本科《工程数学》期末考试试卷及答案

合集下载

工程数学本期末综合练习

工程数学本期末综合练习

工程数学本期末综合练习TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】《工程数学(本)》期末综合练习一、单项选择题1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .()BA AB 11=- B .()111---+=+B A B A C .()111---=B A AB D .1111----+=+B A B A正确答案:A2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x x a x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a正确答案:B3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) . A .0,2 B .0,6 C .0,0 D .2,6正确答案:B4. 设A ,B 是两事件,则下列等式中( )是不正确的.A . )()()(B P A P AB P =,其中A ,B 相互独立B . )()()(B A P B P AB P =,其中0)(≠B PC . )()()(B P A P AB P =,其中A ,B 互不相容D . )()()(A B P A P AB P =,其中0)(≠A P正确答案:C5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ).A .)(3)(2Y D X D -B .)(3)(2Y D X D +C .)(9)(4YD X D - D .)(9)(4Y D X D +正确答案:D6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( )矩阵.A .s n ⨯B .n s ⨯C .t m ⨯D .m t ⨯正确答案:B7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解.A .213231X X +B .213231ηη+ C .21X X - D .21X X + 正确答案:A8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( ) .A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 正确答案:C9. 下列事件运算关系正确的是( ).A .AB BA B += B .A B BA B +=C .A B BA B +=D .B B -=1 正确答案:A10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( ).A .)3,2(-NB .)3,4(-NC .)3,4(2-ND .)3,2(2-N正确答案:D11.设321,,x x x 是来自正态总体),(2σμN 的样本,则( )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++ C .321535151x x x ++ D .321515151x x x ++ 正确答案:C12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).A .χ2分布 B .t 分布 C .指数分布 D .正态分布正确答案:B二、填空题 1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 .应该填写:2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 .应该填写:线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= .应该填写:)()(B P A P -4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x k x f ,则常数k = . 应该填写:π4 5.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x . 应该填写:)1,0(nN6.行列式701215683的元素21a 的代数余子式21A 的值为= . 应该填写-567.设三阶矩阵A 的行列式21=A ,则1-A = . 应该填写:2 8.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k . 应该填写:2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量.应该填写:310.设A B ,互不相容,且P A ()>0,则P B A ()= .应该填写:011.若随机变量X ~ ]2,0[U ,则=)(X D . 应该填写:31 12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 估计. 应该填写:无偏三、计算题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A ,求:(1)AB ;(2)1-A . 解:(1)因为2100110132-=--=A 所以 2==B A AB .(2)因为 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A . 2.求齐次线性方程组 ⎪⎩⎪⎨⎧=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--326001130012331203313596212331 一般解为 ⎪⎪⎩⎪⎪⎨⎧=-=--=0313543421x x x x x x ,其中x 2,x 4 是自由元 令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-;x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原方程组的一个基础解系为 { X 1,X 2 }.原方程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.3.设随机变量)1,4(~N X .(1)求)24(>-X P ;(2)若9332.0)(=>k X P ,求k 的值. (已知9332.0)5.1(,8413.0)1(,9775.0)2(=Φ=Φ=Φ).解:(1))24(>-X P =1-)24(≤-X P= 1-)242(≤-≤-X P =1-()2()2(-Φ-Φ)= 2(1-)2(Φ)=.(2))44()(->-=>k X P k X P=1-)44(-≤-k X P=1-)5.1(9332.0)4(Φ==-Φk即 k -4 = , k =.4.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm ,标准差为0.15cm .从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm ),,,问:该机工作是否正常(05.0=α, 96.1975.0=u )解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N 经计算得375.10=x ,075.0415.0==n σ, 由已知条件96.121=-αu ,且 2196.167.1αμσμ-=<=-nx 故接受零假设,即该机工作正常.5.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X . 6.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组.解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341 所以,r (4321,,,αααα) = 3. 它的一个极大线性无关组是 431,,ααα(或432,,ααα).7.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时方程组有非零解?在有非零解时,求出通解.解:因为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---λ83352231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→610110231λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 505==-λλ即当时,3)(<A r ,所以方程组有非零解.方程组的一般解为: ⎩⎨⎧==3231x x x x ,其中3x 为自由元. 令3x =1得X 1=)1,1,1(',则方程组的基础解系为{X 1}.通解为k 1X 1,其中k 1为任意常数.8.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则(1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C . (2))()()()(3232A P A P A A P B P +=+=273.0018.0255.0255.031234=+=+C C .9.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ).解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ = + – 1 = (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 所以28.123=-a ,a = 3 + 28.12⨯ = 10.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u )解:已知3=σ,n = 64,且n x u σμ-=~ )1,0(N 因为 x = 21,96.121=-αu ,且所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---n u x n ux σσαα. 四、证明题1.设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--.证明:因为 ))((2A A I A I ++-=322A A A A A I ---++=3A I -= I所以 21)(A A I A I ++=--2.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.证明: 因为 0))((2=-=+-I A I A I A ,即I A =2所以,A 为可逆矩阵. 3.设向量组321,,ααα线性无关,令2112ααβ+=,32223ααβ+=,1334ααβ-=,证明向量组321,,βββ线性无关。

大学工程数学考试题及答案

大学工程数学考试题及答案

大学工程数学考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是微积分的基本定理?A. 积分中值定理B. 洛必达法则C. 牛顿-莱布尼茨公式D. 泰勒级数展开答案:C2. 在概率论中,随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 2B. 3C. 4D. 5答案:A3. 线性代数中,一个矩阵A可逆的充分必要条件是什么?A. 行列式非零B. 秩等于A的阶数C. A的所有特征值非零D. 所有选项都是答案:D4. 在复数域中,下列哪个表达式表示复数的共轭?A. z + z*B. z - z*C. |z|^2D. z * z*答案:B5. 傅里叶级数在工程数学中的应用之一是?A. 信号处理B. 量子力学C. 统计物理D. 所有选项都是答案:A二、填空题(每题3分,共15分)6. 函数f(x) = sin(x)的一阶导数是_________。

答案:cos(x)7. 矩阵的特征值是_________。

答案:λ8. 拉普拉斯变换的逆变换通常使用_________。

答案:拉普拉斯逆变换9. 随机变量X和Y相互独立,且P(X=x) = 2x,P(Y=y) = 3y,则P(X+Y=4)等于_________。

答案:1/410. 曲线y = x^2在点(1,1)处的切线斜率是_________。

答案:2三、解答题(共75分)11. (15分)证明函数f(x) = e^x在实数域上是单调递增的。

答案:由于f'(x) = e^x > 0对于所有实数x,因此f(x)在实数域上是单调递增的。

12. (20分)解线性方程组:\[\begin{align*}x + 2y &= 5 \\3x - y &= 4\end{align*}\]答案:使用高斯消元法或克拉默法则,解得 \( x = 2, y = 1.5 \)。

13. (20分)计算下列定积分:\[\int_{0}^{1} x^2 dx\]答案:使用基本积分公式,得到 \( \frac{1}{3}x^3 \) 在0到1的积分为 \( \frac{1}{3} \)。

