实验四编码器,译码器,数码管(定稿)

合集下载

编码器译码器及数码管显示实验

编码器译码器及数码管显示实验

实验 6 编码器译码器及数码管显示实验实验数据1、测试变量译码器的逻辑功能变量译码器是一种完全译码器,它将一系列输入代码转换成与之一一对应的有效信号。

例如当输入为000时输出为第一个灯亮,输入为001时第二个灯亮,输入为111时第第8个灯亮。

2、编码、译码、显示电路的设计通过8-3编码器先将8位开关信号状态编码为二进制代码,再通过数码管显示译码器将此代码变换成相应的7位数码,驱动7位数码显示器,显示不同字符。

其中用到了预先编码的原理。

优先编码器的功能是允许同时在几个输入端有输入信号,编码器按输入信号排定的优先顺序,只对同时输入的几个信号中优先权最高的一个进行编码。

例如当D6为L、D7为H时则显示“1”,输出为001,无论其他输入信号为多少;当D5为L、D6为H、D7为H时,则显示“2”,输出为010,而不管其他开关电平输入为多少。

思考题1.总结组合逻辑电路设计的步骤和方法:组合逻辑电路的设计步骤可分为:1.根据电路功能的文字描述,将其输入与输出的逻辑关系用真值表的形式列出;2.通过逻辑化简,将真值表写出最简的逻辑函数表达式;3.选择合适的门器件,把最简的表达式转换为相应的表达式;4.根据表达式画出该电路的逻辑电路图;5.最后一步进行实物安装调试,这是最终验证设计是否正确的手段。

2、怎样判断7段数码管各引脚和显示字段的对应关系?3、3-8译码器在实际应用中的作用有哪些?译码器的输出既可以用于驱动或控制系统其他部分,也可驱动显示器,实现数字、符号的显示。

在CPU设计中,指令译码器是CPU的一部分,能将存储在指令寄存器或微程序指令中的比特转换为能控制CPU其他部分的控制信号。

8个寄存器组成的简单CPU会使用指令译码器中的3线-8线逻辑译码器来选择寄存器文件的源寄存器并输出到ALU以及目的寄存器中,以接受ALU的输出。

典型的CPU指令译码器也包括其他很多组件。

故障排除首先检查芯片的型号看是否合适,然后查看线路连接是否正确,然后检查接地和接高电平的接孔是否接好,然后按照规定的标准操作给门电路标准的电压观察其输出情况判断是否能够正常工作。

数理逻辑实验报告四

数理逻辑实验报告四

译码器与编码器的设计与仿真
一、实验内容
1.参照芯片74LS138的电路结构,用逻辑图和VHDL语言设计3-8译码器;
2.参照芯片74LS148的电路结构,用逻辑图和VHDL语言设计8-3优先编码器。

二、电路功能介绍
1.74148:8-3优先编码器(8 to 3 Priority Encoder)
用途:将各种输入信号转换成一组二进制代码,使得计算机可以
识别这一信号的作用。

键盘里就有大家天天打交道的编码器,当你敲击按键时,被敲击的按键被键盘里的编码器编码成计算机能够识别的ASCII码。

译码器与编码器的功能正好相反。

逻辑框图
逻辑功能表
逻辑表达式和逻辑图:由你来完成。

2.74138:3-8译码器(3 to 8 Demultiplexer),也叫3-8解码器
用途:用一组二进制代码来产生各种独立的输出信号,这种输出
信号可以用来执行不同的工作。

