排列组合解题技巧ppt课件
合集下载
排列组合解题技巧课件
值法。
解题步骤:首 先确定特殊值, 然后根据特殊 值的特性进行
计算。
注意事项:特 殊值的选择要 合理,不能随
意选取。
构造法
定义:根据题目的要求,通过构造模型或图形来解决问题的方法。
应用场景:适用于解决排列组合问题中的计数问题。
解题步骤:首先分析题目,确定需要构造的模型或图形,然后根据模型或图形的特点,选择合适 的构造方法,最后计算出结果。
多做练习,提高解题能力
反思总结:在练习过程中不 断反思和总结,发现自己的 不足并加以改进
大量练习:通过不断的练习, 熟悉排列组合的解题思路和 技巧
刻意练习:有针对性地进行 练习,针对自己的薄弱环节
进行强化训练
持续学习:不断学习新的解 题技巧和方法,提高自己的
解题能力
THANK YOU
汇报人:XX
解题思路:先考虑相邻元素之间的顺序,再对其他元素进行排列组合。
常见题型:如将5个不同的小球放到4个不同的盒子里,要求每个盒子都 不空,则不同的放法种数为多少。 注意事项:在解决相邻问题时,需要注意元素之间的顺序要求,避免出 现重复或遗漏的情况。
相同元素问题
相同元素在排列组合中的 处理方式
相同元素的排列组合计算 公式
排列组合解题技巧总结
熟悉基本概念和公式
理解排列组合的 定义和公式
掌握排列组合的 常用公式和定理
了解排列组合的 常见题型和解题 思路
掌握排列组合的 解题技巧和注意 事项
掌握解题思路和方法
分析问题,确定使用哪种解 题方法
理解排列组合的概念和公式
掌握常见的解题技巧,如插 空法、捆绑法等
练习经典例题,加深理解和 应用
排列组合解题技巧
汇报人:XX
解题步骤:首 先确定特殊值, 然后根据特殊 值的特性进行
计算。
注意事项:特 殊值的选择要 合理,不能随
意选取。
构造法
定义:根据题目的要求,通过构造模型或图形来解决问题的方法。
应用场景:适用于解决排列组合问题中的计数问题。
解题步骤:首先分析题目,确定需要构造的模型或图形,然后根据模型或图形的特点,选择合适 的构造方法,最后计算出结果。
多做练习,提高解题能力
反思总结:在练习过程中不 断反思和总结,发现自己的 不足并加以改进
大量练习:通过不断的练习, 熟悉排列组合的解题思路和 技巧
刻意练习:有针对性地进行 练习,针对自己的薄弱环节
进行强化训练
持续学习:不断学习新的解 题技巧和方法,提高自己的
解题能力
THANK YOU
汇报人:XX
解题思路:先考虑相邻元素之间的顺序,再对其他元素进行排列组合。
常见题型:如将5个不同的小球放到4个不同的盒子里,要求每个盒子都 不空,则不同的放法种数为多少。 注意事项:在解决相邻问题时,需要注意元素之间的顺序要求,避免出 现重复或遗漏的情况。
相同元素问题
相同元素在排列组合中的 处理方式
相同元素的排列组合计算 公式
排列组合解题技巧总结
熟悉基本概念和公式
理解排列组合的 定义和公式
掌握排列组合的 常用公式和定理
了解排列组合的 常见题型和解题 思路
掌握排列组合的 解题技巧和注意 事项
掌握解题思路和方法
分析问题,确定使用哪种解 题方法
理解排列组合的概念和公式
掌握常见的解题技巧,如插 空法、捆绑法等
练习经典例题,加深理解和 应用
排列组合解题技巧
汇报人:XX
17种排列组合方法ppt课件
甲乙 丙丁
由分步计数原理可得共有 A55A22 A22 =480
种不同的排法
6
五.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞 蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
个有元A素55 中种间,包第含二首步尾将两4舞个蹈空插位入共第有一种步排A好64 的不6
练习:从6个男同学和4个女同学中,选出3个男同学和 2个女同学,分别担任五项不同的工作,一共有多少 种不同的分配方法?
