数据挖掘原理与算法54页PPT

合集下载

数据挖掘精品PPT课件

数据挖掘精品PPT课件
ห้องสมุดไป่ตู้
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。

数据挖掘PPT

数据挖掘PPT
方法复杂; 应用领域十分广泛,只要与空间位置相关的数据,都可
对其进行挖掘; 挖掘方法和算法非常,而且大多数算法比较复杂,难度
大; 知识的表达方式多样,对知识的理解和评价依赖于对人
对客观世界的认知程度。ThFra biblioteknk You!
L/O/G/O
数据挖掘的概念
数据挖掘就是利用一系列相关算法和技术从大型数据库中 的数据中提取人们感兴趣的知识。它们隐藏在数据中,之 前不为人们所知但却是人们确实需要的有价值的潜在知识, 所提取到的知识表示形式可以为概念、模式、规律和规则 等;它可以通过对历史数据和当前数据的分析,帮助决策 人员提取隐藏在数据中的潜在关系与模式等,进而协助其 预测未来可能出现的状况和即将产生的结果。
数据挖掘在反洗钱系统中的应用
数据挖掘的应用领域—营销
关联分析--市场篮子分析,用于了解顾客的购买习惯和偏 好,有助于决定市场商品的摆放和产品的捆绑销售策略;
序列模式与市场篮子分析相似,不过是用某时间点发现的 产品购买或其他行为模式来预测将来购买产品或服务类别 的概率;
聚类用于市场细分,将顾客按其行为或特征模式的相似性 划分为若干细分市场,以采取有针对性的营销策略;
分类用于预测哪些人会对邮寄广告和产品目录、赠券等促 销手段有反应,还可用于顾客定级、破产预测等。
数 据 挖 掘 在 营 销 中
的 应
用 流

数据挖掘的应用领域—电信
数据挖掘技术在电信CRM系中的应用有以下几个方面: 客户获得 交叉销售 客户保持 一对一营销
数据挖掘的应用领域—工业生产
(1)数据源必须为大量的、真实的并且包含噪声的;
(2)挖掘到的新知识必须为用户需求的、感兴趣的;

《数据挖掘》PPT课件

《数据挖掘》PPT课件
➢ 数据挖掘应用系统开发 ➢ 数据挖掘技术的新应用 ➢ 数据挖掘软件发展
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.

数据挖掘算法介绍ppt课件

数据挖掘算法介绍ppt课件
❖ 粗糙集对不精确概念的描述方法是:通过上近似概念和 下近似概念这两个精确概念来表示;一个概念(或集合 )的下近似指的是其中的元素肯定属于该概念;一个概 念(或集合)的上近似指的是其中的元素可能属于该概 念。
❖ 粗糙集方法则有几个优点:不需要预先知道的额外信息 ,如统计中要求的先验概率和模糊集中要求的隶属度; 算法简单,易于操作。
❖ 国外现状:
成熟、 产品:SAS、CLEMENTINE、UNICA、各大数据库
❖ 国内现状:
起步 产品:大部分是实验室产品
数据挖掘分类
❖ 挖掘对象
▪ 基于数据库的挖掘 ▪ 基于web的挖掘 ▪ 基于文本的挖掘 ▪ 其他:音频、视频等多媒体数据库
数据挖掘分类
❖ 应用
▪ 响应模型 ▪ 交叉销售 ▪ 价值评估 ▪ 客户分群
遗传算法
❖ 遗传算法(Genetic Algoritms,简称GA )是以自然选择和遗传理论为基础,将生 物进化过程中“适者生存”规则与群体内 部染色体的随机信息交换机制相结合的搜 索算法 ;
❖ 遗传算法主要组成部分包括编码方案、适 应度计算、父代选择、交换算子和变异算 子。
序列模式
❖ 是指在多个数据序列中发现共同的行为模 式。
谢谢
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
Hale Waihona Puke 策树❖ 决策树学习是以实例为基础的归纳学习算 法,着眼于从一组无次序/无规则的事例中 推理出决策树表示形式的分类规则;
❖ 决策树基本算法是:贪心算法,它以自顶向 下递归、各个击破方式构造决策树.
关联规则
❖ 关联规则是形式如下的一种规则,“在购 买面包和黄油的顾客中,有90%的人同时 也买了牛奶”(面包+黄油 → 牛奶);