2018-2019(1)《工程数学1B》答案

2018-2019(1)《工程数学1B》答案

贵州大学2018—2019学年第一学期期末考试卷B参考答案(工程数学1)一、填空填(每空3分,共18分)1、 -2;2、 0或1;3、 0,2,4;4、 8/27;5、 0.7;6、 (5.8684, 6.1316) . 二、选择题(每小题3分,共12分)C, D, B, A三.解: 001101D =01111xx xx+---222143200101101=1(1)111011011011x x x xx x x +x +x +x x x x++++-=-⨯--=+--+- ( 3分) ( 5分) ( 6分) 四、(8分)解: 由T AB A B =-得()T A E B A += …2分T 432321(A E,A )221311111210--⎛⎫ ⎪+=-- ⎪ ⎪----⎝⎭101311023931012521---⎡⎤⎢⎥→-⎢⎥⎢⎥----⎣⎦ 1131110020011410010301001111001111----⎡⎤⎡⎤⎢⎥⎢⎥→-→-⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦ …6分 即()1T 200B A E A 301111--⎡⎤⎢⎥=+=-⎢⎥⎢⎥---⎣⎦…8分五、(10分) 解:435111*********(A b)11111011530115313101310042442 a b a a b a a a b a-5a ----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---+-+-⎝⎭⎝⎭⎝⎭4 分当2,3a b =≠-,时,R(A)2R(A,b)3=≠=,方程组无解 当2,3a b ==-时,R(A)R(A,b)24==<,方程组有无穷多解6分 此时,原方程组等价于13423424253x x x x x x +-=⎧⎨-+=-⎩7分令3142c ,c x x ==,则方程组的通解为1122121231422c 4c 2242c 5c 3153c c c 100c 010x x x x -++-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(12c ,c 为任意常数)10分六、(7分)解:1234232312011025100134711011301130107A (α,α,α,α)1201012100140014011k 011k 000k 3000k 3--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪---⎪ ⎪ ⎪ ⎪==→→→⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎪⎪----⎝⎭⎝⎭⎝⎭⎝⎭ 4分 当k 3=时,R(A)34=<向量组A 线性相关5分1234123R(α,α,α,α)R(α,α,α)3==, 321 , , ααα是其一最大无关组,且 4123α13α7α4α=-++ 7分七、(10分) 解: 由⎰+∞∞-=1)(dx x f 得 ---------1分 2π/3k sin xdx k 1==⎰, 即 k 1= ---------2分x πx 30x π03π0,x 3πsin xdx cos x 0.5,x 03F(x)f (t)dt πsin xdx sin xdx 1.5cos x,0x 3π1,x 3--∞-⎧<-⎪⎪⎪-=--≤≤⎪⎪==⎨⎪-+=-<≤⎪⎪⎪>⎪⎩⎰⎰⎰⎰ ----5分ππππP{}F()F()24444X -≤≤=--=分π4π4E(X)x k sin dx 0x +-=⋅=⎰222D(X)E(X )[E(X)]E(X )=-=ππ22244π04x sin dx 2x sin dx 4x x ++-===++⎰⎰-----10分 八、(8分)解: 设A 表示“小王迟到”,B 1,B 2,B 3分别表示交通状况正常,轻微堵车和严重堵车,则P(B 1)=3/10, P(B 2)=5/10, P(B 3)=2/10, P(A|B 1)=2%, P(A|B 2)=10%,P(A|B 3)=80%,于是 ---------2分 (1) P(A)= P(A|B 1) P(B 1)+ P(A|B 2) P(B 2)+ P(A|B 3) P(B 3)=0.3×2%+0.5×10%+0.2×80%=0.216 ---------5分(2) 2222P(AB )P(B )P(A |B )0.590%225P(B |A)0.5740.784392P(A)P(A)⨯====≈ ------8分九、(9分)y 0y ,0y 4.8x(2)1xf(x,y)=0-≤≤≤≤⎧⎨⎩其他解:(1)()()1x y dy 2.4)x 1dy 2X 4.8x(2)x(34x+x , 0f x f x,y 0 , +∞-∞⎧-=-≤≤⎪==⎨⎪⎩⎰⎰其它 …2分()()y2y d 2.4y (2y)y 1dx Y 04.8x(2)x 0f y f x,y 0 +∞-∞⎧-=-≤≤⎪==⎨⎪⎩⎰⎰其它 …4分由于()()()y x f y f x f Y X ,≠ 所以Y X ,不相互独立; …6分 (2){}()yy x0.51y0.5P X Y 1dxdy dy y d 2.4(2y)(2y 1)dx 0.711f x,y 4.8x(2)x ≥-+≥==-=--=⎰⎰⎰⎰⎰…9分十、(6分)解: 32θ3θ0()00x x e ,x>f x x ⎧⎪=⎨≤⎪⎩- …1分当i x >0 (i=1~n)时n3i i 1θn n21θθ)enx i 2n i=1L()=f(x )=3x x x =-∑∏(…2分n 3i i i 1θθ2θni=1lnL()=nln3+nln lnx x =+-∑∑令3i θλθn i=1dlnL()n =x =0d -∑ …5分 解得θ的极大似然估计量为 3iˆθni=1nX=∑ …6分十一、(6分)向量组A :ααα1 2 m ,,,, 向量组B :βββ1 2 n ,,,,P 是m n ⨯型矩阵,满足βββ=αααP 1 2 n 1 2 m (,,,)(,,,),已知向量组A 线性无关,证明:向量组B 线性无关的充分必要条件是R P =n ().[证明] “必要性”由βββ=αααP 1 2 n 1 2 m (,,,)(,,,)可得: βββP 1 2 n R R ≤(,,,)() 由向量组B 线性无关得:βββP 1 2 n n=R R n ≤≤(,,,)(),即得 R P =n ()…2分“充分性”反证法 假设向量组B 线性相关,即有不全为零的数 1 2 n k k k ,,,使12n k βk βk β01 2 n ++=+,即 12n k k βββ=0k 1 2 n ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭(,,,) (1) 由R P =n ()得 m 维向量12n k kP 0k ⎛⎫ ⎪ ⎪≠ ⎪ ⎪⎝⎭,又向量组ααα1 2 m ,,,线性无关,即有:12n k kαααP 0k 1 2 m ⎛⎫ ⎪ ⎪≠ ⎪ ⎪⎝⎭(,,,)。

2019年整理《工程数学》电大历年期末试题及答案

2019年整理《工程数学》电大历年期末试题及答案

2019年整理《工程数学》电大历年期末试题及答案工程数学(本) 试题一一、单项选择题(每小题3分,共15分)1. 设A 为对称矩阵,则条件( )成立. A . 1AAI -= B . A A '= C . 1A A -'=D . 1A A -=2. 13547-⎡⎤=⎢⎥⎣⎦( ). A .7453-⎡⎤⎢⎥-⎣⎦ B .7453-⎡⎤⎢⎥-⎣⎦ C . 7543-⎡⎤⎢⎥-⎣⎦ D .7543-⎡⎤⎢⎥-⎣⎦3. 若 ( )成立,则n 元方程组0AX =有唯一解。

A . ()A n =秩 B .0A ≠ C . ()A n <秩 D .A 的行向量组线性无关 4. 若条件 ( )成立,则随机事件,A B 互为对立事件.A .AB A B U =∅+=或 B . ()0()P AB P A B I =+=或C .AB A B U =∅+=且D . ()0()P AB P A B I =+=且5. 对来自正态总体2(,)X N μσμ(未知)的一组样本123,,X X X ,记3113i i X X ==∑,则下列各式中 ( )不是统计量.A .XB .31ii X=∑C .3211()3i i X μ=-∑D .3211()3i i X X =-∑二、填空题(每小题3分,共15分)6. 设,A B 均为3阶方阵,且136,3,()A B A B -'=-=-= .7.设A 为n 阶方阵,若存在数λ和非零n 维向量x ,使得 ___,则称x 为A 相应于特征值λ的特征向量.8.若5.0)(,8.0)(==B A P A P ,则=)(AB P .9.如果随机变量X 的期望()2E X =且2()9E X =,那么(2)D X = . 10.不含未知参数的样本函数称为 ______ .三、计算题(每小题16分,共32分)11. 设矩阵110200121,050223005A B -⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,求1A B -.12.当λ取何值时,线性方程组1234123412342227369741x x x x x x x x x x x x λ+--=-⎧⎪+++=⎨⎪+++=+⎩有解,在有解的情况下求出此方程组的一般解.四、计算分析题(每小题16分,共32分) 13. 设(3,4)XN ,试求(1)(1)P X <;(2)(57)P X <<。

华东理工大学工程数学期末复习题及参考答案

华东理工大学工程数学期末复习题及参考答案

《工程数学》202301模拟卷1试卷满分100分。

考试时间90分钟。

注:找到所考试题直接看该试题所有题目和答案即可。

查找按键:Ctrl+F 超越高度一、 选择题(4分一题,共32分) 1. 设3阶方阵[]123,,A a a a =,则 2A =( )。

(A )321,,a a a ; (B )123,,a a a ---;(C )122331,,a a a a a a +++; (D )112123,,a a a a a a +++。

2.设矩阵⎥⎥⎦⎤⎢⎢⎣⎡=21232321-A ,有I A =6,则=11A ( )。

(A )⎥⎥⎦⎤⎢⎢⎣⎡21232321-;(B )⎥⎥⎦⎤⎢⎢⎣⎡21232321-;(C )⎥⎦⎤⎢⎣⎡1001;(D )⎥⎥⎦⎤⎢⎢⎣⎡23212123-。

3. 设100120821A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,B 为三阶非零矩阵,则()()-=r AB r B ( )。

(A )0; (B )1; (C )2; (D )3。

4. 设向量组321ααα,,线性无关,则下列向量组中,线性无关的是( )。

(A )2112ααα,,; (B )021,,αα; (C )321211232αααααα++,+,; (D )133221αααααα-,-,-。

5. 离散型随机变量的分布函数为000.201()0.51212x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩,则{1}P ξ==( )。

(A) 0.2; (B )0.3; (C )0.5; (D )0. 6. 独立掷10枚均匀硬币,全部正面的概率为( )。

(A )101 ; (B )10; (C ) 110101()2C ; (D ) 1021。

7.设随机变量ξ的分布函数)(x F ,其概率密度为),(x ϕ 已知),()(x x ϕϕ=-则对任何实a ,有( )。

(A )⎰+∞-=-adx x a F )()(ϕ; (B) ⎰∞--=-adx x a F )(1)(ϕ;(C) )()(a F a F =-; (D) 1)(2)(-=-a F a F .8. 已知随机变量X ~),(p n b ,且4.2)(=X E ,44.1)(=X D ,则二项分布的参数p n ,的值分别为( )。

最新国家开放大学电大《工程数学》期末题库及答案

最新国家开放大学电大《工程数学》期末题库及答案

最新国家开放大学电大《工程数学》期末题库及答案
考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。

该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

《工程数学》题库及答案一
一、单项选择题(每小题3分.共15分)
试题答案及评分标准(供参考)
《工程数学》题库及答案二一、单项选择题(每小题3分,共15分)
二、填空题(每小题3分,共15分)
三、计算题(每小题16分,共64分)
四、证明题(本题6分)
试题答案。

