第七章 应力与应变分析、强度理论
材料力学第七章应力状态和强度理论
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
材料力学带答疑
第七章应力和应变分析强度理论1.单元体最大剪应力作用面上必无正应力答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。
拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。
)2. 单向应力状态有一个主平面,二向应力状态有两个主平面答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零)3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。
)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零)5.应力超过材料的比例极限后,广义虎克定律不再成立答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。
)6. 材料的破坏形式由材料的种类而定答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。
)二、选择1.滚珠轴承中,滚珠与外圆接触点为应力状态。
A:二向; B:单向C:三向D:纯剪切答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。
)2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。
A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。
)3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面中。
A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面;答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力状态为二向不等值拉伸,其σx =pD/4t、σy=pD/2t。
材料力学应力和应变分析强度理论
§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y
(
x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP
第七章+应力应变分析+强度理论
(Analysis of stress-state and strain-state)
§7-1 应力状态概述 (Introduction of stress-state)
一、应力状态的概念 (Concepts of stresses-state)
σ1 ≥ σ 2 ≥ σ 3
(Analysis of stress-state and strain-state)
三、应力状态的分类 (The classification of stresses-state)
1.空间应力状态(Triaxial stress-state or three-dimensional stress-state ) 三个主应力σ1 ,σ2 ,σ3 均不等于零 2.平面应力状态(Biaxial stress-state or plane stress-state) 三个主应力σ1 ,σ2 ,σ3 中有两个不等于零 3.单向应力状态(Uniaxial stress-state or simple stress-state) 三个主应力 σ1 ,σ2 ,σ3 中只有一个不等于零
x
− 62.5
σ3
因为 σx < σy ,所以 α0= 27.5°与σmin对应
σx −σ y 2 ⎧σ max σ x + σ y ⎧ 26MPa 2 ) + τ xy = ⎨ = ± ( ⎨ 2 2 ⎩ − 96MPa ⎩σ min σ 1 = 26MPa , σ 2 = 0, σ 3 = −96MPa
1.求单元体上任一截面上的应力(Determine the stresses on any inclined plane by using stress-circle) 从应力圆的半径 CD 按方位角α的转向转动2α得到半径CE. 圆周上 E 点的坐标就依次为斜截面上的正应力σα 和切应力τα.
材料力学应力理论
例 单向拉伸状态
σx
45º
σx'
τx'y'
B
45º A
σy'
E
τy'x'
D
τα
b
2×45º
d
c
σα
o
a
2×45º
e
σx
¾45º斜面同有正应力、切应力;但正应力不是最大,切应力最大
例 纯剪切状态
D
σy'=τ
y
O
x
τα
a (0,τ )
τ σx'=τ
2×45º
2×45º
E
τ
e
c
b σα
o B
Α
d(0,-τ )
σy τyx
τyx
σy
σx
σz
τxy
σx
σz
τxy
平面应力三维看: σ1≥σ2 ≥σ3
τ
τ
o
σ2
σ
σ1
σ3 o
σ
σ1
σ3
τ
σ
σ2
o
200 300 50
τα
τmax
σ3
σ2
σα
o
σ1
σ3
200 300 50
τα
τα
σ3 σ2
O
σ2
σ1 σα
O
300 50
σα
σ1
例 求图示单元体的主应力和最大剪应力。(MPa)
τ τ
45°
τ
τ
7.5 三向应力状态-应力圆法
设三个主应力已知
σ2
τα
τmax
y
σ3
z
x
7-第七章 应力状态分析 强度理论.