数据挖掘常见算法精品PPT课件

数据挖掘常见算法精品PPT课件
过程。 • 数据分析数据一般以文件形式或者单个数据库的方式组织
,而数据挖掘必须建立在数据仓库或是分布式存储的基础 之上。 • 大数据挖掘是传统手工业式的数据分析的现代大工业形式 。
Web挖掘
• 基于互联网的挖掘(Web挖掘)是利用数据挖掘技术从互 联网上的文档中及互联网服务上自动发现并提取人们感兴 趣的信息。
CRIAP-DM数据挖掘过程示意图
• 业务理解 • 数据理解 • 数据准备 • 建模 • 评估 • 部署
数据挖掘的评估
• 准确性 • 性能 • 功能性 • 可用性 • 辅助功能
数据挖掘的应用发展
• 营销领域的零售业 • 直效行销界 • 制造业 • 业务金融保险 • 通信业 • 医疗服务业 • 各种政府机关
数据挖掘的应用发展
• 尿不湿和啤酒 • 某百货零售企业将强大的数据挖掘软件用在销售数据库上
,得出了一个有意思的结论,那些前来为周末采购啤酒的 男性客户往往会想起妻子让他们买纸尿裤,或者那些周末 前来购买纸尿裤的男性客户会同时为自己购买啤酒,所以 他们会将两种商品都放入购物车里。于是该零售企业很快 将销售纸尿裤和啤酒的柜台放到不远的地方,进而销售量 大增。
}else{ if(obj.财富>=1000000000) then{ print(+”是高富"); }else{ print(+"是屌丝")• (1)我们先根据训练子集形成一个初始的决策树。 • (2)如果该树不能对所有对象给出正确的分类,那么选择
一些例外加入到训练子集中。 • (3)重复该过程一直到形成正确的决策集。
分类算法:神经网络
• 神经网络是通过对人脑的基本单元————神经元的建模 和链接,探索模拟人脑神经系统功能的模型,并研制一种 具有学习、记忆和模式识别等智能信息处理功能的人工系 统。

数据挖掘概述PPT课件

数据挖掘概述PPT课件
还有很多案例都可以印证,现在的社会是一个 信息爆炸的社会。是在信息的潮流中随波逐流 还是“到中流击水,浪遏飞舟”?
第5页/共63页
数据挖掘技术的另一个产生动力 2.数据过量而知识贫乏 现代人了解古代的主要方式主要是通过前人留 下的记录,但是这些记录往往是零碎的、不完 全的。例如?
想象一下,如果后人希望了解现在人们的生活 状况,他们面临的已不再是信息缺失,而是需 要从浩如烟海的资料中有选择性的收集他们认 为有用的信息,若没有一定技术支持,其难度 恐怕可以用“浪里淘金”或“大海捞针”来形 容。
一、引例 例1。如果你在当当的购书网站并购买过书籍或音 像制品,以后再浏览该网站时经常看到类似的提示: “欢迎你,下面是我们给您推荐的新书和VCD。” 然后就可以在网页的某个位置看到几本新书或VCD 的名字及其相关链接。 网站怎么知道读者可能会对这些物品干兴趣?
这是因为网站采用了新的技术来了解顾客的潜在需求, 比如:网站从顾客的购买清单中发现你买的书与张三 买过的书有几本是相同的,但是还有些书张三已经买 了,而你却还没买,网站会据此认为你们的阅读偏好 相近,从而你会对那些书也干兴趣。
6
鲑鱼,尿布,啤酒
7
面包,茶,糖鸡蛋
8
咖啡,糖,鸡,鸡蛋
9
面包,尿布,啤酒,盐
10
茶,鸡蛋,小甜饼,尿布,啤酒
从这个销售数据中可以得出什么结论?
第2页/共63页
简单分析发现,有6个顾客买了啤酒,而其中5个人 买了尿布,或说,5个买了尿布的顾客都买了啤酒。
从数据挖掘的角度就是得到了如下的很强的关联规则:
第18页/共63页
则S2与S6之间的相异度为10,而相似度为1/11, 有min_d=2,max_d=29,因此,也可以定义相似度 为1-(10-2)/(29-2)=19/27。