试卷代号 国家开 放大学 秋季学期“开 放本科”期末考试 工程数学 本 试题及答案

试卷代号 国家开 放大学 秋季学期“开 放本科”期末考试 工程数学 本 试题及答案

C. 若 λ=0 是 A 的一个特征值,则 AX=O 必有非零解
D. 若 A 是 A 的特征值,贝UCH-A)X=O 的非零解向量必是 A 对应于 λ 的特征向量
331
4. 若事件 A , B 满足(
) ,则 A 与 B 是相互独立的.
A. P(B) =P(A)P(B IA)
B. P(A - B) =P(A) -P(B)
1 234 7. 当尸一一一一时,矩阵|一 1 -1 一 5 -41 的秩最小.
o 2 -4 À
8. 若 PCA)=0.7 , PC β)=0.8 ,且 A , B 相互独立,则 PCAB)= 9. 设随机变量 X ,且 E(X)=2 , E(X 2 )=9 , 那么 DCX)=
10 设 Xl ,X2 ,'"山是来自正挝、体 N(μ ,σ2) 的一个样本,则工交 Xi~ n τ:
1 -1 2 1 -1 2
1 -1
1 1.解:(1) IAI=12 -3 5
o -1
。一 1
13 一 2 4
o1

,,u
0。
…6 分
(2) 利用初等行变换得
口一 1 2 1 0 ol 口一 I
12 -3 5 0 1 01 →阳 -1
1ji; 210
1 -2 1 •
2 1
I。 一2 1
13 -2 4 0 0 11 10 1 -2 -3 0
试卷代号 :1080
座位号E口
国家开放大学(中央广播电视大学 )2017 年秋季学期"开放本科"期末考试
工程数学(本)

试题(半开卷)
E2018 年 1 月
一、单项选择题(每小题 3 分,共 15 分)

工程数学试题及参考答案(B卷) (2)

工程数学试题及参考答案(B卷) (2)

第 1页 /共 1页工程数学(考试形式: 闭卷 考试时间: 2小时)考试作弊不授予学士学位方向: 姓名: ______ 学号: ______1. Find values of:(a) );3(Ln − (b) )i +(12.(10 points)2. Function is harmonic, find an analytic functionsuch that satisfying (0)0f = .(10 points)3. Evaluate each of the following integrals: (20 points) 22;(9)()z zz z z i −+∫(b) d23131(2)z z z z −=−∫ (d)d .4. Find the series representation for the function at .(10 points)5. Evaluate integral of , where . (10 points)6. Find a representation for the function in powers of .(10 points)7. Find the residue of function 6sin ()z z f z z−=at 0z =.(10 points)8. Find the inverse Laplace transform of function 225()(2)9s F s s +=++. (10 points)9. Evaluate integral along positively oriented circle . (10 points) 2(1)z z e z z z =−∫2(a)d ; 10||2()(1)(3)z z z i z z =+−−∫d (c); (,)(cos sin ),()x v x y e y y x y x y f z u iv =+++=+ arctan 0z z = 2sin 14112Cz z C z z π+=−∫d : 11ze z − 1:|-2|2z iCdz C z eiππ=−∫第 1页 /共 3页《工程数学》期末试题答案(B)1.(a) (5 points)1.(b) (5 points)2.(10 points) 3.(a) z=0为一级极点, z=1二级极点(5 points)(b) (5 points))2sin(ln )2[cos(ln 2 0 .,2,1,0 )],2sin(ln )2[cos(ln 2)]22sin(ln )22[cos(ln 2222ln )22(ln )22(ln ) 2ln2)(1(2Ln )1(1i k k i e k i k e e e e k k k i k i k i i i +=±±=+=+++====−−++−++++时,得其主值为其中L πππππππ),2,1,0(,)12(3ln )3(Arg 3ln )3(Ln L ±±=++=−+−=−k i k i 其中π,1)sin sin cos (+++=∂∂y y x y y e xv x ,1)cos sin (cos ++−=∂∂y x y y y e y v x,1)cos sin (cos ++−=∂∂=∂∂y x y y y e y v x u x 由),()sin cos (d ]1)cos sin (cos [ y g x y y y x e x y x y y y e u x x ++−=++−=∫得 , 得由y u xv ∂∂−=∂∂),()sin cos sin (1)sin sin cos (y g y y y y x e y y x y y e x x ′−++=+++,)( C y y g +−=故,)sin cos ( C y x y y y x e u x+−+−=于是,)1()1()1()(C z i ze C i iy i x e iye e xe iv u z f z iy x iy x +++=++++++=+= ,0)0( =f 由,0 =C 得.)1()( z i ze z f z ++=所求解析函数为z z z e z z f z z d )1(lim ]0),([Res 20−⋅=→,1)1(lim 20=−=→z e zz ⎥⎦⎤⎢⎣⎡−−−=→221)1()1(d d lim )!12(1]1),(Res[z z e z z z f z z ⎟⎟⎠⎞⎜⎜⎝⎛=→z e z z z d d lim 10)1(lim 21=−=→z z e z z z z z e C z d )1(2∫−{}]1),(Res[]0),(Res[2z f z f i +=π.2i π=∫=+−22d ))(9(z z i z z z .592d )(9222ππ=−⋅=−−−=−==∫i z z z z i z i z z z第 2页 /共 3页(c)由于-i 与1在C 内部,(5 points) (d)2233131132|(2)8z z d idz i z z dz z ππ=−=−==−∫(5 points) 4.(10 points)5.(10 points)6.(10 points)2, 23 ,0 2 )2(132==−===−z z C z z z z 仅包含奇点和有两个奇点函数;2214sin 2d 114sin d 14sin 12112112i z zi z z z zz z z z z z πππππ=−⋅=+−=−−==+=+∫∫,1d arctan 02∫+=z z z z 因为1,)()1(11 022<⋅−=+∑∞=z z z n nn 且∫+=z z z z 021d arctan 所以∫∑∞=⋅−=z n n n z z 002d )()1(.1,12)1(012<+−=∑∞=+z n z n n ni,1,3)3)(1()(1)(10−∞−−+=点外,其他奇点为除被积函数z z i z z f 0]),(Res[]3),(Res[]1),(Res[]),(Res[ =∞+++−z f z f z f i z f 则∫−−+Cz z i z z )3)(1()(d 10]}1),(Res[]),(Res[{2z f i z f i +−=π]}),(Res[]3),(Res[{2∞+−=z f z f i π.)3(0)3(2121010i i i i +−=⎭⎬⎫⎩⎨⎧++−=ππ211)1(1)(z e z f z −=′−,)1(1)(2z z f −=,0)()()1( 2=−′−z f z f z 所以0)()32()()1(2=′−+′′−z f z z f z 0)(2)()54()()1(2=′+′′−+′′′−z f z f z z f z L L L ,13)0(,3)0(,)0()0(e f e f e f f =′′′=′′=′=).1(,!313!2313211<⎟⎠⎞⎜⎝⎛++++=−z z z z e e z L第 3页 /共 3页7.利用洛朗展开式(10 points) 8.(10 points)9.由)22(ππk iLnii e e i +−==可知被积函数11)(−=z e z f 以,...)2,1,0(),22(±±=+−=k k z k ππ为一阶极点,其中)42(),22(21ππππ+−=+−=−−z z 包含在ππ2||=−z 内部,由公式,...)2,1,0(|)'(1]),([Re 22++==−=+−k e i e z z f s k z z i z k k ππ,由留数定理,)(2]}),([Re ]),([Re {2)(12723212|2|ππππππ−−−−=−+=+=−∫ee i z zf s z z f s i i e z i z(10 points)223)2(1)2(2)(++++=s s s F )3sin 313cos 2(]}31[]3[2{]312[]3)2(1)2(2[)]([2221221222122211t t e s L s s L e s s L e s s L s F L tt t +=+++=++=++++=−−−−−−−−(0)(0)(0)0,P P P ′′′===(0)0.P ′′′≠3566sin 13!5!z z z z z z z z ⎡⎤⎛⎞−=−−+−⎢⎥⎜⎟⎝⎠⎣⎦L 16sin 1,0.5!z z c z −−⎡⎤∴==−⎢⎥⎣⎦Res。

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本)试题2012年1月一、单项选择题(每小题3分,共15分)1.设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立.A .AB A B +=+ B .AB A B '=C .1AB A B -=D .kA k A =2.设A 是n 阶方阵,当条件()成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为()。

A .0,2B .0,6 (0,1)N ,则随机变量()..对正态总体方差的检验用每小题3分,共[0,2]U ,则θ的无偏估计,且满足231⎢⎥⎣⎦230⎢⎥⎣⎦12.在线性方程组中λ取何值时,此方程组有解。

在有解的情况下,求出通解。

13.设随机变量(8,4)X N ,求(81)P X -<和(12)P X ≤。

(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。

从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4问:该机工作是否正常(0.9750.05, 1.96u α==)?四、证明题(本题6分)15.设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。

