数学:等腰三角形存在性问题专项训练(一 九年级训练考试卷)

合集下载

人教版九年级数学中考等腰三角形专项练习及参考答案

人教版九年级数学中考等腰三角形专项练习及参考答案
∵EF⊥AC,∴∠BDE=∠CEF=30°,
1
1
2
∴BE=2BD,即 BE=3BC,CE=3BC,
√3
2
∵EF=EC·sin60°=3BC· 2 =



2
)

=(
√3
2
√3
BC,
3
1
=( ) = .
3
3
8
三、解答题
5.
7
如图,等边三角形 ABC 中,点 D,E,F 分别同时从点 A,B,C 出发,以相同的速度在 AB,BC,CA 上运动,连
接 DE,EF,DF.
(1)证明:△DEF 是等边三角形;

(2)在运动过程中,当△CEF 是直角三角形时,试求
的值.

(1)证明∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA,
①若腰为 2,底为 4,此时不能构成三角形,舍去,
②若腰为 4,底为 2,则周长为 4+4+2=10.故选 B.
2.(2018 山东淄博)如图,在 Rt△ABC 中,CM 平分∠ACB 交 AB 于点 M,过点 M 作 MN∥BC 交 AC 于点 N,
且 MN 平分∠AMC,若 AN=1,则 BC 的长为(
A.4
B.6
C.4√3
D.8
)
答案 B
解析 ∵在 Rt△ABC 中,CM 平分∠ACB 交 AB 于点 M,过点 M 作 MN∥BC 交 AC 于点 N,且 MN 平分∠AMC,
∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,
∴∠ACB=2∠B,NM=NC,
∴∠B=30°,
∵AN=1,

初中数学专题02等腰三角形的存在性问题(原卷版)

初中数学专题02等腰三角形的存在性问题(原卷版)

专题二等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。

【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D ,满足∠DAB =45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段P A 最长?并求出此时P A 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx +c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,11AM AN均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A ,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , ); ②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.。

中考数学复习《等腰三角形》专项测试卷(带答案)

中考数学复习《等腰三角形》专项测试卷(带答案)

中考数学复习《等腰三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题1. 如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )362. 如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个(D )4个MECA3. 如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°, 四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有(第1题)A BCD EA.1个 B.2个 C.3个 D.4个4. 如图,ΔABC中,以B 为圆心,BC长为半径画弧,分别交AC和AB于D、E两点,并连接BD、DE若∠A=30∘,AB=AC,则∠BDE的度数为何?A. 45 B. 52.5 C. 67.5 D. 755. 如图(1),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(2)所示.求图(1)与图(2)中,两个三角形重迭区域的面积比为何?图1 图2A.2:1 B. 3:2 C. 4:3 D. 5:46. 如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是A.15cm B.16cmC.17cm D.16cm或17cm7. 如图,在ABC△中13AB AC==,10BC=点D为BC的中点DE DE AB⊥垂足为点E,则DE等于()A.1013B.1513C.6013D.7513 ABCDE FG8.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为 A .16 B .18 C .20 D .16或209.等腰三角形的顶角为80°,则它的底角是( ) A . 20° B . 50° C . 60° D . 80°10.把等腰△ABC 沿底边BC 翻折,得到△DBC ,那么四边形ABDC ( )11.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A . 2B .23C .3D .312.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )A .6B .7C .8D .9第11题图AD E F PQC13.已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16B . 20C . 16D .以上答案均不对14.如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D ,若AC =2,则AD 的长是( )A .512- B .512+ C .51- D .51+15.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC .若△ABC 的边长为4,AE=2,则BD 的长为( )A . 2B . 3C .D . +116.如图,在菱形ABCD 中,∠A =60°,E ,F 分别是AB ,AD 的中点,DE ,BF 相交于点G ,连接BD ,CG ,有下列结论:①∠BGD =120° ;②BG +DG =CG ;③△BDF ≌△CGB ;④234ABD S AB =△.其中正确的结论有( )A .1个B .2个C .3个D .4个 二.填空题1. 边长为6cm 的等边三角形中,其一边上高的长度为________.2. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 .3. 在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. 已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊEB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为5. 如图,在△ABC 中,AB =AC ,︒=∠40A 则△ABC 的外角∠BCD = °.6. 如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

人教版九年级上册数学 第二十二章 二次函数中等腰三角形存在性问题综合练习

人教版九年级上册数学   第二十二章   二次函数中等腰三角形存在性问题综合练习

人教版九年级上册数学第二十二章二次函数中等腰三角形存在性问题综合练习1.如图,抛物线y=ax2﹣x+c与x轴交于A,B两点,与y轴交于C点,连接AC,已知B(﹣1,0),且抛物线经过点D(2,﹣2).若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.2.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.3.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3),P是第四象限内这个二次函数的图象上一个动点,设点P的横坐标为m,过点P作PH ⊥x轴于点H,与BC交于点M.如果△PMC是等腰三角形,直接写出点P的横坐标m的值.4.如图,已知二次函数y=ax2+bx+4(a≠0)的图象交x轴于点A(1,0)、B(4,0),交y轴于点C.直线x=m(不经过点B,C)分别交直线BC和抛物线于点M、N,当△BMN是等腰三角形时,直接写出m 的值.5.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.在对称轴右侧抛物线上找一点P,使得P、D、C构成以PC为底边的等腰三角形,求出点P的坐标及此时四边形PBCD的面积.6.如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,并且与y轴交于点C.(1)若点M是第一象限的抛物线上的点,且横坐标为t,过点M作x轴的垂线交BC于点N,设MN的长为h,求h与t之间的函数关系式及h的最大值;(2)在x轴的负半轴上是否存在点P,使以B,C,P三点为顶点的三角形为等腰三角形?如果存在,请证明;如果不存在,说明理由.7.如图,已知抛物线与x轴交于A(1,0)和B(﹣5,0)两点,与y轴交于点C.直线y=﹣3x+3过抛物线的顶点P.(1)求抛物线的函数解析式;(2)若直线x=m(﹣5<m<0)与抛物线交于点E,与直线BC交于点F.①当EF取得最大值时,求m的值和EF的最大值;②当△EFC是等腰三角形时,求点E的坐标.8.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.探究对称轴上是否存在一点P,使得以点P,C,A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.9.如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E(3,0),点P为抛物线上动点,设点P的横坐标为t.(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;(2)若点P在第四象限,连接PA、PE及AE,当t为何值时,△PAE的面积最大?最大面积是多少?(3)在对称轴上是否存在点Q,使△QAE为等腰三角形,若存在,直接写出点Q的坐标;若不存在,请说明理由.10.如图,抛物线y=ax2+4x+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,5),点P为直线BC上方抛物线上的动点,连接CP,PB,直线BC与抛物线的对称轴l交于点E.(1)求△BCP的面积最大值;(2)点M是抛物线的对称轴l上一动点,请直接写出所有符合条件的点M的坐标使得△BEM为等腰三角形.11.如图1,抛物线y=ax 2+bx+3与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C,顶点为D.点P 是直线BC 上方抛物线上的一个动点,过点P 作PE⊥x 轴于点E,交直线BC 于点Q.(1)求抛物线的表达式;(2)求线段PQ 的最大值;(3)如图2,过点P 作x 轴的平行线交y 轴于点M,连接QM.是否存在点P,使得△PQM 为等腰三角形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.12.如图,抛物线y=﹣x 2+2x+3与x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴交于点C,点P 是第一象限内抛物线上的一个动点.(1)请直接写出点A,B,C 的坐标;(2)是否存在这样的点P,使得S △COP =S △BOP ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是直线BC 上一点,是否存在点Q,使得以点A、C、Q 为顶点的三角形是等腰三角形?若存在,求出Q 的坐标;若不存在,请说明理由.13.如图,直线y=﹣x+4交x轴于点A,交y轴于点C,抛物线经过点A,交y轴于点B(0,﹣2),点D为抛物线上一动点,过点D作x轴的垂线,交直线AC于点P,设点D的横坐标为m.(1)求抛物线的解析式.(2)当点D在直线AC下方的抛物线上运动时,求出PD长度的最大值.(3)当以B,C,P为顶点的三角形是等腰三角形时,求此时m的值.14.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0),B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE的面积的最大值;(3)抛物线的对称轴上存在着点为等腰三角形.符合条件的点P坐标有若干个,请求出任意一个符合要求的点P的坐标.。

中考数学总复习《二次函数之等腰三角形存在性问题》专项提升训练题-附答案

中考数学总复习《二次函数之等腰三角形存在性问题》专项提升训练题-附答案

中考数学总复习《二次函数之等腰三角形存在性问题》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________ 1.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.2.如图,抛物线2y x bx c =-++过点(1,0)A -和(3,0)B ,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 为抛物线对称轴上一动点,当PCB 是以BC 为底边的等腰三角形时,求P 的坐标;(3)在(2)条件下,是否存在点M 为抛物线上的点,使得2BCM BCP S S =△△?若存在,求出点M 的横坐标;若不存在,请说明理由.3.如图,已知抛物线2y ax bx c =++经过点()3,0A -,()0,4C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x -.(1)求抛物线的表达式;(2)已知点M 是抛物线对称轴上一点,当MBC 的周长最小时,求M 点的坐标.(3)D 是第二象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时D 点的坐标;(4)若点P 在抛物线对称轴上,是否存在点P ,使以点B ,C 和P 为顶点的三角形是等腰三角形?若存在,请求出P 点的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()40A ,、()30B -,两点,与y 轴交于点C .(1)求这条抛物线所对应的函数表达式.(2)如图①,点D 是x 轴下方抛物线上的动点,且不与点C 重合.设点D 的横坐标为m ,以O 、A 、C 、D 为顶点的四边形面积为S ,求S 与m 之间的函数关系式.(3)如图①,连结BC ,点M 为线段AB 上一点,点N 为线段BC 上一点,且BM CN n ==,直接写出当n 为何值时BMN 为等腰三角形.5.抛物线24y x x =-与直线y x =交于原点O 和点B ,与x 轴交于点A ,顶点为D .(1)填空:点B 的坐标为 ,点D 的坐标为 .(2)如图1,连结OD ,P 为x 轴上的动点,当以O ,D ,P 为顶点的三角形是等腰三角形时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,它的横生标为m (05)m <<,连结MQ ,BQ 和MQ 与直线OB 交于点E .设BEQ 和BEM △的面积分别为1S 和2S ,设12S t S =己,试求t 关于m 的函数解析式并求出t 的最值6.如图,在平面直角坐标系中,二次函数2y x bx c =-+-的图象与x 轴交于点(3,0)A -和点(1,0)B ,与y 轴交于点C .(1)求这个二次函数的表达式;(2)如图①,二次函数图象的对称轴与直线AC 交于点D ,若E 是直线AC 上方抛物线上的一个动点,求ECD 面积的最大值;(3)如图①,P 是直线AC 上的一个动点,是否存在点P ,使PBC 是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.7.如图1,抛物线23432363y x x =++与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE AC ∥交抛物线于点E ,交y 轴于点P .(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN AC ⊥,连GM 和NO ,求GM MN NO ++的最小值;(2)如图2,在(1)的条件下,过点F 作FH x ⊥轴于点H 交AC 于点L ,将AHL 沿着射线AC 平移到点A 与点C 重合,从而得到A H L '''(点A ,H ,L 分别对应点A ',H '和L '),再将A H L '''绕点H '逆时针旋转(0180)αα︒<<︒,旋转过程中,边A L ''所在直线交直线DE 于Q ,交y 轴于点R ,求当PQR 为等腰三角形时,直接写出PR 的长.8.如图,在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于()4,0B ,()2,0C -两点,与y 轴交于点()0,2A -.(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求12PK PD +的最大值及此时点P 的坐标; (3)在抛物线的对称轴上是否存在一点M ,使得MAB △是以AB 为腰的等腰三角形;若存在,请求出点M 的坐标,若不存在,请说明理由.9.如图,抛物线23y ax bx =++与x 轴相交于点(1,0)A -,B ,对称轴是1x =,与y 轴相交于点C .(1)求抛物线的函数表达式;(2)点P 为抛物线对称轴上一动点,当PCB 是以BC 为底边的等腰三角形时,求点P 的坐标;(3)在(2)的条件下,在第一象限内,抛物线上是否存在点M ,使得BCM BCP S S =△△?若存在,求出点M 的横坐标;若不存在,请说明理由.10.如图,抛物线2y x bx c =++的图象与x 轴交于(3,0)A -、(1,0)B 两点,与y 轴交于点C ,点P 是抛物线上位于第三象限内的一点.(1)求抛物线的解析式.(2)连接AP 、PC 和CB ,求四边形APCB 面积的最大值及此时P 点的坐标.(3)点D 为抛物线对称轴上的一点,当以点A 、C 、D 为顶点的三角形为等腰三角形时,请写出所有符合条件的点D 的坐标,并把求其中一个点D 的过程写出来.11.已知拋物线2y ax bx c =++经过点()120B ,和()06C -,,对称轴为直线2x =.(1)求该拋物线的解析式;(2)点D 在线段AB 上,且AD AC =,若动点P 从A 点出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 点出发沿线段CB 匀速运动,问是否存在某一时刻t ,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度,若不存在,请说明理由;(3)在(2)的条件下,在x 轴上是否存在点M ,使MPQ 为等腰三角形?若存在,请求出所有点M 的坐标,若不存在,请说明理由.12.已知抛物线与x 轴交于1030A C -(,)、(,),与y 轴交于点03B -(,).(1)求抛物线对应的函数解析式;(2)在x 轴上是否存在点P ,使PBC 为等腰三角形?若存在,求出P 点坐标;若不存在,请说明理由;(3)点M 为抛物线上一动点,在直线BC 上是否存在点Q ,使以点O 、B 、Q 、M 为顶点的四边形为平行四边形?若存在,求出Q 点的坐标;若不存在,请说明理由.13.如图,抛物线212y x mx n =-++与x 轴交于A B 、两点,与y 轴交于点C ,拋物线的对称轴交x 轴于点D ,已知()()1,0,0,2A C -.(1)求抛物线的解析式;(2)点E 是线段BC 上的一个动点(不与B C 、重合),过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时点E 的坐标.(3)在抛物线的对称轴上是否存在点P ,使PCD 为等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由.14.如图,已知抛物线与x 轴交于1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F . ①当EF 取得最大值时,求m 的值和EF 的最大值; ①当EFC 是等腰三角形时,求点E 的坐标.15.如图1,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于点()60A ,和()10B -,,与y 轴交于点C ,连接BC ,过点A 、C 作直线AC .(1)求抛物线的函数解析式.⊥交AC于点F,过点P作(2)点P为直线AC下方抛物线上一动点,过点P作PF AC∥交x轴于点E,求AE PFPE AC+的最大值及此时点P的坐标.(3)在(2)问的条件下,将抛物线23=+-沿射线CB方向平移10个单位长度得y ax bx到新抛物线y',新抛物线y'与原抛物线交于点M;连接CP,把线段CP沿直线AC平移,记平移后的线段为C P'',当以C'、P'和M为顶点的三角形是等腰三角形时,请直接写出所有符合条件的P'点的坐标.参考答案: 1.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为42.(1)223y x x =-++(2)()1,1P(3)M 点横坐标为3172+或3172-或1或23.(1)248433y x x =--+ (2)81,3M ⎛⎫- ⎪⎝⎭ (3)252S =,3,52D ⎛⎫- ⎪⎝⎭(4)P 的坐标为:()1,0-或()1,13-或()1,13--或131,8⎛⎫- ⎪⎝⎭4.(1)211433=--y x x (2)当30m -<<时28S m =-+;当04m <<时228833S m m =-++. (3)52n =,2511n =和3011n = 5.(1)(5,5) ()2,4-(2)点P 的坐标为()()()()25,025,04,05,0-或或或(3)()21525056224t m m ⎛⎫=--+<< ⎪⎝⎭,t 的最大值为25246.(1)223y x x =--+(2)98ECD S =最大△(3)点P 的坐标为()535--,或()535+,或5122⎛⎫- ⎪⎝⎭,或()21-,.7.(1)239745+(2)17333-或8338.(1)211242y x x =-- (2)存在,12PK PD +的最大值为258 335,216P ⎛⎫- ⎪⎝⎭(3)存在,M 的坐标为()111,或()111-,或()1219-+,或()1219--,.9.(1)223y x x =-++(2)点P 的坐标为(1,1)(3)存在,点M 的横坐标为352+或35210.(1)223y x x =+-(2)点P 坐标为315,24⎛⎫-- ⎪⎝⎭ max 758ABCP S =四边形 (3)1(1,14)D - 2(1,14)D -- 3(1,173)D -- 4(1,173)D --- 5(1,1)D --;11.(1)2116164y x x =--; (2)存在5t =时线段PQ 被直线CD 垂直平分,点Q 的运动速度每秒355单位长度; (3)1(2,0)M 2(33,0)10M -+ 3(33,0)10M -- 4(15,0)M ;12.(1)2=23y x x --(2)3,0-()或(323,0)+,或(323,0)-+,或0,0() (3)存在Q 1Q :321213(,)22+- 2321213,)22(Q -+- 3)213(,22192Q --4)321(,29212Q +-+-13.(1)213222y x x =-++ (2)当2x =时,四边形CDBF 的面积最大,最大值为132,此时()2,1E (3)存在,满足条件的P 点坐标为35353325,,,4,22222216⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,14.(1)245y x x =--+(2)①当52m =-时,EF 有最大值,最大值为254;①()38-,或()45-,或()25622--,15.(1)215322y x x =-- (2)AE +PF 的最大值为:9595+;此时()3,6P - (3)点P '的坐标为:172112911,55⎛⎫--- ⎪ ⎪⎝⎭或172412911,55⎛⎫+-+ ⎪ ⎪⎝⎭或()11,13--。