数据挖掘原理与算法

数据挖掘原理与算法
Data Mining: Concepts and Techniques
2019/2/5
3
数据、信息和知识
data
information
knowledge
2019/2/5
Data Mining: Concepts and Techniques
4
数据挖掘产生的技术背景


数据挖掘是相关学科充分发展的基础上被提出和 发展的。 主要的相关技术:
知识获取成为专家系统研究中公认的瓶颈问题。 知识表示成为一大难题:知识工程师在整理表达从领域专家那里 获得的知识时勉强抽象出来的规则有很强的工艺色彩。 对常识和百科知识出奇地贫乏:人工智能学家Feigenbaum估计, 一般人拥有的常识存入计算机大约有100万条事实和抽象经验法则, 离开常识的专家系统有时会比傻子还傻。
19
根据挖掘对象

关系数据库挖掘 面向对象数据库挖掘 空间数据库挖掘 时态数据库挖掘 文本数据源挖掘 多媒体数据库挖掘 异质数据库挖掘 遗产数据库挖掘 web数据挖掘等
2019/2/5
Data Mining: Concepts and Techniques
20
根据挖掘方法

随着KDD在学术界和工业界的影响越来越大,数 据挖掘的研究向着更深入和实用技术方向发展:

大学等研究机构的大多数基础性研究集中在数据挖掘理论、挖掘 算法等的探讨上。 公司的研究更注重和实际商业问题结合。

数据挖掘的经济价值已经显现出来:Gartner报告 中列举重要影响的五项关键技术,其中KDD和人 工智能排名第一。
2019/2/5 Data Mining: Concepts and Techniques

数据挖掘ppt课件

数据挖掘ppt课件

2021精选ppt
12
实例——科学数据库
Internet已经成为最大的信息源,但缺乏集中统一 的管理机制, 信息发布具有自由性和任意性, 难于控 制和管理 • 分散、无序、无政府、变动、数量、包罗万象 • 真伪并存, 资源信息和非资源信息难于驾御 • 非规范、非结构 • 检索查全和查准提出新的挑战 • 多媒体、多语种、多类型信息的整合提出新的挑 战 • 跨国界数据传递和流动, 带来政治、文化新问题 • 集成多种(正式和非正式等)交流方式
2021精选ppt
5
中医临床数据——结构化数据采集
2021精选ppt
6
中医临床数据——非结构化数据采集
2021精选ppt
7
中医临床数据
2021精选ppt
8
中医临床数据——全文数据库
2021精选ppt
9
中医临床数据——结构化数据库
2021精选ppt
10
数据及数据分类
1)按照数据所属行业类别分类 科学数据,科学研究过程中产生的数据
12, M, 0, 5, 5, 0, 0, 0, ACUTE, 38.5, 2, 1, 0,15, -,-, 10700,4,0,normal, abnormal, +, 1080, 680, 400, 71, 59, F,-,ABPC+CZX,, 70, negative, n, n, n, BACTERIA, BACTERIA
15, M, 0, 3, 2, 3, 0, 0, ACUTE, 39.3, 3, 1, 0,15, -, -, 6000, 0,0, normal, abnormal, +, 1124, 622, 502, 47, 63, F, -,FMOX+AMK, , 48, negative, n, n, n, BACTE(E), BACTERIA

数据挖掘算法培训课件PPT(共 34张)

数据挖掘算法培训课件PPT(共 34张)