参考解答一、单项选择题(每小题3分,共15分)1、B2、A3、B4、D5、C二、填空题(每小题3分,共15分)三、计算题(每小题16分,共64分)试卷代号:1080中央广播电视大学2010~2011学年度第二学期“开放本科”期末考试(半开卷)工程数学(本)试题2011年7月一、单项选择题(每小题3分,共15分)1.设A ,B 都是n 阶方阵,则等式( )成立.A .AB A B +=+B .AB BA =4)α至多是()。

2019年电大工程数学(本科)期末考试试题及答案

2019年电大工程数学(本科)期末考试试题及答案

2019年电⼤⼯程数学(本科)期末考试试题及答案电⼤⼯程数学(本科)期末考试试题及答案⼀、单项选择题1.设B A ,都是n 阶⽅阵,则下列命题正确的是(AB A B= ). 2.设B A ,均为n 阶可逆矩阵,则下列等式成⽴的是( ()BAAB 11=- ). 3. 设B A ,为n 阶矩阵,则下列等式成⽴的是(B A B A '+'='+)( ).4.设B A ,为n 阶矩阵,则下列等式成⽴的是( BAAB = ).5.设A ,B 是两事件,则下列等式中( )()()(B P A P AB P =,其中A ,B 互不相容)是不正确的. 6.设A 是n m ?矩阵,B 是t s ?矩阵,且B C A '有意义,则C 是( n s ? )矩阵. 7.设是矩阵,B 是矩阵,则下列运算中有意义的是()8.设矩阵?--=1111A 的特征值为0,2,则3A 的特征值为 ( 0,6 ) . 9. 设矩阵--=211102113A ,则A 的对应于特征值2=λ的⼀个特征向量α=( ??011 ) . 10.设是来⾃正态总体的样本,则(321535151x x x ++ )是µ⽆偏估计.11.设n x x x ,,,21Λ是来⾃正态总体)1,5(N 的样本,则检验假设5:0=µH 采⽤统计量U =(nx /15-).12.设2321321321=c c c b b b a a a ,则=---321332211321333c c c b a b a b a a a a (2-). 13.设??~X ,则=<)2(X P (0.4 ). 14.设n x x x ,,,21Λ是来⾃正态总体22,)(,(σµσµN 均未知)的样本,则( 1x )是统计量. 15.若是对称矩阵,则等式(A A =')成⽴. 16.若()成⽴,则元线性⽅程组AX O =有唯⼀解.17. 若条件( ?=AB 且A B U += )成⽴,则随机事件,互为对⽴事件. 18.若随机变量X 与Y 相互独⽴,则⽅差)32(Y X D -=( )(9)(4Y D X D + ).19若X 1、X 2是线性⽅程组AX =B 的解⽽21ηη、是⽅程组AX = O 的解则(213231X X +)是AX =B 的解.20.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( )3,2(2-N ). 21.若事件与互斥,则下列等式中正确的是().22. 若0351021011=---x ,则=x (3 ).30. 若)4,2(~N X ,(22-X ),则. 23. 若满⾜()()()(B P A P AB P = ),则与是相互独⽴.24. 若随机变量X 的期望和⽅差分别为)(X E 和)(X D 则等式(22)]([)()(X E X E X D -= )成⽴.25. 若线性⽅程组只有零解,则线性⽅程组(可能⽆解).26. 若元线性⽅程组有⾮零解,则()成⽴.27. 若随机事件,满⾜,则结论(与互不相容)成⽴.28. 若?=4321432143214321A ,则秩=)(A (1 ).29. 若??=5321A ,则=*A ( --1325 ).30.向量组--732,320,011,001的秩是( 3 ).31.向量组的秩是(4).32. 向量组]532[,]211[,]422[,]321[4321'='='='=αααα的⼀个极⼤⽆关组可取为(21,αα).33. 向量组[][][]1,2,1,5,3,2,2,0,1321==-=ααα,则=-+32132ααα([]2,3,1--).34.对给定的正态总体),(2σµN 的⼀个样本),,,(21n x x x Λ,2σ未知,求µ的置信区间,选⽤的样本函数服从(t 分布). 35.对来⾃正态总体,记∑==3131i i X X ,则下列各式中(∑=-312)(31i i X µ )不是统计量.)3,2,1(=i .36. 对于随机事件,下列运算公式()()()()(AB P B P A P B A P -+=+)成⽴.37. 下列事件运算关系正确的是( A B BA B += ).38.下列命题中不正确的是( A 的特征向量的线性组合仍为A 的特征向量).39. 下列数组中,(1631614121)中的数组可以作为离散型随机变量的概率分布.40. 已知2维向量组4321,,,αααα,则),,,(4321ααααr ⾄多是( 2).41. 已知=??-=21101210,20101B a A ,若??=1311AB ,则=a ( 1- ). 42. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么(1,21-==b a ).43. ⽅程组=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( 0321=-+a a a ),其中0≠i a ,44. 线性⽅程组=+=+013221x x x x 解的情况是(有⽆穷多解).45. n 元线性⽅程组有解的充分必要条件是()()(b A r A r M= ) 46.袋中有3个红球,2个⽩球,第⼀次取出⼀球后放回,第⼆次再取⼀球,则两球都是红球的概率是(25) 47. 随机变量)21,3(~B X ,则=≤)2(X P (87).48.=-15473( 7543--??)⼆、填空题1.设B A ,均为3阶⽅阵,6,3A B =-=,则13()A B -'-= 8.2.设B A ,均为3阶⽅阵,2,3A B ==,则13A B -'-= -18 . 3. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB —8 . 4. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12 . 5.设互不相容,且,则0 .6. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A B B A )(1'-.7. 设A ,B 为两个事件,若)()()(B P A P AB P =,则称A 与B 相互独⽴.8.设A 为n 阶⽅阵,若存在数λ和⾮零n 维向量X ,使得AX X λ=,则称λ为A 的特征值. 9.设A 为n 阶⽅阵,若存在数λ和⾮零n 维向量X ,使得AX X λ=,则称X 为A 相应于特征值λ的特征向量. 10. 设是三个事件,那么A 发⽣,但C B ,⾄少有⼀个不发⽣的事件表⽰为)(C B A +. 11. 设A 为43?矩阵,B 为25?矩阵,当C 为(42? )矩阵时,乘积B C A ''有意义.12. 设D C B A ,,,均为n 阶矩阵,其中C B ,可逆,则矩阵⽅程D BXC A =+的解=X 11)(---C A D B .13.设随机变量012~0.20.5X a ?? ???,则a14.设随机变量X ~ B (n ,p ),则E (X 15. 设随机变量)15.0,100(~B X ,则=)(X E 15 .16.设随机变量的概率密度函数为≤≤+=其它,010,1)(2x x kx f ,则常数k = π4 .17. 设随机变量??-25.03.0101~a X ,则45.0 . 18. 设随机变量?5.02.03.0210~X ,则=≠)1(X P 8.0. 19. 设随机变量X 的概率密度函数为≤≤=其它0103)(2x x x f ,则=<)21(X P 81.20. 设随机变量的期望存在,则0. 21. 设随机变量,若5)(,2)(2==X E X D ,则=)(X E 3.22.设为随机变量,已知3)(=X D ,此时23.设θ是未知参数θ的⼀个估计,且满⾜θθ=)?(E ,则θ?称为θ的⽆偏估计. 24.设θ是未知参数θ的⼀个⽆偏估计量,则有?()E θθ=. 25.设三阶矩阵A 的⾏列式21=A ,则1-A = 2 . 26.设向量β可由向量组n ααα,,,21Λ线性表⽰,则表⽰⽅法唯⼀的充分必要条件是n ααα,,,21Λ线性⽆关. 27.设4元线性⽅程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次⽅程组的基础解系含有 3 个解向量.28. 设1021,,,x x x Λ是来⾃正态总体)4,(µN 的⼀个样本,则~101101∑=i i x )104,(µN .29. 设n x x x ,,,21Λ是来⾃正态总体的⼀个样本,∑==ni i x n x 11,则=)(x D n2σ30.设412211211)(22+-=x x x f ,则0)(=x f 的根是 2,2,1,1-- . 31.设22112112214A x x =-+,则0A =的根是 1,-1,2,-2 . 32.设??=070040111A ,则_________________)(=A r .2 33.若5.0)(,8.0)(==B A P A P ,则=)(AB P 0.3 .34.若样本n x x x ,,,21Λ来⾃总体)1,0(~N X ,且∑==ni i x n x 11,则~x )1,0(nN35.若向量组:-=2121α,=1302α,-=2003k α,能构成R 3⼀个基,则数k 2≠ . 36.