数学:存在性问题专项训练(一 九年级训练考试卷)

数学:存在性问题专项训练(一 九年级训练考试卷)

学生做题前请先回答以下问题问题1:相似三角形存在性问题的处理思路是:①从_______入手,分析定点、动点,找固定的边和角,确定三角形的形状;找相等的角当作__________;②分析形成因素,考虑相似三角形的________,比如若有一组角相等,则只需_____________,依据判定确定__________,列出对应的关系式;③画图求解,围绕对应的关系式,根据图形特征,表达相关线段长,用关系式列方程;④结果验证,回归点的__________进行验证;____________,结合图形进行验证.问题2:在“角度的存在性“专题中,有“若,则”这个结论,尝试推导这个结论.问题3:对比相似,全等,角度的存在性处理思路,在整体分析思路上有什么相同点?问题4:对比相似,全等,角度的存在性处理思路,在分析定点,动点之后各自分析的动作有什么不同?问题5:结合前面所学的存在性问题,思考对任意图形的存在性问题如何处理?存在性问题专项训练(一)一、单选题(共10道,每道10分)1.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )A.6B.7C.8D.92.已知△ABC的三条边长分别为6,8,12,过△ABC任一顶点画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.6条B.7条C.8条D.9条3.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=7,AD=3,BC=4,P是AB边上一点,若△PCD是以点P为直角顶点的直角三角形,则AP的长为( )A.1或6B.3或4C.或1或6D.或3或44.如图,在△ABC中,∠ABC=90°,AB=4,BC=2.P是线段BC上一动点,Q是线段AC上一动点,且始终满足.当△CPQ是直角三角形时,CP的长为( )A.0,2B.C. D.5.如图,在矩形ABCD中,AB=3,BC=4,E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处.当为直角三角形时,BE的长为( )A. B.C. D.6.平面直角坐标系中,已知点,点P是反比例函数图象上的一个动点,过点P作PQ⊥x轴,垂足为Q,若以点O,P,Q为顶点的三角形与△OAB 相似,则相应的点P共有( )A.1个B.2个C.3个D.4个7.将三角形纸片ABC按如图所示的方式折叠,使点B落在AC边上的点处,折痕交AB于点E,交BC于点F.已知AB=AC=6,BC=8,若以点,F,C为顶点的三角形与△ABC相似,则BF的长为( )A. B.4C. D.8.如图,在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P在BC边上以3cm/s的速度由点B向点C运动;同时点Q在AC边上以相同的速度由点C向点A运动,其中一个点到达终点时另一个点也随之停止运动.当△BPD与△CQP全等时,点P运动的时间为( )A. B.C. D.9.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为,矩形PDFE的面积为,运动时间为t秒,则t=( )秒时,.A. B.6C. D.310.如图,在△ABC中,∠ABC=90°,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC 边上找到一点Q,使∠BQP=90°,则x的取值范围是( )A. B.C. D.。

等腰三角形存在性问题专项训练

等腰三角形存在性问题专项训练

等腰三⾓形存在性问题专项训练lBA第讲:等腰三⾓形存在性问题专题训练⼀、等腰三⾓形4⼤性质(1)等边对等⾓、等⾓对等边;(2)三线合⼀;(3)含有60°⾓的等腰三⾓形是等边三⾓形;(4)等腰三⾓形底边上任意⼀点到两腰的距离等于腰上的⾼;⼆、构造等腰三⾓形⼆、特殊的等腰三⾓形(1)等边三⾓形;(2)等腰直⾓三⾓形;(3)底⾓为30°的等腰三⾓形;(4)黄⾦三⾓形⼀、模型引⼊引⼊:如图,已知线段AB ,在过A 点的直线l 上求作点P ,使△ABP 为等腰三⾓形.思维提升:在平⾯直⾓坐标系内,已知点A (2,1),O 为坐标原点.请你在坐标轴上确定点P ,使得ΔAOP 为等腰三⾓形.在给出的坐标系中把所有这样的点P 都找出来,画上实⼼点,并在旁边标上P 1,P 2,……,P k ,(有k 个就标到P K 为⽌,不必写出画法)【答案】⼆、典型分析例1.如图,在等腰梯形ABCD 中,AD //BC ,BC =4AD =24,∠B =45°.直⾓三⾓板含45°⾓的顶点E 在边BC 上移动,⼀直⾓边始终经过点A ,斜边与CD 交于点F .若△ABE 为等腰三⾓形,则CF 的长等于.【答案】,2,.例2.如图,四边形OABC 是⼀张放在平⾯直⾓坐标系中的正⽅形纸⽚.点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,OC =4,点E 为BC 的中点,点N 的坐标为(30),,过点N 且平⾏于y 轴的直线MN 与EB 交于点M .现将纸⽚折叠,使顶点C 落在MN 上,并与MN 上的点G 重合,折痕为EF ,点F 为折痕与y 轴的交点.(1)求点G 的坐标;(2)求折痕EF 所在直线的解析式;(3)设点P 为直线EF 上的点,是否存在这样的点P ,使得以P 、F 、G 为顶点的三⾓形为等腰三⾓形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.523 y xCF OEMBGNAF【答案】解:(1)四边形ABCO 是正⽅形,4BC OA ∴==,E 为CB 中点,2EB ∴=MN y ∥轴,(30)N ,,MN EB ∴⊥且1MB NA ==1EM ∴=⽽2EG EC ==,1sin 2EM EGM EG ∴∠==30EGM ∴∠=cos303MG EG ∴==· (34G ∴,(2)30EGM ∠=60MEG FEG CEF ∴∠=∠=∠=tan 6023CF CE ∴==·4FO∴=-(04F ∴-,,(24)E ,设直线EF 的解析式:(0)y kx b k =+≠244k b b +=??∴?=-??4k b ?=?∴?=-??∴折痕EF所在直线解析式:4y =+-(3)12((14P P -,,,34(34P P -,,综合训练yxCOEMBGNA4P3P2P1PEM BCN AOFGyx(2011湖南)如图(11)所⽰,在平⾯直⾓坐标系Oxy 中,已知点A (94-,0),点C (0,3),点B 是x 轴上⼀点(位于点A 的右侧),以AB 为直径的圆恰好经过....点C .(1)求∠ACB 的度数;(2)已知抛物线y =ax 2+bx +3经过A 、B 两点,求抛物线的解析式;(3)线段BC 上是否存在点D ,使△BOD 为等腰三⾓形.若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.【答案】(1)∵以AB 为直径的圆恰好经过....点C ∴∠ACB =090(2)∵△AOC ∽△ABC∴OB AO OC ?=2∵A (-94,0),点C (0,3),∴49=AO 3=OC ∴OB 4932=∴ 4=OB ∴B (4,0) 把 A 、B 、C 三点坐标代⼊得 3127312++-=x x y (3)①OD =OB , D 在OB 的中垂线上,过D 作DH ⊥OB ,垂⾜是H ,则H 是OB 中点.DH =OC 21 OB OH 21= ∴D )23,2( ② BD =BO 过D 作DG ⊥OB ,垂⾜是G ∴OG :OB =CD :CB DG :OC =1:5 ∴ OG :4=1:5 DG :3=1:5 ∴OG =54 DG =53∴D (54,53)⼀、模型引⼊xO⼆、典例分析例3(济南)如图,在梯形ABCD 中,AD //BC ,AD =3,DC =5,AB =24,∠B =45°.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)试探究:t 为何值时,△MNC 为等腰三⾓形.【答案】(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==.在Rt ABK △中,sin 4542AK AB =??==cos 4542BK AB =??== 在Rt CDH △中,由勾股定理得,3HC == ∴43310BC BK KH HC =++=++= (2)分三种情况讨论:①当NC MC =时,如图②,即102t t =- ∴103t =CADCB MN(图②)(题图③)AD CBM NH E(图①)A DCBK H②当MN NC =时,如图③,过N 作NE MC ⊥于E 解法⼀:由等腰三⾓形三线合⼀性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC t c NC t -==⼜在Rt DHC △中,3cos 5CH c CD ==∴535t t -= 解得258t =解法⼆:∵90C C DHC NEC =∠=∠=?∠∠,∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t = ③当MN MC =时,如图④,过M 作MF CN ⊥于F 点.11 22FC NC t == 解法⼀:(⽅法同②中解法⼀)132cos 1025tFC C MC t ===- 解得6017t =解法⼆:∵90C C MFC DHC =∠=∠=?∠∠,∴MFC DHC △∽△∴FC MCHC DC =即1102235tt -=∴6017t = 综上所述,当103t =、258t =或6017t =时,MNC △为等腰三⾓形.同类训练:平⾯直⾓坐标系中,四边形OABC 为矩形,点A 、B 的坐标分别为(3,0),(3,4).动点M 、N 分别从O 、B 同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终(图④)ADCBH NMF点A 运动,点N 沿BC 向终点C 运动.过点N 作NP ⊥BC ,交AC 于P ,连结MP .已知动点运动了x 秒.1.P 点的坐标为( ______,_____ );(⽤含x 的代数式表⽰).2.试求三⾓形MPA ⾯积的最⼤值,并求此时x 的值.3.探索:当x 为何值时,三⾓形MPA 是⼀个等腰三⾓形?你发现了⼏种情况?写出你的研究成果.【答案】解:(1)由题意可知C (0,4),⼜A (3,0),所以直线AC 解析式为:443y x =-+,因为P 点的横坐标与N 点的横坐标相同为3﹣x ,代⼊直线AC 中得43y x =,所以P 点坐标为(43,3x x -);(2)设△MP A 的⾯积为S ,在△MP A 中,MA =3﹣x ,MA 边上的⾼为4 3x ,其中,0≤x ≤3 ∴214233(3)()23322S x x x =-=--+ S =(3﹣x )·x =(﹣x 2+6x )=﹣(x ﹣3)2+6 ∴S 的最⼤值为32,此时32x =;(3)延长NP 交x 轴于Q ,则有PQ ⊥OA ①若MP =P A∵PQ ⊥MA ∴MQ =QA =x .∴3x =3,∴x =1②若MP =MA ,则MQ =3﹣2x ,43PQ x =,PM =MA =3﹣x 在Rt △PMQ 中,∵PM 2=MQ 2+PQ 2∴2224(3)(32)()3x x x -=-+ ∴5443x =③若P A=AM,∵53PA x=,AM=3﹣x∴533x x=-∴98x=综上所述,x=1,或5443x=或98x=.第四模块:其它类型例4如图,在直⾓梯形ABCD中,AD∥BC,∠C=900,BC=16,DC=12,AD=21,动点P从D出发,沿射线DA的⽅向以每秒2个单位长度的速度运动,动点Q从点C出发,经线段CB上以每秒1个单位长度的速度向点B运动,点P、Q分别从D、C同时出发,当点Q运动到点B时,点P随之停⽌运动.设运动时间为t秒.(1)设△BPQ的⾯积为S,求S与t之间的函数关系式.(2)当t为何值时,以B、P、Q三点为项点的三⾓形是等腰三⾓形?【答案】解:(1)如图,过点P作PM⊥BC,垂⾜为M,则四边形PDCM为矩形.∴PM=DC=12.∵QB=16﹣t,∴S=12×12×(16﹣t)=96﹣6t(0≤t<16);(2)由图可知:CM=PD=2t,CQ=t.以B、P、Q三点为顶点的三⾓形是等腰三⾓形,可以分三种情况:①若PQ=BQ.在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16﹣t)2,解得72t=;②若BP=BQ.在Rt△PMB中,BP2=(16﹣2t)2+122.由BP2=BQ2得:(16﹣2t)2+122=(16﹣t)2即3t2﹣32t+144=0.由于△=﹣704<0,BACQDPM∴3t 2﹣32t +144=0⽆解,∴PB ≠BQ .③若PB =PQ .由PB 2=PQ 2,得t 2+122=(16﹣2t )2+122 整理,得3t 2﹣64t +256=0.解得1163t =,t 2=16(不合题意,舍去)综合上⾯的讨论可知:当72t =秒或163t =秒时,以B 、P 、Q 三点为顶点的三⾓形是等腰三⾓形.综合训练:(江苏)如图,已知⼀次函数y =-x +7与正⽐例函数y =43x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停⽌运动.在运动过程中,设动点P 运动的时间为t 秒.① t 为何值时,以A 、P 、R 为顶点的三⾓形的⾯积为8?②是否存在以A 、P 、Q 为顶点的三⾓形是等腰三⾓形?若存在,求t 的值;若不存在,请说明理由.【答案】(1)根据题意,得743y x y x =-+??=,解得 34x y =??=?,∴A (3,4) . 令y =-x +7=0,得x =7.∴B (7,0). (2)①当P 在OC 上运动时,0≤t <4.由S △APR =S 梯形COBA -S △ACP -S △PQR -S △ARB =8,得 12(3+7)×4-12×3×(4-t )- 12t (7-t )- 12t ×4=8 整理,得t 2-8t +12=0, 解之得t 1=2,t 2=6(舍)当P 在CA 上运动,4≤t <7.由S △APR = 12×(7-t ) ×4=8,得t =3(舍)∴当t =2时,以A 、P 、R 为顶点的三⾓形的⾯积为8. ②当P 在OC 上运动时,0≤t <4. ∴AP=(4-t )2+32,AQ=2t ,PQ =7-t 当AP =AQ 时,(4-t )2+32=2(4-t )2,整理得,t 2-8t +7=0. ∴t =1, t =7(舍) 当AP=PQ 时,(4-t )2+32=(7-t )2, 整理得,6t =24. ∴t =4(舍去) 当AQ=PQ 时,2(4-t)2=(7-t )2 整理得,t 2-2t -17=0 ∴t =1±3 2 (舍)当P 在CA 上运动时,4≤t <7. 过A 作AD ⊥OB 于D ,则AD =BD =4. 设直线l 交AC 于E ,则QE ⊥AC ,AE =RD =t -4,AP =7-t . 由cos ∠OAC= AE AQ = ACAO ,得AQ = 53(t -4).当AP=AQ 时,7-t = 53(t -4),解得t = 418.当AQ=PQ 时,AE =PE ,即AE = 12AP得t -4= 12(7-t ),解得t =5.当AP=PQ 时,过P 作PF ⊥AQ 于F AF = 12AQ = 12×53(t -4).在Rt△APF中,由cos∠P AF=AFAP=35,得AF=35AP即12×53(t-4)=35×(7-t),解得t=22643.∴综上所述,t=1或418或5或22643时,△APQ是等腰三⾓形.。