9 of 65
3.4 关联规则
第三章 数据挖掘算法
3.4.3 分类技术
分类技术或分类法(Classification)是一种根据输入样本集建立类别模型,并按照类 别模型对未知样本类标号进行标记的方法。
根据所采用 的分类模型
不同
基于决策树模型 的数据分类
基于案例推理的 数据分类
基于神经网络模 型的数据分类
频繁模式树增长算法(Frequent Pattern Tree Growth)采用分而治之的基本思想,将数据库中的 频繁项集压缩到一棵频繁模式树中,同时保持项集之间的关联关系。然后将这棵压缩后的频繁模式 树分成一些条件子树,每个条件子树对应一个频繁项,从而获得频繁项集,最后进行关联规则挖掘。
FP-Growth算法由以下步骤组成:
虽然关联规则挖掘可以发现项目之间的有趣关系,在某些情况下,隐藏的变量可能会 导致观察到的一对变量之间的联系消失或逆转方向,这种现象就是所谓的辛普森悖论 (Simpson’s Paradox)。
为了避免辛普森悖论的出现,就需要斟酌各个分组的权重,并以一定的系数去消除以 分组数据基数差异所造成的影响。同时必须了解清楚情况,是否存在潜在因素,综合 考虑。
4 of 65
3.4 关联规则
第三章 数据挖掘算法
3.4.2 频繁项集的产生及其经典算法
格结构(Lattice Structure)常常被用来枚举所有可能的项集。
图3-10 项集的格
5 of 65
3.4 关联规则
第三章 数据挖掘算法
3.4.2 频繁项集的产生及其经典算法
格结构(Lattice Structure)常常被用来枚举所有可能的项集。
生成频繁1项集L1 连接步

数据挖掘方法PPT课件

数据挖掘方法PPT课件

第二章 管理与决策支持的数据挖掘方法-神经网络
自组织(Kohonen)神经网络学习过程:
第二章 管理与决策支持的数据挖掘方法-神经网络
自组织(Kohonen)神经网络具体实现过程:
第二章 管理与决策支持的数据挖掘方法-神经网络
自组织(Kohonen)神经网络具体实现过程:
第二章 管理与决策支持的数据挖掘方法-神经网络
第二章 管理与决策支持的数据挖掘方法-神经网络
第二章 管理与决策支持的数据挖掘方法-神经网络
XOR问题的BP模型建立
第二章 管理与决策支持的数据挖掘方法-神经网络
XOR问题的BP模型建立
第二章 管理与决策支持的数据挖掘方法-神经网络
评价分四级: v—非常好, g—好, a— 一般, b—差
第二章 管理与决策支持的数据挖掘方法-神经网络
自组织(Kohonen)神经网络学习过程:
第二章 管理与决策支持的数据挖掘方法-神经网络
自组织(Kohonen)神经网络学习过程:
第二章 管理与决策支持的数据挖掘方法-神经网络
自组织(Kohonen)神经网络学习过程:
第二章 管理与决策支持的数据挖掘方法-神经网络
自组织(Kohonen)神经网络学习过程:
第二章 管理与决策支持的数据挖掘方法-神经网络
有关概念——神经元的定义
有关概念——常见几种映射函数
第二章 管理与决策支持的数据挖掘方法-神经网络
有关概念——常见几种映射函数:
第二章 管理与决策支持的数据挖掘方法-神经网络
第二章 管理与决策支持的数据挖掘方法-神经网络
第二章 管理与决策支持的数据挖掘方法-神经网络
第二章 管理与决策支持的数据挖掘方法-神经网络

数据挖掘概述PPT参考幻灯片

数据挖掘概述PPT参考幻灯片

数据挖掘
数据挖掘
数据仓库
数据的预处理
数据抽取
数据库
数据源(含数据库)
8
数据仓库与数据挖掘
• 利用数据库系统进行数据挖掘的缺点是:
–动态数据(Dynamic Data)
• 大多数数据库的基本特点是内容将经常变化。在一个在线系统 中,必须采用预警机制来保证数据库中的这些变化不会导致错 误的数据挖掘结果。
DW
DM
第五章数据挖掘概述
1
什么是数据挖掘?
数据挖掘就是从大量的、不完全的、有 噪声的、模糊的、随机的数据中,提取隐含 在其中的、人们事先不知道的、但又是潜在 有用的信息和知识的过程。数据挖掘应该更 正确地命名为“从数据中挖掘知识”。 数据挖掘必须包括三个因素:
– 数据挖掘的本源:大量的数据 – 数据挖掘的结果:知识、规则 – 结果的隐含性:因而需要一个挖掘过程
3
术语
• 置信度(confidence)
– 知识在某一数据域上为真的量度。 – 置信度涉及到许多因素,如数据的完整性、样
本数据的大小、领域知识的支持程度等。 – 没有足够的确定性,模式不能成为知识。
– 例如:模式“在购买面包和黄油的顾客中,大 部分的人同时也买了牛奶”的置信度为:
• 同时购买‘面包、黄油、牛奶’的顾客人数占同时 购买‘面包、黄油’的顾客人数的百分比。
• 数据库中的信息在实例空间中可能是稀疏的,这会严重影响发现的效 率。
10
数据挖掘的功能
• 数据挖掘通过预测未来趋势及行为,作出前瞻的、基于知 识的决策。数据挖掘的目标是从数据中发现隐含的、有意 义的知识。具体的功能有以下7个方面。
1.概念描述 2.关联分析 3.分类与预测 4.聚类分析 5.趋势分析 6.孤立点分析 7.偏差分析

