -- (时,,时,)n a S n a S S n n n ==≥=--1211145. 你熟悉求数列通项公式的常用方法吗? 例如:(1)作差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>(2)连乘法,n 10n 1a f (n),a a ,f(n)a -==其中可求积 (3)连加法,n n 110n a a f (n),a a ,f(n)a --==其中可求和,求{}()数列,,,求a a a a n a n n n n n 111132==+≥--(4)可转化为等比型递推公式)0q ;1,0p ,(1≠≠+=-为常数,q p q pa a n n 两边同时加上qp 1-(5)倒数法例如:,,求a a a a a n nn n11122==++(6)数学归纳法,注意写出四项再猜,用第五项验证完 ,再证明。