5
四.相邻元素捆绑策略 例2.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共 有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元 素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排.
个空隙中插入3个不亮的灯有__C__35 _种.
12
十二.元素相同问题隔板策略 例10.有10个三好学生名额,在分给7个班,每班至 少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成一排,相 邻名额之间形成9个空隙. 在9个空档中选6个 位置插个隔板,可把名额分成7份,对应地分给 7个班级,每一种插板方法对应一种分法共有
同的方法.由分步计数原理,节目的不同顺序
共有
A A55
4 6
种
相 独 独独相
7
六.固定顺序问题用除法策略 例4.7人排队,其中甲乙丙3人顺序一定,共有多少不 同的排法?
1除法:对于某几个元素顺序一定的排列问题,可 先把这几个元素与其他元素一起进行排列,然后 用总排列数除以这几个元素之间的全排列数,则 共有不同排法种数是: A77
A22
15
练习:某兴趣小组有9个人,现有3项不同的活动可以让
由分步计数原理可得共有 A55A22 A22 =480
种不同的排法
6
五.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞 蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
个有元A素55 中种间,包第含二首步尾将两4舞个蹈空插位入共第有一种步排A好64 的不6
练习:从6个男同学和4个女同学中,选出3个男同学和 2个女同学,分别担任五项不同的工作,一共有多少 种不同的分配方法?
5
四.相邻元素捆绑策略 例2.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共 有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元 素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排.
个空隙中插入3个不亮的灯有__C__35 _种.
12
十二.元素相同问题隔板策略 例10.有10个三好学生名额,在分给7个班,每班至 少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成一排,相 邻名额之间形成9个空隙. 在9个空档中选6个 位置插个隔板,可把名额分成7份,对应地分给 7个班级,每一种插板方法对应一种分法共有
同的方法.由分步计数原理,节目的不同顺序
共有
A A55
4 6
种
相 独 独独相
7
六.固定顺序问题用除法策略 例4.7人排队,其中甲乙丙3人顺序一定,共有多少不 同的排法?
1除法:对于某几个元素顺序一定的排列问题,可 先把这几个元素与其他元素一起进行排列,然后 用总排列数除以这几个元素之间的全排列数,则 共有不同排法种数是: A77
A22
15
练习:某兴趣小组有9个人,现有3项不同的活动可以让
大学排列组合ppt课件
排列与组合的综合实例解析
总结词
通过综合实例,理解排列与组合在实际 问题中的应用。
VS
详细描述
通过一个复杂的问题,如安排一场活动或 者组织一次旅行,综合运用排列和组合的 知识来解决实际问题,并强调排列与组合 在解决实际问题中的重要性和关联性。
05
排列组合的解题技巧
解题思路分析
明确问题要求
01
首先需要清楚题目是关于排列还是组合的问题,排列需要考虑
04
排列组合的实例解析
排列实例解析
总结词
通过具体实例,深入理解排列的概念和计算方法。
详细描述
通过实际生活中的例子,如学生选课、物品的排列等,解释排列的概念,并介绍排列的计算公式,以及如何应用 这些公式解决实际问题。
组合实例解析
总结词
通过具体实例,深入理解组合的概念和计算方法。
详细描述
通过实际生活中的例子,如彩票中奖概率、选举代表等,解释组合的概念,并介绍组合的计算公式, 以及如何应用这些公式解决实际问题。
少?
答案解析
答案1
从5个人中选3个人参加会议共有 $C_{5}^{3} = 10$种不同的选法。
答案3
大于2000的三位数,首位数字可以为 2,3或4,共有$A_{3}^{1} times A_{4}^{2} = 36$种。
答案2
将4把椅子排好,共有$A_{5}^{3} = 60$种坐法。
答案4
不同的分法种数为$A_{5}^{4} = 120$种。
常见错误解析与避免方法
混淆排列与组合
遗漏情况
排列和组合是不同的概念,需要明确 题目要求,正确使用公式。
在解题过程中,需要注意不要遗漏某 些情况,例如在排列时需要考虑元素 的顺序,在组合时需要考虑元素的取 法。
排列组合ppt课件
排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量
。
学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。
排列组合问题17种方法ppt课件
C
6 9
一
二
三
四
五
六
七
班
班
班
班
班
班
班
30
将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素 排成一排的n-1个空隙中,所有分法数为
C m 1 n 1
31
练习题
1. 10个相同的球装5个盒中,每盒至少一 有多少装法?