第四章数据挖掘技术与算法PPT课件

第四章数据挖掘技术与算法PPT课件

10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10
15
k-means算法描述容易、实现简单、快速,但存在不足: (1)簇的个数难以确定; (2) 聚类结果对初始值的选择较敏感; (3)这类算法采用所谓的爬山式技术来寻找最优解,容易陷
方法
层次的方法(hierarchical methods)BIRCH 、ROCK 、CURE 基于密度的方法 DBSCAN、 OPTICS 基于图的方法 Chameleon、SNN 基于网格的方法(grid-based methods) STING 、WaveCluster 、
CLIQUE
基于模型的方法(model-based methods)EM、 COBWEB、神经网络 谱聚类算法(spectral clustering) 蚁群聚类算法
Sum { m Sit,C a ar teS yn it a {a ,t(Fr C |D i( e a )q a ) D i}, 1 i m C ,C e (c m n C 1 ,c m C 2, ,c m C m N)}
18
19
20
距离计算示例
• 假设描述学生的信息包含属性:性别,籍贯, 年龄。有两条记录及两个簇的信息如下:
7
聚类分析正在蓬勃发展,广泛应用于一些探索性领域,如 统计学与模式分析,金融分析,市场营销,决策支持,信 息检索,WEB挖掘,网络安全,图象处理,地质勘探、城 市规划,土地使用、空间数据分析,生物学,天文学,心 理学,考古学等。

大数据分析与挖掘ppt优质版(30张)

大数据分析与挖掘ppt优质版(30张)
随着大数据的广泛应用,数据安全和隐私保护将成为越来越重要的问 题,需要采取更加有效的措施来保护用户隐私和数据安全。
跨领域应用拓展
大数据将在更多领域得到应用拓展,如医疗、教育、金融等,推动这 些领域的数字化转型和创新发展。
ቤተ መጻሕፍቲ ባይዱ
02
数据分析基础
数据类型及来源
01
02
03
04
结构化数据
如关系型数据库中的表格数据 ,具有固定的数据结构和类型
建立大数据创新团队
组建专门的大数据创新团队,负责大数据技术的研发和创新应用 ,推动企业大数据战略的实施。
07
总结回顾与展望未来发展 趋势
本次课程重点内容回顾
大数据分析基本概念及技术应 用领域
数据预处理、特征提取与降维 技术
深度学习在大数据分析中的应 用与挑战
数据挖掘过程、算法分类及其 应用场景
经典机器学习算法原理及实践 案例
型、类别型等。
数据归一化
消除数据间的量纲差异 ,使数据具有可比性。
特征选择
选择与分析目标相关的 特征,去除无关特征。
数据可视化呈现
图表类型选择
根据数据类型和分析目标选择 合适的图表类型,如柱状图、
折线图、散点图等。
数据可视化工具
如Excel、Tableau、Power BI 等,可实现数据的快速可视化 呈现。
建立数据集成与共享机制,实现企业内部不同系统之间的数据互通和共
享,提高数据利用效率。
培养和引进优秀人才团队
制定人才培养计划
针对企业内部员工,制定大数据人才培养计划,通过培训、实践 等方式提升员工的大数据技能。
引进外部优秀人才
积极招聘具有大数据技能和经验的优秀人才,为企业的大数据战 略提供有力的人才保障。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档