九年级中考数学等腰三角形专题训练 (含答案)

九年级中考数学等腰三角形专题训练 (含答案)

九年级中考数学等腰三角形专题训练一、选择题1. 已知等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°2. 如图,等边三角形OAB的边长为2,则点B的坐标为 ()A.(1,1)B.(1,)C.(,1)D.()3. 一个等腰三角形两边的长分别为75和18,则这个三角形的周长为() A.10 3+3 2B.5 3+6 2C.10 3+3 2或5 3+6 2 D.无法确定4. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. △ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A. 120°B. 125°C. 135°D. 150°6.如图,在△ABC中,AB=BC=3,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为( ) A.63 B.9 C.6 D. 337.如图,DE是ABC△的边AB的垂直平分线,D为垂足,DE交AC于点E,且85AC BC==,,则BEC△的周长是A.12 B.13C.14 D.158.如图,等边△ABC的边长为3,点D在边AC上,AD=12,线段PQ在边BA上运动,PQ=12,有下列结论:①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似;③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+372.其中,正确结论的序号为( )A .①④B .②④C .①③D .②③DQ PCB A二、填空题9. 我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a ,b ,那么(a -b )2的值是 .10.在等腰△ABC中,AB =AC ,∠B =50°,则∠A 的大小为________.11.如图,在△ABC中,AB =AC ,∠BAC 的平分线AD 交BC 于点D ,E 为AB 的中点.若BC =12,AD =8,则DE 的长为 .ED CBA12.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为__________.13.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=________°.14.在ABC△中,50A∠=︒,30B∠=︒,点D在AB边上,连接CD,若ACD△为直角三角形,则BCD∠的度数为__________.15.某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为________米.(结果保留根号)16. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.三、解答题17.如题20图,在△ABC中,点D、E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.FECABD18. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.19. 已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过D点的直线交AC于E点,交AB于F点,且△AEF为等边三角形.(1)求证:△DFB是等腰三角形;(2)若DA=7AF ,求证CF ⊥AB.20.如图,△ABC中,AB =AC ,∠B 的平分线交AC 于D ,AE ∥BC 交BD 的延长线于点E ,AF ⊥AB 交BE 于点F . (1)若∠BAC =40°,求∠AFE 的度数; (2)若AD =DC =2,求AF 的长.21. 如图,在△ABC中,∠ACB=90°,AC=BC ,D 是AB 边上一点(点D 与A ,B不重合),连接CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE. (1)求证:△ACD ≌△BCE ;(2)当AD=BF 时,求∠BEF 的度数.F DECAB22. 如图,在△ABC中,AB=AC=5 cm,BC=6 cm,AD是BC边上的高.点P由C出发沿CA方向匀速运动.速度为1 cm/s.同时,直线EF由BC出发沿DA方向匀速运动,速度为1 cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t <4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.答案一、选择题1. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.2. 【答案】B[解析]过点B作BH⊥AO于点H,∵△OAB是等边三角形,∴OH=1,BH=,∴点B的坐标为(1,).3. 【答案】[解析] A因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,72 <75,所以不能构成三角形,故三角形的周长为10 3+3 2.4. 【答案】C[解析] ∵OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,∴∠AOM=∠BOM=25°,MA=MB.∴∠OMA=∠OMB=65°.∴∠AMB=130°.∴∠MAB=12×(180°-130°)=25°.故选C.5. 【答案】C 【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA=12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.6. 【答案】D【解析】∵分别以点A 、C 为圆心,AC 的长为半径作弧,两弧交于点D ,∴AD=AC=CD ,∴△ACD 是等边三角形,∴∠DAC=60°.∵AB=BC ,AD=CD ,连接BD 交AC 于点E ,∴BD 垂直平分AC ,∴∠AEB=90°. ∵∠BAC=30°, AB= 3,∴BE=32,AE=32,∴AC=3.在R t △ADE 中,∵∠DAC=60°,∠AED=90°,AE=32,∴DE=332,∴BD=333232,∴四边形ABCD 的面积为:3333221=⨯⨯.7. 【答案】B【解析】∵DE 是ABC △的边AB 的垂直平分线,∴AE BE =,∵85AC BC ==,,∴BEC △的周长是:13BE EC BC AE EC BC AC BC ++=++=+=.故选B .8. 【答案】D【解析】设AQ=x,则BP=52—x①如图1,当点P与B重合时,此时QD为最大,过点Q作QE⊥AC,∵AQ=5 2,∴AE=54,QE=534,∴DE=34,∴此时QD=212,即0≤QD≤212;而332≤CP≤3,两个范围没有交集,即不可能相等;①错误②若△AQD∽△BCP,则ADBP=AQBC,代入得2x2—5x+3=0,解得x1=1,x2=32,∴都存在,∴②正确;③如图2,过点D作DE⊥AB,过点P作PF⊥BC,S四边形PCDQ=S△ABC—S△AQD—S△BPC=34×32-12⋅x⋅34-12×3×34(52-x)=34x+21316,∵52—x≥0,即x≤52,∴当x=52时面积最大为31316;③正确;④如图,将D沿AB方向平移12个单位得到E,连接PE,即四边形PQDE为平行四边形,∴QD=PE,四边形周长为PQ+QD+CD+CP=3+PE+PC,即求PE+PC的最小值,作点E关于AB的对称点F,连接CF,线段CF的长即为PE+PC的最小值;过点D作DG⊥AB,∴AG=14,EN=FN=HM=34,∴CH=332+34=734,FH=MN=32-14-12=34,∴FC=392,∴四边形PCDQ周长的最小值为3+392,④错误.二、填空题9. 【答案】1[解析]由勾股定理可得,a 2+b 2=13,直角三角形面积=(13-1)÷4=3,即ab=3,所以ab=6,所以(a -b )2=a 2+b 2-2ab=13-12=1.10. 【答案】80°【解析】本题考查了等腰三角形的性质,∵AB=AC ,∠B=50°,∴∠C=∠B=50°,∴∠A=180°-2×50°=80°,因此本题填80°.11. 【答案】5【解析】∵AB =AC ,∠BAC 的平分线AD 交BC 于点D ,∴AD ⊥BC ,BD =CD =12BC =6.在R t △ABD 中,由勾股定理,得AB =2268+10.又∵E 为AB 的中点,∴DE =12AB =5.故答案为5.12. 【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.13. 【答案】30°【解析】本题考查了等边三角形和等腰三角形以及垂直平分线的性质.因为FENMHG AB CD EFF E DQ PC B FEABCP QDD Q C B(P)AE垂直平分BC ,∴ FC =FB ∴∠B =∠BCF ∵△ACF 是等边三角形,∴∠AFC =60° ,∴ ∠B =30°14. 【答案】60︒或10︒【解析】分两种情况: ①如图1,当90ADC ∠=︒时,∵30B ∠=︒,∴903060BCD ∠=︒-︒=︒; ②如图2,当90ACD ∠=︒时,∵50A ∠=︒,30B ∠=︒,∴1803050100ACB ∠=︒-︒-︒=︒, ∴1009010BCD ∠=︒-︒=︒,综上,则BCD ∠的度数为60︒或10︒.故答案为:60︒或10︒.15. 【答案】(533-1.6).【解析】如图,过点A 作AM CM 于M ,则CM=5m ,在R t △BCM 中,∠BCM=30°,所以BM=CM tan 30°=533.由题意可知△DCN 是等腰直角三角形,所以CN=CD=3.4m,所以MN=5-3.4=1.6(m),因为△AMN是等腰直角三角形,所以MN=AM=1.6m,所以AB=BM-AM=(53-1.6)m.故答案为(53-1.6).16. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.三、解答题17. 【答案】证明:在△BFD和△CFE中,∠ABE=∠ACD,∠DFB=∠CFE,BD=CE,∴△BFD≌△CFE(AAS).∴∠DBF=∠ECF.∵∠ABE=∠ACD∴∠DBF+∠ABE=∠ECF+∠ACD.∴∠ABC=∠ACB.∴AB=AC.∴△ ABC是等腰三角形.【解析】先利用三角形边边角的判定方法证明∠DBF=∠ECF,再根据等式的性质,加上相等角得到∠ABC=∠ACB,等角对等边,得到AB=AC.根据等腰三角形定义得到△ ABC是等腰三角形.18. 【答案】证明:(1)如图,连接DE.∵CD是AB边上的高,∴CD⊥AB.∴∠ADC=90°.∵AE=CE,∴DE=AC=CE=AE.∵BD=CE,∴DE=BD.∴点D在线段BE的垂直平分线上.(2)∵BD=DE,∴∠ADE=2∠ABE.∵DE=AE,∴∠A=∠ADE=2∠ABE.∴∠BEC=∠ABE+∠A=3∠ABE.19. 【答案】(1)证明:∵AB为直径,∴∠ACB=90°,∵△AEF是等边三角形,∴∠EAF=∠EFA=60°,∴∠ABC=30°,∴∠FDB=∠EFA-∠B=60°-30°=30°,(2分) ∴∠ABC=∠FDB,∴FB =FD ,∴△BDF 是等腰三角形.(3分) (2)解:设AF =a ,则AD =7a ,解图如解图,连接OC ,则△AOC 是等边三角形, 由(1)得,BF =2-a =DF ,∴DE =DF -EF =2-a -a =2-2a ,CE =AC -AE =1-a , 在Rt △ADC 中,DC =(7a )2-1=7a 2-1,在Rt △DCE 中,tan 30°=CE DC =1-a 7a 2-1=33,解得a =-2(舍去)或a =12,(5分) ∴AF =12,在△CAF 和△BAC 中,CA AF =BAAC =2,且∠CAF =∠BAC =60°,∴△CAF ∽△BAC , ∴∠CFA =∠ACB =90°, 即CF ⊥AB.(6分)20. 【答案】解:(1)∵AB =AC ,∠BAC =40°, ∴∠ABC =12×(180°-40°)=70°.∵BD平分∠ABC,∴∠ABD=∠DBC=1×70°=35°.2∵AF⊥AB,∴∠BAF=90°.∴∠AFE=∠BAF+∠ABD=90°+35°=125°.(2)∵BD平分∠ABC,BD=BD,AD=CD,∴△BDA≌△BDC.∴AB=BC.又AB=AC,∴AB=BC=AC.∴△ABC为等边三角形.∴∠ABC=60°,∠ABD=30°.∵AD=DC=2,∴AB=4.在R t△ABF中,AF=AB·tan30°=4×3=43.说明:此题中的条件AE∥BC是多余的.【解析】(1)由“等边对等角”求出∠ABC,由角平分线的定义求出∠ABD,∠AFE 是△ABF的外角,因此∠AFE=∠BAF+∠ABD;(2)由BD既是△ABC的角平分线又是中线可知AB=BC,从而推出△ABC是边长为2的等边三角形.在R t△ABF中可解出AF.21. 【答案】解:(1)证明:∵线段CD绕点C按逆时针方向旋转90°得到线段CE,∴∠DCE=90°,CD=CE.又∵∠ACB=90°,∴∠ACB=∠DCE,∴∠ACD=∠BCE.在△ACD和△BCE中,∵∴△ACD≌△BCE.(2)∵∠ACB=90°,AC=BC , ∴∠A=45°, ∵△ACD ≌△BCE ,∴AD=BE ,∠CBE=∠A=45°. 又AD=BF ,∴BE=BF , ∴∠BEF=∠BFE==67.5°.22. 【答案】(1)如解图①,连接DF ,解图①∵AB =AC =5,BC =6,AD ⊥BC ,∴BD =CD =3, 在Rt △ABD 中AD =52-32=4,∵EF //BC , ∴△AEF ∽△ABC , ∴EF BC =AQ AD ,∴EF 6=4-t 4,∴EF =32(4-t ), ∵EF //BD ,∴当EF =BD 时,四边形EFDB 是平行四边形, ∴32(4-t )=3,∴t =2,∴当t =2s 时,四边形EFDB 是平行四边形; (2)如解图②,作PN ⊥AD 于N ,解图②∵PN //DC , ∴PN DC =AP AC , ∴PN 3=5-t 5, ∴PN =35(5-t ), ∴y =12DC ·AD -12AQ ·PN =6-12(4-t ) ·35(5-t ) =6-(310t 2-2710t +6) =-310t 2+2710t (0<t <4); (3)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .解图③∵当QN 为AP 的垂直平分线时QA =QP ,QN ⊥AP ,∴AN =NP =12AP =12(5-t ), 由题意cos ∠CAD =AD AC =ANAQ , ∴12(5-t )4-t=45,∴t =73,∴当t =73s 时,点Q 在线段AP 的垂直平分线上.∵sin ∠FPH =FH PF =sin ∠CAD =35,∵P A =5-73=83,AF =AQ ÷45=2512, ∴PF =712,∴FH =720.∴点F 到直线PQ 的距离h =720(cm).。