若随机变量X ~ ]2,0[U ,则=)(X D 3137. 若线性⽅程组的增⼴矩阵为=41221λA ,则当λ=( 21)时线性⽅程组有⽆穷多解. 38. 若元线性⽅程组0=AX 满⾜,则该线性⽅程组有⾮零解. 39. 若5.0)(,1.0)(,9.0)(===+B A PB A P B A P ,则=)(AB P 0.3 .40. 若参数θ的两个⽆偏估计量1θ和2?θ满⾜)?()?(21θθD D >,则称2?θ⽐1θ更有效. 41.若事件A ,B 满⾜B A ?,则 P (A - B )= )()(B P A P - . 42. 若⽅阵满⾜A A '=,则是对称矩阵.43.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20 . 44.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20 . 45. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则k=1- 46. 向量组的极⼤线性⽆关组是().47.不含未知参数的样本函数称为统计量. 48.含有零向量的向量组⼀定是线性相关的.49. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P 0.6 .50. 已知随机变量?-5.01.01.03.05201~X ,那么=)(X E 2.4 . 51. 已知随机变量??-5.05.05.05.05201~X ,那么=)(X E 3. 52.⾏列式701215683的元素21a 的代数余⼦式21A 的值为= -56 .53. 掷两颗均匀的骰⼦,事件“点数之和为4”的概率是( 121). 54. 在对单正态总体的假设检验问题中,T 检验法解决的问题是(未知⽅差,检验均值).55. 1111111---x x 是关于x 的⼀个多项式,该式中⼀次项x 系数是 2 .56. =-1--451231. 57. 线性⽅程组b AX =中的⼀般解的⾃由元的个数是2,其中A 是54?矩阵,则⽅程组增⼴矩阵)(b A r M = 3 . 58. 齐次线性⽅程组0=AX 的系数矩阵经初等⾏变换化为--→→000020103211ΛA59. 当λ= 1 时,⽅程组-=--=+112121x x x x λ有⽆穷多解.1.设矩阵,且有,求X .解:利⽤初等⾏变换得即由矩阵乘法和转置运算得2.设矩阵??=--=500050002,322121011B A ,求B A 1-.解:利⽤初等⾏变换得--→--102340011110001011100322010121001011----→----→14610013501000111146100011110001011 ??-----→146100135010134001 即 ??-----=-1461351341A 由矩阵乘法得-----=-----=-52012515105158500050002146135 1341B A 3.设矩阵=--=210211321,100110132B A ,求:(1)AB ;(2)1-A .解:(1)因为2100110132-=--=A 12111210211110210211321-=-===B 所以 2==B A AB .(2)因为 []--=100100010110001132I A--→--→10010011001012/32/1001100100110010101032 所以 ??--=-10011012/32/11A . 4.设矩阵100111101A ??=--,求1()AA -'.解:由矩阵乘法和转置运算得100111111111010132101011122AA --'=-=----- 利⽤初等⾏变换得100201001111→-??100201011101001112??→---即 1201()011112AA -'=??5.设矩阵??---=423532211A ,求(1)A ,(2)1-A .解:(1)1100110211210110211423532211=---=---=---=A(2)利⽤初等⾏变换得-----→---1032100121100012 11100423010532001211即6.已知矩阵⽅程B AX X +=,其中--=301111010A ,?? --=350211B ,求X .解:因为B X A I =-)(,且-----→---=-1012100111100010111002010101010010----→-----→11010012101012000111010011110010101即 ??----=--110121120)(1A I 所以 ??---=------=-=-334231350211110121120)(1B A I X .7.已知B AX =,其中??==108532,1085753321B A ,求X .解:利⽤初等⾏变换得------→1055200132100013211001085010753001321----→---→12110025*********1121100013210001321 ??-----→121100255010146001 即 ??-----=-1212551461A 由矩阵乘法运算得--=????-----==-1282315138 1085321212551461B A X8.求线性⽅程组=++-=++--=+-+-=-+-234321432143214321x x x x x x x x x x x x x x x x 的全部解.解:将⽅程组的增⼴矩阵化为阶梯形 ----→-------0462003210010101113122842123412127211131?---→---→0000002200010101113106600022000101011131 ⽅程组的⼀般解为:(其中为⾃由未知量)令=0,得到⽅程的⼀个特解)0001(0'=X .⽅程组相应的齐⽅程的⼀般解为:-===4342415xx x x x x (其中为⾃由未知量)令=1,得到⽅程的⼀个基础解系)1115(1'-=X .于是,⽅程组的全部解为:10kX X X +=(其中k 为任意常数)9.求齐次线性⽅程组=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =??→--326001130012331203313596212331 →100001130012331??→100000130001031 ⼀般解为 ??=-=--=0313543421x x x x x x ,其中x 2,x 4 是⾃由元令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-; x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原⽅程组的⼀个基础解系为 { X 1,X 2 }.原⽅程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.10.设齐次线性⽅程组=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时⽅程组有⾮零解?在有⾮零解时,求出通解.解:因为A =---λ83352231---→610110231λ??---→500110101λ 505==-λλ即当时,3)(⽅程组的⼀般解为: ==3231x x x x ,其中3x 为⾃由元.令3x =1得X 1=)1,1,1(',则⽅程组的基础解系为{X 1}.通解为k 1X 1,其中k 1为任意常数.27.罐中有12颗围棋⼦,其中8颗⽩⼦,4颗⿊⼦.若从中任取3颗,求:(1)取到3颗棋⼦中⾄少有⼀颗⿊⼦的概率;(2)取到3颗棋⼦颜⾊相同的概率.解:设1A =“取到3颗棋⼦中⾄少有⼀颗⿊⼦”,2A =“取到的都是⽩⼦”,3A =“取到的都是⿊⼦”,B =“取到3颗棋⼦颜⾊相同”,则(1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C .(2))()()()(3232A P A P A A P B P +=+==273.0018.0255.0255.031234=+=+C C .11.求下列线性⽅程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=??-++=??-++=? 解利⽤初等⾏变换,将⽅程组的增⼴矩阵化成⾏简化阶梯形矩阵,即245353652548151115-?? ?- ? ?-??→245351201000555-?? ?-- ? →120100055500555--?? ? ? ???→120100011100000--?? ? ? ???⽅程组的⼀般解为:1243421x x x x x =+??=-+?,其中2x ,4x 是⾃由未知量.令042==x x ,得⽅程组的⼀个特解0(0010)X '=,,,.⽅程组的导出组的⼀般解为:124342x x x x x =+??=-?,其中2x ,4x 是⾃由未知量.令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,;令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,.所以⽅程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,,其中1k ,2k 是任意实数.12. 当取何值时,线性⽅程组+=++-=++-=+-2532342243214321421λx x x x x x x x x x x 有解,在有解的情况下求⽅程组的全部解.解:将⽅程组的增⼴矩阵化为阶梯形由此可知当时,⽅程组⽆解。