第七章应力状态分析强度理论7.1 应力状态概述一、工程实例1. 压缩破坏2. 弯曲拉伸破坏3. 弯曲剪切破坏4. 铸铁扭转破坏5. 低碳钢扭转破坏二、应力状态的概念1. 点的应力状态过一点所作各斜截面上的应力情况,即过一点所有方位面上的应力集合。
2. 一点应力状态的描述以该点为中心取无限小三对面互相垂直的六面体(单元体)为研究对象,单元体三对互相垂直的面上的应力可描述一点应力状态。
3. 求一点应力状态(1)单元体三对面的应力已知,单元体平衡(2)单元体任意部分平衡(3)截面法和平衡条件求得任意方位面上的应力,即点在任意方位的应力。
三、应力状态的分类1. 单元体:微小正六面体2. 主平面和主应力:主平面:无切应力的平面主应力:作用在主平面上的正应力。
3. 三种应力状态单项应力状态:三个主应力只有一个不等于零,如A 、E 点 二向应力状态:三个主应力中有两个不等于零,如B 、D 点 三向应力状态:三个主应力都不等于零四、应力状态分析的方法 1.解析法2. 图解法7.2应力状态分析的解析法一、解析法图示单元体,已知应力分量x σ、y σ、xyτ和yx τ。
xxx(一)任意截面上的正应力和切应力:利用截面法,考虑楔体bef 部分的平衡。
设ef 面的面积为dA , ∑=0F n 0sin )Asin (cos )sin A (cos )cos A (sin )cos A (A =-+-+αασααταασαατσαd d d d d y yx x xy∑=0F tsin )Asin (cos )sin A (sin )cos A (cos )cos A (A =++--ααταασαασαατταd d d d d yx y x xy根据切应力互等定理: y x xy ττ=三角函数关系:22cos 1cos 2αα+=,22cos 1sin 2αα-=,∂=cos sin 22sin αα解得:ατασσσσσα2sin 2cos 22x x xy yy--++=(7-1)ατασστα2cos 2sin 2x xy y+-= (7-2)(二)主应力即主平面位置将式(8-1)对取一次导数,并令其等于零可确定正应力的极值和所在平面的位置。
第七章 应力状态、应变分析和强度理论
§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135
y =60 MPa xy = -50MPa =-30°
应力应变分析与强度理论
ax in
m
ax
2
m in
极值切应力等于极值正应力差的一半。
材料力学电子教案 C 机械工业出版社
§7.2 平面应力状态分析的解析法
三、极值切应力和主平面夹角
注意到 则 所以
tan
2 0
2 xy x
y
tan
21
x 2 xy
y
tan
20
第7章 应力应变分析与强度理论
§7.1 应力状态的概念 §7.2 平面应力状态分析的解析法 §7.3 平面应力状态分析的图解法 §7.4 三向应力状态简介 §7.5 平面应力状态的应变分析 §7.6 广义胡克定律 §7.7 强度理论概述 §7.8 四个常用的强度理论 §7.9 莫尔强度理论
材料力学电子教案 C 机械工业出版社
7.2.3 极值切应力及其作用面 一、极值切应力方位角
d 0 d
( x y ) cos 2 2 xy sin 2 0
得
tan
21
x 2 xy
y
二、最大、最小切应力
m m
ax in
x
2
y
2
2 xy
m m
主应力通常用1、 2 和 3 表示,它们的顺序按代 数值大小排列,即 1 2 3 。
材料力学电子教案 C 机械工业出版社
§7.1 应力状态的概念
7.1.4 应力状态的分类 1. 单向应力状态 (简单应力状态 ) 三个主应力中,只有一个不等于零 2. 二向应力状态 (复杂应力状态 ) 有两个应力不等于零 3. 三向应力状态 (复杂应力状态 ) 三个主应力都不等于零
材料力学 第七章 应力状态和强度理论
y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
材料力学刘鸿文第六版最新课件第七章 应力和应变分析 强度理论
5
7-1 应力状态的概述
直杆拉伸斜截面上的应力
k
F
{ F
p cos cos2
k
F
k p
k
p sin cos sin sin 2
2
直杆拉伸应力分析结果表明:即 使同一点不同方向面上的应力也是各
不相同的,此即应力的面的概念。
6
7-1 应力状态的概述
点的应力状态:
虚线:主压应力迹线 实线:主拉应力迹线
思考:在钢筋混泥土梁中,钢筋怎么放置最佳。 30
内容小结:
(1)根据已知点的应力状态求任意截面的应力。 (2)根据已知点的应力状态求主应力、主平面。 (3)结合前五章内容,掌握梁在拉、压、剪、扭、弯 等状态下,求某点的应力,并计算主应力和主平面。
31
第七章 应力和应变分析
58.3MPa 22
7-3 二向应力状态分析-解析法
(2)主应力、主平面
y xy
max
x
y
2
(
x
y
)2
2 xy
2
68.3MPa
x
min
x
y
2
(
x
y
)2
2 xy
2
48.3MPa
1 68.3MPa, 2 0, 3 48.3MPa
23
7-3 二向应力状态分析-解析法
y
主平面的方位:
2
2sin cos sin2
并注意到 yx xy (切应力互等)
化简得出:
1 2
( x
y)
1 2
(
x
y ) cos 2
xy
sin
2
材料力学第七章知识点总结
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
第七章 应力与应变分析 强度理论4
2 x
29.8MPa 3.72 MPa
(单位 MPa)
1 29.28MPa, 2 3.72MPa, 3 0
1 29.28MPa < 30MPa
某结构上危险点处的应力状态如图所示,其中σ= 116.7MPa,τ=46.3MPa。材料为钢,许用应力[σ]= 160MPa。试校核此结构是否安全。
3)强度理论:
材料的破坏与上述因素有关(某一方面),在长期的实践 中,对材料失效的原因提出各种不同的假设,形成各种不 同的判断准则,统称为强度理论(关于构件失效的假说) 4)意义: 找出失效原因 解决实际问题 提出强度理论
用简单的试验模拟
四、介绍四种强度理论
1、关于断裂失效的强度理论 ------适用于脆性材料 1)最大拉应力理论 十七世纪(1638年)由伽利略提出来的关于强度判断 的理论,亦称第一强度理论 认为: 材料失效的原因是由于材料内部的最大拉应力引 起的,无论应力状态如何,只要拉应力达到某一 限值,材料断裂。 模拟: 用简单的试验模拟,如单向拉伸。
2 50MPa
max 1 3
2
3 50MPa
65MPa
例2 已知如图所示过一点两个平
面上的应力。试求:
(1)该点的主应力及主平面;
(2)两平面的夹角。
1.四个常用的古典强度理论的相当表达式分 为 、 、 、 。 2.当矩形截面钢拉伸试样的轴向拉力F = 20 kN时,
三向拉应力, 1 2 3>0且相差不大时,发生脆 性破坏,尽管材料可能是塑性的。选择第一、二强度 理论。 三向压应力, 1 2 3<0 且相差不大时,发生 塑性破坏,尽管材料可能是脆性的。选择第三、四强 度理论。
材料力学应力和应变分析强度理论
y
S平面
SF
a
1
T
4
z
x
2
T
Fa
M
Fl
1
T
Wt
σ
Mz Wz
3 Mz 3
T
Wt
σ
Mz Wz
目录
7—1 应力状态的概念
一、单元体的取法
S平面
F
S平面
F
5
2
4
l/2
l/2
3
Mz
Fl 4
2 1
1 1
2
2
2
3 3
10
二、单元体的特征
2 3
1、单元体特征 单元体的尺寸无限小,
1
1
每个面上应力均匀分布
3
任意一对平行平面上的应力相等
x = -40MPa
大小
y =60 MPa
max min
x
2
y
(
x
2
y
)2
2 x
80.7MPa 60.7MPa
x = -50MPa =-30°
1 80.7MPa 2 0 3 60.7MPa
方位
tan 20
2 xy x
y
2 (50) 40 60
1
20
45 135
0
22.5 67.5
三个主应力1 、2 、3 均不等于零
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
7-2 二向应力状态分析-解析法
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-应力和应变分析强度理论(圣才出品)
OA1
= OC + CA1
= x
+ y 2
+
(
x
− y )2 2
+
2 xy
= max = 1
OB1
= OC − CB1
=
x
+ 2
y
−
(
x
− 2
y
)2
+
2 xy
= min
=2
b.确定主平面方位的方法
如图 7-3(b)(c)所示,将半径 CD 旋转 20 到 CA1 处,单元体 x 轴沿 20 旋转方向