显示器中的像素点受到译码器的输出控制。

逻辑框图:用逻辑符号(Symbol)来解释该电路输入与输出信号
之间的逻辑关系,既省事又直观。

如下图所示。

逻辑功能表:用真值表来定量描述该电路的逻辑功能。

这个表是设计3-8译
码器的关键;74138的逻辑功能表如下:
注:使能端G1是高电平有效;
使能端G2是低电平有效,G2 = G2A AND G2B。

编码器和译码器实验报告

编码器和译码器实验报告

实验报告: 编码器和译码器1. 背景在信息传输和存储过程中,编码器和译码器是两个关键的组件。

编码器将信息从一个表示形式转换成另一个表示形式,而译码器则将编码的信息还原为原始的表示形式。

编码器和译码器在各种领域中都得到广泛应用,如通信系统、数据压缩、图像处理等。

编码器和译码器可以有不同的实现方式和算法。

在本次实验中,我们将研究和实现一种常见的编码器和译码器:霍夫曼编码器和译码器。

霍夫曼编码是一种基于概率的最优前缀编码方法,它将高频字符用短编码表示,低频字符用长编码表示,以达到编码效率最大化的目的。

2. 分析2.1 霍夫曼编码器霍夫曼编码器的实现包括以下几个步骤:1.统计字符出现频率:遍历待编码的文本,统计所有字符出现的频率。

2.构建霍夫曼树:根据字符频率构建霍夫曼树。

树的叶子节点代表字符,节点的权重为字符频率。

3.生成编码表:从霍夫曼树的根节点出发,遍历树的每个节点,记录每个字符对应的编码路径。

路径的左移表示0,右移表示1。

4.编码文本:遍历待编码的文本,将每个字符根据编码表进行编码,得到编码后的二进制序列。

2.2 霍夫曼译码器霍夫曼译码器的实现包括以下几个步骤:1.构建霍夫曼树:根据编码器生成的编码表,构建霍夫曼树。

2.译码二进制序列:根据霍夫曼树和待译码的二进制序列,从根节点开始遍历每个二进制位。

当遇到叶子节点时,将对应的字符输出,并从根节点重新开始遍历。

3.重建原始文本:将译码得到的字符逐个组合,得到原始的文本。

3. 结果经过以上的实现和测试,我们获得了如下的结果:•对于给定的文本,我们成功地根据霍夫曼编码器生成了对应的霍夫曼编码表,并编码了文本生成了相应的二进制序列。

•对于给定的二进制序列,我们成功地根据霍夫曼译码器进行了译码,并将译码得到的字符逐个组合,得到了原始的文本。

实验结果显示,霍夫曼编码器和译码器能够有效地将文本进行压缩和恢复,达到了编码效率最大化和数据传输压缩的目的。

编码后的文本长度大大减小,而译码后的原始文本与编码前几乎完全一致。

数字逻辑实验《译码器编码器》

数字逻辑实验《译码器编码器》

实验四 编码器和译码器一、实验目的1、熟悉常用组合逻辑器件,并测试其逻辑功能。

2、了解集成译码器应用。

3、掌握用逻辑门实现不同的组合逻辑电路。

二、实验仪器及材料 1、双踪示波器2、器件74LS138 2—4线译码器 1片 74LS153 双4选一数据选择器 1片 三、实验内容1、2线——4线译码器功能测试74LS138译码器按图1-1接线,按表1-1输入电平分别置位,填输出状态表1-1.表1-174LS318 图1-1输入输出使能端 输入端 G 1G 2C B AY 0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6Y 7 X H × × × H H H H H H H H L X × × × H H H H H H H H H L L L L L H H H H H H HH L L L H H L H H H H H H H L L H L H H L H H H H H H L L H H H H H L H H H H H L H L L H H H H L H H H H L H L H H H H H H L H H H L H H L H H H H H H L H H L H H H H H H H H H H L 专业班级: 姓名学号:G 1 G 2AG 2BY 0Y 1 Y 2Y 3Y 4 Y 5实验线路图如下:译码器功能测试接线图A BC2、数据选择器的测试及应用(1)将双4选1数据选择器74LS153参照图2-2接线,测试其功能并填写功能表2-2。

图2-2逻辑74LS153电平←1―1G +5v ___16___←2―B 2G ___15__1KHZ__3__ 1C3 A ___14___100HZ__4__ 1C2 2C3 ___13___10HZ__5__ 1C1 2C2 ___12___1HZ__6__ 1C0 2C1 ___11_____7__ 1Y 2C0 ___10___示波器__8__ GND 2Y __9____(1)将学习机脉冲信号源中固定连续脉冲4个不同频率的信号接到数据选择器4个输入端,将选择端置位,使输出端可分别观察到4种不同频率脉冲信号。

编码器和译码器实验报告

编码器和译码器实验报告

编码器和译码器实验报告一、实验目的本次实验的主要目的是了解编码器和译码器的工作原理,掌握它们的应用方法,以及通过实际操作加深对它们的理解。

二、实验原理1. 编码器编码器是将输入信号转换为不同形式输出信号的电路。

常见的编码器有二进制编码器、格雷码编码器等。

其中,二进制编码器将输入信号转换为二进制数输出,而格雷码编码器则将输入信号转换为格雷码输出。

2. 译码器译码器是将输入信号转换为相应输出信号的电路。

常见的译码器有二进制译码器、BCD译码器等。

其中,二进制译码器将输入信号转换为相应位置上为1的二进制数输出,而BCD译码器则将4位二进制数转换为相应十进制数输出。

三、实验步骤1. 实验材料准备:编码开关、LED灯、电源线等。

2. 搭建编码-解码电路:将编码开关接入编码器输入端,并将LED灯接入对应位置的解码器输出端。

3. 进行测试:打开电源后,在编码开关上随意调整开关状态,观察LED灯是否能够正确显示对应的输出状态。

4. 实验记录:记录每次调整开关状态后LED灯的输出状态,以及对应的二进制数或十进制数。

四、实验结果与分析经过实验,我们得到了以下结果:1. 二进制编码器测试结果:编码开关状态 | 输出LED灯状态 | 二进制数---|---|---0000 | 0001 | 00000001 | 0010 | 00010010 | 0100 | 00100011 | 1000 | 00110100 | 0001 | 01000101 | 0010 | 01010110 | 0100 | 01100111 | 1000 | 0111从上表中可以看出,二进制编码器将输入的四位开关状态转换为相应的四位二进制数输出。

2. BCD译码器测试结果:编码开关状态(二进制)| 输出LED灯状态(十进制)---|---0000-1001(十进制)| 对应数字的十进制形式从上表中可以看出,BCD译码器将输入的4位二进制数转换为相应的十进制数字输出。

实验四 译码显示电路

实验四 译码显示电路

实验四译码显示电路 The Standardization Office was revised on the afternoon of December 13, 2020实验四译码显示电路一、实验目的:1、掌握中规模集成译码器的逻辑功能和使用方法2、熟悉数码管的使用二、实验仪器及器件:三、实验步骤及结果1、按表(二)测试74LS1940测试结果略2、实现四节拍顺序脉冲发生器(1)实验电路图及74LS194功能表图(一)表(二)74LS194功能表(2)实验结果(3)实验波形(Q3 Q2 Q1 Q0分别代表Q D Q C Q B Q A) Q3 Q3与Q2Q3与Q1 Q3与Q03、按图(四)实现四位扫描译码显示电路。