C4 9
2 .x+y+z+w=100求这个方程组的自然数解 的组数
A
5 5
A A A
2 4
1 4
5 5
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.
前排
后排
20
练习题
有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并 且这2人不左右相邻,那么不同排法的种数是______
346
21
重排问题求幂策略
把6名实习生分配到7个车间实习,共有 多少种不同的分法
解:完成此事共分六步:把第一名实习生分配 到车间有 种分法.
7
把第二名实习生分配
到车间也有7种分法,
依此类推,由分步计
7 6 数原理共有 种不同的排法
允许重复的排列问题的特点是以元素为研究 对象,元素不受位置的约束,可以逐一安排 各个元素的位置,一般地n不同的元素没有限 制地安排在m个位置上的排列数为 种
一个盒子装1个 (6)每个盒子至少1个
25
练习题 一个班有6名战士,其中正副班长各1人 现从中选4人完成四种不同的任务,每人 完成一种任务,且正副班长有且只有1人 参加,则不同的选法有________ 种 192
排列组合的ppt课件免费
题目2:从7个不同元素 中取出4个元素的组合数 ,其中某特定元素可以 不被取出。
答案1:$A_{7}^{4} A_{6}^{3} = 7 times 6 times 5 times 4 - 6 times 5 times 4 = 336$
答案2:$C_{7}^{4} C_{6}^{3} = frac{7 times 6 times 5 times 4}{4 times 3 times 2 times 1} - frac{6 times 5 times 4}{3 times 2 times 1} = 28$
排列组合问题的变种与拓展
排列组合问题的变种
如“带限制的不同元素的排列组合” 、“重复元素的排列组合”等,需要 进一步拓展学生的思路。
拓展方法
通过变种问题的解析,引导学生深入 思考排列组合问题,并掌握其变化规 律,为解决更复杂的问题打下基础。
04
CATALOGUE
排列组合的数学原理
排列组合的数学原理简介
数学教育的核心
排列组合是数学教育中的 重要内容,对于培养学生 的数学素养和解决问题的 能力具有重要意义。
解决排列组合问题的方法与技能
乘法原理
加法原理
乘法原理是解决排列组合问题的基础,通 过将各个独立事件的产生概率相乘,可以 计算出复合事件的产生概率。
加法原理用于计算具有互斥性的事件的概 率,通过将各个互斥事件的产生概率相加 ,可以得到总的产生概率。
解析方法
通过实例演示和讲授,帮助学生理解排列组合的基本概念和计算方法,同时引导 学生思考如何解决实际问题。
实际问题的排列组合解决方案
实际问题的排列组合
如“安排会议”、“排定演出节目单”、“安排生产计划” 等,需要结合具体情境进行分析。
排列组合ppt课件高中
10$
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等
。
建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等
。
建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义
排列组合ppt课件
排列组合基本公式 • 排列组合的应用 • 排列组合的扩展知识 • 练习题与答案解析
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
排列组合专题PPT课件
n个不同元素不分首尾排成一个圆圈,称为循环 排列。其排列数为n!/n=(n-1)!。
如1,2,3三个数的循环排列只有123,132 二种。
第22页/共85页
例8.在圆形花坛外侧摆放8盆菊花和4盆兰花, 要求兰花不能相邻摆放,一共有多少种摆法?
8盆菊花摆成一周的排列方法有n1=7! 4盆兰花插入8个空中的排列总数有n2=P48=8!/4! 摆放总数为n=n1*n2=8467200
第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 , 共12种。
第6页/共85页
例6、
某小组有10人,每人至少会英语和日语的一门, 其中8人会英语,5人会日语,从中选出会英语与会 日语的各1人,有多少种不同的选法?