图 7-2 应力圆 (2)应力圆的应用 ①应力圆与单元体应力间的关系 点面之间的对应关系:单元体某一面上的应力,必对应于应力圆上某一点的坐标; 夹角关系:圆周上任意两点所引半径的夹角等于单元体上对应两截面夹角的两倍,且两 者的转向一致。 ②求单元体上任一截面上的应力 从应力圆的半径 CD 按方位角 α 的转向转动 2α 得到半径 CE,圆周上 E 点的坐标就是
任意两个互相垂直的截面上的正应力之和为常数,即 + +90 = x + y 。
③最大切应力和最小切应力 切应力的大小
max min
=
x
− y 2
2
+ 2xy
=
1 2
(max
− min )
切应力极值所在截面方位角
tan
21
=
x − y 2 xy
最大和最小切应力所在平面与主平面的夹角为 45°,即1 = 0 + 45。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 7 章 应力和应变分析强度理论
应力和应变分析和强度理论
机械设计
01
02
03
零件强度校核
通过应力和应变分析,可 以校核机械零件的强度, 确保零件在正常工作载荷 下不会发生破坏。
优化装配设计
通过应力和应变分析,可 以优化机械装配设计,减 少装配误差和应力集中, 提高装配质量和可靠性。
振动和噪声控制
通过应力和应变分析,可 以预测和控制机械系统的 振动和噪声,提高机械系 统的性能和舒适性。
总结词
最大拉应力理论
详细描述
该理论认为最大拉应力是导致材料破坏的主要因素,当最大 拉应力达到材料的极限抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大伸长应变理论
详细描述
该理论认为最大伸长应变是导致材料 破坏的主要因素,当最大伸长应变达 到材料的极限抗拉应变时,材料发生 断裂。
第三强度理论
总结词
03
应力和应变的应用
结构分析
结构稳定性
01
通过应力和应变分析,可以评估结构的稳定性,预测结构在不
同载荷下的变形和破坏模式。
结构优化设计
02
通过对应力和应变的精确计算,可以优化结构设计,降低结构
重量,提高结构效率。
结构疲劳寿命预测
03
通过应力和应变分析,可以预测结构的疲劳寿命,为结构的维
护和更换提供依据。
能量法
总结词
能量法是一种基于能量守恒和变分原理 的数值分析方法,通过将问题转化为能 量泛函的极值问题,并采用变分法或有 限元法进行求解。
VS
详细描述
在应力和应变分析中,能量法可以用于求 解各种力学问题,如弹性力学、塑性力学 等。通过构造合适的能量泛函和约束条件 ,能量法能够提供精确和高效的数值解。 同时,能量法还可以用于优化设计、稳定 性分析和控制等领域。
材料力学第七章__应力和应变分析__强度理论(2).ppt
所以
m Wtt
d 3
16Biblioteka 1E45o
例 边长为10mm的铝质方块,紧密无隙 地嵌入一个深度和宽度都是10mm的钢槽 中,如图所示。当铝块受到P=60MPa的
• 在小变形及线弹性范围内,线应变 只与正应力有关,而与剪应力无关;
• 剪应变只与剪应力有关,而与正应 力无关,满足应用叠加原理的条件。
• 所以,我们利用单向应力状态和纯 剪切应力状态的虎克定律,分别求 出各应力分量相对应的应变,
• 然后,再进行叠加。
正应力分量在不同方向对应的应变
sx
s y
sz
s 1
(s 2
s 3 )
2
1 E
s 2
(s 3
s 1 )
3
1 E
s 3
(s 1
s 2 )
二、体积应变及应力的关系 1.体积应变
变形前单元体的体积为
V dxdydz
变形后,三个棱边的长度变为
dx 1dx (1 1)dx dy 2dy (1 2 )dy dz 3dz (1 3 )dz
x
y
xy
x
y
sin 2
xy
cos 2
22
2
二、应变圆
x
y
x
y cos2 xy sin 2
2
2
2
x
y
sin 2
xy
cos 2
22
2
(
x
y
)2
(
)2
x
y
sin
2
(
xy
)
2
22
2
t x'y'
R 1 2
sx s y
第七章:应力状态、强度理论
s
2 2
s
2 3
2 s1s 2
s 3s 2
s1s 3 )
1 t 2 0 (t )2 2 0 0 t (t ))
2E
s1
1 t 2
E
G
E
21
)
§7–6 强度理论及其相当应力
强度理论:是关于“材料发生强度破坏或失效”的假设
材料的破坏形式: ⑴ 脆性断裂 如铸铁在拉伸和扭转时的突然断裂 ⑵ 塑性屈服 如低碳钢在拉伸和扭转时明显的塑性变形