采用内容(2)顺序脉冲作为D s 信号。

8421BCD 码用逻辑模拟开关输入。

自行设计伪码灭灯电路,使正常输入BCD 码时输出为“1",伪码输入时灭灯。

(1) 设计伪码灭灯电路及其电路图f(A)=(A3(A2’A1’)’)’(2) 四位扫描译码显示电路原理图A1A0 A3A200 01 11 10 00 1 1 1 1 01 1 1 1 1 11 0 0 0 0 1011(3)实验预期结果(LED显示)(由于实验箱损坏,实验时无法得到正确的LED数码管的显示数字,这里仅用预期结果表示)4、自行设计电路在4联装LED数码管同时显示出4个不同的0-7的数字。

使用74LS48上的L1S(Gi)’(i=1,2,3,4)端口。

要使第i个显示器显示i,接逻辑电路Yi,使得Yi只有在Ai表示i时为0,其他时候均为1,将之接为L1S(Gj)’=0(j=i,0表示有效),L1S(Gj)’=1(j≠i)电路图如下:四、心得这次实验电路相对比较复杂,线路较多,容易连错,在失败一次后,终于成功得到了正确的实验结果,并调出了实验波形。

唯一可惜的是,由于实验箱LED数码显示管故障,无法显示最后结果,比较遗憾。

译码器和编码器实验报告

译码器和编码器实验报告

译码器和编码器实验报告一、实验目的。

本实验旨在通过对译码器和编码器的实验操作,加深对数字通信原理中编码解码技术的理解,掌握其工作原理和实际应用。

二、实验原理。

1. 译码器。

译码器是一种将数字信号转换为模拟信号或者模拟信号转换为数字信号的设备。

在数字通信系统中,译码器通常用于将数字信号转换为模拟信号,以便在模拟信道上传输。

在接收端,译码器将模拟信号转换为数字信号,以便进行数字信号处理和解码。

2. 编码器。

编码器是一种将数字信号转换为另一种数字信号的设备。

在数字通信系统中,编码器通常用于将数字信号转换为便于传输和存储的编码形式,以提高传输效率和数据安全性。

三、实验内容。

1. 实验仪器与材料。

本实验使用的仪器包括译码器、编码器、示波器、信号发生器等。

实验材料包括数字信号发生器、示波器连接线等。

2. 实验步骤。

(1)连接实验仪器,将数字信号发生器连接到编码器的输入端,将编码器的输出端连接到译码器的输入端,再将译码器的输出端连接到示波器。

(2)设置实验参数,调节数字信号发生器的频率和幅度,设置编码器和译码器的工作模式和参数。

(3)观察实验现象,通过示波器观察编码器和译码器的输入输出波形,记录实验数据。

(4)分析实验结果,根据实验数据分析编码器和译码器的工作原理和特性,总结实验结果。

四、实验结果与分析。

通过本次实验,我们成功观察到了编码器和译码器的输入输出波形,并记录了相应的实验数据。

通过分析实验结果,我们深入理解了译码器和编码器的工作原理和特性,对数字通信原理有了更深入的认识。

五、实验总结。

本次实验通过实际操作加深了我们对译码器和编码器的理解,提高了我们的实验操作能力和数据分析能力。

译码器和编码器作为数字通信系统中重要的组成部分,对数字信号的处理和传输起着至关重要的作用,我们应进一步深入学习和掌握其原理和应用。

六、实验心得。

通过本次实验,我们不仅学习到了译码器和编码器的工作原理,还提高了实验操作和数据分析的能力。

编码器、译码器及数码管显示实验(肖思文)

编码器、译码器及数码管显示实验(肖思文)

学院:信息科学与工程学院
专业班级:物联网工程1001
姓名:肖思文 学号:20100810324
编码器、译码器及数码管显示实验实验
报告
基本知识点:
1、组合逻辑电路的分析测试、设计方法和步骤
2、编码器、译码器等常用中规模集成电路的性能及使用方法
3、数码显示、译码器的应用
实验过程:
1、测试变量译码器的逻辑功能
(1)、电路图如图
实验结论:实验现象符合实验预期的结果,实验正确。

2.编码、译码、显示电路的设计
(1)、电路图如图:
此实验在做的过程中还是遇到一点小问题,后来发现是实验导线的问题,后来还是自己完成了。

能够正确的显示了实验结果。

实验总结:
由于这次实验相对于比较简单,做起来也比较顺手,所以实验做的比较快,但是由于对于动态显示不是很清楚和明白,所以在那个地方花了稍微比较多一点的时间去弄懂,这个实验同时加深了自己对实验箱上面连线组成逻辑电路理解。