2018年电大本科《工程数学》期末试题资料三套附答案

2018年电大本科《工程数学》期末试题资料三套附答案

2018年电大本科《工程数学》期末试题资料三套附答案一、1.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( B )矩阵. A .s n ⨯ B .n s ⨯ C .t m ⨯ D .m t ⨯2.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX= O 的解,则( A )是AX =B 的解.A .213231X X + B .213231ηη+ C .21X X - D .21X X +3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1004. 下列事件运算关系正确的是( A ).A .AB BA B += B .A B BA B +=C .A B BA B+= D .B B -=15.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( D ). A .)3,2(-N B .)3,4(-N C .)3,4(2-ND .)3,2(2-N6.设321,,x x x 是来自正态总体),(2σμN 的样本,则( C )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++C .321535151x x x ++D .321515151x x x ++ 7.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( B).A .χ2分布 B .t 分布 C .指数分布D .正态分布二、填空题(每小题3分,共15分)1.设三阶矩阵A 的行列式21=A ,则1-A . 2.若向量组:⎥⎥⎥⎤⎢⎢⎢⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k3.设A B ,互不相容,且A )>0,则P B A ()= 4.若随机变量X ~ ]2,0[U ,则=)(X D5.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ三、(每小题10分,共60分)1.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→110100121010120001110100011110010101即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .2.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组.解:因为(1α2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是 431,,ααα(或432,,ααα). 3.用配方法将二次型32312123222132122435),,(x x x x x x x x x x x x f +++++=化为标准型,并求出所作的满秩变换. 解:32312123222132122435),,(x x x x x x x x x x x x f +++++=322322232122)2(x x x x x x x -++++=232322321)()2(x x x x x x +-+++= 令333223211,,2x y x x y x x x y =-=++=即得232221321),,(y y y x x x f ++=由(*)式解出321,,x x x ,即得⎪⎩⎪⎨⎧=+=--=33322321132yx y y x y y y x或写成⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321*********y y y x x x4.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ).均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u )设A 是n 阶矩阵,若3A = 0,则21)(A A I A I++=--.证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以21)(A A I A I ++=--一、 1.设B A ,都是n 阶矩阵)1(>n ,则下列命题正确的是(D ). A . 若AC AB =,且0≠A ,则C B = B .2222)(B AB A B A ++=+C . A B B A '-'='-)(D . 0=AB ,且0≠A ,则0=B2.在下列所指明的各向量组中,(B )中的向量组是线性无关的.A . 向量组中含有零向量B . 任何一个向量都不能被其余的向量线性表出C . 存在一个向量可以被其余的向量线性表出D . 向量组的向量个数大于向量的维数3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) .A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1004. 甲、乙二人射击,分别表示甲、乙射中目标,则AB 表示( A )的事件. A . 至少有一人没射中 B . 二人都没射中C . 至少有一人射中D . 两人都射中 5.设)1,0(~N X,)(x Φ是X的分布函数,则下列式子不成立的是( C ).A .5.0)0(=ΦB . 1)()(=Φ+-Φx xC . )()(a a Φ=-ΦD .1)(2)(-Φ=<a a x P6.设321,,x x x 是来自正态总体的样本,则(D )是μ无偏估计.A . 321x x x ++ B . 321525252x x x ++C . 321515151x x x ++D . 321535151x x x ++7.对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是(A ).A . 已知方差,检验均值B . 未知方差,检验均值C . 已知均值,检验方差D . 未知均值,检验方差二、填空题(每小题3分,共15分) 1.设A 是2阶矩阵,且9=A ,'-)(31A2为53⨯矩阵,且该方程组有非零解,则)(A r3.2.)(=A P ,则=+)(B A P4.若连续型随机变量X数的是⎩⎨⎧≤≤=其它,010,2)(x x x f ,则)(X E 5.若参数θ的两个无偏估计量1ˆθ和2θ满足)ˆ()(21θθD D >,则称2ˆθ比1ˆθ三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,问:A1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-520125151051585000500021461351341B A2.线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----112313211151132212322213214242),,(x x x x x x x x x x f ++++=化为标准(C)⎩⎨⎧≤≤=其它,0π0,sin )(x x x f (D)⎪⎩⎪⎨⎧≤≤-=其它,0π2π,cos )(x x x f 7.设总体满足,又,其中是来自总体的个样品,则等式(B )成立. (A)nX E μ=)( (B)μ=)(X E (C)22)(n X D σ=(D)2)(σ=X D1.=⎥⎦⎤⎢⎣⎡-*02132.若λ是A 根.3.已知5.0)(,9.0)(==AB P A P ,则=-)(B A P4.0.4.设连续型随机变量X的密度函数是)(x f ,则<<)(b X a P5三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎤⎢⎢⎢⎡--=101111001A ,求1)(-'A A即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='-211110102)(1A A2.在线性方程组⎪⎩⎪⎨⎧=++-=+-=++153233232121321x x x x x x x x λλ中λ取何值时,此方程组有解.有解的情况下写出方程组的一般解.解:将方程组的增广矩阵化为阶梯形 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--λλλλ21110333032115323011321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→λλλλ2200011102101220001110321由此可知当1≠λ时方程组无解,当1=λ时方程组有解.此时方程组的一般解为⎩⎨⎧+-=--=113231x x x x 3.用配方法将二次型23322231212132162242),,(x x x x x x x x x x x x f +++-+=化为标准型,并求出所作的满秩变换. 解:23322231212132162242),,(x x x x x x x x x x x x f +++-+=232332223231212322217)96()4424(x x x x x x x x x x x x x x -+++--+++=2323223217)3()2(x x x x x x -++-+= 令333223211,3,2x y x x y x x x y =+=-+=即得2322213217),,(y y y x x x f -+= 由式解出321,,x x x ,即得⎪⎩⎪⎨⎧=-=+-=33322321135yx y y x y y y x 或写成。

电大《工程数学》期末真题(含31套历年真题:2002年至2017年)

电大《工程数学》期末真题(含31套历年真题:2002年至2017年)
1
) 。
D. D. 秩(A)<n 或秩(B)<n
三、计算题(每小题 10 分,共 30 分)
2
一、单项选择题(每小题 3 分,本题共 21 分) 1. 1. B 2. 2. D 3. 3. B 4. 4. D 5. 5. C 6. 6. A 7. 7. C 二、填空题(每小题 3 分,共 15 分) 1. 1. 相等 2. 2. t,s(答对一个给 2 分) 3. 3. P(A)P(B) 4. 4. p(1-p)
1
中央广播电视大学 2001—2002 学年度第一 学期“开放本科”期末考试土木专业工程数 学(本)试题
2002 年 1 月
一、单项选择题(每小题 3 分,本题共 21 分)
4.设 A,B 均为 n 阶方阵,若 AB=0,是一定有( A. A. A=0 或 B=0 B. B. 秩(A)=0 或秩(B)=0 C. C. 秩(A)=n 或秩(B)=n
0 00
, 则{ A} 今(
0 0
A . 2 4
1 3 . 一 2 4
C.0
U . 1 2
’,口“ z + " + a . } , 若有 O a , 十O a z - } - . . . 0 a . = 0 , 则向量组 a } , a z ・, 对 于向量组 a ' ,a
(含 31 套历年真题)2002 年 1 月至 2017 年 7 月 国家开放大学(中央电大)“开放本科”期末考 试《工程数学》(本)试题及参考答案(含 15 年 31 套真题)
试卷代号:1080
《工程数学》真题目录(31 套)
1、2002 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 2、2003 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 3、2003 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 4、2004 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 5、2004 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 6、2005 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 7、2005 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 8、2006 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 9、2006 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 10、2007 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 11、2007 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 12、2008 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 13、2008 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 14、2009 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 15、2009 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 16、2010 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 17、2010 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 18、2011 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 19、2011 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 20、2012 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 21、2012 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 22、2013 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 23、2013 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 24、2014 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 25、2014 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 26、2015 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 27、2015 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 28、2016 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 29、2016 年 7 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 30、2017 年 1 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案 31、2017 年 6 月国家开放大学(电大)期末考试《工程数学》(本)试题及参考答案