sx
t 绕研究对象顺时针转为正;
y
txy
逆时针为正。
Ox
图1
s
sx
y
sy
ttxy
Ox 图2
设:斜截面面积为dA,由分离体平衡得:
Fn 0
n s dA (t xydAcos )sin (s xdAcos ) cos t (t yxdAsin ) cos (s ydAsin )sin 0
容器表面用电阻应变片测得环向应变 t =350×10-6,若已知容器平均 直径D=500 mm,壁厚=10 mm,容器材料的 E=210GPa,=0.25
试求:1.导出容器横截面和纵截面上的正应力表达式; 2.计算容器所受的内压力。
s1 sm
p p
p
x
l
图a
D
y
xp
AO
B
解:容器的环向和纵向应力表达式 1、轴向应力:(longitudinal stress) 用横截面将容器截开,受力如图b所示,根据平衡方程
第七章 应力状态和强度理论
§7–1 概述 §7–2 平面应力状态的应力分析.主应力 §7–3 空间应力状态的概念
§7–4 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
′ p
D
薄壁圆筒的横截面面积:
n
A D
F
p D2
4
pD
A D 4
(2)假想用一直径平面将圆筒截分为二,并取 下半环为研究对象
"
p 直径平面
FN
O
FN
pl D sind plD
0
2
d
Fy 0 2 l plD 0
pD
几种受力情况下截取单元体方法:
P
P
Me B
Me
A
A P/A
B Me/Wn
a) 一对横截面, 两对纵截面
P Me
b) 横截面,周向 面,直径面各一对
C
Me
c) 同b)但 从上表面 截取
C
单元体上的应力分量
应力与应变分析
(1)应力分量的角标规定:第一角标表示应力 作用面(法线),第二角标表示应力平行的轴,两角 标相同时,只用一个角标表示。
F 0
dA x dAcos sin xy dAcos cos yx dAsin sin y dAsin cos 0
n
x
利用三角中的倍角公式,根据上述平衡方程式,可以得到计算平 面应力状态中任意方向面上正应力与剪应力的表达式:
2
例:图示单元体,试求:=30o斜截面上的应力
40
20 30
解:1)
30
2
40
30 2
29.8MPa
40cos60
o
(
20)sin
60o
30 2
40sin
60o
(
20)cos60o
20.3MPa
[例] 分析轴向拉伸杆件的最大剪应力的作用面,说明低碳钢拉伸
主平面:单元体上剪应力为零的面;
主应力:主平面上作用的正应力,用1、2、3表示, 按1≥2≥3(根据大小排列).
z
z'
z
zy
zx
yz
xz
y y
x xy yx x
旋转
x' 1
3
2 y'
2、应力状态的分类
1)、空间应力状态:
三个主应力1 、2 、3 均不等于零
Z z
应力与应变分析
y
z X
O x
zx xy
yx
xz
O x
xy zx
x
xz yx
dz y
Y
dx
dy z y
应力角标规定: 第一角标表示应力作用面 (法线表示),第二角标表 示应力平行的轴,角标相 同时只用一个角标表示.
二、应力状态分类(按主应力)
应力与应变分析
1. 基本概念
=
x+
2
y
+ x-
2
y
cos2- xysin2
=
x-
2
y
sin2
xycos2
x y
2
x y cos 2 2
x s in 2
x y sin 2 2
x cos 2
37
x y
时发生屈服的主要原因。
n
解: y=0,yx=0。
x
根据平面应力状态任意斜截面上的正应力
x
和剪应力公式
=
x+
2
y
+
x-
2
y
cos2-
xy sin 2
=
x-
2
y
sin2
xycos2
=
x
2
+ x
2
cos2
=
x
2
sin 2
当θ=45º时,斜截面上既有正应力又有剪应力:
研究在各种不同的复杂受力形式下: 强度失效的共同规律
假定失效的共同原因
利用单向拉伸的实验结果
建立复杂受力时的强度条件 强度理论
拉伸
受力之前,表面的正方形
FP
FP
受拉后,正方形变成了矩形,直角没有改变。
受力之前,表面斜置的正方形
FP
FP
受拉后,正方形变成了菱形。
这表明:拉杆的斜截面上存在剪应力。
扭转
y
2
第三节 平面应力状态分析
一、平面应力分析的解析法 1.平面应力状态图示:
y
x
x
x
x
yx xy y
xy yx y
平面应力状态的普遍形式如图所示 .