译码器和编码器实验报告

译码器和编码器实验报告

译码器和编码器实验报告实验报告:译码器和编码器实验目的:1.了解数字电路中译码器和编码器的原理。

2.通过实验了解译码器和编码器的工作过程。

3.锻炼实验操作能力。

实验器材:1.数字实验箱。

2.74LS147译码器芯片。

3.74LS148编码器芯片。

4.连线电缆。

5.电源。

实验原理:1.译码器的作用是将输入的数字信号转换成特定的输出信号。

2.编码器的作用是将特定的输入信号转换成数字信号。

3.74LS147是一个10到4行BCD译码器,输入BCD码,输出对应的十进制数。

4.74LS148是一个4到10行BCD编码器,输入对应的十进制数,输出对应的BCD码。

实验步骤:1.搭建74LS147译码器电路。

2.输入BCD码,记录输出的十进制数。

3.搭建74LS148编码器电路。

4.输入十进制数,记录输出的BCD码。

实验结果:1.输入BCD码1111,输出的十进制数字为15。

2.输入BCD码0001,输出的十进制数字为1。

3.输入十进制数字9,输出的BCD码为1001。

4.输入十进制数字3,输出的BCD码为0011。

实验结论:1.通过本次实验,我们成功了解了数字电路中译码器和编码器的原理和工作过程,掌握了实验操作技能。

2.74LS147译码器芯片的作用是输入BCD码,输出对应的十进制数;74LS148编码器芯片的作用是输入对应的十进制数,输出对应的BCD码。

3.译码器和编码器是数字电路中常用的组件,广泛应用于计算机、通信等各个领域,对现代生产和生活产生了巨大的影响。

4.数字电路是计算机科学中非常重要的基础,通过实验学习数字电路的原理和工作方式,有助于我们更好地理解计算机的工作原理,同时也有助于锻炼我们的实验操作能力。

译码器、编码器及其应用实验报告

译码器、编码器及其应用实验报告

译码器、编码器及其应用实验报告实验四译码器、编码器及其应用实验人员:班号:学号:一、实验目的(1) 掌握中规模集成译码器的逻辑功能和使用方法;(2) 熟悉掌握集成译码器和编码器的应用;(3) 掌握集成译码器的扩展方法。

二、实验设备数字电路实验箱,74LS20,74LS138。

三、实验内容(1) 74LS138译码器逻辑功能的测试。

将74LS138输出接数字实验箱LED管,地址输入接实验箱开关,使能端接固定电平(或GND)。

电路图如Figure 1所示:Figure 2时,任意拨动开关,观察LED显示状态,记录观察结果。

时,按二进制顺序拨动开关,观察LED显示状态,并与功能表对照,记录观察结果。

用Multisim进行仿真,电路如Figure 3所示。

将结果与上面实验结果对照。

Figure 4(2) 利用3-8译码器74LS138和与非门74LS20实现函数:四输入与非门74LS20的管脚图如下:对函数表达式进行化简:按Figure 5所示的电路连接。

并用Multisim进行仿真,将结果对比。

Figure 6(3) 用两片74LS138组成4-16线译码器。

因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。

而输入端只有三个,故要另用使能端进行片选使两片138译码器进行分时工作。

而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试,在各端子上移动即可。

在multisim中仿真电路连接如Figure 7所示(实验台上的电路没有接下面的两个8灯LED):Figure 8四、实验结果(1) 74LS138译码器逻辑功能的测试。

当输入时,应该是输出低电平,故应该第一个小灯亮。

实际用实验台测试时,LE0灯显示如Figure 9所示。

当输入时,应该是输出低电平,故理论上应该第二个小灯亮。

实际用实验台测试时,LE0灯显示如Figure 6所示。

Figure 10Figure 11同理进行其他的测试。

实验四-编码器-和译码器电路仿真实验

实验四-编码器-和译码器电路仿真实验

实验四编码器、译码器电路仿真实验一、实验目的1、掌握编码器、译码器的工作原理。

2、常见编码器、译码器的应用。

二、实验原理数字信号不仅可以用来表示数,还可以用来表示各种指令和信息。

所谓编码是指在选定的一系列二进制数码中,赋予每个二进制数码以某一固定含义。

例如,用二进制数码表示十六进制数叫做二-十六进制编码。

能完成编码功能的电路统称为编码器。

74LS148D是常用的八-三优先编码器。

在八个输入线上可以同时出现几个有效输入信号,但只对其中优先权最高的一个有效输入信号进行编码。

其中7端优先权最高,0端优先权最低,其他端的优先权按照脚号的递减顺去排列。

~E1为选通输入端,低电平有效,只有~EI=0时,编码器正常工作,而在~EI=1时,所有的输出端均被封锁。

E0为选通输出端,GS为优先标志端。

该编码器输入、输出均为低电平有效。

译码是编码的逆过程,将输入的每个二进制代码赋予的含义“翻译”过来,给出相应的输出信号。

能够完成译码功能的电路叫做译码器。

74LS138D属于三-八线译码器,该译码器输入高电平有效,输出低电平有效。

三、实验步骤1、8-3线优先编码器:如下图所示连接电路:切换9个单刀双掷开关进行仿真实验,将结果记录入下表中,输入端“1”表示高电平,“0”表示低电平,“X”表示高低电平都可以。

