一、事件与概率(答案)

合集下载

事件的概率试题及答案

事件的概率试题及答案

事件的概率试题及答案1. 单选题:如果一个骰子被公平地掷出,那么掷出偶数的概率是多少?A. 1/2B. 1/3C. 3/8D. 1/6答案:A2. 多选题:以下哪些事件是互斥的?A. 掷一枚硬币得到正面或反面B. 掷骰子得到1或得到6C. 掷骰子得到奇数或得到偶数D. 掷骰子得到3或得到5答案:B, D3. 判断题:如果一个事件的概率是0,那么这个事件不可能发生。

答案:正确4. 填空题:如果一个事件的概率是0.5,那么它的补事件的概率是______。

答案:0.55. 计算题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:5/86. 简答题:解释什么是条件概率,并给出一个例子。

答案:条件概率是指在某个条件或事件已经发生的条件下,另一个事件发生的概率。

例如,如果已知一个班级里有50%的学生是女生,那么在随机挑选一个学生是女生的条件下,这个学生是左撇子的概率,就是条件概率。

7. 应用题:一个工厂生产两种类型的零件,A型和B型。

A型零件的合格率为90%,B型零件的合格率为80%。

如果从生产线上随机抽取一个零件,发现它是合格的,那么这个零件是A型的概率是多少?答案:设事件A为零件是A型,事件B为零件合格。

根据贝叶斯定理,P(A|B) = P(B|A) * P(A) / P(B)。

已知P(A) = 0.5,P(B|A) = 0.9,P(B) = P(B|A) * P(A) + P(B|A') * P(A') = 0.9 * 0.5 + 0.8 * 0.5 = 0.85。

所以P(A|B) = 0.9 * 0.5 / 0.85 ≈ 0.529。

8. 论述题:描述概率论在现实生活中的应用,并举例说明。

答案:概率论在现实生活中有广泛的应用,例如在风险评估、保险计算、医学研究、天气预报等领域。

例如,在医学研究中,研究人员可能会使用概率论来评估某种治疗方法对特定疾病的效果,通过分析治疗组和对照组的治愈率差异,来确定治疗方法的有效性。

第一章 随机事件及其概率课后习题参考答案

第一章  随机事件及其概率课后习题参考答案

第一章 随机事件及其概率1. 1) {}01001,,,.nn n n Ω=L2) {}{}10,11,12,13,,10.n n Z n Ω==∈≥L3) 以"'',''"+-分别表示正品和次品,并以""-+--表示检查的四个产品依次为次品,正品,次品,次品。

写下检查四个产品所有可能的结果S ,根据条件可得样本空间Ω。

,,,,,,,,,,,,,,,,,,,,,,,,.,,,,S ++--++-++++-+++++---+--++-+-+-++⎧⎫=⎨⎬-+---+-+-++--+++-------+--+---++⎩⎭++--++-++++-+++++--+-+-+-++⎧⎫Ω=⎨⎬-+---+-+-++--+++--⎩⎭4) {}22(,)1.x y x y Ω=+<2. 1) ()A B C ABC --=, 2) ()AB C ABC -=, 3) A B C A B C ++=U U , 4) ABC ,5) ()A B C ABC Ω-++=, 6) ()AB BC AC AB BC AC Ω-++=++, 7) ()ABC A B C Ω-=U U , 8) AB AC BC ++.3. 解:由两个事件和的概率公式()()()()P A B P A P B P AB +=+-,知道()()()() 1.3(),P AB P A P B P A B P A B =+-+=-+ 又因为()(),P AB P A ≤ 所以 (1)当()()0.7P A B P B +==时,()P AB 取到最大值0.6。

(2)当()1P A B +=时,()P AB 取到最小值0.3。

4. 解:依题意所求为()P A B C ++,所以()()()()()()()()1111000(0()()0)44485.8P A B C P A P B P C P AB P AC P BC P ABC P ABC P BC ++=++---+=++---+≤≤==Q 5. 解:依题意,()()()()()()()()()()()()()()0.70.50.25.()()()0.70.60.5P B A B P BA P B A B P A B P A B P BA BA BA A P A P B P AB P A P BA P A P B P AB ++==++=+=+---===+-+-Q6. 解:由条件概率公式得到111()1()()(),(),3412()2P AB P AB P A P B A P B P A B ==⨯=== 所以1111()()()().46123P A B P A P B P AB +=+-=+-= 7. 解:1) 2028281222101028()45C C P P A A C P ===,2) 202__________282121212210101()()(|)45C C P P A A P A P A A C P ====,3) 1122________82821212121222210101016()()()145C C P P P A A A A P A A P A A C P P =+==--=U ,4) 1120____________8228121212122101()()()5C C C C P A A A A P A A P A A C +=+==U . 8. 解:(1) 以A 表示第一次从甲袋中取得白球这一事件,B 表示后从乙袋中取 得白球这一事件,则所求为()P B ,由题意及全概率公式得1()()()()().11n N m NP B P A P B A P A P B A n m N M n m N M +=+=⨯+⨯++++++ (2) 以123,,A A A 分别表示从第一个盒子中取得的两个球为两个红球、一红球一白球和两个白球,B 表示“然后”从第二个盒子取得一个白球这一事件,则容易推知211255441232229995103(),(),(),181818C C C C P A P A P A C C C ====== 123567(|),(|),(|).111111P B A P B A P B A === 由全概率公式得31551063753()()(|).18111811181199i i i P B P A P B A ===⨯+⨯+⨯=∑ 9. 解:以A 表示随机挑选的人为色盲,B 表示随机挑选的人为男子。

高中数学必修三《事件与概率》课后练习(含答案)

高中数学必修三《事件与概率》课后练习(含答案)