由于8+5=13>10,所以10人中必有3人既会英 语又会日语。(5+2+3) 所以可分三类: 5×2 + 5×3 + 2×3=31
3.个位为4,百位为1、2、3、5中的一个,十位为剩下的四个数字中的一个,所以 这样的偶数共有1×P14×P14
所以符合题意的个数为20+16+16=52
第18页/共85页
例5、 8位同学排成相等的两行,要求某两位同 学必须排在前排,有多少种排法?
这两个同学排在前排4个位置的排列数是P24, 其它同学在余下的6个位置排的排列数是6!,所以 符合题意的个数为P24×6!=12×720=8640。
prn/(n1!*n2!*…*nm!).
第25页/共85页
例10、将N个红球和M个黄球排成一行。如:N=2,M=3 可得到10种排法。问题:当N=4,M=3时有 种不同 排法? NOIP2002
如1,2,3三个数的循环排列只有123,132 二种。
第22页/共85页
例8.在圆形花坛外侧摆放8盆菊花和4盆兰花, 要求兰花不能相邻摆放,一共有多少种摆法?
8盆菊花摆成一周的排列方法有n1=7! 4盆兰花插入8个空中的排列总数有n2=P48=8!/4! 摆放总数为n=n1*n2=8467200
第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 , 共12种。
第6页/共85页
例6、
某小组有10人,每人至少会英语和日语的一门, 其中8人会英语,5人会日语,从中选出会英语与会 日语的各1人,有多少种不同的选法?
由于8+5=13>10,所以10人中必有3人既会英 语又会日语。(5+2+3) 所以可分三类: 5×2 + 5×3 + 2×3=31
3.个位为4,百位为1、2、3、5中的一个,十位为剩下的四个数字中的一个,所以 这样的偶数共有1×P14×P14
所以符合题意的个数为20+16+16=52
第18页/共85页
例5、 8位同学排成相等的两行,要求某两位同 学必须排在前排,有多少种排法?
这两个同学排在前排4个位置的排列数是P24, 其它同学在余下的6个位置排的排列数是6!,所以 符合题意的个数为P24×6!=12×720=8640。
prn/(n1!*n2!*…*nm!).
第25页/共85页
例10、将N个红球和M个黄球排成一行。如:N=2,M=3 可得到10种排法。问题:当N=4,M=3时有 种不同 排法? NOIP2002
《排列与组合自》课件
组合可以看作排列的一个特例
当一个组合中的元素都是相邻的时候,这个组合可以看作是 一个排列。
05
排列与组合的扩展知识
排列与组合的数学原理
排列的定义
从n个不同元素中取出m个元素(m≤n),按照一定的顺 序排成一列,称为从n个元素中取出m个元素的排列。
排列的计算公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
03
组合的计算方法
组合的公式
组合的公式
C(n,k) = n! / (k!(n-k)!)
组合公式的推导
通过数学归纳法证明组合公式。
组合公式的应用
利用组合公式计算从n个不同元素中取出k个元素 的组合数。
组合的实例
01
02
03
组合实例1
从5个不同的人中选出3个 人组成一个小组,有多少 种不同的选法?
用P(n,m)表示从n个不同元素中取出m个元 素的排列数。
排列的计算公式
P(n,m)=n×(n-1)×…×(n-m+1)
排列的特性
与元素的顺序有关,与元素的取出方式有 关。
组合的定义
组合的定义
从n个不同元素中取出m个元素(m≤n) ,不考虑顺序,称为从n个不同元素中取
出m个元素的组合。
组合的计算公式
《排列与组合》PPT课件
目录
• 排列与组合的定义 • 排列的计算方法 • 组合的计算方法 • 排列与组合的区别与联系 • 排列与组合的扩展知识
01
排列与组合的定义
排列的定义
排列的定义
排列的表示
从n个不同元素中取出m个元素(m≤n), 按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
当一个组合中的元素都是相邻的时候,这个组合可以看作是 一个排列。
05
排列与组合的扩展知识
排列与组合的数学原理
排列的定义
从n个不同元素中取出m个元素(m≤n),按照一定的顺 序排成一列,称为从n个元素中取出m个元素的排列。
排列的计算公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
03
组合的计算方法
组合的公式
组合的公式
C(n,k) = n! / (k!(n-k)!)