输出端中的“1”表示探测器亮,“0”表示探测器灭。

该编码器输入、输出均为低电平有效。

2、3-8线译码器实验步骤如下图所示连接电路切换3个单刀双掷开关进行仿真实验,实验结果记录如下表中。

输入端中的“1”表示接高电平,“0”表示接地电平。

输出端中的“1”表示探测器亮,“0”表示探测器灭。

该译码器输入高电平有效,输出低电平有效。

四、思考题:(1)利用两块8-3线优先编码器74LS148D设计16-4线优先编码电路,然后仿真实验验证16-4线优先编码的逻辑功能。

实验线路如图:真值表如图所示:(2)利用两块3-8线译码器74LS138D设计4-16线译码器,然后仿真验证4-16线译码逻辑功能。

编码器 译码器实验报告

编码器 译码器实验报告

编码器译码器实验报告编码器和译码器实验报告引言编码器和译码器是数字电路中常见的重要组件,它们在信息传输和处理中起着至关重要的作用。

本实验旨在通过实际操作和观察,深入了解编码器和译码器的原理、工作方式以及应用场景。

实验一:编码器编码器是一种将多个输入信号转换为较少数量输出信号的电路。

在本实验中,我们使用了4-2编码器作为示例。

1. 实验目的掌握4-2编码器的工作原理和应用场景。

2. 实验器材- 4-2编码器芯片- 开发板- 连接线3. 实验步骤首先,将4-2编码器芯片插入开发板上的对应插槽。

然后,使用连接线将编码器的输入引脚与开发板上的开关连接,将输出引脚与数码管连接。

接下来,按照编码器的真值表,将开关设置为不同的组合,观察数码管上显示的输出结果。

记录下每种输入组合对应的输出结果。

4. 实验结果与分析通过观察实验结果,我们可以发现4-2编码器的工作原理。

它将4个输入信号转换为2个输出信号,其中每个输入组合对应唯一的输出组合。

这种编码方式可以有效地减少输出信号的数量,提高信息传输的效率。

实验二:译码器译码器是一种将少量输入信号转换为较多数量输出信号的电路。

在本实验中,我们使用了2-4译码器作为示例。

1. 实验目的掌握2-4译码器的工作原理和应用场景。

2. 实验器材- 2-4译码器芯片- 开发板- 连接线3. 实验步骤首先,将2-4译码器芯片插入开发板上的对应插槽。

然后,使用连接线将译码器的输入引脚与开发板上的开关连接,将输出引脚与LED灯连接。

接下来,按照译码器的真值表,将开关设置为不同的组合,观察LED灯的亮灭情况。

记录下每种输入组合对应的输出结果。

4. 实验结果与分析通过观察实验结果,我们可以发现2-4译码器的工作原理。

它将2个输入信号转换为4个输出信号,其中每个输入组合对应唯一的输出组合。

这种译码方式可以实现多对一的映射关系,方便信号的解码和处理。

实验三:编码器和译码器的应用编码器和译码器在数字电路中有广泛的应用场景。

译码器和编码器实验报告

译码器和编码器实验报告

译码器和编码器实验报告译码器和编码器实验报告引言:在现代通信系统中,信息的传输是非常重要的。

为了确保信息的准确性和完整性,在信号传输过程中,编码和解码起着至关重要的作用。

本实验旨在研究和探索译码器和编码器的工作原理以及它们在通信中的应用。

一、实验目的本实验的主要目的是理解和掌握译码器和编码器的基本原理,并通过实际操作来验证其工作过程。

通过这个实验,我们将能够深入了解编码和解码技术在信息传输中的重要性。

二、实验材料和方法1. 实验材料:- 译码器芯片- 编码器芯片- 逻辑门芯片- 电路板- 连接线- 电源2. 实验方法:- 将译码器和编码器芯片与逻辑门芯片连接到电路板上。

- 使用连接线将电路板与电源连接。

- 输入不同的数据信号,观察译码器和编码器的输出结果。

三、实验结果在实验过程中,我们使用了不同的输入信号,并观察了译码器和编码器的输出结果。

通过实验,我们发现译码器和编码器在信息传输中起着至关重要的作用。

译码器的作用是将编码后的信号转换回原始信号。

通过输入编码后的信号,译码器能够识别并还原原始信号。

实验中,我们使用了七段译码器,将二进制编码转换为七段显示器上的数字。

通过输入不同的二进制编码,我们观察到七段显示器上显示的数字与输入编码一致。

编码器的作用是将原始信号转换为编码后的信号。

实验中,我们使用了十进制到四位二进制编码器。

通过输入不同的十进制数字,我们观察到编码器输出的二进制编码与输入数字相对应。

通过实验结果,我们可以得出结论:译码器和编码器在信息传输中起着至关重要的作用,它们能够确保信息的准确性和完整性。

四、实验分析与讨论译码器和编码器在现代通信系统中扮演着重要的角色。

在数字通信中,信息常以二进制的形式进行传输。

通过使用编码器,我们可以将原始信号转换为二进制编码,从而方便传输和处理。

而译码器则能够将编码后的信号还原为原始信号,以便接收方能够正确理解和解读信息。

除了在数字通信中的应用,译码器和编码器还在许多其他领域中发挥着重要作用。

实验4组合逻辑电路设计(编码器和译码器)

实验4组合逻辑电路设计(编码器和译码器)

实验四组合逻辑电路设计(编码器和译码器)一、【实验目的】1、验证编码器、译码器的逻辑功能。

2、熟悉常用编码器、译码器的逻辑功能。

二、【实验原理】1.编码器编码器是组合电路的一部分,就是实现编码操作的电路,编码实际上是和译码相反的过程。

按照被编码信号的不同特点和要求,编码也分成三类:(1)二进制编码器:如用门电路构成的4-2线,8-3线编码器等。

(2)二—十进制编码器:将十进制0~9编程BCD码,如10线十进制-4线BCD码编码器74LS147等。

(3)优先编码器:如8-3线优先编码器74LS148等。

2.译码器译码器是组合电路的一部分。

所谓译码,就是把代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。

译码器分成三类:(1)二进制译码器:如中规模2-4线译码器74LS139,3-8线译码器74LS138等。

(2)二—十进制译码器:实现各种代码之间的转换,如BCD码——十进制译码器74LS145等。

(3)显示译码器:用来驱动各种数字显示器,如共阴数码管译码器驱动74LS48,共阳数码管译码驱动74LS47等。

三、【实验内容与步骤】1.编码器实验将10—4线(十进制—BCD码)编码器74LS147集成片插入IC空插座中,管脚排列如下图4-1所示。

按下图4-2接线,其中输入端1~9通过开关接高低电平(开关开为“1”、开关关为“0”),输出QD、QC、QB、QA接LED发光二极管。

接通电源,按表输入各逻辑电平,观察输出结果并填入表4-1中。

图4-1 74LS147集成芯片管脚分布图图4-1 10—4线(十进制—BCD码)编码器接线图表4-1十进制—BCD码编码器功能表输入输出1 2 3 4 5 6 7 8 9 QD QC QB QA 1 1 1 1 1 1 1 1 1 1 1 1 1 ××××××××0×××××××0 1××××××0 1 1×××××0 1 1 1××××0 1 1 1 1×××0 1 1 1 1 1××0 1 1 1 1 1 1×0 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1注:表中×为状态随意。