事件与概率课后练习题一:袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是(球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球.摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球.摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球.摸出的三个球中至少有两个球是白球题二:下列事件中,必然事件是题二:下列事件中,必然事件是 ,不可能事件是,不可能事件是 ,随机事件是,随机事件是 .(1)某射击运动员射击1次,命中靶心;次,命中靶心;(2)从一只装着白球和黑球的袋中摸球,摸出红球;)从一只装着白球和黑球的袋中摸球,摸出红球;(3)13人中至少2个人的生日是同一个月;个人的生日是同一个月;(4)任意摸1张体育彩票会中奖;张体育彩票会中奖;(5)天上下雨,马路潮湿;)天上下雨,马路潮湿;(6)随意翻开一本有400页的书,正好翻到第100页;页;(7)你能长高到4m ;(8)抛掷1枚骰子得到的点数小于8.题三:一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是(的对立事件是( )A .命中环数为7、8、9、10环B .命中环数为1、2、3、4、5、6环C .命中环数至少为6环D .命中环数至多为6环题四:某人连续投篮投3次,那么下列各组事件中是互斥且不对立的事件的组数为(次,那么下列各组事件中是互斥且不对立的事件的组数为( ) (1)事件A :至少有一个命中,事件B :都命中;:都命中;(2)事件A :至少有一次命中,事件B :至多有一次命中;:至多有一次命中;(3)事件A :恰有一次命中,事件B :恰有2次命中;次命中;(4)事件A :至少有一次命中,事件B :都没命中.:都没命中.A .0 B .1 C .2 D .3 题五:为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是人组成,则甲一定抽调到防控小组的概率是 .题六:小明将1枚质地均匀的硬币连续抛掷3次.次.(1)按3次抛掷结果出现的先后顺序,下列三种情况:次抛掷结果出现的先后顺序,下列三种情况:①正面朝上、正面朝上、正面朝上;①正面朝上、正面朝上、正面朝上;②正面朝上、反面朝上、反面朝上;②正面朝上、反面朝上、反面朝上;③正面朝上、反面朝上、正面朝上,③正面朝上、反面朝上、正面朝上,其中出现的概率(其中出现的概率( )A .①最小.①最小B .②最小.②最小C .③最小.③最小D .①②③均相同.①②③均相同(2)请用树状图说明:小明在3次抛掷中,硬币出现1次正面向上、2次反面向上的概率是多少多少题七:掷两个面上分别记有数字1至6的正方体玩具,设事件A 为“点数之和恰好为6”,则A 所有基本事件个数为(有基本事件个数为( )A .2个B .3个C .4个D .5个题八:从1,2,3,5中任取2个数字作为直线Ax +By =0中的A 、B .(1)求这个试验的基本事件总数;)求这个试验的基本事件总数;(2)写出“这条直线的斜率大于-1”这一事件所包含的基本事件.这一事件所包含的基本事件.题九:袋内装有红、白、黑球分别为3、2、1个,从中任取两个,则互斥而不对立的事件是( )A .至少一个白球;都是白球.至少一个白球;都是白球B .至少一个白球;至少一个黑球.至少一个白球;至少一个黑球C .至少一个白球;一个白球一个黑球.至少一个白球;一个白球一个黑球D .至少一个白球;红球、黑球各一个.至少一个白球;红球、黑球各一个题十:掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是(那么互斥而不对立的两个事件是( )A .“至少有一个奇数”与“都是奇数”B .“至少有一个奇数”与“至少有一个偶数”C .“至少有一个奇数”与“都是偶数”D .“恰好有一个奇数”与“恰好有两个奇数”题十一:下列说法中正确的是题十一:下列说法中正确的是 ..(1)事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大;中恰有一个发生的概率大; (2)事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小;中恰有一个发生的概率小;(3)互斥事件一定是对立事件,对立事件不一定是互斥事件;)互斥事件一定是对立事件,对立事件不一定是互斥事件;(4)互斥事件不一定是对立事件,对立事件一定是互斥事件.)互斥事件不一定是对立事件,对立事件一定是互斥事件.题十二:从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品和恰好有2件次品;件次品;(2)至少有1件次品和全是次品;件次品和全是次品;(3)至少有1件正品和至少有1件次品.件次品.题十三:经临床验证,一种新药对某种疾病的治愈率为49%,显效率28%,有效率12%,其余为无效.则某人患该病使用此药后无效的概率是余为无效.则某人患该病使用此药后无效的概率是 .题十四:我国西部一个地区的年降水量(题十四:我国西部一个地区的年降水量( 单位:mm )在下列区间内的概率如下表:)在下列区间内的概率如下表:年降水量水量[600,800) [800,1000) [1000,1200) [1200,1400) [1400,1600) 概率 0.12 0.26 0.38 0.16 0.08 (1)求年降水量在)求年降水量在事件与概率课后练习参考答案题一:题一: A .详解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件.A 、是必然事件;B 、是随机事件,选项错误;C 、是随机事件,选项错误;、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .题二:题二: (3)、(5)、(8);(2)、(7);(1)、(4)、(6). 详解:在一定条件下,可能发生也可能不发生的事件,称为随机事件.一定发生的事件称为必然事件;一定不发生的事件称为不可能事件.(1)某射击运动员射击1次,命中靶心;(随机事件)(随机事件)(2)从一只装着白球和黑球的袋中摸球,摸出红球;(不可能事件)(不可能事件)(3)13人中至少2个人的生日是同一个月;(必然事件)(必然事件)(4)任意摸1张体育彩票会中奖;(随机事件);(5)天上下雨,马路潮湿;(必然事件)(必然事件)(6)随意翻开一本有400页的书,正好翻到第100页;(随机事件);(7)你能长高到4m ;(不可能事件)(不可能事件)(8)抛掷1枚骰子得到的点数小于8.(必然事件).题三:题三: C .详解:根据对立事件的定义可得,一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是:“命中环数至少为6环”,故选C .题四:题四: B .详解:利用互斥事件、对立事件的定义,即可得到结论.互斥事件:事件A 与事件B 不可能同时发生,强调的是“不同时发生”.对立事件:事件A 、B 中必定而且只有一个发生。