2019年电大工程数学(本科)期末考试试题及答案

2019年电大工程数学(本科)期末考试试题及答案

电大工程数学(本科)期末考试试题及答案一、单项选择题1.设B A ,都是n 阶方阵,则下列命题正确的是(AB A B= ). 2.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ()BAAB 11=- ). 3. 设B A ,为n 阶矩阵,则下列等式成立的是(B A B A '+'='+)( ).4.设B A ,为n 阶矩阵,则下列等式成立的是( BAAB = ).5.设A ,B 是两事件,则下列等式中( )()()(B P A P AB P =,其中A ,B 互不相容 )是不正确的. 6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( n s ⨯ )矩阵. 7.设是矩阵,B 是矩阵,则下列运算中有意义的是()8.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( 0,6 ) . 9. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 ) . 10.设是来自正态总体的样本,则(321535151x x x ++ )是μ无偏估计.11.设n x x x ,,,21 是来自正态总体)1,5(N 的样本,则检验假设5:0=μH 采用统计量U =(nx /15-).12.设2321321321=c c c b b b a a a ,则=---321332211321333c c c b a b a b a a a a (2-). 13. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P (0.4 ). 14. 设n x x x ,,,21 是来自正态总体22,)(,(σμσμN 均未知)的样本,则( 1x )是统计量. 15.若是对称矩阵,则等式(A A =')成立. 16.若( )成立,则元线性方程组AX O =有唯一解.17. 若条件( ∅=AB 且A B U += )成立,则随机事件,互为对立事件. 18.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( )(9)(4Y D X D + ).19若X 1、X 2是线性方程组AX =B 的解而21ηη、是方程组AX = O 的解则(213231X X +)是AX =B 的解.20.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( )3,2(2-N ). 21.若事件与互斥,则下列等式中正确的是( ).22. 若0351021011=---x ,则=x (3 ).30. 若)4,2(~N X ,(22-X ),则. 23. 若满足()()()(B P A P AB P = ),则与是相互独立.24. 若随机变量X 的期望和方差分别为)(X E 和)(X D 则等式(22)]([)()(X E X E X D -= )成立.25. 若线性方程组只有零解,则线性方程组(可能无解).26. 若元线性方程组有非零解,则()成立.27. 若随机事件,满足,则结论(与互不相容 )成立.28. 若⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则秩=)(A (1 ).29. 若⎥⎦⎤⎢⎣⎡=5321A ,则=*A ( ⎥⎦⎤⎢⎣⎡--1325 ).30.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( 3 ).31.向量组的秩是(4).32. 向量组]532[,]211[,]422[,]321[4321'='='='=αααα的一个极大无关组可取为(21,αα).33. 向量组[][][]1,2,1,5,3,2,2,0,1321==-=ααα,则=-+32132ααα([]2,3,1--).34.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从(t 分布). 35.对来自正态总体(未知)的一个样本,记∑==3131i i X X ,则下列各式中(∑=-312)(31i i X μ )不是统计量.)3,2,1(=i .36. 对于随机事件,下列运算公式()()()()(AB P B P A P B A P -+=+)成立.37. 下列事件运算关系正确的是( A B BA B += ).38.下列命题中不正确的是( A 的特征向量的线性组合仍为A 的特征向量).39. 下列数组中,(1631614121)中的数组可以作为离散型随机变量的概率分布.40. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是( 2).41. 已知⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=21101210,20101B a A ,若⎥⎦⎤⎢⎣⎡=1311AB ,则=a ( 1- ). 42. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么(1,21-==b a ).43. 方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( 0321=-+a a a ),其中0≠i a ,44. 线性方程组⎩⎨⎧=+=+013221x x x x 解的情况是(有无穷多解).45. n 元线性方程组有解的充分必要条件是()()(b A r A r = )46.袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(259) 47. 随机变量)21,3(~B X ,则=≤)2(X P (87).48.=⎥⎦⎤⎢⎣⎡-15473( 7543-⎡⎤⎢⎥-⎣⎦) 二、填空题1.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-= 8.2.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-= -18 . 3. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB —8 . 4. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12 . 5.设互不相容,且,则0 .6. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A B B A )(1'-.7. 设A ,B 为两个事件,若)()()(B P A P AB P =,则称A 与B 相互独立 .8.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ=,则称λ为A 的特征值. 9.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ=,则称X 为A 相应于特征值λ的特征向量. 10. 设是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为)(C B A +. 11. 设A 为43⨯矩阵,B 为25⨯矩阵,当C 为(42⨯ )矩阵时,乘积B C A ''有意义.12. 设D C B A ,,,均为n 阶矩阵,其中C B ,可逆,则矩阵方程D BXC A =+的解=X 11)(---C A D B .13.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a14.设随机变量X ~ B (n ,p ),则E (X 15. 设随机变量)15.0,100(~B X ,则=)(X E 15 .16.设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k = π4 .17. 设随机变量⎥⎦⎤⎢⎣⎡-25.03.0101~a X ,则45.0 . 18. 设随机变量⎥⎦⎤⎢⎣⎡5.02.03.0210~X ,则=≠)1(X P 8.0. 19. 设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它0103)(2x x x f ,则=<)21(X P 81.20. 设随机变量的期望存在,则0. 21. 设随机变量,若5)(,2)(2==X E X D ,则=)(X E 3.22.设为随机变量,已知3)(=X D ,此时27 .23.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 无偏 估计. 24.设θˆ是未知参数θ的一个无偏估计量,则有ˆ()E θθ=. 25.设三阶矩阵A 的行列式21=A ,则1-A = 2 . 26.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21线性无关 . 27.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量.28. 设1021,,,x x x 是来自正态总体)4,(μN 的一个样本,则~101101∑=i i x )104,(μN .29. 设n x x x ,,,21 是来自正态总体的一个样本,∑==ni i x n x 11,则=)(x D n2σ30.设412211211)(22+-=x x x f ,则0)(=x f 的根是 2,2,1,1-- . 31.设22112112214A x x =-+,则0A =的根是 1,-1,2,-2 . 32.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=070040111A ,则_________________)(=A r .2 33.若5.0)(,8.0)(==B A P A P ,则=)(AB P 0.3 .34.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x )1,0(nN35.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k 2≠ . 36.若随机变量X ~ ]2,0[U ,则=)(X D 31.37. 若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=( 21)时线性方程组有无穷多解. 38. 若元线性方程组0=AX 满足,则该线性方程组 有非零解 . 39. 若5.0)(,1.0)(,9.0)(===+B A P B A P B A P ,则=)(AB P 0.3 .40. 若参数θ的两个无偏估计量1ˆθ和2ˆθ满足)ˆ()ˆ(21θθD D >,则称2ˆθ比1ˆθ更 有效 . 41.若事件A ,B 满足B A ⊃,则 P (A - B )= )()(B P A P - . 42. 若方阵满足A A '=,则是对称矩阵.43.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20 . 44.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20 . 45. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则k=1- 46. 向量组的极大线性无关组是().47.不含未知参数的样本函数称为 统计量 . 48.含有零向量的向量组一定是线性相关 的.49. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P 0.6 .50. 已知随机变量⎥⎦⎤⎢⎣⎡-5.01.01.03.05201~X ,那么=)(X E 2.4 . 51. 已知随机变量⎥⎦⎤⎢⎣⎡-5.05.05.05.05201~X ,那么=)(X E 3. 52.行列式701215683的元素21a 的代数余子式21A 的值为= -56 .53. 掷两颗均匀的骰子,事件“点数之和为4”的概率是( 121). 54. 在对单正态总体的假设检验问题中,T 检验法解决的问题是(未知方差,检验均值).55. 1111111---x x 是关于x 的一个多项式,该式中一次项x 系数是 2 .56. =⎥⎦⎤⎢⎣⎡-12514⎥⎦⎤⎢⎣⎡--451231. 57. 线性方程组b AX =中的一般解的自由元的个数是2,其中A 是54⨯矩阵,则方程组增广矩阵)(b A r = 3 .58. 齐次线性方程组0=AX 的系数矩阵经初等行变换化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→→000020103211 A59. 当λ= 1 时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解.1.设矩阵,且有,求X .解:利用初等行变换得即由矩阵乘法和转置运算得2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→14610013501000111146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-520125151051585000500021461351341B A 3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A ,求:(1)AB ;(2)1-A . 解:(1)因为2100110132-=--=A 12111210211110210211321-=-===B 所以 2==B A AB .(2)因为 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A . 4.设矩阵100111101A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,求1()AA -'. 解:由矩阵乘法和转置运算得100111111111010132101011122AA --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ 利用初等行变换得100201001112011101⎡⎤⎢⎥→⎢⎥⎢⎥-⎣⎦100201011101001112⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦即 1201()011112AA -⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=423532211A ,求(1)A ,(2)1-A .解: (1)1100110211210110211423532211=---=---=---=A(2)利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---103210012110001211100423010532001211即6.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→11010012101012000111010011110010101即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .7.已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X . 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→12110025*********1121100013210001321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A 由矩阵乘法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X8.求线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++--=+-+-=-+-2284212342272134321432143214321x x x x x x x x x x x x x x x x 的全部解.解: 将方程组的增广矩阵化为阶梯形 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131 方程组的一般解为: (其中为自由未知量)令=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为: ⎪⎩⎪⎨⎧-===4342415xx x x x x (其中为自由未知量)令=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为:10kX X X +=(其中k 为任意常数)9.求齐次线性方程组 ⎪⎩⎪⎨⎧=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--326001130012331203313596212331 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100001130012331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100000130001031 一般解为 ⎪⎪⎩⎪⎪⎨⎧=-=--=0313543421x x x x x x ,其中x 2,x 4 是自由元令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-; x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原方程组的一个基础解系为 { X 1,X 2 }.原方程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.10.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时方程组有非零解?在有非零解时,求出通解.解:因为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---λ83352231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→610110231λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 505==-λλ即当时,3)(<A r ,所以方程组有非零解.方程组的一般解为: ⎩⎨⎧==3231x x x x ,其中3x 为自由元.令3x =1得X 1=)1,1,1(',则方程组的基础解系为{X 1}.通解为k 1X 1,其中k 1为任意常数.27.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则(1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C .(2))()()()(3232A P A P A A P B P +=+==273.0018.0255.0255.031234=+=+C C .11.求下列线性方程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=⎧⎪-++=⎨⎪-++=⎩ 解 利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即245353652548151115-⎛⎫ ⎪- ⎪ ⎪-⎝⎭→245351201000555-⎛⎫ ⎪-- ⎪ ⎪⎝⎭→120100055500555--⎛⎫ ⎪ ⎪ ⎪⎝⎭→120100011100000--⎛⎫ ⎪ ⎪ ⎪⎝⎭方程组的一般解为:1243421x x x x x =+⎧⎨=-+⎩,其中2x ,4x 是自由未知量.令042==x x ,得方程组的一个特解0(0010)X '=,,,. 方程组的导出组的一般解为:124342x x x x x =+⎧⎨=-⎩,其中2x ,4x 是自由未知量. 令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,; 令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,. 所以方程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,, 其中1k ,2k 是任意实数.12. 当取何值时,线性方程组⎪⎩⎪⎨⎧+=++-=++-=+-2532342243214321421λx x x x x x x x x x x 有解,在有解的情况下求方程组的全部解. 解:将方程组的增广矩阵化为阶梯形由此可知当时,方程组无解。

电大本科 工程数学-期末复习试卷含答案

电大本科 工程数学-期末复习试卷含答案

工程数学综合练习(一)一、单项选择题A. 1B. -1C. 0D. 24. A.B 都是〃阶矩阵(〃:>1),则下列命题正确的是(). A.AB=BAB,若AB = O ,则 A = 0或8 = 0C. (A-B)2 =A 2-2AB + B 2D.仇耳=凤同 5. 若A 是对称矩阵,则等式()成立. A. A -1 = A f B. A = —A C. A = A'D. A ,= -A1 2 6. 若 A = 3 5,则A. 0 9. 向量组a, =[1 2 3]',%=[2 2 4]',%=[1 极大无关组可取为().B. a,,a 2C.D. %,。

2,%,。

410. 向量组 %=[1,0,-2],%=[2,3,5],%=[1,2,1],则 2a,+a 2-3a 3 =b a 2 b 2a 3 a 2 3角-如C 2a 33%-打 C3B 是矩阵,则下列运算中有意义的是(). A'B D AB' 3. 己知A7.若人=2 2 2 23 3 3 3 44 4 4C. 2A. 4 2]',%= [2 3 5]'的一个 C 2 C 3C|设A 是〃xs 矩阵, AB B. BA C.2. A. 0 0 -a,若 AB = ,则。