硬器件实验报告6——编码器、译码器及数码管显示实验

硬器件实验报告6——编码器、译码器及数码管显示实验

2.6编码器、译码器及数码管显示实验2.4.1 基本知识点1. 组合逻辑电路的分析测试。

2.编码器、译码器等常用中规模集成电路的性能及使用方法。

3.数码显示、译码器的应用。

2.4.2 实验仪器与元器件(1)HBE硬件基础电路试验箱。

(2)元器件:74LS48、74LS138、74LS148等。

2.4.3 实验概述1.编码器编码是指赋予选定的一系列二进制代码以固定的含义。

LS148为8-3线优先编码器,8个输入为D0~D7,8个状态,与之相对应的输出为A0,A1,A2,共3位二进制数。

2. 译码器译码器是编码器的逆过程,即将某二进制翻译成电路的某种状态。

它把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。

2.4.4 实验内容1.测试译码器的逻辑功能根据上图,可以得出3-8译码器的真值表为:使能输入输出G1 G2a G2b C B A Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y00 ×××××111111111 1 0 ×××11111111 1 0 1 ××× 1 1 1 1 1 1 1 1 1 1 1 ××× 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 11 0 0 1 0 0 1 1 1 0 1 1 1 11 0 0 1 0 1 1 1 0 1 1 1 1 11 0 0 1 1 0 1 0 1 1 1 1 1 11 0 0 1 1 1 0 1 1 1 1 1 1 1 验证此译码器的逻辑功能,,根据如下电路图,连接电路:其中,开关k1,k2,k3可以接在输出电平的1、2、3三个二极管处,如果二极管亮,则代表输入为+5v,如果不亮,即输入为低电平,则表示输入接地。

器件译码器编码器及数码管显示实验报告

器件译码器编码器及数码管显示实验报告

ck a b g f 译码器编码器及数码管显示实验一、实验目的(1)掌握组合逻辑电路的分析测试、设计方法和步骤;(2)掌握编码器、译码器等常用中规模集成电路的性能及使用方法; (3)掌握数码显示、译码器的应用。

二、实验仪器与元器件 (1)HBE 硬件基础电路实验箱; (2)元器件:74LS138、74LS148。

三、实验概述(1)编码编码是指赋予选定的一系列二进制代码以固定的含义。

74LS148(8-3编码器)为8-3线优先编码器,8个输入端为D 0-D 7,8种状态,与之对应的输出为A 0、A 1、A 2,共三位二进制数。

(2)译码译码是编码的逆过程,即将某二进制翻译成电路的某种状态。

在数字电路中译码器是一种应用广泛的多输入、多输出的组合逻辑电路。

它是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。

通常译码器可分为通用译码器和显示译码器两大类。

前者又分为变量译码器和代码变换译码器。

(3)数码显示译码器LED 数码管是目前最常用的数字显示器,下图为共阴管和共阳管的电路及两种不同出现形式的引出脚功能图。

共阴数码管连接电路 共阳数码管连接电路a b e d c h cka b g f a b e d c hckck共阴极符号及引脚功能 共阳极符号及引脚功能四、实验内容1.测试变量译码器的逻辑功能(1)根据74LS138的逻辑,写出各输出端的逻辑表达式,列出真值表,根据真值表对逻辑电路进行测试,验证其功能。

由图2-6-3可知逻辑表达式:Y 0=ABC ,Y 1=ABC ,Y 2=ABC ,Y 3=ABC ,Y 4=ABC ,Y 5=ABC ,Y 6=ABC ,Y 7=ABC 。

真值表: A B C Y 0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 11111111a b gchdef a bgch def1 0 1 1 1 1 1 1 0 1 11 1 0 1 1 1 0 1 1 1 11 1 1 1 1 1 1 1 1 1 0分析:由于A、B、C之间是与、非的关系,对于不同的A、B、C的值,只会有一种情况是0。

实验四译码显示电路

实验四译码显示电路

中山大学学院:数据科学与计算机学院实验题目:译码显示电路一、实验目的1. 掌握中规模集成译码器的逻辑功能和使用方法2. 熟悉数码管的使用二、实验仪器及器件74LS48, 74LS194 , 74LS73,74LS00,74LS197, 74LS138, 以及各种门电路三、实验原理1. 数码显示译码器BCD码七段译码驱动器-----74LS48,用来驱动共阴极 LED数码管。

2. 扫描式显示利用数码管的余辉效应和人眼的视觉暂留效应,虽然在某一时刻只有一个数码管在显示,但人眼看到的是多个数码管“同时”被点亮的效果。

由选通信号控制多路开关,先后送出(由高位到低位或由低位到高位)一位十进制的BCD码3. 四节拍发生器扫描显示要求数码管按先后顺序显示。

这就要求如图所示的选通信号。

通常该类型的信号称为节拍信号。

图中 74LS194 为移位寄存器。

它具有左移、右移, Cr 反 S1 S0 工作状态0 X X 置零 1 0 0 保持 1 0 1 右移 1 1 0 左移 1 1 1 并行送数 并行送数、保持及清除等五项功能。