九年级中考数学复习等腰三角形练习题

九年级中考数学复习等腰三角形练习题

等腰三角形练习根基训练1.假定等腰三角形的顶角为70°,那么它的底角的度数为( )A.30°B.40°C.50°D.55°2.[2021·天水]如图,等边三角形OAB的边长为2,那么点B的坐标为( )A.(1,1)B.(1, ) C .( ,1) D.( , )3.[2021·福建B卷] 如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,那么∠ACE等于( )A.15°B.30°C.45°D.60°4.[2021·雅安] 如图,在△ABC中,AB=AC,∠C=72°,BC= ,以点B为圆心,BC为半径画弧,交AC于点D,那么线段AD的长为( )A.2B.2 C . D.5.[2021·凉山州]如图在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB长为半径作弧,两弧订交于M,N两点;②作直线MN,交BC于D,连结AD.假定AD=AC,∠B=25°,那么∠C等于( )A.70°B.60° C .50° D.40°6.如图,BD,CE分别是△ABC的高线和角均分线,且订交于点O.假定AB=AC,∠A=40°,那么∠BOE的度数是()A.60°B.55°C.50°D.40°第7题图.(2021·天水如图,等边△OAB的边长为2,那么点B的坐标为()7)A.(1,1)B.(1,3)C.(3,1)D.(3,3)如图,在△ABC中,AC=BC<A B.假定∠1,∠2分别为∠ABC,∠ACB的外角,那么以下角度关系何者正确()A.∠1<∠2B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°第8题图第9题图9.(2021·宁夏)如图,在△ABC中,AC=BC,点D和点E分别在边AB和AC上,且AD=AE,连结DE,过点A的直线GH与DE平行.假定∠C=40°,那么∠GAD的度数为()A.40°B.45°C.55°D.70°10.(2021·衢州)“三均分角〞大概是在公元前五世纪由古希腊人提出来的,借助以下列图的“三均分角仪〞能三均分任一角.这个三均分角仪由两根有槽的棒OA,OB构成,两根棒在点O处相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.假定∠BDE=°,那么∠CDE的度数是()75A.60°B.65°C.75°D.80°11.如图,一副三角尺叠在一同,最小锐角的极点D恰巧放在等腰直角三角形的斜边 AB上,BCDEM假如∠ADF BMD与交于点. =100°,那么∠ 的度数为()A .85°B .95°C .75°D .65°12. 如图,AD ,CE 分别是△ABC 的中线和角均分线.假定AB =AC ,∠CAD =20°,那么∠ACE 的度数是()第12题图A.20 °°°°13.(2021 内江)一个等腰三角形的底边长是 6,腰长是一元二次方程 x 2-8x +15=0的一根,那么此三角形的周长是()A.16B.12C.14D.12 或16以下列图,△ABC 中,AB =AC ,过AC 上一点作DE ⊥AC ,EF ⊥BC ,假定∠BDE =140°,那么 ∠DEF =()° ° ° °第14题图15. (2021贵阳)如图,在△中, = ,以点 C 为圆心, 长为半径画弧,交于点ABC AB AC CBAB1B 和点D ,再分别以点B ,D 为圆心,大于 2BD 长为半径画弧,两弧订交于点M ,作射线CM交于点.假定=2, =1,那么的长度是()AB E AEBEEC第15题图C.3D.5(2021陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的均分线交AD于点E,那么AE的长为()48A.32C.32第16题图17.(2021·毕节)如图,以△ABC的极点B为圆心,BA长为半径画弧,交BC边于点D,连结AD.假定∠B=°,∠C=°,那么∠DAC的大小为°4036.第17题图第18题图18.(2021·镇江)如图,直线a∥b,△ABC的极点C在直线b上,边AB与直线b订交于点D.假定△BCD是等边三角形,∠A=°,那么∠=°201.19.(2021·绥化)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,那么∠A=°.20.(2021·武威)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特点值〞.假定等腰△ABC中,∠A=80°,那么它的特点值k=.21.[2021·宜宾]如图,△ABC和△CDE都是等边三角形,且点A,C,E在同向来线上,AD与BE,BC分别交于点F,M,BE与CD交于点N.以下结论正确的选项是(写出全部正确结论的序号).①AM=BN;②△ABF≌△DNF;③∠FMC+∠FNC=180°;④= +.22.[2021·嘉兴]如图,在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,(1)且DE=DF求.证:△ABC是等边三角形.23.[2021·无锡]如图,在△ABC中,AB=AC,点D,E分别在AB,AC上,BD=CE,BE,CD订交于点O.求证:△DBC≌△ECB;OB=OC.24.如图,△ABC是等边三角形,△BDC是等腰三角形,∠BDC=120°,以D为极点作∠MDN,DM,DN分别交AB,AC边于M,N两点,且∠MDN=60°,连结MN.尝试究BM,MN,CN之间的数目关系,并加以证明.25.(2021·重庆B卷)如图,在△ABC中,AB=AC,AD⊥BC于点D.假定∠C=42°,求∠BAD的度数;假定点E在边AB上,EF∥AC交AD的延伸线于点F.求证:AE=FE.26.(2021·重庆A卷)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE均分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.假定∠C=36°,求∠BAD的度数;求证:FB=FE.27.(2021·杭州)如图,在△ABC中,AC<AB<BC.如图1,线段AB的垂直均分线与BC边交于点P,连结AP,求证:∠APC=∠B.2如图2,以点B为圆心,线段AB长为半径画弧,与BC边交于点Q,连结AQ.假定∠AQC=3∠B,求∠B的度数.图1图228.(2021·攀枝花)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直均分线上;(2)∠BEC=3∠ABE.29.如图,在△ABC中,AB=AC,∠B=30°,点D从点B出发,沿B→C方向运动到点C(D不与点B,C重合),连结AD,作∠ADE=30°,DE交线段AC于点E.设∠BAD=x°,∠AED=y°.当BD=AD时,求∠DAE的度数;求y与x之间的关系式;当BD=CE时,求x的值.备用图提高训练1.如图,△CDE与△CAB是以C为极点的等腰三角形,此中=∠ACB=120°,A,D,E三点在同一条直线上,连结BE,假定CD=CE,CA=CB,且∠DCECE=2,BE=3,那么AE的长为________.第3题图数学课上,张老师举了下边的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启迪同学们进行变式,小敏编了以下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.请你解答以上的变式题;解(1)后,小敏发现,∠A的度数不一样,获得∠B的度数的个数也可能不一样,假如在等腰三角形中,设∠=°,当∠B 有三个不一样的度数时,请你研究x的取值范围.ABC Ax答案:等腰三角形练习根基训练1.D2.B3.A[分析]∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵AD ⊥BC ,∴BD=CD ,AD 是BC 的垂直均分线.BE=CE.∴∠EBC=∠ECB=45°. ∴∠ECA=60°-45°=15°.4.C [分析]在△ABC 中,AB=AC ,∠C=72°,因此∠ABC=72°,∠A=36°.由于BC=BD ,因此∠BDC=72°.因此∠ABD=36°.因此AD=BD=BC=.应选C . 5.C [分析]由作图可知MN 为线段AB 的垂直均分线,∴AD=BD ,∠DAB=∠B=25°.∵∠CDA 为△ABD 的一个外角,∴∠CDA=∠DAB +∠B=50°. ∵AD=AC ,∴∠C=∠CDA=50°.应选C .6. 12.BA 【分析】方程x 2-8x +15=0的两个根为3,5.但长度为3,3,6的三条线段不 能构成三角形,故该三角形的三边为 5,5,6,即周长为 16.C 【分析】∵DE ⊥AC ,∠BDE =140°,∴∠A =50°,又∵AB =AC ,∴∠C = 180°-50°=65°,∵EF ⊥BC ,∴∠DEF =∠C =65°.2D 【分析】由尺规作图步骤可知,CM 为AB 的垂线,即△AEC 为直角三角形,∵△22ABC 是等腰三角形,∴AC =AB =AE +BE =3,在Rt △AEC 中,CE = AC -AE =5.C 【分析】∵AD ⊥BC ,∴∠ADB =∠ADC =90°,在Rt △ACD 中,∵∠C =45°,AC2=8,∴AD =AC ·sin45°=8×2=4 2,∵∠ABC =60°,∴∠BAD =90°-60°=30°, ∵ BE 均分∠ ,∴∠ =∠ =30°,∴∠ =∠ ,∴ = ,在Rt △ 中,∵ABD ABE DBE BAD ABE AE BE BDE 1 1 18 ∠DBE =30°,∴DE =2BE =2AE ,∵AE +DE =AD ,∴AE +2AE =4 2,∴AE =3 2.8 1 17.3420.5或4.21.①③④ [分析]①∵△ABC 和△CDE 都是等边三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=60°,∴∠ACB +∠BCD=∠ECD +∠BCD , 即∠BCE=∠ACD ,在△BCE 和△ACD 中,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∠CBE=∠CAD,在△DMC和△ENC中,∴△DMC≌△ENC(ASA),∴DM=EN,CM=CN,AD-DM=BE-EN,即AM=BN.②∵∠ABC=60°=∠BCD,∴AB∥CD,∴∠BAF=∠CDF.∵∠AFB=∠DFN,∴△ABF∽△DNF,找不出全等的条件.③∵∠AFB+∠ABF+∠BAF=180°,∠FBC=∠CAF,∴∠AFB+∠ABC+∠BAC=180°,∴∠AFB=∠ACB=60°,∴∠MFN=120°.∵∠MCN=60°,∴∠FMC+∠FNC=180°.④∵CM=CN,∠MCN=60°,∴△MCN是等边三角形,∴∠MNC=60°.∵∠DCE=60°,∴MN∥AE,∴= =.∵CD=CE,MN=CN,∴=,∴=1-,两边同时除以MN,得=,∴=.故答案为①③④.22.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为AC的中点,∴DA=DC.又∵DE=DF,∴Rt△ADE≌Rt△CDF(HL).∴∠A=∠C.∴∠A=∠B=∠C.∴△ABC是等边三角形.23.证明:(1)∵AB=AC,∴∠ECB=∠DBC.在△DBC与△ECB中,∴△DBC≌△ECB(SAS).由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.24.解:BM+CN=NM.证明:如图,延伸AC至E,使CE=BM,连结DE.∵△BDC是等腰三角形,△ABC是等边三角形,∠BDC=120°,∴∠BCD=∠CBD=30°,那么∠ABD=∠ACD=90°,∴∠ABD=∠DCE=90°.在△DCE和△DBM中,BM=CE,∠DBM=∠DCE,BD=DC,Rt△DCE≌Rt△DBM(SAS),∴∠BDM=∠CDE,DM=DE.又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC-∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°.在△DMN和△DEN中,DM=DE,∠MDN=∠NDE,DN=DN,∴△DMN≌△DEN(S AS),∴MN=NE,∴BM+CN=NM. 25.(1)解:∵AB=AC,AD⊥BC于点D,∠C=42°,∴∠B=∠C=42°,∠ADB=90°.∴∠BAD=90°-42°=48°.证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵EF∥AC,∴∠F=∠CAD.∴∠BAD=∠F.∴AE=FE.26.(1)解:∵AB=AC,∴∠C=∠ABC.∵∠C=36°,∴∠ABC=36°.∵BD=CD,AB=AC,∴AD⊥BC.∴∠ADB=90°.∴∠BAD=90°-36°=54°.证明:∵BE均分∠ABC,∴∠ABE=∠CBE.∵EF∥BC,∴∠FEB=∠CBE.∴∠FBE=∠FEB.∴FB=FE.27.(1)证明:∵线段AB的垂直均分线与BC边交于点P,∴PA=PB.∴∠B=∠BAP.∵∠APC=∠B+∠BAP,∴∠APC=2∠B.解:依据题意可知BA=BQ,∴∠BAQ=∠BQA.∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B.∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°.∴∠B=36°.28.证明:(1)如解图,连结DE.∵CD是AB边上的高,∴∠ADC=∠BDC=90°.∵BE是AC边上的中线,∴AE=CE.∴DE=CE.又∵BD=CE,∴BD=DE.∴点D在BE的垂直均分线上.∵DE=AE,∴∠A=∠ADE.∵BD=DE,∴∠DBE=∠DEB.又∵∠ADE=∠DBE+∠DEB,∴∠A=∠ADE=2∠ABE.又∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.29.解:(1)当BD=AD时,∠B=∠BAD=30°.∵AB=AC,∴∠BAC=120°.∴∠DAE=∠BAC-∠BAD=120°-30°=90°.由题意可知,∠BAD+∠DAE=120°,即x°+∠DAE=120°.又∵∠AED+∠DAE=180°-∠ADE=150°,即y°+∠DAE=150°.两式相减,得y-x=30,即y=x+30.(3)由题意可知,∠B+∠BAD=∠ADE+∠EDC,且∠B=∠ADE=30°,∴∠BAD=∠CDE.又∵∠B=∠C,BD=CE,∴△ABD≌△DCE(AAS).∴CD=BA=AC.∴△ACD为等腰三角形,且∠C=30°.∴∠DAE=75°.x=∠BAC-∠DAE=120°-75°=45°.提高训练+23【分析】如解图,过点C 作⊥于点,∵∠=∠=CMAE M DCE ACB120°,∴∠BCE+∠DCB=∠ACD+∠DCB=120°,∴∠BCE=∠ACD,在△ACD和△BCE中,CA=CBACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE=3,∵CD=CE=2,CM⊥DE,∠DCECD=CE113=120°,∴在Rt△CME中,∠ECM=2∠DCE=2×120°=60°,∴ME=CE·sin60°=2×2=3,∴DE=2ME=23,∴AE=AD+DE=3+23.第3题解图解:(1)当∠A为顶角,那么∠B=50°;当∠A为底角,假定∠B为顶角,那么∠B=20°;假定∠B为底角,那么∠B=80°,∴∠B=50°或20°或80°.(2)分两种状况:①当90≤x<180时,∠A只好为顶角,∴∠B的度数只有一个.②当0<x<90时,假定∠A为顶角,那么∠B =(180-x)°,2假定∠A为底角,那么∠B=x°或∠B=(180-2x)°,当180-x≠180-2且180-x≠x且180-2≠,即x≠60时,∠B有三个不一样的度数.2x2x x综上①②,当0<x<90且x≠60时,∠B有三个不一样的度数.。