概率论与数理统计三版课后答案

概率论与数理统计三版课后答案

第一章 事件与概率1.写出下列随机试验的样本空间。

(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。

(2)同时掷三颗骰子,记录三颗骰子点数之和。

(3)生产产品直到有10件正品为止,记录生产产品的总件数。

(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

(5)在单位正方形内任意取一点,记录它的坐标。

(6)实测某种型号灯泡的寿命。

解 (1)},100,,1,0{n i n i==Ω其中n 为班级人数。

(2)}18,,4,3{ =Ω。

(3)},11,10{ =Ω。

(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。

(5)=Ω{(x,y)| 0<x<1,0<y<1}。

(6)=Ω{ t | t ≥ 0}。

2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。

(1)A发生,B与C不发生。

(2)A与B都发生,而C不发生。

(3)A ,B ,C 中至少有一个发生。

(4)A ,B ,C 都发生。

(5)A ,B ,C 都不发生。

(6)A ,B ,C 中不多于一个发生。

(7)A ,B ,C 至少有一个不发生。

(8)A ,B ,C 中至少有两个发生。

解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)CB C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++, (8)BCAC AB ++或ABC BC A C B A C AB ⋃⋃⋃3.指出下列命题中哪些成立,哪些不成立,并作图说明。

(1)B B A B A = (2)AB B A = (3)AB B A B =⊂则若, (4)若A B B A ⊂⊂则,(5)C B A C B A = (6) 若Φ=AB 且A C ⊂, 则Φ=BC解 : (1) 成立,因为B A B B B A B B A ==))((。

概率与事件综合经典题(含详解答案)

概率与事件综合经典题(含详解答案)

概率与事件综合经典题(含详解答案)问题一:投色子小明和小王玩一个游戏,游戏规则为两个人轮流投掷一个均匀的六面色子,投到点数为6的人获胜。

若小明先投,请问小明获胜的概率是多少?解析:设小明获胜的概率为p,则小王获胜的概率为1-p。

若小明投到6,则小明获胜;若小明投到1、2、3、4、5,则轮到小王投掷。

所以小明获胜的概率为:p = 1/6 + (1-p) * 1/6 + (1-p)^2 * 1/6 + (1-p)^3 * 1/6 + ... ...化简得到:p = 1/7,即小明获胜的概率为1/7。

问题二:选球有10个编号为1到10的球,从中不放回地抽取3个,求编号之和为偶数的概率。

解析:球的编号之和为偶数有两种情况:1. 选出的三个球编号均为偶数。

2. 选出的三个球编号中有两个是奇数,一个是偶数。

情况1的概率为:C(5,3)/C(10,3) = 5/42。

情况2的概率为:C(5,2) * C(5,1)/C(10,3) = 10/42。

所以编号之和为偶数的概率为:5/42 + 10/42 = 5/21。

问题三:小球分组有10个编号为1到10的球,其中2个是红球,3个是黄球,5个是白球。

现从中任意抽取5个球,求其中恰好有3个白球的概率。

解析:从10个球中任意选出5个的组合数为:C(10,5) = 252。

从5个白球中任选出3个,从5个非白球中任选出2个的组合数为:C(5,3) * C(5,2) = 100。

所以恰好有3个白球的概率为:100/252 = 25/63。

李贤平《概率论基础》第三版课后答案

李贤平《概率论基础》第三版课后答案
(3)p=P{第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁
边}= 2 + 2 − 1 = 7 . 5 5 10 10 (4)这里事件是(3)中事件的对立事件,所以 P = 1− 7 /10 = 3/10 (5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以 P = 1× 4 !/ 5 != 1/ 5
1
A + C = {1,2,3}。
6、解:(1){至少发生一个}= A ∪ B ∪ C ∪ D . (2){恰发生两个}= ABC D + ACBD + ADBC + BC AD + CD AB + BDAC .
(3){A,B 都发生而 C,D 都不发生}= ABC D . (4){都不发生}= ABC D = A ∪ B ∪ C ∪ D .
4、解:(1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。 (2) ABC = A ⇒ BC ⊃ A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C ⊂ B 成立。
(4)A=B 及 A = C ⇒ A = B = C ,当男学生的全体也就是不爱唱歌的学生全体,也
(2)在上式中令 x=-1 即得所欲证。
(3)要原式有意义,必须
0

r

a
。由于
C a−r a+b
=
C b+r a+b
,
Cbk
=
C b−k b
,此题即等于
a
∑ 要证
C C k +r b−k ab
=
C b+r a+b

概率论第一章随机事件及其概率答案

概率论第一章随机事件及其概率答案

概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )A B (D )A B4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ](A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A ](A )C A Y C B ; (B )C AB ;(C )C AB Y C B A Y BC A ; (D )A Y B Y C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互斥或互不相容 。