其引脚图如图(六) 所示。

其中Cr 为清除端,CP 为时钟输入端,S 0、S 1为状 态控制端,D SR 为右移数据串行输入端,D SL 为左移数据 输入端,D 0、D 1、D 2、D 3位并行数据输入端,QA 、QB 、 QC 、QD 为数据输出端。

节拍发生器工作开始时,必须首先进行清零。

当 Cr 负脉冲过后 QA 、QB 、 QC 、QD 全为零。

JK 触发器Q =1,因而 S 1=S 0=1,实现并行送数。

当第一个脉冲的上升沿到达后,置入 0111,CP 下降沿到达后Q =0,即 S 1=0, S 0=1,实现右移功能。

在 CP 作用下输出依次为 1011,1101,1110,第四个 CP 下降沿到达后又使 Q=1,实现第二个循环。

四、实验内容 1.使用 74LS194,74LS73,74LS48,基础逻辑门和两个四联装的共阴极数码管, 实现本人学号的显示。

编码器、译码器的功能测试及应用

编码器、译码器的功能测试及应用

学生实验报告学院:课程名称:数字电路实验与设计专业班级:姓名:学号:学生实验报告(一)学生姓名学号同组人: 实验项目编码器、译码器的功能测试及应用■必修□选修□演示性实验■验证性实验□操作性实验□综合性实验实验地点W105 实验仪器台号指导教师实验日期及节次一、实验综述1. 实验目的:(1)了解编码器、译码器和数码管的管脚排列和管脚功能。

(2)掌握编码器、译码器和数码管的性能和使用方法。

2. 实验所用仪器及元器件:(1)示波器、信号源、万用表、数字实验箱和电脑。

(2)集成电路TTL74LS147、TTL74LS148、TTL74LS47、TTL74LS04、电阻和电位器等。

3. 实验原理:(1) 10- 4线优先编码器74HC14774HC147外引线排列如图1所示,逻辑符号如图2所示。

图1 74HC147外引脚排列图图2 74HC147逻辑符号如图74HC147有9路输入信号,4位BCD码输出,因输出端带圈,所以输入输出均为低电平有效。

他将0—9十个十进制数编成4位BCD码,可把输入端的9路输入信号和隐含的不变信号按优先级进行编码,且优先级别高的排斥级别低的。

当输入端都无效时,隐含着对0路信号进行编码(输出采用反码输出)。

74HC147的功能见表1。

表1 10- 4线优先编码器74HC147输入输出I2I3I4I5I6I7I8I9I3Y2Y1Y0Y1H H H H H H H H H H H H H××××××××L L H H L×××××××L H L H H H××××××L H H H L L L×××××L H H H H L L H××××L H H H H H L H L×××L H H H H H H L H H××L H H H H H H H H L L×L H H H H H H H H H L HL H H H H H H H H H H H L (2) 8-3线优先编码器74LS14874LS148是8-3线优先编码器逻辑符号如图3,外引线排列如图4所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四编码器、译码器、数码管
一、实验目的
1.掌握编码器、译码器和七段数码管的工作原理和特点。

2.熟悉常用编码器、译码器、七段数码管的逻辑功能和他们的典型应用。

3. 熟悉“数字拨码器”(即“拨码开关”)的使用。

二、实验器材
1. 数字实验箱 1台
2. 集成电路:74LS139、 74LS248、 74LS145、 74LS147、 74LS148 各1片
74LS138 2片
3. 电阻: 200Ω 14个
4. 七段显示数码管:LTS—547RF 1个
三、预习要求
1.复习编码器、译码器和七段数码管的工作原理和设计方法。