数学:等腰直角三角形存在性(通用版 九年级训练考试卷)

数学:等腰直角三角形存在性(通用版 九年级训练考试卷)

等腰直角三角形存在性(通用版)试卷简介:考查在动态框架和函数框架下等腰直角三角形存在性的处理原则,调用存在性问题的处理手段,分析定点、动点,从直角入手,确定分类,借助等腰三角形自身的性质或构造弦图模型解决问题。

一、单选题(共5道,每道20分)1.如图,抛物线交x轴于A,C两点(点A在点C的右侧),交y轴于点B.点D的坐标为(-1,0),若在直线AB上存在点P,使得以A,D,P为顶点的三角形是等腰直角三角形,则点P的坐标为( )A. B.(-1,3)或(1,2)C.(-1,4)或(1,2)D.(-1,4),(1,2)或(5,-2)2.如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.P是线段AC上的一个动点(不与点A,C重合),过点P作平行于x轴的直线,交BC于点Q,若在x轴上存在点R,使得△PQR是等腰直角三角形,则点R的坐标为( )A. B.C. D.3.如图,二次函数的图象与x轴交于A,B两点(点A在点B的左侧),以AB为边在x轴上方作正方形ABCD,P是x轴上的一动点(不与点A重合),连接DP,过点P作PE⊥DP交y轴于点E.当△PED是等腰直角三角形时,点P的横坐标为( )A.-4B.-3C.-3或-4D.-4或44.如图,已知直线经过A(0,1),B(1,0)两点,P是x轴正半轴上的一动点,且OP的垂直平分线交直线于点Q,交x轴于点M,直线经过点A且与x轴平行.若在直线上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则点C的坐标为( )A.(1,1)B.(1,1)或(2,1)C.(2,1)D.(1,1)或(0,1)5.如图,在平面直角坐标系xOy中,直线y=x+4与x轴、y轴分别交于点A,B,D为线段AB 上一动点,过点D作x轴的垂线,垂足为点C,CD的延长线交抛物线于点E,连接BE.若△DBE为等腰直角三角形,则点D的坐标为( )A.(-2,2)B.(-2,6)C.(-3,4)或(-2,6)D.(-3,1)或(-2,2)。

等腰三角形的存在性专项训练(含答案)

等腰三角形的存在性专项训练(含答案)

学生做题前请先回答以下问题问题1:等腰三角形存在性(两定一动)问题的操作要点是什么?问题2:在等腰三角形存在性问题中,有种类型是“夹角固定,一定两动”,这种类型题目的特征是什么?问题3:等腰三角形存在性(夹角固定,一定两动)问题的处理套路是什么?问题4:等腰三角形存在性(夹角固定,一定两动)问题在具体操作过程中,需要结合图形特征进行分析排除,常见的分析排除有哪些?问题5:等腰三角形存在性(夹角固定,一定两动)问题与等腰三角形存在性(两定一动)问题在处理时的异同有哪些?问题6:对于等腰三角形存在性问题,在设计方案建等式求解时,主要利用的等腰三角形的性质有哪些?问题7:对于等腰三角形存在性问题,在分析建等式时的思考角度有哪些?等腰三角形的存在性专项训练一、单选题(共6道,每道16分)1.如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D,将△AOD沿AD翻折,使点O落在AB边上的点E处,一个足够大的直角三角板的顶点P从D点出发,沿折线DA-AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.(1)点E的坐标是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:翻折变换2.(上接第1题)(2)当点P在线段DA上移动时,若△CMN为等腰三角形,则点M的坐标为( )A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:等腰三角形的存在性3.(上接第1,2题)(3)当点P在线段AB上移动时,设点P的坐标为,△DBN的面积为S,则S与x之间的函数关系式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:动点问题4.如图,在平面直角坐标系中,直线与x轴、y轴分别交于点M,N,△ABC是高为3的等边三角形,且边BC在x轴上,将此三角形沿着x轴的正方向平移.(1)在平移过程中,得到,若顶点恰好落在直线l上,则点的坐标为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一次函数综合题5.(上接第4题)(2)继续向右平移,得到,若它的外心P恰好落在直线l上,则点P的坐标为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一次函数综合题6.(上接第4,5题)(3)Q为直线l上一点,若与(2)中的,,任意两点能同时构成三个等腰三角形,则点Q的坐标为( )A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:等腰三角形的存在性。

2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(一)

2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(一)

2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(一)一.选择题1.如图,在等腰三角形ABC中,顶角∠A=36°.若BD平分∠ABC,则图中等腰三角形有()A.1个B.2个C.3个D.4个2.如图,在△ABC中,AB=7,AC=5,BC=6,∠ABC和∠ACB的平分线相交于点D,过点D作BC的平行线交AB于点E,交AC于点F.则△AEF的周长为()A.9 B.11 C.12 D.133.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC =3,则BD的长为()A.1 B.1.5 C.2 D.2.54.如图,△ABC中,∠ABC和∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②∠DFB=∠EFC;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的是()A.①②③B.①②③④C.①③D.①5.在下列命题中,假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个等腰三角形必能拼成一个直角三角形D.两个全等的直角三角形必能拼成一个等腰三角形6.在△ABC中,AB=AC,∠B=60°,点D、E在BC边上,且AD和AE把∠BAC三等分,则图中的等腰三角形的个数是()A.2 B.4 C.6 D.87.如图,已知点O是△ABC的∠ABC和∠ACB平分线的交点,过O作EF平行于BC交AB于E,交AC于F,AB=12,AC=18,则△AEF的周长是()A.15 B.18 C.24 D.308.如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D作DE ⊥BC交AC于E,连接AD,则图中等腰三角形的个数是()A.1 B.2 C.3 D.49.如图,已知D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=9,BC=5,则CD的长为()A.B.4 C.D.510.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC的值为()A.6 B.7 C.8 D.9二.填空题11.如图,在矩形ABCD中,AB=4,AD=3,在矩形内部有一点P,同时满足PC=BC,∠APB=90°,延长CP交AD于点E,则CE=.12.在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若AB=5,AC=4,那么△AEF的周长为.13.如图,在△ABC中,AB=AC=8,点D是BC边上一点,且DF∥AB,DE∥AC,则四边形DEAF的周长为.14.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为.15.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是.(填序号)三.解答题16.如图,△ABC中,∠A=36°,∠C=72°,∠DBC=36°.(1)求∠ABD的度数.(2)求证:BC=AD.17.如图,在△ABC中,已知∠ABC和△ABC的外角∠ACG的平分线交于点F,过点F 作FD∥BC,FD分别交AB、AC于点D、E.(1)求证:DE=BD﹣CE.(2)若∠ACB=60°,试判断△ECF的形状,并说明理由.18.已知△ABC的两个外角∠CBD和∠BCE的平分线的交于点O.(1)如图1,若BO∥AE,试说明△ABC的等腰三角形;(2)如图2,若∠A=90°,求∠O的度数;(3)如图3,试探索∠O与∠A之间存在的数量关系(直接写出结论,不说明理由).19.已知BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)如图1,求证:BE=DE.(2)如图2,在过点D作DF∥AB,连接EF,过点E作EG⊥BC,若EG=3,BF=5,在不添加任何辅助线的情况下,请直接写出面积等于的所有三角形.20.如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.21.(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是,△AEF的周长是(2)如图2,若将(1)中“△ABC中,AB=AC=10”改为“若△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.参考答案一.选择题1.解:由图可知,∵AB=BC,∴△ABC为等腰三角形,∵∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=∠A=36°∴△ABD为等腰三角形,∵∠BDC=∠A+∠ABD=72°=∠C∴△BCD均为等腰三角形,∴题中三角形共有三个.故选:C.2.解:∵BD是∠ABC的平分线,∴∠EBD=∠DBC,∵过点D作BC的平行线交AB于点E,∴∠EDB=∠EBD,∴BE=ED,∴∠EDB=∠EBD,同理可得DF=FC,∴△AEF的周长即为AB+AC=7+5=12.故选:C.3.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=5,BC=3,∴CE=3,∴AE=AC﹣EC=5﹣3=2,∴BE=2,∴BD=1.故选:A.4.解:①∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴①正确②∵△ABC不是等腰三角形,∴②∠DFB=∠EFC,是错误的;③∵△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.∴③正确,共2个正确的.④∵△ABC不是等腰三角形,∴∠ABC≠∠ACB,∴∠FBC≠∠FCB,∴BF=CF是错误的,故选:C.5.解:A、一个等腰三角形底边上的高把等腰三角形分成两个全等的直角三角形,所以A 选项正确;B、一个直角三角形斜边上中线把直角三角形分成两个等腰三角形;所以B选项正确;C、任意两个等腰三角形不一定能拼成一个直角三角形,所以C选项错误;D、两个全等的等腰直角三角形一定能拼成一个等腰三角形,所以D选项正确.故选:C.6.解:∵AB=AC,∠B=60°,∴△ABC是等边三角形,∴∠BAC=60°,∵AD和AE把∠BAC三等分,∴∠BAD=∠DAE=∠EAC=20°,∴∠ADE=∠BAD+∠B=60°+20°=80°,∠AED=∠EAC+∠C=60°+20°=80°,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形,∴一共有2个等腰三角形.故选:A.7.解:∵EF∥BC∴∠OCB=∠OCF,∠OBC=∠OBE又BO、CO分别是∠BAC和∠ACB的角平分线∴∠OCF=∠FCO,∠OBC=∠OBE∴OF=CF,OE=BE∴△AEF的周长=AF+OF+OE+AE,=AF+CF+BE+AE=AB+AC=12+18=30.故选:D.8.解:∵三角形ABC是等腰三角形,且∠BAC=90°,∴∠B=∠C=45°,∵DE⊥BC,∴∠EDB=∠EDC=90°∴∠DEC=∠C=45°,∴△EDC是等腰三角形,∵BD=AB,∴△ABD是等腰三角形,∴∠BAD=∠BDA,而∠EAD=90°﹣∠BAD,∠EDA=90°﹣∠BDA,∴∠EAD=∠EDA,∴△EAD是等腰三角形,因此图中等腰三角形共4个.故选:D.9.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=9,BC=5,∴CE=5,∴AE=AC﹣EC=9﹣5=4,∴BE=4,∴BD=2.∴CD===,故选:C.10.解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵FG=2,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,故选:C.二.填空题(共5小题)11.解:如图,延长AP交CD于F,∵∠APB=90°,∴∠FPB=90°,∴∠CPF+∠CPB=90°,∵四边形ABCD是矩形,∴∠DAB=∠ABC=90°,BC=AD=3,∴∠EAP+∠BAP=∠ABP+∠BAP=90°,∴∠EAP=∠ABP,∵PC=BC=3,∴∠CPB=∠CBP,∴∠CPF=∠ABP=∠EAP,∵∠APE=∠CPF,∴∠EAP=∠APE,∴AE=PE,∴DE=3﹣PE,∵CD2+DE2=CE2,CD=AB=4,CE=3+PE,∴42+(3﹣PE)2=(3+PE)2,解得:PE=,∴CE=3+=,故答案为:.12.解:由∠ABC与∠ACB的平分线相交于点O,得∠EBO=∠OBC,∠FCO=∠OCB.由EF∥BC,得∠EOB=∠BOC,∠FOC=∠OCB,∠EOB=∠EBO,∠FOC=∠FCO,∴EO=BE,OF=FC.C△AEF=AE+EF+AF=AE+BE+AF+CF=AB+AC=9.故答案为:9.13.解:∵AB=AC,∴∠B=∠C,∵DE∥AB,∴∠B=∠CDF,∴∠CDF=∠C,∴DF=CF∴CE=DE,同理可得BE=DE,∴四边形DEAF的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC,∵AB=AC=8,∴四边形DEAF的周长=8+8=16.故答案为:16.14.解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB+AC+BC=15,BC=6,∴AB+AC=9,∴△AMN的周长=9,故答案为9.15.解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故答案是:①②③三.解答题(共6小题)16.(1)解:在△ABC中,∠ABC=180°﹣∠A﹣∠C=72°,∴∠ABD=∠ABC﹣∠DBC=36°;(2)证明:在△BCD中,∠BDC=180°﹣∠DBC﹣∠C=72°,∴BD=BC,又∠ABD=∠A,∴BD=AD,∴BC=BD=AD.17.解:(1)∵∠ABC的平分线和外角∠ACF的平分线交于点F,∴∠DBF=∠CBF,∠ECF=∠GCF;∵FD∥BC,∴∠DFB=∠CBF,∠EFC=∠GCF,∴∠DBF=∠DFB,∠ECF=∠EFC,∴BD=FD,EC=EF;∴DE=BD﹣CE;(2)△ECF是等边三角形,∵∠ACB=60°,∴∠ACG=120°,∵CF平分∠ACG,∴∠ECF=60°,∵EF=CF,∴△ECF是等边三角形.18.解:(1)如图1中,∵OB∥AE,∴∠DBO=∠A,∠CBO=∠ACB,∵OB平分∠CBD,∴∠A=∠ACB,∴BA=BC,∴△ABC是等腰三角形.(2)如图2中,∵∠CBD、∠BCE的平分线相交于点O,∴∠1=(∠A+∠ACB),∠2=(∠A+∠ABC),∴∠1+∠2=(∠A+∠ACB+∠ABC+∠A),∵∠A+∠ACB+∠ABC=180°,∴∠1+∠2=90°+∠A,在△OBC中,∠BOC=180°﹣(∠1+∠2)=180°﹣(90°+∠A)=90°﹣∠A,∵∠A=90°,∴∠BOC=90°﹣×90°=90°﹣45°=45°.(3)由(2)可知:∠BOC=90°﹣∠A.19.(1)证明:∵DE∥BC,∴∠EDB=∠DBC,∵BD是△ABC的角平分线,∴∠EBD=∠DBC,∴∠EBD=∠EDB,(2)∵ED∥BF,DF∥BE,∴四边形EBFD是平行四边形,∵EG⊥BC,且EG=3,∴S=BF•EG=3×5=15,▱EBFD∴S△EFD=S△BEF=S△BED=S△BFD=.20.(1)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)解:在图2中,延长CD到M,使得CM=BD,连接AM,过点A作AN⊥CM 于点N,∵BE平分∠ABC,∠ACD=∠ABC,∴∠ACM=∠ABD.在△ABD和△ACM中,,∴△ABD≌△ACM(SAS),∴AD=AM,∠ADB=∠AMC,∴∠AMD=∠ADM,∴∠ADF=ADN.∵AN⊥DM,∴DN=MN.在△ADF和△ADN中,,∴△ADF≌△ADN(AAS),∴DF=DN=MN.∴BF=BC﹣DF=CM﹣MN=CN=CD+DN=CD+DF.即BF=CD+DF.21.解:(1)BE+CF=EF.理由如下:∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∴∠DBC=∠DCB,∴DB=DC∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,AE=AF,∴等腰三角形有△ABC,△AEF,△DEB,△DFC,△BDC共5个,∴BE+CF=DE+DF=EF,即BE+CF=EF,△AEF的周长=AE+EF+AF=AE+BE+AF+FC=AB+AC=20.故答案为:5;BE+CF=EF;20;(2)BE+CF=EF,∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∵EF∥BC,∴∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,∴等腰三角形有△BDE,△CFD,∴BE+CF=DE+DF=EF,即BE+CF=EF.可得△AEF的周长为18.(3)BE﹣CF=EF,由(1)知BE=ED,∵EF∥BC,∴∠EDC=∠DCG=∠ACD,∴CF=DF,又∵ED﹣DF=EF,∴BE﹣CF=EF.。