组合公式的推导
通过数学归纳法证明组合公式。
组合公式的应用
利用组合公式计算从n个不同元素中取出k个元素 的组合数。
组合的实例
01
02
03
组合实例1
从5个不同的人中选出3个 人组成一个小组,有多少 种不同的选法?
用P(n,m)表示从n个不同元素中取出m个元 素的排列数。
排列的计算公式
P(n,m)=n×(n-1)×…×(n-m+1)
排列的特性
与元素的顺序有关,与元素的取出方式有 关。
组合的定义
组合的定义
从n个不同元素中取出m个元素(m≤n) ,不考虑顺序,称为从n个不同元素中取
出m个元素的组合。
组合的计算公式
《排列与组合》PPT课件
目录
• 排列与组合的定义 • 排列的计算方法 • 组合的计算方法 • 排列与组合的区别与联系 • 排列与组合的扩展知识
01
排列与组合的定义
排列的定义
排列的定义
排列的表示
从n个不同元素中取出m个元素(m≤n), 按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。
排列组合解题技巧__课件(精选)25页文档
排列组合解题技巧__课件(精选)
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
▪
类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
25
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
▪
类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 43人中任抽5人的方法有C45种3 ,正副班长,团支部书记
都不在内的抽法有 种C45,0所以正副班长,团支部书记至少有
1人在内的抽法有
C种453. C450
结论6 排除法:有些问题,正面直接考虑比较复杂,而它
的反面往往比较简捷,可以先求出它的反面,再从整体中 排除.
2020/5/1
10
• 练习:有12个人,按照下列要求分配,求不同的分法种数 .
解 把所有的硬币全部取出来,将得到
0.05×23+0.10×10=2.15元,所以比2元多0.15元, 所以剩下0.15元即剩下3个5分或1个5分与1个1角, 所以共C23有3 C213 C110种取法.
结论4 剩余法:在组合问题中,有多少取法,就有多少种
剩法,他们是一一对应的,因此,当求取法困难时,可转化为 求剩法.
C171
结论3 转化法(插拔法):对于某些较复杂的、或较
抽象的排列组合问题,可以利用转化思想,将其化归为 简单的、具体的问题来求解.
2020/5/1
7
例4 袋中有不同的5分硬币23个,不同的1角硬币10个,
如果从袋中取出2元钱,有多少种取法?
分析 此题是一个组合问题,若是直接考虑取钱的问
题的话,情况比较多,也显得比较凌乱,难以理出头绪来. 但是如果根据组合数性质考虑剩余问题的话,就会很 容易解决问题.
2020/5/1
6
例3 在高二年级中的8个班,组织一个12个人的年级学生
分会,每班要求至少1人,名额分配方案有多少种?
分析 此题若直接去考虑的话,就会比较复杂.但如果我
们将其转换为等价的其他问题,就会显得比较清楚,方 法简单,结果容易理解.
解 此题可以转化为:将12个相同的白球分成8份,有多少种
不同的分法问题,因此须把这12个白球排成一排,在11个空 档中放上7个相同的黑球,每个空档最多放一个,即可将白球 分成8份,显然有 种不C同171 的放法,所以名额分配方案有 种.
分析 此题涉及到的是不相邻问题,并且是对老师有特殊
的要求,因此老师是特殊元素,在解决时就要特殊对待.所 涉及问题是排列问题.