第一章随机事件及其概率参考答案

第一章随机事件及其概率参考答案

第一章 随机事件及其概率参考答案一、选择题1、D2、D3、C4、B5、C6、D7、A8、A9、D 10.B 11、B 12、C 13、B 14、B 15、A 16、D 17、B 18、B 19、C 20、B 21、B 22、D 23、C 24、B 25、B 26、D 27、B 28、A 29、B 30、D二、填空题1、互不相容或互斥;2、ABC ABC ABC ABC AB AC BC⋃⋃⋃⋃⋃或; 3、()P AB4、0.5; 解:[()]()(()()()(()0.5P A B C P A B P A B C P A B P P B φ⋃-=⋃-⋃=⋃-=)因为A,B,C 两两互不相容)=P(A)+5、0.8解: ()()()0.30.5()()0.2()()1()0.8P A B P A P AB P AB P AB P A B P AB P AB -=-=-⇒=⋃==-=6、0.07解:)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=- =)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.07 7、1/5;解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 8、0.3;解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.1 3.01.04.0)()()(=-=-=AB P A P B A P9、解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3. 10、1/4; 解:2()()()()()()()()9/163()3()(,,ABC ()1/4(3/4P A B C P A P B P C P AB P AC P BC P ABC P A P A A B C P A φ⋃⋃=++---+=-=两两独立,且=)舍)11、1/2 解:()1()()()()()()()()()3/42/8012()/P ABC P A B C P A B C P A P B P C P AB P AC P BC P ABC ABC AB =-⋃⋃⋃⋃=++---+⊂=-+= 12、()()()()0.54()P AB P A B P A P B B A =-=-=⊂13、1/6 解:解:()0.8,()0.6,()0.30.8()()()0.60.3()()0.1()0.1(|)1/6()0.6P A B P A P B P A P B P AB P AB P AB P AB P B A P A ⋃===∴=+-=+-=∴===14、0.6解:()()()0.6()()0.6,(|)0.4()()0.60.6()0.24,()0.36()0.84()()()0.6()0.36()0.6P AB P A P AB P AB P A P B A P A P A P AB P AB P A B P A P B P AB P B P B --=====∴-=⇒=⋃==+-=+-∴=15、0.9解:()0.6,()0.8,()0.8()0.8()(|)0.2()1()0.4()0.72()0.72(|)0.9()0.8P A P B P BA P AB P AB P B A P A P A P AB P AB P A B P B ==--====-∴====16、0.735解:A :合格品;C :一等品. (|)0.75,()()(|)0.98*0.750.735P C A P C P A P C A ==== 17、0.12; 18、0.82; 19、0.0081; 20、0.2048 ; 21、1-p;18、 22、0.25; 23、2/3; 24、1/25 ; 25、AUB ; 26、0.42 ; 27、0.496.解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7, )()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++=1-0.9×0.8×0.7=0.496. 28、0.314.解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC. P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C)= 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686.所以 P(电路断路) = 1-0.686 = 0.314. 29、0.43624.解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c = 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 +0.012096= 0.43624. 30、3/5解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码.,则41)(,31)(,51)(===C P B P A P .P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C)=53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++三、判断题1-5、错;对;对;错;错; 6-10、对;对;对;错;错; 11-15、对;错;对;对;对; 16-20、错;对;错;错;对; 21-25、对;错;错;对;对; 26-30、对;对;错;对;错四、解答题 1、解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A2、解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得(1)121)(31025==C C A P ;(2)201)(31024==C C B P .3、解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得(1)0855.0)(32002194161≈=C C C A P ; (2)9122.0)(320031940≈=C C A P ; (3)0023.0)(32003611942632≈+=+CC C C A A P .4、解:由概率的古典定义得157)(31038==C C A P ;158)(1)(=-=A P B P ;307)(31028==C C C P 5、解:331812213284123133348412(1)/14/55(2)/28/55(3)141/55(4)()/41/55P C C P C C C P P P C C C =====-==+=6、解:A,B,C,D 分别表示第一、二、三四道工序出现次品()2%,()3%,()5%,()3%()()()()()0.98*0.97*0.95*0.970.8761()0.124P A P B P C P D P ABCD P A P B P C P D P ABCD =======加工出的成品率次品率-= 7、解:4.08.05.0)|()()(=⨯==A B P A P AB P)]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-==3.0)4.06.05.0(1=-+-=8、解:A :某产品由甲两车间生产。