2021年九年级中考数学 专题训练 等腰三角形(含答案)

2021年九年级中考数学 专题训练 等腰三角形(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2021中考数学 专题训练 等腰三角形一、选择题(本大题共10道小题) 1. 若等腰三角形的顶角为50°,则它的底角度数为 ( ) A .40° B .50° C .60° D .65°2. 如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A=50°,则∠BDC=( )A .50°B .100°C .120°D .130°3. (2020·福建)如图,AD 是等腰三角形ABC 的顶角平分线,5=BD ,则CD 等于( )A.10B.5C.4D.34. 如图,在△ABC中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A. 65B. 95C. 125D. 1655. (2019•梧州)如图,DE 是ABC △的边AB 的垂直平分线,D 为垂足,DE 交AC于点E ,且85AC BC ==,,则BEC △的周长是A .12B .13C.14 D.156. (2020·河南)如图,在△ABC中,AB=BC=3,∠BAC=30°,分别以点A,C 为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为( )A.63B.9C.6D. 337. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. (2020·荆门)如图3,△ABC中,AB=AC,∠BAC=120°,BC=23,D为BC 的中点,AE=14AB,则△EBD的面积为( )A.33B.33C.3D.39. (2019•广西)如图,在ABC∆中,,40AC BC A=∠=︒,观察图中尺规作图的痕迹,可知BCG∠的度数为A.40︒B.45︒C.50︒D.60︒10. (2020·烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数EA学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.二、填空题(本大题共8道小题)11. 若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为.12. (2019•怀化)若等腰三角形的一个底角为72 ,则这个等腰三角形的顶角为___ _______.13. (2020·宿迁)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点.若BC=12,AD=8,则DE的长为.ED CBA14. (2020·宜昌)如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC= 60°,∠ACB= 60°,BC= 48米,则AC= 米.15. 如图,△ABC是等腰三角形,AB=AC,∠BAC=45°,点D在AC边上,将△ABD 绕点A逆时针旋转45°得到△ACD',且点D',D,B在同一直线上,则∠ABD的度数是.16. (2020·贵阳)(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.17. (2020·湖北孝感)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为________米.(结果保留根号)18. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.三、解答题(本大题共6道小题)19. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.20. (2020·广东)如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.21. 如图,在△ABC 中,AB =AC ,∠ABC =60°,延长BA 至点D ,延长CB 至点E ,使BE =AD ,连接CD ,AE ,延长EA 交CD 于点G . (1)求证:△ACE ≌△CBD ; (2)求∠CGE 的度数.22.如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA23. 如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形;(2)若⊙O 的直径为2,求PC 2+PB 2的值.24. 如图,AB为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F . (1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).2021中考数学 专题训练 等腰三角形-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B3. 【答案】B【解析】本题考查了等腰三角形三线合一的性质,∵AD 是等腰三角形ABC 的顶角平分线,5 BD ,∴CD=BD=5,因此本题选B .4. 【答案】C【解析】此题应首先连接AM ,则AM ⊥BC.∴ AM =AC 2-CM 2=4,然后由三角形面积:S △ACM =12AM ×CM.S △ACM =12AC ×MN.得:AM ×CM =AC ×MN.∴MN =125.也可以利用△ACM ∽△MCN.得:AC CM =AMMN .∴MN =AM ×CM AC =125.5. 【答案】B【解析】∵DE 是ABC △的边AB 的垂直平分线,∴AE BE =,∵85AC BC ==,,∴BEC △的周长是:13BE EC BC AE EC BC AC BC ++=++=+=.故选B .6. 【答案】D【解析】∵分别以点A 、C 为圆心,AC 的长为半径作弧,两弧交于点D ,∴AD=AC=CD ,∴△ACD 是等边三角形,∴∠DAC=60°.∵AB=BC ,AD=CD ,连接BD 交AC 于点E ,∴BD 垂直平分AC ,∴∠AEB=90°.∵∠BAC=30°, AB= 3,∴BE=32,AE=32,∴AC=3.在R t △ADE 中,∵∠DAC=60°,∠AED=90°,AE=32,∴DE=332,∴BD=333232,∴四边形ABCD 的面积为:3333221=⨯⨯.7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】B【解析】连结AD .∠B =∠C =12×(180°-∠A )=30°.由等腰三角形的“三线合一”可知AD ⊥BC .∴AD =BD ·tanB 3×3=1.∴S △ABC =12BC ·AD =12×23×1=3.∵AE =14AB ,∴S △EBD =34S △ABD =38S △ABC =338.故选B .9. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C .10. 【答案】最小的等腰直角三角形的面积42=1(cm 2),平行四边形面积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm 2,则A 、阴影部分的面积为2+2=4(cm 2),不符合题意;B 、阴影部分的面积为1+2=3(cm 2),不符合题意;C 、阴影部分的面积为4+2=6(cm 2),不符合题意;D 、阴影部分的面积为4+1=5(cm 2),符合题意. 故选:D .二、填空题(本大题共8道小题)11. 【答案】36° [解析]∵等腰三角形的一个底角为72°, ∴这个等腰三角形的顶角为180°-72°×2=36°.12. 【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.13. 【答案】5【解析】∵AB =AC ,∠BAC 的平分线AD 交BC 于点D ,∴AD ⊥BC ,BD =CD =12BC =6.在R t △ABD 中,由勾股定理,得AB =2268+10.又∵E 为AB 的中点,∴DE =12AB =5.故答案为5.14. 【答案】48【解析】 ∵∠ABC=60°,∠ACB=60°,∴∠A=180°-60°-60°=60°,∴△ABC是等边三角形,∴AB=BC=AC,∵BC=48,∴AC=4815. 【答案】22.5°[解析]根据题意可知△ABD≌△ACD',∴∠BAC=∠CAD'=45°,AD'=AD,∴∠ADD'=∠AD'D==67.5°.∵D',D,B三点在同一直线上,∴∠ABD=∠ADD'-∠BAC=22.5°.16. 【答案】4【解析】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF =HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在R t△CDH,∴由勾股定理可知:CD=4,在R t△BCD中,∴BC4,故答案为:417. 【答案】(533-1.6).【解析】如图,过点A作AM CM于M,则CM=5m,在R t△BCM中,∠BCM=30°,所以BM=CM tan30°=533.由题意可知△DCN是等腰直角三角形,所以CN=CD=3.4m,所以MN=5-3.4=1.6(m),因为△AMN是等腰直角三角形,所以MN=AM=1.6m,所以AB=BM-AM=(533-1.6)m.故答案为(533-1.6).18. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.三、解答题(本大题共6道小题)19. 【答案】解:(1)(方法一):∵AB=AC,∠C=42°,∴∠B=∠C=42°,∴∠BAC=180°-∠B-∠C=180°-42°-42°=96°.∵AD⊥BC,∴∠BAD=∠BAC=×96°=48°.(方法二):∵AB=AC,∠C=42°,∴∠B=∠C=42°.∵AD⊥BC于点D,∴∠ADB=90°,∴∠BAD=180°-90°-42°=48°.(2)证明:∵EF∥AC,∴∠CAF=∠F,∵AB=AC,AD⊥BC,∴∠CAF=∠BAF,∴∠F=∠BAF,∴AE=FE.20. 【答案】证明:在△BFD和△CFE中,∠ABE=∠ACD,∠DFB=∠CFE,BD=CE,∴△BFD≌△CFE(AAS).∴∠DBF=∠ECF.∵∠ABE=∠ACD∴∠DBF+∠ABE=∠ECF+∠ACD.∴∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.【解析】先利用三角形边边角的判定方法证明∠DBF=∠ECF,再根据等式的性质,加上相等角得到∠ABC=∠ACB,等角对等边,得到AB=AC.根据等腰三角形定义得到△ABC是等腰三角形.21. 【答案】解:(1)证明:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形.∴AB =CB =AC ,∠ACB =∠ABC =60°.∵BE =AD ,∴BE +BC =AD +AB ,即CE =BD.在△ACE 和△CBD 中,⎩⎨⎧CE =BD ,∠ACE =∠CBD ,AC =CB ,∴△ACE ≌△CBD(SAS).(2)由(1)知△ACE ≌△CBD ,∴∠E =∠D.∵∠BAE =∠DAG ,∴∠E +∠BAE =∠D +∠DAG ,即∠CGE =∠ABC.∵∠ABC =60°,∴∠CGE =60°.22. 【答案】延长AM 、AN 交BC 于点Q 、R .由等腰三角形三线合一可得AM QM =、AN RN =再由三角形中位线可得MN BC ∥.23. 【答案】【思路分析】(1)因为PE 是直径,所以∠PAE =90°,要证△PAE 是等腰直角三角形,只要证PA =EA ,由已知得∠PBA =45°,而∠PEA 与∠PBA 是同弧所对的圆周角,所以∠PEA =∠PBA ,问题得证;(2)由(1)得△PAC ≌△EAB ,所以PC =BE ,因为PE 是直径,所以∠PBE =90°,所以PC 2+PB 2=BE 2+PB 2=PE 2=4.解图(1)证明:如解图,∵△ABC 是等腰直角三角形,∴AC =AB ,∠CAB =90°,∠PBA =45°,∵在⊙O 中,∠PEA 与∠PBA 都是AP ︵所对的圆周角,∴∠PEA =∠PBA =45°,∵PE 为⊙O 的直径,∴∠PAE =90°,(4分)∴△PAE 为等腰直角三角形且AP =AE ;(5分)(2)∵∠PAE =∠CAB =90°,∴∠CAB -∠PAB =∠PAE -∠PAB ,∴∠CAP =∠BAE ,∴△CAP ≌△BAE(SAS ),(8分)∠C =∠ABE =45°,∠PBE =∠PBA +∠ABE =90°(10分)在Rt △PBE 中,PC 2+PB 2=PE 2=4.(12分)24. 【答案】(1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°,∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.一天,毕达哥拉斯应邀到朋友家做客。

初三中考数学复习 等腰三角形 专项基础训练题 含答案-教育文档

初三中考数学复习   等腰三角形  专项基础训练题 含答案-教育文档

2019 初三中考数学复习等腰三角形专项基础训练题1.若等腰三角形的顶角为40°,则它的底角度数为( )A.40° B.50° C.60° D.70°2.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( ) A.30° B.40° C.45° D.60°3. 在△ABC中,∠B=∠C,AB=5,则AC的长为( )A.2 B.3 C.4 D.54. 下列条件中,不能判定△ABC是等腰三角形的是( )A.a=3,b=3,c=4B.a∶b∶c=2∶3∶4C.∠B=50°,∠C=80°D.∠A∶∠B∶∠C=1∶1∶25.如图,在△ABC 中,∠A=36°,AB=AC,BD 是∠ABC 的平分线.若在边 AB 上截取BE=BC,连接 DE,则图中等腰三角形共有()A.2 个B.3 个 C.4 个 D.5 个6. 如图,在△ABC和△DCB中,∠A=∠D=72°,∠ACB=∠DBC=36°,则图中等腰三角形有( )A.2个 B.3个 C.4个 D.5个7. 有两个角等于60°的三角形是三角形;有一个角等于60°_______的三角形是等边三角形.8. 在△ABC中,∠A=30°,当∠B=_____________时,△ABC是等腰三角形.9. 如图,△ABC为等边三角形,D,E,F分别在边BC,CA,AB上,且AE=CD=BF,则△DEF为_______三角形.10. 如图,∠BOC =60°,点A 是BO 延长线上的一点,OA =10 cm ,动点P 从点A 出发沿AB 以2 cm/s 的速度移动,动点Q 从点O 出发沿OC 以1 cm/s 的速度移动,如果点P ,Q 同时出发,用t(s)表示移动的时间,当 t =_________时,△POQ 是等腰三角形.11. 如图,△ABC 内有一点D ,且DA =DB =DC ,∠DAB =20°,∠DAC =30°,则∠BDC 的大小是________.12. 如图,已知直线 l 1∥l 2,将等边三角形如图放置.若∠α=40°,则∠β=_________°.13. 如图,在正方形ABCD 的外侧作等边三角形ADE ,则∠BED 的度数是________.14. 如图,在△ABC 中,AC=8,BC=5,AB 的垂直平分线 DE 交 AB 于点 D ,交边 AC 于点 E ,则△BCE 的周长为_________.15. 如图,已知AB ∥EF ,CE =CA ,∠E =65°,求∠CAB 的度数.16. 如图,△ABC 为等边三角形,BD =AB ,BD 与AC 交于点E ,当点E 在AC 上运动时,∠ADC 的大小是否发生变化?如果变化,请求出变化范围;如果不变,请说明理由.参考答案:1---6 DBDBD D7. 等边 等腰8. 75°或30°9. 等边10. 103或10 11. 100°12. 2013. 45°14. 1315. 解:∵CE=CA,∴∠CAE=∠E=65°,∴∠ACE=180°-∠CAE-∠E=50°,∵AB∥EF,∴∠CAB=∠ACE=50°.16. 解:∠ADC的大小不变.理由:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC =60°.∵BD=AB=BC,∴∠BAD=∠BDA,∠BDC=∠BCD.∵∠BDA+∠BAD+∠BDC +∠BCD+∠ABC=360°,∴2∠BDA+2∠BDC+60°=360°,∴∠BDA+∠BDC=150°,即∠ADC=150°.。