2. 熟悉实验中所用编码器、译码器、七段数码管集成电路的管脚排列和逻辑功能。

3. 画好实验用逻辑表。

四、实验原理和电路
按照逻辑功能的不同特点,常把数字电路分成两大类:一类叫做组合逻辑电路,另一类叫做时序逻辑电路。

组合逻辑电路在任何时刻其输出信号的稳态值,仅决定于该时刻各个输人端信号的取值组合。

在这种电路中,输入信号作用以前电路的状态对输出信号无影响。

通常,组合逻辑电路由门电路组成。

(一)组合逻辑电路的分析方法:
a.根据逻辑图,逐级写出函数表达式。

b.进行化简:用公式法或图形法进行化简、归纳。

必要时,画出真值表分析逻辑功能。

(二)组合逻辑电路的设计方法:
从给定逻辑要求出发,求出逻辑图。

一般分以下四步进行。

a.分析要求:将问题分析清楚,理清哪些是输入变量,哪些是输出函数。

进行逻辑变量定义(即定义字母A、B、C、D ……所代表的具体事物)。

b. 根据要求的输入、输出关系,列出真值表。

c. 进行化简:变量比较少时,用图形法;变量多时,可用公式法化简。

化简后,得出逻辑式。

d. 画逻辑图:按逻辑式画出逻辑图。

进行上述四步工作,设计已基本完成,但还需选择元件——数字集成电路,进行实验论证。

值得注意的是,这些步骤的顺序并不是固定不变的,实际设计时,应根据具体情况和问题难易程度进行取舍。

(三)常用组合逻辑电路:
1.编码器
编码器是一种常用的组合逻辑电路,用于实现编码操作。

编码操作就是将具体的事物或状态表示成所需代码的过程。

按照所需编码的不同特点和要求,编码器主要分成二类:
普通编码器和优先编码器。

普通编码器:电路结构简单,一般用于产生二进制编码。

包括: a .二进制编码器:如用门电路构成的4—2线,8—3线编码器等。

b .二一十进制编码器:将十进制的0~9编成BCD 码,
优先编码器:当有一个以上的输入端同时输入信号时,普通编码器的输出编码会造成混乱。

为解决这一问题,需采用优先编码器。

如8线—3线集成二进制优先编码器74LS148、10线—4线集成BCD 码优先编码器74LS147等。

2.译码器
译码器也是一种组合逻辑电路。

所谓译码,就是把代码的特定含义“翻译”出来的过程。

实现译码操作的电路称为译码器。

译码器分成两类:
状态译码器:将代码所代表的事物和状态“翻译”出来的译码器。

常用的状态译码器有:集成二进制译码器:2线—4线译码器74LS139,3线—8线译码器74LS138;二—十进制译码器(BCD 码—十进制)74LS145等。

显示译码器:将代码“翻译”成七段数码管的显示码,用来驱动各种数字显示器,如共阴极数码管译码驱动器74LS48和74LS248,共阳数码管译码驱动74LS47和74LS247等。

三、实验容及步骤
(一)译码器实验
1.状态译码实验:
① 将2线-4线译码器74LS139和3线-8译码器74LS138分别插入实验箱的IC 插座中。

② 按图3.1接线,输入G 、B 、A 信号,观察LED 输出 Y 0、Y 1、Y 2、Y 3的状态,并将结果填人表 3.1 中。

(G 是使能端)
③ 按图3.2接线,输入G1、G2A 、G2B 、A 、B 、C 信号,观察LED 输出Y 0~Y 7。

当使能信号G 1、G 2A 、G 2B 满足表3.2条件时,译码器选通。

(G 1、G 2A 、G 2B 是使能端)

3.1 74LS139 2-4线译码器 实验电路
逻逻逻逻K1K2K3
VCC
LED
.
VCC Y0Y1Y2Y3
G B
A
GND 1645
678
231
1/2 74LS139图 3.2 74LS138 3-8线译码器
实验电路
④ 译码器扩展,用一片74LS139双2一4线译码器可接成 3—8线译码器。

用两片74LS138 3—8线译码器可组成 4—16线译码器,按图3.3接线,即可完成2—4线、3一8线译码器的扩展。

同样的方法,可
完成更多的N →2N 译码器的扩展功能。

⑤ BCD 码—十进制译码器实验
将BCD 码—十进制译码器74LSl45插入实验箱中,按图3.4接线。

其中BCD 码用数字实验箱的8421码拨码开关产生(8421拨码开关的工作原理见附录E ),74LS145的译码输出Y 0~Y 9与发光二极管LED 相连。

按动拨码开关,观察译码器输出指示灯LED 的显示位置是否和拨码开关所指示的十进制数字一致。

(注:拨码开关的输出端A 、B 、C 、D 也可接到数字
Y0Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10Y11Y12Y13Y14Y15
'
箱的输出指示灯上,以便观察拨码开关的输出BCD 码值)。

2.显示译码实验
将显示译码驱动集成电路74LS248(或74LS48)和共阴极数码管插入实验箱空IC 插座中, 按图3.5接线。

图3.6为共阴极数码管LTS-547RF 管脚排列图(字面向上)。

接通电源后,观察数码管显示结果是否和拨码开关指示数据一致,记录结果。

如不用8421拨码开关,也可用四位逻辑开关代替。

说明:
a. 74LS48和74LS248的引脚和使用方法完全相同,显示字型略有不同。

74LS248较好。

b. 7段数码管部由发光二极管(LED )组成字型的笔画。

根据LED 的连接方式不同分成共阴型和共阳型两种。

共阴型7段数码管中全部LED 的阴(负)极连接在一起;共阳型7段数码管中全部LED 的阳(正)极连接在一起。

在使用时要正确选择。

c. 7段数码管的dp 为小数点(decimal point ),不参加译码。

G 为公共极,共阳或共阴,两个G 脚部相连。

(二)编码器实验
1.普通编码器实验:根据图3.7所示电路,使用4输入与非门74LS20 组成8—3线普通编码器,其输入接8位逻辑开关,输出A 、B 、C 接输出指示灯LED 。

每个输入信号以低电平为有效信号。

其输入/输出的逻辑关系为:
.
图3.6 7段数码管接脚图
图3.5 显示译码实验电路
00
.
Y 0 = 7531I I I I ⋅⋅⋅ Y 1 = 7
632I I I I ⋅⋅⋅
Y 2 = 7654I I I I ⋅⋅⋅
h g f e ⋅⋅⋅ 由上式可列出真值表如表3.3
所示。

进行实验验证。

表3.3 编码器的真值表
2.10—4线集成优先编码器实验:
将10—4线(十进制—BCD 码)集成优先编码器74LS147插入实验系统IC 空插座中,按照图3.8接线。

其输入接逻辑开关,输出D 、C 、B 、A 接四个输出指示灯LED 。

接通电源,按表3.4要求输入逻辑0—1电平,观察输出结果并填入表3.4中。

(见下页)
3.8—3线集成优先编码器实验:将8—3线集成优先编码器74LS148按上述同样方法进行实验论证。

其接线如图3.9所示。

功能表见表3.5 。

(见下页)
图3.7 与非门组成的编码器实验线路图
六、实验报告要求
1. 整理实验线路图和实验数据、表格。

2. 总结集成电路进行电路扩展的方法。

3. 比较用门电路组成组合逻辑电路和应用专用集成电路各有什么优、缺点。

相关文档
最新文档