12.1事件与概率

12.1事件与概率

1.事件(1)不可能事件、必然事件、随机事件:在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;有的结果可能发生,也可能不发生,它称为随机事件. (2)基本事件、基本事件空间:试验连同它出现的每一个结果称为一个基本事件,它是试验中不能再分的最简单的随机事件;所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母Ω表示. 2.概率与频率(1)概率定义:在n 次重复进行的试验中,事件A 发生的频率mn ,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记作P (A ). (2)概率与频率的关系:概率可以通过频率来“测量”,频率是概率的一个近似. 3.事件的关系与运算名称 定义并事件 (和事件) 由事件A 和B 至少有一个发生所构成的事件C互斥事件 不可能同时发生的两个事件A 、B 互为对立 事件不能同时发生且必有一个发生的两个事件A 、B4.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (E )=1. (3)不可能事件的概率:P (F )=0. (4)互斥事件的概率加法公式:①P(A∪B)=P(A)+P(B)(A,B互斥).②P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n)(A1,A2,…,A n彼此互斥).(5)对立事件的概率:P(A)=1-P(A).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.(×)(2)随机事件和随机试验是一回事.(×)(3)在大量重复试验中,概率是频率的稳定值.(√)(4)两个事件的和事件是指两个事件都得发生.(×)(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)(6)两互斥事件的概率和为1.(×)1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶答案 D解析射击两次的结果有:一次中靶;两次中靶;两次都不中靶,故至少一次中靶的互斥事件是两次都不中靶.2.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为()A.0.2 B.0.3 C.0.7 D.0.8答案 B解析因为必然事件发生的概率是1,所以该同学的身高超过175 cm的概率为1-0.2-0.5=0.3,故选B. 3.(2015·湖北)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1 365石答案 B解析因为样品中米内夹谷的比为28254,所以这批米内夹谷为1 534×28254≈169(石).4.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.答案 0解析 ①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.5.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________. 答案 ②解析 ①是互斥不对立的事件,②是对立事件,③④不是互斥事件.题型一 事件关系的判断例1 某城市有甲、乙两种报纸供居民订阅,记事件A 为“只订甲报纸”,事件B 为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D 为“不订甲报纸”,事件E 为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件. (1)A 与C ;(2)B 与E ;(3)B 与C ;(4)C 与E .解 (1)由于事件C “至多订一种报纸”中有可能“只订甲报纸”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B “至少订一种报纸”与事件E “一种报纸也不订”是不可能同时发生的,故B 与E 是互斥事件.由于事件B 不发生可导致事件E 一定发生,且事件E 不发生会导致事件B 一定发生,故B 与E 还是对立事件.(3)事件B “至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C “至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件.(4)由(3)的分析,事件E “一种报纸也不订”是事件C 的一种可能,即事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.思维升华 对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件.这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而判定所给事件的关系.判断下列各对事件是不是互斥事件或对立事件:某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中(1)恰有1名男生和恰有2名男生; (2)至少有1名男生和至少有1名女生; (3)至少有1名男生和全是女生. 解 (1)是互斥事件,不是对立事件.“恰有1名男生”实质选出的是“1名男生和1名女生”,与“恰有2名男生”不可能同时发生,所以是互斥事件,不是对立事件.(2)不是互斥事件,也不是对立事件.“至少有1名男生”包括“1名男生和1名女生”与“2名都是男生”两种结果,“至少有1名女生”包括“1名女生和1名男生”与“2名都是女生”两种结果,它们可能同时发生. (3)是互斥事件且是对立事件.“至少有1名男生”,即“选出的2人不全是女生”,它与“全是女生”不可能同时发生,且其并事件是必然事件,所以两个事件互斥且对立. 题型二 随机事件的频率与概率例2 (2015·北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.思维升华 (1)概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.(2)随机事件概率的求法:利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检查结果如下表所示:抽取球数n 50 100 200 500 1 000 2 000 优等品数m 45 92 194 470 954 1 902 优等品频率mn(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式f =mn ,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值不同,但随着抽取球数的增多,频率在常数0.950的附近摆动,所以质量检查为优等品的概率约为0.950. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14. 方法二 设红球有n 个,则n 12=13,所以n =4,即红球有4个.又得到黑球或黄球的概率是512,所以黑球和黄球共5个.又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个).因此得到黑球、黄球、绿球的概率分别是312=14,212=16,312=14.命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C ,求: (1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100, P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C . ∵A 、B 、C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A )求解.当题目涉及“至多”“至少”型问题,多考虑间接法.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:命中环数 10环 9环 8环 7环 概率0.320.280.180.12求该射击队员射击一次:(1)射中9环或10环的概率;(2)命中不足8环的概率.解记事件“射击一次,命中k环”为A k(k∈N,k≤10),则事件A k彼此互斥.(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的加法公式得P(A)=P(A9)+P(A10)=0.28+0.32=0.60.(2)设“射击一次,至少命中8环”的事件为B,则B表示事件“射击一次,命中不足8环”.又B=A8∪A9∪A10,由互斥事件概率的加法公式得P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.故P(B)=1-P(B)=1-0.78=0.22.因此,射击一次,命中不足8环的概率为0.22.23.用正难则反思想求互斥事件的概率典例(12分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x 3025y 10结算时间(分钟/人)1 1.52 2.5 3已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思维点拨若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.规范解答解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[6分](2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=15,P(A2)=10100=110.