中考压轴题存在性问题——存在等腰、直角三角形问题专项训练 -答案版

中考压轴题存在性问题——存在等腰、直角三角形问题专项训练 -答案版

中考压轴题存在性问题——存在等腰、直角三角形问题专项训练评卷人得分一.解答题(共50小题)1.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.2.如图1,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2,将△AOE沿直线AD平移得到△NMP.①当点M落在抛物线上时,求点M的坐标.②在△NMP移动过程中,存在点M使△MBD为直角三角形,请直接写出所有符合条件的点M的坐标.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.4.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.5.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.6.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.7.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.8.如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S 的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.9.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.10.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.11.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.12.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图1,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S,求点E的坐标;△CGO(3)如图2,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.13.如图1,抛物线y=﹣x2+2x﹣1的顶点A在x轴上,交y轴于B,将该抛物线向上平移,平移后的抛物线与x轴交于C,D,顶点为E(1,4).(1)求点B的坐标和平移后抛物线的解析式;(2)点M在原抛物线上,平移后的对应点为N,若OM=ON,求点M的坐标;(3)如图2,直线CB与平移后的抛物线交于F.在抛物线的对称轴上是否存在点P,使得以C,F,P为顶点的三角形是直角三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2+bx+3的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.15.如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.16.如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE是等腰三角形?18.已知抛物线y=﹣x2﹣x的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.19.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.20.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.21.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.22.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.23.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P 的坐标.24.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C (0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.25.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.26.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.27.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB 于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.28.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.29.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,点B(3,0),经过点A的直线AC与抛物线的另一交点为C(4,),与y轴交点为D,点P是直线AC下方的抛物线上的一个动点(不与点A,C重合).(1)求该抛物线的解析式.(2)过点P作PE⊥AC,垂足为点E,作PF∥y轴交直线AC于点F,设点P的横坐标为t,线段EF的长度为m,求m与t的函数关系式.(3)点Q在抛物线的对称轴上运动,当△OPQ是以OP为直角边的等腰直角三角形时,请直接写出符合条件的点P的坐标.30.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y轴交于点C (0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.31.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M 是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.32.如图,在平面直角坐标系中,抛物线y=ax2+bx(a,b为常数,a≠0)经过两点A(2,4),B(4,4),交x轴正半轴于点C.(1)求抛物线y=ax2+bx的解析式.(2)过点B作BD垂直于x轴,垂足为点D,连接AB,AD,将△ABD以AD为轴翻折,点B的对应点为E,直线DE交y轴于点P,请判断点E是否在抛物线上,并说明理由.(3)在(2)的条件下,点Q是线段OC(不包含端点)上一动点,过点Q垂直于x轴的直线分别交直线DP及抛物线于点M,N,连接PN,请探究:是否存在点Q,使△PMN 是以PM为腰的等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.33.如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.34.如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y 轴的正半轴上的点C,当点C的坐标为(0,)时,恰好有l1⊥l2,经过点A、B、C 的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG与DE的数量关系?并说明理由;(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.35.如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接P A、PB,设点E运动的时间为t(0<t <4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.36.如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.37.如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=3x﹣1与直线y=mx+2互相垂直,求m的值;②抛物线上是否存在点P,使得△P AB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB 的距离的最大值.38.已知抛物线c1的顶点为A(﹣1,4),与y轴的交点为D(0,3).(1)求c1的解析式;(2)若直线l1:y=x+m与c1仅有唯一的交点,求m的值;(3)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l2:y=n.试结合图形回答:当n为何值时,l2与c1和c2共有:①两个交点;②三个交点;③四个交点;(4)若c2与x轴正半轴交点记作B,试在x轴上求点P,使△P AB为等腰三角形.39.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.40.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.41.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C (0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.42.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.43.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D (2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P 的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△P AE为直角三角形?若存在,求出t的值;若不存在,说明理由.44.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N 从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.45.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.46.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.47.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),C(﹣2,﹣3),直线BC与y轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.48.如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.(1)求该二次函数的解析式;(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE面积S的最大值;(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.49.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.50.如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA上时,记为点G.(1)求点E,F的坐标;(2)求经过E,F,G三点的抛物线的解析式;(3)当点C的对应点落在直线l上时,求CD的长;(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.中考压轴题存在性问题——存在等腰、直角三角形问题专项训练参考答案与试题解析一.解答题(共50小题)1.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)将点C、D的坐标代入抛物线表达式,即可求解;(2)当△AOC∽△AEB时,=()2=()2=,求出y E=﹣,由△AOC∽△AEB得:,即可求解;(3)如图2,连接BF,过点F作FG⊥AC于G,当折线段BFG与BE重合时,取得最小值,即可求解;(4)①当点Q为直角顶点时,由Rt△QHM∽Rt△FQM得:QM2=HM•FM;②当点H为直角顶点时,点H(0,2),则点Q(1,2);③当点F为直角顶点时,同理可得:点Q(1,﹣).【解答】解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)由题,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).【点评】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、三角形相似、图形的面积计算等,其中(4),要注意分类求解,避免遗漏.2.如图1,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2,将△AOE沿直线AD平移得到△NMP.①当点M落在抛物线上时,求点M的坐标.②在△NMP移动过程中,存在点M使△MBD为直角三角形,请直接写出所有符合条件的点M的坐标.【分析】(1)抛物线的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12)=ax2﹣4ax﹣12a,即:﹣12a=6,即可求解;(2)①将点M的坐标代入抛物线表达式,即可求解);②分∠BMD为直角、∠MBD为直角、∠MDB为直角三种情况,分别求解即可.【解答】解:(1)抛物线的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12)=ax2﹣4ax ﹣12a,即:﹣12a=6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,令y=0,解得:x=4或﹣2,故点A(﹣2,0),函数的对称轴为:x=2,故点D(2,8);(2)将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线AD的表达式为:y=2x+4,设点N(n,2n+4),∵MN=OA=2,则点M(n+2,2n+4),①将点M的坐标代入抛物线表达式得:2n+4=﹣(n+2)2+2(n+1)+6,解得:n=﹣2±2,故点M的坐标为(2,4)或(﹣2,﹣4);②点M(n+2,2n+4),点B、D的坐标分别为(6,0)、(2,8),则BD2=(6﹣2)2+82,MB2=(n﹣4)2+(2n+4)2,MD2=n2+(2n﹣4)2,当∠BMD为直角时,由勾股定理得:(6﹣2)2+82=(n﹣4)2+(2n+4)2+n2+(2n﹣4)2,解得:n=,当∠MBD为直角时,同理可得:n=﹣4,当∠MDB为直角时,同理可得:n=,故点M的坐标为:(﹣2,﹣4)或(,)或(,)或(,).【点评】本题考查的是二次函数综合运用,涉及到一次函数、勾股定理的运用等,其中(2)②,要注意分类求解,避免遗漏.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.。

初三数学中考练习等腰三角形专项练习练习含解析

初三数学中考练习等腰三角形专项练习练习含解析

初三数学中考练习等腰三角形专项练习练习含分析1. 以下能判定△ ABC 为等腰三角形的是 ()A、∠ A =30°,∠ B=60°B、∠ A=50°,∠B=80°C、AB =AC =2,BC=4D、 AB =3,BC=7,周长为102.如图, OC 均分∠ AOB ,CD∥OB,假定 OD=3 cm,那么 CD 等于()A、3 cmB、4 cmC、 1.5 cmD、2 cm3. 以下对于等腰三角形的性质表达错误的选项是()A、等腰三角形两底角相等B、等腰三角形底边上的高、底边上的中线、顶角的均分线相互重合C、等腰三角形的腰长必定大于底边D、等腰三角形是轴对称图形4.等腰三角形的两边长分别为 3 和 6,那么这个等腰三角形的周长为()A、12B、15C、12 或 15D、185.在等腰△ ABC 中, AB =AC,其周长为 20 cm,那么 AB 边的取值范围是 ()A、1 cm< AB <4 cmB、5 cm<AB <10 cmC、4 cm< AB <8 cmD、4 cm<AB <10 cm6.以下列图,在△ ABC 中,∠ A =36°,∠ C=72°,∠ ABC 的均分线交AC于 D,那么图中共有等腰三角形()A、0个B、1个C、2个D、3个7.如图,在△ ABD 和△ BAC 中,∠ 1=∠ 2,∠ C=∠ D,AC,BD 订交于点 E,那么以下结论中正确的个数有()DAE =∠ CBE;②△ ADE ≌△ BCE;③CE=DE;④△ EAB 为等腰三角形.A、1 个B、2 个C、3 个D、4个8.如图,在△ ABC 中, AB =AC,∠ A=36°, BD ,CE 分别是∠ AB C,∠ BCD 的角均分线,那么图中的等腰三角形有()A、5 个B、4 个C、3 个D、2 个9.如图,D 在AC上,E 在AB上,假定AB =AC,BC=BD, AD =DE=BE,那么∠A的度数为()A、60°B、72°C、45°D、60°10.如图,在△ ABC 中,AB = AC,∠ A=80°,E,F,P 分别是 AB ,AC,BC 边上一点,且BE=BP,CP=CF,那么∠ EPF=________度.11.如图, a∥b,∠ ABC =50°,假定△ ABC 是等腰三角形,那么∠α= __________________.填(一个即可 )12.如图,在△ ABC 中, AD ⊥BC 于 D.请你再增添一个条件,就能够确立△ ABC 是等腰三角形.你增添的条件是_____________.13.如图,在△ ABC 中,AB = AC,AD ⊥BC 于点 D,假定 AB =6,C D=4,那么△ ABC 的周长是 ________.14.如图,在等腰△ ABC 中,AB =AC ,∠A=36°,BD⊥AC 于点 D,那么∠ CBD=________.15.在等腰△ ABC 中,AD 是底边上的中线,△ABC 的周长为 36 cm,△A BD 的周长为 30 cm,求 AD 的长.16.如图,在△ ABC 中, AB =AC, BD=CD,DE⊥AB ,DF⊥AC ,垂足分别为点 E,F.求证:△ BED≌△ CFD.1---9BCCBB DDAC10.5011.130°或 115°或 100°12.BD=CD13.2014.18°115. 解:∵ AD 是△ ABC 的中线,∴ BD = DC =2BC ,∵△ ABC 的周长为 36 cm ,△ABD 的周长为 30 cm ,∴AB +AC +BC =36 cm ,AB +BD +AD =3 0 cm ,∵ AB =AC ,BC = 2BD ,∴ 2AB + 2BD =36 cm ,AB +BD +AD =3 0 cm ,∴ AD =12 cm16. 解: ∵DE ⊥AB ,DF ⊥AC ,∴∠ BED ∠DEB =∠=CFD ∠DFC =90°,∵ AB = AC ,∴∠ B =∠ ,在△ BED 和△ CFD 中, ∠B =∠ C ,∴△BED ≌C △CFD(A.A.S.) BD =CD。

专题01 等腰三角形的性质与判定(十六大题型+跟踪训练)(原卷版)

专题01 等腰三角形的性质与判定(十六大题型+跟踪训练)(原卷版)