=(8.向量组A. 1,-3,2B. 1,-3,-2]C. 1,3,-2]D. 1,3,2]11. 线性方程组」X,+X2=+X2=解的情况是(). x 2 + x 3 = 0A.无解 D.只有零解 C.有唯一非零解 D.有无穷多解12, 若线性方程组AX=O 只有零解,则线性方程组AX=b (). A.有唯一解 B.有无穷多解C.可能无解 D.无解 13. 若〃元线性方程组AX=O 有非零解,则()成立. A. r(A) < n B. r(A) = n C. |A| = 0D. A 不是行满秩矩阵14. 下列事件运算关系正确的是(). C. D. B = BA+BA15. 对于随机事件A,B.下列运算公式()成立. A. P(A + B) = P(A) + P(B) - P(AB) B. P(AB) = P(A)P(B) C. P(AB) = P(8)P(B|A) D. P(A + B) = P(A) + P(B)16. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都 是红球的概率是(). A. AB. Ac. AD .210 20 252517.若随机事件满足AB = 0,则结论()成立 A. A 与8是对立事件 B. A 与B 互不相容C. A 与B 相互独立D. 1与京互不相容 18.若A, B 满足() ,则A 与8是相互独立. A. P(A + B) = P(A) + P(B) B. P(A-B) = P(A)-P(B)Dpg端 中的数组可以作为离散型随机变量的概率分布.A. B = BA + BAB. A = BA + BAC. P(AB) = P(A)P(B) 19.下列数组中,(1 1 1 3 1 1 3 12 4 16 162 4 8 820. 设X123则 P(X <2)=0.1 0.3 0.4 0.2A. 0.1B. 0.4C. 0.3D. 0.221. 随机变量X 〜8(3,:), 则 P(X <2)=()A. 0B.C.1D782822.已知X 〜N(2,22),若aX+b~ N(O,1),那么(). A. a = 2,b = -2 B.。

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本) 试题2012年1月一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立.A . AB A B +=+ B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。

A .0,2 B .0,6C .0,0D .2,64.若随机变量(0,1)X N :,则随机变量32Y X =-: ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111O A B O ---⎡⎤=⎢⎥⎣⎦ .8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B .9.若随机变量[0,2]X U :,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。

三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --. 12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩中λ取何值时,此方程组有解。

在有解的情况下,求出通解。

13. 设随机变量(8,4)X N :,求(81)P X -<和(12)P X ≤。

(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科《工程数学》考试试卷(A 卷、闭卷)一、单项选择题 (每小题3分,共15分)1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件 A=A1∪A2∪A3表示( )。

A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。

A. X 和Y 独立。

B. X 和Y 不独立。

C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。

A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。

B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P , }5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 2 5.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正 确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)二、填空题 (每空3分,共15分)1. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。

2.设A= ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。

3.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正 常工作的概率为 。

4.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。

5.设二维连续型随机变量),(Y X 的联合概率密度函数为其它当0,00),()43(>>⎩⎨⎧=+-y x ke y x f y x ,则系数=k 。

三、计算题 (每小题10分,共50分)1.求函数t e t f β-=)(的傅氏变换 (这里0>β),并由此证明:te d t ββπωωβω-+∞=+⎰2cos 0222.发报台分别以概率0.6和0.4发出信号“1”和“0”。

由于通讯系统受到干扰,当发出信号“1”时,收报台未必收到信号“1”,而是分别以概率0.8和0.2收到信号“1”和“0”;同时,当发出信号“0”时,收报台分别以概率0.9和0.1收到信号“0”和“1”。

求 (1)收报台收到信号“1”的概率;(2)当收报台收到信号“1”时,发报台确是发出信号“1”的概率。

3.设二维随机变量),(Y X 的联合概率函数是其它0,00),()42(>>⎩⎨⎧=+-y x ce y x f y x求:(1)常数c ;(2)概率P (X ≥Y );(3)X 与Y 相互独立吗?请说出理由。

4.将n个球随机的放入N个盒子中去,设每个球放入各个盒子是等可能的,求有球盒子数X的数学期望。

5.设一口袋中依此标有1,2,2,2,3,3数字的六个球。

从中任取一球,记随机变量X为取得的球上标有的数字,求(1)X的概率分布律和分布函数。

(2)EX四、证明题(10分)设a=(a1,a2,…,an)T,a1≠0,其长度为║a║,又A=aa T,(1)证明A2=║a║2A;(2)证明a是A的一个特征向量,而0是A的n-1重特征值;(3)A能相似于对角阵Λ吗?若能,写出对角阵Λ.五、应用题(10分)设在国际市场上每年对我国某种出口商品的需求量X是随机变量,它在[2000,4000]( 单位:吨 )上服从均匀分布,又设每售出这种商品一吨,可为国家挣得外汇3万元,但假如销售不出而囤积在仓库,则每吨需保养费1万元。

问需要组织多少货源,才能使国家收益最大。

本科《工程数学》考试答案(A 卷、闭卷)一、单项选择题 (每小题3分,共15分)1.B 2.C 3.D 4.A 5.A二、填空题 (每空3分,共15分)1. 92. 1 3 1–(1–P)3 4. 3/4 5. 12三、计算题 (每小题10分,共50分) 1.解答:函数f(t)的付氏变换为:F (w )=dt e dt edt eeet j tj tj t t ⎰⎰⎰+∞--+∞+--+∞∞---+==ℜ0)(0)(||||][ϖβϖβϖββ=22211ϖββϖβϖβ+=-++j j由付氏积分公式有f(t)=[1-ℜF(w )]=ϖϖπϖd e F tj ⎰+∞∞-)(21=ϖϖϖϖββπd t j t ⎰+∞∞-++)sin (cos 22122 ==ϖϖβϖπβϖϖϖββπd td t ⎰⎰+∞+∞∞-+=+02222cos 2cos 221所以te d t ββπωωβω-+∞=+⎰2cos 022 2.解答: 设 A1=“发出信号1”,A0=“发出信号0”,A=“收到信号1”(1)由全概率公式 有 P(A)=P(A|A1)P(A1)+P(A|A0)P(A0) =0.8x0.6+0.1 x0.4=0.52 (2)由贝叶斯公式 有 P(A1|A)=P(A|A1)P(A1)/ P(A) =0.8x0.6/0.52=12/13 3.解答:(1)由联合概率密度的性质有⎰⎰+∞∞-+∞∞-=1),(dy y x f dx即 ⎰⎰+∞+-+∞=0)42(01dy ce dx y x 从而 c =8(2)⎰⎰≥==≥yx dxdy y x f Y X P ),()(⎰⎰=+-+∞xy x dy e dx 0)42(0328 (3) 当x >0时, ⎰⎰∞∞-∞-+-===2)42(28),()(x y x X e dy e dy y x f x f当x <=0时, 0)(=x f X同理有 其它004)(4>⎩⎨⎧=-y e y f y Y因 y x y f x f y x f Y X ,)()(),(∀=故X 与Y 相互独立4.解答:设 否则个盒子有球第i X i ⎩⎨⎧=01i =1,2,…,N则 ∑==Ni i X X 1因 nni NN X P )1()0(-== nni i N N X P X P )1(1)0(1)1(--==-==因而 nni i i NN X P X P EX )1(1)1(1)0(0--==⋅+=⋅= 所以 ))11(1(1nNi i NN EX EX --==∑=5.解答:(1)随机变量X 的取值为1,2,3。

依题意有:62)3(;63}2{;61}1{======X P X P X P X 的分布函数}{)(x X P x F ≤= 由条件知:当1<x 时,;0(=)x F当21<≤x 时,;61)1((===X P x F )当32<≤x 时,;32)2()1((==+==X P X P x F )当3≥x 时,;1(=)x F (2)EX=1 x 1/6+2 x 3/6+3 x 2/6= 13/6四、证明题 (10分)(1) A 2=aa T ·aa T =a T a ·aa T =║a ║2A (2)因 Aa= aa T ·a=a T a ·a= ║a ║2a 故a 是A 的一个特征向量。

又A 对称,故A 必相似于对角阵 设A ∽ diag(λ1,λ2,…,λn )=B, 其中λ1,λ2,…,λn 是A 的特征值 因rank(A)=1, 所以 rank(B)=1 从而λ1,λ2,…,λn 中必有n-1个为0, 即0是A 的n-1重特征值 (3) A 对称,故A 必相似于对角阵Λ,五、应用题 (10分)解答:设y 为预备出口的该商品的数量,这个数量可只介于2000与4000之间,用Z 表示国家的收益(万元),则有 y X y X X y X y X g Z <≥⎩⎨⎧--==)(33)(因 X 服从R(2000,4000), 故有其它4000200002000/1)(<<⎩⎨⎧=x x f X 所以dx ydx x y x dx x f x g EZ yyX ⎰⎰⎰+--==∞∞-40002000200032000)(3)()(。

相关文档
最新文档