解档,先共排有学7个生空共档有可插A种88,选排其法中,然的后4把个老空师档插,共入有学生种之选A间法7的4 .根空
据乘法原理,共有的不同坐法为
种. A88 A74
结论1 插空法:对于某两个元素或者几个元素要求不相邻
解 不加任何限制条件,整个排法有 种A99,“语文安排在数学
之前考”,与“数学安排在语文之前考”的排法是相等的,所
以语文安排在数学之前考的排法共有
种.
1 2
A99
结论5 对等法:在有些题目中,它的限制条件的肯定与否定
是对等的,各占全体的二分之一.在求解中只要求出全体,就
可以得到所求.
2020/5/1
n! (n m)!
4.组合数公式:
Cn m
Байду номын сангаас
An m Am m
n(n 1)(n 2) m!
(n m 1)
n!
m!(n m)!
排列与组合的区别与联系:与顺序有关的
为排列问题,与顺序无关的为组合问题.
2020/5/1
4
例1 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生之间,且老师互不相 邻,共有多少种不同的坐法?
排列组合解题技巧综合复习
教学目的
教学过程
课堂练习
课堂小结
2020/5/1
1
➢ 1.熟悉解决排列组合问题的基本方法;
➢ 2.让学生掌握基本的排列组合应用题的 解题技巧;
➢ 3.学会应用数学思想分析解决排列组合 问题.
2020/5/1
2
一 复习引入
二 新课讲授
排列组合问题在实际应用中是非常广泛的, 并且在实际中的解题方法也是比较复杂的,下面 就通过一些实例来总结实际应用中的解题技巧.
2020/5/1
8
例5 期中安排考试科目9门,语文要在数学之前考,有多
少种不同的安排顺序?
分析 对于任何一个排列问题,就其中的两个元素来讲的话,
他们的排列顺序只有两种情况,并且在整个排列中,他们出现 的机会是均等的,因此要求其中的某一种情况,能够得到全体, 那么问题就可以解决了.并且也避免了问题的复杂性.
解 因为女生要排在一起,所以可以将3个女生看成是一
个人,与5个男生作全排列,有 A种66排法,其中女生内部也有
种A排33法,根据乘法原理,共有 种不A66同A33的排法.
结论2 捆绑法:要求某几个元素必须排在一起的问题,
可以用捆绑法来解决问题.即将需要相邻的元素合并为 一个元素,再与其它元素一起作排列,同时要注意合并元 素内部也可以作排列.
例题1 例题4
例题2 例题5
例题3 例题6
2020/5/1
3
1.排列的定义: 从n个不同元素中,任取m个元素,按照一定的 顺序排成一列,叫做从n个不同元素中取出m 个元素的一个排列.
2.组合的定义: 从n个不同元素中,任取m个元素,并成一组, 叫做从n个不同元素中取出m个元素的一 个组合.
3.排列数公式: Anm n(n 1)(n 2) (n m 1)
9
例6 某班里有43位同学,从中任抽5人,正、副班长、
团支部书记至少有一人在内的抽法有多少种?
分析 此题若是直接去考虑的话,就要将问题分成好几种
情况,这样解题的话,容易造成各种情况遗漏或者重复的情 况.而如果从此问题相反的方面去考虑的话,不但容易理解, 而且在计算中也是非常的简便.这样就可以简化计算过程.
的问题,可以用插入法.即先排好没有限制条件的元素,然后 将有限制条件的元素按要求插入排好元素的空档之中即可.
2020/5/1
5
例2 5个男生3个女生排成一排,3个女生要排在一起,
有多少种不同的排法?
分析 此题涉及到的是排队问题,对于女生有特殊的限制,
因此,女生是特殊元素,并且要求她们要相邻,因此可以将 她们看成是一个元素来解决问题.
(1)分为两组,一组7人,一组5人; (2)分为甲、乙两组,甲组7人,乙组5人; (3)分为甲、乙两组,一组7人,一组5人; (4)分为甲、乙两组,每组6人; (5)分为两组,每组6人; (6)分为三组,一组5人,一组4人,一组3人; (7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人; (8)分为甲、乙、丙三组,一组5人,一组4人,一组3人; (9)分为甲、乙、丙三组,每组4人; (10)分为三组,每组4人.