专题01等腰三角形的性质与判定(十六大题型+跟踪训练).....在ABC 中,若AB =,则ABC 是(.不等边三角形B .等边三角形C .直角三角形.等腰三角形.以下列线段为边不能组成等腰三角形的是(),4,51,1,1,则周长是()7cm 或8cm .条件不足,无法求出A .5cm B中,AB 15.如图,ABCA.80︒B 16.如图,在△ABC中,A.50︒B60中,17.如图,在ABCA.30︒B.18.如图,70∠=︒,AOBA.20°B.25°题型4:等边对等角的综合应用20.如图所示,在ABC 中,30A ∠=︒,80ACB ∠=︒,DE 垂直平分AC 交AB 于E ,垂足为D ,则BCE ∠=______.21.如图,直线a ∥b ,AB AC =,140 ∠=,则∠BAC 的度数是()A .100B .110C .120D .13022.如图,在∠ECF 的边CE 上有两点A 、B ,边CF 上有一点D ,其中BC =BD =DA 且∠ECF =27°,则∠ADF 的度数为()A .54°B .91°C .81°D .101°23.如图,在ABC 中,DE 垂直平分BC ,若6428CDE A ∠=︒∠=︒,,则ABD ∠的度数为()A .100︒B .128︒C .108︒D .98︒70B ∠=︒,则BDF ∠等于(A .65︒B .26.如图,在ABC 中,AB =27.如图,,∥DE AB AE 平分∠28.如图,在ABC 中,AB (1)求证:ABD △≌△(2)若3BD =,5CD =题型6:等腰三角形的“三线合一”30.等腰三角形的“三线合一”指的是()A .中线,高线,角平分线互相重合B .顶角的平分线,中线,高线三线互相重合C .腰上的中线,腰上的高线,底角的平分线互相重合D .顶角的平分线,底边上的中线及底边上的高线三线互相重合31.如图,在ABC 中,AB AC =,D 是BC 边上的中点,54B ∠=︒,则DAC ∠等于()A .36°B .45°C .54°D .72°32.在ABC 中,AB AC =,AD BC ⊥于点D ,若6BC =,则BD =()A .2B .3C .4D .533.下列说法错误的是()A .等腰三角形两腰上的高相等B .等腰三角形两腰上的中线相等C .等腰三角形两底角的平分线相等D .等腰三角形高、中线和角平分线重合34.已知点P 到ABC 的两边AB ,AC 所在直线的距离相等,且PB PC =,则下列命题为假命题的是()A .若点P 在边BC 上,则AB AC=B .若点P 在ABC 内部,则AB AC=C .若点P 在ABC 外部,则AB AC=D .若AB AC =,则点P 可能在边BC 上,可能在ABC 内部,也可能在ABC 外部题型7:等腰三角形的“三线合一”有关的最值问题35.如图,在ABC 中,AB AC =,=4BC ,面积是10;AB 的垂直平分线ED 分别交AC ,AB 边于E 、D 两点,若点F 为BC 边的中点,点P 为线段ED 上一动点,则PBF △周长的最小值为()A .7B .9C .10D .1436.如图,等腰ABC 中AB AC =,AD BC ⊥,EF 垂直平分AB ,交AB 于点E ,交BC 于点F ,点G 是线段EF 上的一动点,若ABC 的面积是26cm ,6cm BC =,则ADG △的周长最小值是()A .4.5cmB .5cmC .5.5cmD .6cm37.如图ABC 中,5AC BC ==,6AB =,CD 为ABC 的中线,点E 、点F 分别为线段CD 、CA 上的动点,连接AE 、EF ,则AE EF +的最小值为()A .2.4B .4.8C .5D .6题型8:等腰三角形“三线合一”的综合问题38.如图,在ABC 中,AB AC =,AD 是BC 边的中线,DE AB ⊥于点E ,DF AC ⊥于点F ,下列结论:①DE DF =;②BE CF =;③BDE CDF ∠=∠;④BDE DAF ∠=∠.其中正确的是()A .①②③B .①②④C .②③④D .①②③④39.如图,在 ABC 中,AB AC =,AD BC ⊥于点D ,DE AB ⊥于点E ,BF AC ⊥于点F ,5DE =cm ,则BF =()A .8cmB .10cmC .12cmD .14cm40.如图,ACB △和DCE △均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条线上,CM 平分DCE ∠,连接BE ,下列结论:①AD CE =;②CM BE ∥;③2AE BE CM =+;④COE BOE S S = ,其中正确的有()A .1个B .2个C .3个D .4个题型9:等腰三角形“三线合一”的解答证明41.如图,点D ,E 分别在BA ,AC 的延长线上,且AB AC =,AD AE =.求证:DE BC ⊥.42.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.43.如图,在ABC 中,2AC AB =,AD 平分BAC ∠交BC 于点D ,E 是AD 上一点,且EA EC =.求证:EB AB ⊥.题型10:等角对等边证明等腰三角形44.如图,在ABC 中,B C ∠=∠,AD 平分BAC ∠,=5AB ,=6BC ,则=BD ()A .3B .4C .5D .645.已知一个三角形中两个内角分别是50︒和80︒,则这个三角形一定是()A .钝角三角形B .直角三角形C .等腰三角形D .不能确定46.ABC 的三边分别是a ,b ,c ,不能判定是等腰三角形的是()A .::2:2:3ABC ∠∠∠=B .::2:2:3a b c =C .50B ∠=︒,80C ∠=︒D .2A B C∠=∠+∠47.如图,在ABC 中,BD 平分ABC ∠,2C CDB ∠=∠,12AB =,3CD =,则ABC 的周长为()A .2B .24C .27D .3题型11:等角对等边证明等腰三角形的解答证明48.已知:如图,在ABC 中,点D 在CA 边的延长线上,AE 平分DAB ∠,AE BC ∥.求证:ABC 为等腰三角形.49.如图,在ABD △和ACD 中,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)过点D 作∥DE AC 交AB 于点E ,求证:AED △是等腰三角形.50.已知ABC 中,AD 平分BAC ∠交BC 于点D ,且2B C ∠=∠.(1)如图1,求证:AB BD AC +=;(2)如图2,延长CB 至点E ,使BE AB =,连接AE ,若36C ∠=︒,直接写出图中所有的等腰三角形(ABC 和ADE V 除外).题型12:等角对等边证明边长相等、求边长51.如图,已知12∠=∠,B C ∠=∠,不正确的等式是()A .AB AC =B .BAE CAD ∠=∠C .BE DC =D .BD DE=52.如图,ABC 中,BD 平分ABC ∠交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若12AB =,7DE =,则AE 的长为()A .5B .6C .7D .853.如图,点P 是AOB ∠的角平分线OC 上一点,点Q 是OA 上一点,且PQ OB ∥,若2PQ =,则线段OQ 的长是()A .1.8B .2.5C .3D .254.如图,在ABC 中,BE 平分ABC ∠,DE BC ∥.若8DE =,5AD =,则AB 的长为()A .13B .12C .10D .955.如图,在ABC 中,45AB AC ==,,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB AC ,于M ,N ,则AMN 的周长为()A .8B .9C .10D .不确定56.如图,ABC DEF ≌△△,点E 在AC 上,B ,F ,C ,D 四点在同一条直线上.若40,35A CED ∠=︒∠=︒,则下列结论正确的是()A .,EF EC AB FC ==B .,EF EC AE FC≠=C .,EF EC AE FC =≠D .,EF EC AE FC≠≠57.如图,在ABC 中,AB AC =,AD BC ⊥于点D .(1)若37B ∠=︒,求CAD ∠的度数;(2)若点E 在边AC 上,EF AB ∥交AD 的延长线于点F .求证:AE FE =.58.如图,在四边形ABCD 中,AD BC ∥,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F ,点G 在边BC 上,且GDF ADF ∠=∠.连接EG ,判断EG 与DF 的位置关系,并说明理由.题型13:直线上与已知两点组成等腰三角形的点59.如图,ABC ,点P 为直线AC 上的一个动点,若使得ABP 是等腰三角形.则符合条件的点P 有()A .1个B .2个C .3个D .4个60.如图,线段AB 的一个端点B 在直线m 上,直线m 上存在点C ,使ABC 为等腰三角形,这样的点C 有()A .2个B .3个C .4个D .5个61.如图,直线a b ,相交于点O ,150∠=︒,点A 在直线a 上,直线b 上存在点B ,使以点O A B 、、为顶点的三角形是等腰三角形,这样的B 点有()A .1个B .2个C .3个D .4个题型14:等腰三角形有关的尺规作图62.如图,给出了尺规作等腰三角形的三种作法,认真观察作图痕迹,下面的已知分别对应作图顺序正确的是()①已知等腰三角形的底边和底边上的高;②已知等腰三角形的底边和腰;③已知等腰三角形的底边和一底角.A .①②③B .②①③C .③①②D .②③①63.如图(1),锐角ABC 中,AB BC AC >>,要用尺规作图的方法在AB 边上找一点D ,使ACD 为等腰三角形,关于图(2)中的甲、乙、丙三种作图痕迹,下列说法正确的是()A .甲、乙、丙都正确B .甲、丙正确,乙错误C .甲、乙正确,丙错误D .只有甲正确64.已知锐角40AOB ∠=︒,如图,按下列步骤作图:①在OA 边取一点D ,以O 为圆心,OD 长为半径画 MN ,交OB 于点C .②以D 为圆心,DO 长为半径画 GH, GH 与OB 交于点E ,连接DC 并延长,使DC 的延长线交 GH于点P ,连接DE ,则POC ∠的度数为__________.题型15:格点中画等腰三角形(网格问题)65.由24个边长为1的小正方形组成的64⨯的网格中,线段AB 的两个端点都在格点(小正方形的顶点)上.请在所给的网格中各画一个△ABC ,使得△ABC 是轴对称图形,并画出其对称轴.(画出两种情况即可,全等图形视为一种情况)66.图1,图2均是44⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A ,B ,C 均为格点.只用无刻度的直尺,分别在给定的网格中找一格点M ,按下列要求作图:(1)在图1中,连接MA ,MB ,使MA MB =;(2)在图2中,连接MA ,MB ,MC ,使MA MB MC ==.67.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段DE ,点A 、B 、D 、E 均在小正方形的顶点上.(1)在方格纸中画出以AB 为底的等腰ABC (2)在方格纸中画出以DE 为一边的等腰DEF 直接写出DC 的长度.题型16:等腰三角形的性质和判定综合题68.如图,在ABC 中,90BAC ∠=︒,AB 90EDF ∠=︒,下列结论:①BED AFD △≌△积,则1211142S S S ≤≤;④EF AD =;所有正确的结论是(A .①③B .①③④69.如图,在Rt ABC 中,90CAB ∠=︒,AB 于点F ,且AE AF ⊥,AH BF ⊥,下列说法:A FCB S BF AH =⋅四边形⑤.正确的有()个A .2B .370.在Rt ABC △中,AC BC =,点D 为AB 中点,BC 交于E ,F 两点.下列结论:①AE BF +=④2222AE CE DF +=.其中正确的是(A .①②③④B .①②③C .①④D .②③71.在ABC 中,90ACB ∠=︒,AC BC =,点D 在射线BC 上(不与B ,C 重合),连接AD ,过点B 作BF AD ⊥,垂足为F .(1)如图1,点D 在线段BC 上,若AF 恰好平分CAB ∠,求证:AB AC CD =+.(2)如图2,点D 在线段BC 上,点M 是直线BF 上的一点,且AF 平分MAC ∠,探究AC 、CD 、AM 之间的数量关系,并说明理由.(3)如图3,若点D 在线段BC 的延长线上()CD BC <,点M 是直线BF 上的一点,且AF 平分MAC ∠,4AM =,8BD =,求CD 的长度.一、单选题1.等腰三角形的三边均为整数,且周长为13,则底边是()A .1或3B .3或5C .1或5D .1或3或52.如图,ABC 中,AC AD BD ==,80CAD ︒∠=,则B ∠等于()A .25︒B .30︒C .35︒D .40︒3.在等腰△ABC 中,AB=AC ,其周长为16cm ,则AB 边的取值范围是()A .1cm <AB <4cm B .3cm <AB <6cmC .4cm <AB <8cmD .5cm <AB <10cm4.如图,在ABC 中,B C ∠=∠,点,D E 都在边BC 上,且BD CE =,若3AD =,则AE 的长为()A .90αβ+=︒B 6.如图,在ABC 中,心,大于12AD 长为半径作弧,两弧交于点()A .10︒B 7.如图,ABC 中,CAB ∠()A .75︒B 8.如图,在ABC 中,定ADE V 是等腰三角形的是(A .122∠=∠B .1∠+A .7B .810.如图,在等腰ABC 中,BE ,若8BC =,则BCE 的面积为(A .16B .2411.如图,AOB ∠是一角度为且OE EF FG GH ===…,在A .4根B .5根12.在ABC 中,45ACB ∠=︒,过C 交于点F ,过点E 作EH CD ⊥分别交的中点,连接EQ .下面结论:①ABE 2GQPAHP S CQ S PH =△△.其中正确的是(A .①②③④B .①②③⑤二、填空题13.用一条长为20cm 的细绳围成一个边长为20.如图,在ABC 中,点F 是高21.如图,在ABC 中,BAC ∠22.已知()0,2A 、()4,0B ,点C 在x 轴上,若23.如图,在ABC 中,B ∠与C ∠的平分线交于点若5AB =,4AC =,则ADE V 的周长是24.如图,AD 和CD 分别为ABC 的两个外角的平分线,E 和F 给出以下结论:①ED DF =;②确的是.三、解答题25.如图,已知A B ∠=∠,AD BC =,AC 和BD 相交于点E .求证:BDC ACD ∠=∠.26.如图,在ABC 中,AB AC =,CE 平分ACB ∠,EC EA =.(1)求A ∠的度数;(2)若BD AC ⊥,垂足为D ,BD 交EC 于点F ,求1∠的度数.27.在由6个大小相同的小正方形组成的方格中,(1)如图1,A ,B ,C 是三个格点(即小正方形的顶点),判断AB 与BC 的关系,并说明理由;(2)如图2,连接三格和两格的对角线,求αβ∠+∠的度数.28.如图,将ABC 绕点A 逆时针旋转得到AB C ''△.若点B 的对应点B '恰好落在BC 上,84,BAB AB B C '''∠=︒=,(1)求C ∠的度数;(2)求BAC ∠的度数.29.如图,已知在ABC 中,AB AC =,AD BC ⊥,垂足为D .过点C 作CE AB ∥,连接ED 并延长交AB 于点F ,65BCE ∠=︒.(1)求CAD ∠的大小;(2)求证:CDE BDF △△≌;(3)直接写出线段AC ,AF ,CE 之间的数量关系______.30.如图,在AOB 中,90AOB ∠=︒,OA OB =,C 是AB 边上一点(点C 与A ,B 不重合),连结OC ,将线段OC 绕点O 按逆时针方向旋转90︒得到线段OD ,连结CD 交OB 于点E ,连结BD .(1)求证:AOC BOD ≌ .(2)当BE AC =时,求BDE ∠的度数.31.如图,在ABC 中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm /s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 停止运动,设运动的时间为x 秒,连接DE 、DF .(1)求ABC 的面积;(2)当1x =且点F 运动的速度也是1cm /s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF 的面积是BDE 面积的两倍,请你求出时间x 的值.32.如图,在ABC 中,90BAC ∠=︒,AB AC =,D E ,是平面内两点,135ADC ∠=︒(1)如图1,若AD BE =,20∠=∠=︒ABE BCD ,求BAE ∠的大小;(2)如图2,若BD CE =,180AEC ADB ∠+∠=︒,BF CD ∥交AD 延长线于F ,求证:+=AD AE DF ;(3)如图3,若BD CE =,180AEC ADB ∠+∠=︒,3CD =,直接写出CED △的面积.。

数学:等腰三角形存在性(一 通用版 九年级训练考试卷)

数学:等腰三角形存在性(一 通用版 九年级训练考试卷)

等腰三角形存在性(一)(通用版)试卷简介:调用前期讲解等腰三角形存在性问题的处理思路,检测学生对于不同背景下等腰三角形存在性处理思路是否清晰,如符合“两定一动”特征时,采用两圆一线来解决问题,符合“夹角固定、两点动”特征时,常借助三线合一找相似来解决问题,要求学生能够结合题目背景信息(坐标系等)灵活处理,设计最优方案来解决问题。

一、单选题(共5道,每道20分)1.如图,直线与x轴、y轴分别交于点A,B,点P是线段AB上的一动点,若△OAP为等腰三角形,则点P的坐标是( )A.B.C.D.2.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A,B,C三点为顶点的三角形是等腰三角形,则满足条件的点C的个数为( )A.2B.3C.4D.53.如图,矩形OABC在平面直角坐标系xOy中,已知A(0,3),C(4,0),P为射线AB上一动点,将直线OP绕点P逆时针旋转90°,交直线BC于点Q,当△POQ为等腰三角形时,点P的坐标为( )A.(3,1)或(3,7)B.(3,3)C.(3,3)或(6,3)D.(1,3)或(7,3)4.如图,在矩形ABCD中,AB=8,BC=4.点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度.过点P作PE⊥AB 交AC于点E,连接EQ.在点P,Q运动的过程中,设运动时间为t秒,则当△CEQ是等腰三角形时,t的值为( )A.,B.,C.,,D.,,5.如图,在矩形ABCD中,已知A(3,2),B(3,-4),C(5,-4),点E是直线AB与x轴的交点,抛物线过点E,且顶点F的横坐标为1,点M是直线CD与x 轴的交点.若P是矩形ABCD边上的一点,且△AFP是等腰三角形,则点P的坐标为( )A.,,B.,,,C.,,,D.,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形的存在性专项训练(一)
一、单选题(共4道,每道25分)
1.如图,在平面直角坐标系中,已知点A的坐标为,M是x轴上一点.若△MOA是等腰三角形,则符合条件的点M有( )
A.2个
B.3个
C.4个
D.6个
2.如图,直线与x轴、y轴分别交于点A,B.若P是直线AB上一点,且△OAP 是等腰三角形,则点P的坐标为( )
A.
B.
C.
D.
3.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,M是BC边上一点,且MC=8.动点P从点C出发,沿C→D→A→B的路线运动到点B停止.在点P运动的过程中,使△PMC为等腰三角形的点P有( )
A.2个
B.3个
C.4个
D.5个
4.如图,抛物线与x轴负半轴交于点A,与y轴交于点B.若M是抛物线对称轴上一点,且△ABM是等腰三角形,则点M的坐标为( )
A. B. C. D.。

相关文档
最新文档