[9分]P(A)=1-P(A1)-P(A2)=1-15-110=710.[11分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[12分]温馨提醒(1)要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义.(2)正确判定事件间的关系,善于将A转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式.易错提示(1)对统计表的信息不理解,错求x,y,难以用样本平均数估计总体.(2)不能正确地把事件A转化为几个互斥事件的和或对立事件,导致计算错误.[方法与技巧]1.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A).2.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件A 的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.[失误与防范]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.A组专项基础训练(时间:35分钟)1.下列命题:①将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件;②若事件A与B互为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B互为对立事件;④若事件A与B互为对立事件,则事件A∪B为必然事件,其中,真命题是()A.①②④B.②④C.③④D.①②答案 B解析 对①,一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M 与N 是互斥事件,但不是对立事件,故①错;对②,对立事件首先是互斥事件,故②正确;对③,互斥事件不一定是对立事件,如①中两个事件,故③错;对④,事件A 、B 为对立事件,则一次试验中A 、B 一定有一个要发生,故④正确.故B 正确.2.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( ) A.17 B.1235 C.1735 D .1 答案 C解析 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡答案 A解析 至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.4.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是( ) A .0.53 B .0.5 C .0.47 D .0.37 答案 A解析 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45 答案 D解析 设区间[25,30)对应矩形的另一边长为x ,则所有矩形面积之和为1,即(0.02+0.04+0.06+0.03+x )×5=1,解得x =0.05.产品为二等品的概率为0.04×5+0.05×5=0.45. 6.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①7.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________. 答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.8.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 9.(2014·陕西)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)0 1 000 2 000 3 000 4 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.10.从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.(1)求第七组的频率;(2)估计该校的800名男生的身高的中位数以及身高在180 cm以上(含180 cm)的人数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件E={|x -y|≤5},事件F={|x-y|>15},求P(E∪F).解(1)第六组的频率为450=0.08,所以第七组的频率为1-0.08-5×(0.008×2+0.016+0.04×2+0.06)=0.06.(2)身高在第一组[155,160)的频率为0.008×5=0.04,身高在第二组[160,165)的频率为0.016×5=0.08,身高在第三组[165,170)的频率为0.04×5=0.2,身高在第四组[170,175)的频率为0.04×5=0.2,由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5,估计这所学校的800名男生的身高的中位数为m,则170<m<175.由0.04+0.08+0.2+(m -170)×0.04=0.5,得m =174.5,所以可估计这所学校的800名男生的身高的中位数为174.5. 由直方图得后三组频率为0.08+0.06+0.008×5=0.18, 所以身高在180 cm 以上(含180 cm)的人数为0.18×800=144.(3)第六组[180,185)的人数为4,设为a ,b ,c ,d ,第八组[190,195]的人数为2,设为A ,B ,则从中选两名男生有ab ,ac ,ad ,bc ,bd ,cd ,aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB ,AB ,共15种情况,因事件E ={|x -y |≤5}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为ab ,ac ,ad ,bc ,bd ,cd ,AB ,共7种情况,故P (E )=715.由于|x -y |max =195-180=15,所以事件F ={|x -y |>15}是不可能事件,P (F )=0. 由于事件E 和事件F 是互斥事件, 所以P (E ∪F )=P (E )+P (F )=715. B 组 专项能力提升 (时间:25分钟)11.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A .A +B 与C 是互斥事件,也是对立事件 B .B +C 与D 是互斥事件,也是对立事件 C .A +C 与B +D 是互斥事件,但不是对立事件 D .A 与B +C +D 是互斥事件,也是对立事件 答案 D解析 由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,故其事件的关系可由如图所示的Venn 图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,故选D.12.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为________.答案 45解析 记其中被污损的数字为x ,依题意得甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=15(442+x ),令90>15(442+x ),解得x <8,所以x 的可能取值是0~7,因此甲的平均成绩超过乙的平均成绩的概率为810=45.13.若A ,B 互为对立事件,其概率分别为P (A )=4x ,P (B )=1y ,且x >0,y >0,则x +y 的最小值为________.答案 9解析 由题意可知4x +1y =1,则x +y =(x +y )(4x +1y )=5+(4y x +x y )≥9,当且仅当4y x =xy ,即x =2y 时等号成立.14.如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:所用时间/分钟 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解 (1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人), 故用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率为所用时间/分钟 10~20 20~30 30~40 40~50 50~60 L 1的频率 0.1 0.2 0.3 0.2 0.2 L 2的频率0.10.40.40.1(3)设A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站.由(2)知P (A 1)=0.1+0.2+0.3=0.6, P (A 2)=0.1+0.4=0.5,∵P (A 1)>P (A 2),∴甲应选择L 1; 同理,P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9, ∵P (B 1)<P (B 2),∴乙应选择L 2.15.(2015·陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率. 解 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为P =2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等),这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78,以频率估计概率,运动会期间不下雨的概率为78.。