单元体上有x ,xy 和 y , yx
–3 方向角与应力分量的正负号约定
正应力
x
x
x 拉为正
x
压为负
剪应力
1)最大正应 力及方位
x
2
y
x
y
2
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
令:
d d
2[
x
y sin 2
2
xy cos 2 ]
0
tg 2 0
2 xy x
y
0 0
滑移线
低碳钢拉伸实验
韧性材料-低碳钢轴向 拉伸时为什么会出现 滑移线?
铸铁扭转实验
脆性材料-铸铁扭转时 为什么会沿450螺旋面 断开?
钢筋混凝土简支梁
以前的知识不能解释这些现象
问题的提出
问题1:同一点处不同方位截面上的应力不相同;
轴向拉伸杆件
F
横截面应力: F
A
斜截面应力:
F
cos2
解:纯剪应力状态下x=y=0 ,
根据公式:
=
x+
2
y
+ x-
2
y
cos2- xysin2
=
x-
2
y
sin2
xycos2
yx
n
xy
xy
yx
纯剪应力状态
=- xysin2 = xycos2
45o=max=- xy , 45o=0
2
x y cos 2 2
x s in 2
x y sin 2 2
x cos 2
38
例:图示单元体,已知 x =-40MPa,y =60MPa, xy=-50MPa.试求 ef 截面上的应力情况
y
解: 求 ef 截面上的应力
30
(2)面的方位用其法线方向表示
根据材料的均匀连续假设,微元体各微面上的应力 均匀分布,相互平行的两个侧面上应力大小相等、方向 相反;互相垂直的两个侧面上剪应力服从剪切互等关系:
yz zy, zx xz, xy yx
正负号规定:正应力以拉应力为正,压为负;剪应 力以对微元体内任意一点取矩为顺时针者为正,反之为负。
y
1
4
2
z
3
x
S
l
F
FS
a
z2
T3
4 MZ
yy
FS
1
4
2
z
3
z2
4 MZ
x
T3
x
1 3
z
2
1
T Wt
x1
Mz Wz
2
T Wt
4FS 3A
x3
Mz Wz
3
T Wt
例: 分析薄壁圆筒受内压时的应力状态
m
n
y
p
z
D
ml n
(1)沿圆筒轴线作用于筒
底的总压力为F
F p D2
同。
横截面上的正应力分布 横截面上的剪应力分布
应力的面的概念:同一 点不同方向面上的应力 也不一定相同。
xy x
xy x
xy
yx x
应 力 指明
哪一个面上
哪一点?
哪一个点上 哪一方向面?
应力状态分析(analysis of stress-state)是用平衡的方法,分析过 一点、在不同方向面上的应力以及这些应力之间的相互关系, 并确定这些应力中的极大值和极小值以及它们的作用面。
Mx Mx
圆变为一斜置椭圆,长轴方向伸长,短轴方向缩短。
表明,轴扭转时,其斜截面上存在着正应力。
1.基本概念
(1)什么是一点的应力状态
一点的应力状态:
过一点处,即一微元所有方位面 上的应力集合,称为该点的应力状态。
围绕一点作一微小
单元体,即微元
为什么分析一点 的应力状态?
找出一点处沿不同方 向应力的变化规律, 确定出最大应力,从 而全面考虑构件破坏 的原因,建立适当的 强度条件。
x
平衡方程
Fn 0 F 0 yx
y
n
x
xy x
Fn 0
yx y
dA x dAcos cos xy dAcos sin
yx dAsin cos y dAsin sin 0
2)、平面应力状态:
三个主应力1 、2 、3 中有两个不等于零
3)、单向应力状态