10.1 随机事件与概率(精讲)(解析版)

10.1 随机事件与概率(精讲)(解析版)

10.1 随机事件与概率(精讲)考法一 有限样本空间与随机事件【例1-1】(2021·全国高一)给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件; ②“当x 为某一实数时,可使x 2≤0”是不可能事件; ③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3【答案】C【解析】对于①,三个球全部放入两个盒子,有两种情况:1+2和3+0,故必有一个盒子有一个以上的球,所以该事件是必然事件,①正确;对于②,x =0时x 2=0,所以该事件不是不可能事件,②错误;对于③,“明天天津市要下雨”是偶然事件,所以该事件是随机事件,③错误;对于④,“从100个灯泡(含有10个次品)中取出5个,5个全是次品”,发生与否是随机的,所以该事件是随机事件,④正确.故正确命题有2个.故选:C .【例1-2】(2020·全国高一)袋子中有4个大小和质地相同的球,标号为1,2,3,4,从中随机摸出一个球,记录球的编号,先后摸两次.(1)若第一次摸出的球不放回,写出试验的样本空间; (2)若第一次摸出的球放回,写出试验的样本空间. 【答案】(1)详见解析(2)详见解析【解析】m 表示第一次摸出球的编号,用n 表示第二次摸出球的编号,则样本点可用(),m n ,{},1,2,3,4m n ∈表示.(1)若第一次摸出的球不放回,则m n ≠,此时的样本空间可表示为()()()()()()()()()()()(){}1,2,1,3,1,4,2,1,,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3Ω=,共有12个样本点.(2)若第一次摸出的球放回,则m ,n 可以相同.此时试验的样本空间可表示为(){}{},,1,2,3,4m n m n Ω=∈,共有16个样本点.【一隅三反】1.(2021·全国高一课时练习)下列事件中,随机事件的个数为()①连续两次抛掷一枚骰子,两次都出现2点向上;②13个人中至少有两个人生肖相同;③某人买彩票中奖;④在标准大气压下,水加热到90℃会沸腾.A.1个B.2个C.3个D.4个【答案】B【解析】抛掷一枚骰子,每一面出现都是随机的,所以①是随机事件;一年只有12生肖,所以13个人中至少有两个人生肖相同是必然事件,所以②是必然事件;购买彩票号码是随机的,某人买彩票中奖也是随机的,所以③是随机事件;在标准大气压下,水加热到100℃才会沸腾.故④是不可能事件故选:B2.(多选)(2020·全国高一单元测试)下列事件中,是随机事件的是()A.2021年8月18日,北京市不下雨B.在标准大气压下,水在4C时结冰C.从标有1,2,3,4的4张号签中任取一张,恰为1号签x≥D.若x∈R,则20【答案】AC【解析】A选项与C选项为随机事件,B为不可能事件,D为必然事件.故选:AC.3.(2020·全国高一课时练习)写出下列各随机试验的样本空间:(1)采用抽签的方式,随机选择一名同学,并记录其性别;(2)采用抽签的方式,随机选择一名同学,观察其ABO血型;(3)随机选择一个有两个小孩的家庭,观察两个孩子的性别;(4)射击靶3次,观察各次射击中靶或脱靶情况;(5)射击靶3次,观察中靶的次数.【答案】(1)详见解析(2)详见解析(3)详见解析(4)详见解析(5)详见解析【解析】解:(1)一名同学的性别有两种可能结果:男或女.故该试验的样本室间可以表示为Ω={男,女};(2)一名同学的血型有四种可能结果:A型、B型、AB型、O型.故该试验的样本空间可表示为{}Ω=;A B AB O,,,(3)每个小孩的性别有男或女两种可能,两个小孩的性别情况有四种可能,故该试验的样本空间可表示为{(男、男),(男,女),(女,男),(女,女)};(4)每次射击有中靶或脱靶两种可能,射击3次有八种可能,用1表示中靶,用0表示脱靶,该试验的样本空间可表示为()()()()()()()(){}0,0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,1,1N =;(5)射击3次,中靶的次数可能是0,1,2,3,故该试验的样本空间可以表示为{}0,1,2,3N =. 4.(2021·全国高一)写出下列试验的样本空间:(1)设袋中装有4个白球和6个黑球,从中不放回逐个取出,直到白球全部取出为止,记录取球的次数; (2)甲、乙、丙三位同学参加演讲比赛,通过抽签确定演讲的顺序,记录抽签的结果. 【答案】(1)详见解析(2)详见解析【解析】(1)从中不放回逐个取出,直到白球全部取出为止,则取球次数为{}4,5,6,7,8,9,10N =; (2)由抽签确定演讲的顺序,抽签的结果即样本空间可表示为{(甲,乙,丙),(甲,丙,乙),(丙,甲,乙),(丙,乙,甲),(乙,甲,丙),(乙,丙,甲)}.考法二 事件的关系与运算【例2-1】(2020·全国高一课时练习)盒子里有6个红球,4个白球,现从中任取3个球.设事件A =“1个红球和2个白球”,事件B =“2个红球和1个白球”,事件C =“至少有1个红球”,事件D “既有红球又有白球”,则:(1)事件D 与事件,A B 是什么关系?(2)事件C 与事件A 的交事件与事件A 是什么关系?【答案】(1)D A B =⋃.(2)事件C 与事件A 的交事件与事件A 相等.【解析】(1)对于事件D ,可能的结果为1个红球和2个白球或2个红球和1个白球,故D A B =⋃. (2)对于事件C ,可能的结果为1个红球和2个白球,2个红球和1个白球或3个红球,故C A A ⋂=,所以事件C 与事件A 的交事件与事件A 相等.【例2-2】(2021·全国高一)掷一枚骰子,给出下列事件:A =“出现奇数点”,B =“出现偶数点”,C =“出现的点数小于3”. 求:(1)AB ,BC ⋂;(2)A B ,B C ⋃.【答案】(1)A B =∅,B C ⋂=“出现2点”.(2)AB =“出现1,2,3,4,5或6点”,BC =∪“出现1,2,4或6点”.【解析】由题意知:A =“出现奇数点”{}1,3,5=,B =“出现偶数点”{}2,4,6=,C =“出现的点数小于3”{}1,2=,(1)A B =∅,{}2B C ⋂==出现2点”;(2){}1,2,3,4,5,6AB ==“出现1,2,3,4,5或6点”,{}1,2,4,6B C ⋃==“出现1,2,4或6点”.【一隅三反】1.(2020·全国高一课时练习)用红、黄、蓝三种不同的颜色给大小相同的三个圆随机涂色,每个圆只涂一种颜色.设事件A =“三个圆的颜色全不相同”,事件B =“三个圆的颜色不全相同”,事件C =“其中两个圆的颜色相同”,事件D “三个圆的颜色全相同”.(1)写出试验的样本空间.(2)用集合的形式表示事件,,,A B C D .(3)事件B 与事件C 有什么关系?事件A 和B 的交事件与事件D 有什么关系?并说明理由.【答案】(1)见解析;(2)见解析;(3)事件B 包含事件C ,事件A 和B 的交事件与事件D 互斥.见解析 【解析】(1)由题意可知3个球可能颜色一样,可能有2个一样,另1个异色,或者三个球都异色.则试验的样本空间Ω={(红,红,红),(黄,黄,黄),(蓝,蓝,蓝),(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}. (2)A ={(红,黄,蓝)}B ={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}C ={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝)}.D {(红,红,红),(黄,黄,黄),(蓝,蓝,蓝)}.(3)由(2)可知事件B 包含事件C ,事件A 和B 的交事件与事件D 互斥.2.(2021·全国高一)记某射手一次射击训练中,射中10环、9环、8环、7环分别为事件A ,B ,C ,D ,指出下列事件的含义: (1)AB C ;(2)B C ∩; (3)B C D ∪∪.【答案】(1)射中10环或9环或8环. (2)射中9环.(3)射中10环或6环或5环或4环或3环或2环或1环或0环.【解析】(1)A=射中10环,B=射中9环,C=射中8环,∴A B C=∪∪射中10环或9环或8环. (2)C=射中8环,∴C=射中环数不是8环,则B C=∩射中9环.(3)B C D=∪∪射中9环或8环或7环,则B C D=∪∪射中10环或6环或5环或4环或3环或2环或1环或0环.3.(2021·全国高一)在试验“甲、乙、丙三人各射击1次,观察中靶的情况”中,事件A表示随机事件“甲中靶”,事件B表示随机事件“乙中靶”,事件C表示随机事件“丙中靶”,试用A,B,C的运算表示下列随机事件:(1)甲未中靶;(2)甲中靶而乙未中靶;(3)三人中只有丙未中靶;(4)三人中至少有一人中靶;(5)三人中恰有两人中靶.【答案】(1)A(2)AB(3)ABC(4)ABC(5)()()() ABC ABC ABC【解析】(1)甲未中靶:A.(2)甲中靶而乙未中靶:A B⋂,即AB.(3)三人中只有丙未中靶:A B C,即ABC.(4)三人中至少有一人中靶ABC.(5)三人中恰有两人中靶()()()ABC ABC ABC.考法三互斥与对立【例3】(多选)(2020·全国高一课时练习)袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球【答案】BD【解析】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B 中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B 成立; 在C 中,至少一个白球与至多有一个红球,能同时发生,故C 不成立;在D 中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D 成立; 故选:BD. 【一隅三反】1.(多选)(2020·全国高一课时练习)一个人连续射击2次,则下列各事件关系中,说法正确的是( ) A .事件“两次均击中”与事件“至少一次击中”互为对立事件 B .事件“恰有一次击中”与事件“两次均击中”互为互斥事件 C .事件“第一次击中”与事件“第二次击中”互为互斥事件 D .事件“两次均未击中”与事件“至少一次击中”互为对立事件 【答案】BD【解析】对于A ,事件“至少一次击中”包含“一次击中”和“两次均击中“,所以不是对立事件,A 错误 对于B ,事件“恰有一次击中”是“一次击中、一次不中”它与事件“两次均击中”是互斥事件,B 正确 对于C ,事件“第一次击中”包含“第一次击中、第二次击中”和“第一次击中、第二次不中”,所以与事件“第二次击中”不是互斥事件,C 错误对于D ,事件“两次均未击中”的对立事件是“至少一次击中”,D 正确 故选:BD2.(多选)(2020·全国高一课时练习)下面结论正确的是( ) A .若()()1P A P B +=,则事件A 与B 是互为对立事件 B .若()()()P AB P A P B =,则事件A 与B 是相互独立事件 C .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 D .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件 【答案】BD【解析】对于A 选项,要使,A B 为对立事件,除()()1P A P B +=还需满足()0P AB =,也即,A B 不能同时发生,所以A 选项错误.对于C 选项,A 包含于B ,所以A 与B 不是互斥事件,所以C 选项错误. 对于B 选项,根据相互独立事件的知识可知,B 选项正确. 对于D 选项,根据相互独立事件的知识可知,D 选项正确.故选:BD3.(2020·全国高一课时练习)在试验E “连续抛掷一枚骰子2次,观察每次掷出的点数”中,事件A 表示随机事件“第一次掷出的点数为1”,事件j A 表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j ,事件B 表示随机事件“2次掷出的点数之和为6”,事件C 表示随机事件“第二次掷出的点数比第一次的大3”,(1)试用样本点表示事件AB 与A B ;(2)试判断事件A 与B ,A 与C ,B 与C 是否为互斥事件; (3)试用事件j A 表示随机事件A .【答案】(1)详见解析(2)事件A 与事件B ,事件A 与事件C 不是互斥事件,事件B 与事件C 是互斥事件.(3)123456A A A A A A A =【解析】由题意可知试验E 的样本空间为Ω=()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,()()()()()()2,1,2,2,2,3,2,4,2,5,2,6, ()()()()()()3,1,3,2,3,3,3,4,3,5,3,6, ()()()()()()4,1,4,2,4,3,4,4,4,5,4,6, ()()()()()()5,1,5,2,5,3,5,4,5,5,5,6,()()()()()()}6,1,6,2,6,3,6,4,6,5,6,6.(1)因为事件A 表示随机事件“第一次掷出的点数为1”,所以满足条件的样本点有()()()()()()1,1,1,2,1,3,1,4,1,5,1,6,即()()()()()(){}1,1,1,2,1,3,1,4,1,5,1,6A =.因为事件B 表示随机事件“2次掷出的点数之和为6”,所以满足条件的样本点有()()()()()1,5,2,4,3,3,4,2,5,1,即()()()()(){}1,5,2,4,3,3,4,2,5,1B =.所以(){}1,5AB =,()()()()()()()()()(){}1,1,1,2,1,3,1,4,1,5,1,6,2,4,3,3,4,2,5,1A B =.(2)因为事件C 表示随机事件“第二次掷出的点数比第一次的大3”,所以()()(){}1,4,2,5,3,6C =. 因为(){}1,5AB =≠∅,(){}1,4AC =≠∅,B C =∅,所以事件A 与事件B ,事件A 与事件C 不是互斥事件,事件B 与事件C 是互斥事件.(3)因为事件j A 表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j ”,所以(){}(){}(){}(){}(){}(){}1234561,1,1,2,1,3,1,4,1,5,1,6A A A A A A ======, 所以123456A A A A A A A =.考法四 古典概型【例4】(2020·全国高一课时练习)在一次语文考试的阅卷过程中,两位老师对一篇作文打出的分数都是两位的正整数,且十位数字都是5,则两位老师打出的分数之差的绝对值小于或等于1的概率为( ) A .0.18 B .0.2C .0.28D .0.32【答案】C【解析】用(),x y 表示两位老师的打分,则(),x y 的所有可能情况有1010100⨯=种. 当50x =时,y 可取50,51,共2种;当51x =,52,53,54,55,56,57,58时,y 的取值均有3种; 当59x =时,y 可取58,59,共2种;综上可得两位老师打出的分数之差的绝对值小于或等于1的情况有28种, 由古典概型的概率公式可得所求概率280.28100P ==故选:C. 【一隅三反】1.(2020·全国高一课时练习)从数字1,2,3,4中任取两个数,则这两个数中其中一个数为另一个数的整数倍的概率为( ) A .14B .12C .13D .23【答案】D【解析】基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中符合条件的基本事件为(1,2),(1,3),(1,4),(2,4)共4个,所求概率为4263P ==.故选:D 2.(2021·全国高一)把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为( ) A .23B .13C .35D .14【答案】B【解析】分三类情况,第一类1,2连号,则甲、乙、丙三个人拿到的卡片可能为()12,3,4,()12,4,3,()3,12,4,()4,12,3,()3,4,12,()4,3,12,有6种分法;第二类2,3连号,则甲、乙、丙三个人拿到的卡片可能为()1,23,4,()4,23,1,()23,1,4,()23,4,1,()1,4,23,()4,1,23,有6种分法;第三类3,4连号,则甲、乙、丙三个人拿到的卡片可能为()1,2,34,()2,1,34,()34,1,2,()34,2,1,()1,34,2,()2,34,1,有6种分法;共有18种分法, 则2,3连号的概率为61183P ==. 故选:B .3.(2021·全国高一)为了更好了解某年入伍新兵的身高情况,解放军某部随机抽取100名新兵,分别对他们的身高进行了测量,并将测量数据分为以下五组:[160,165),[165,170),[170,175),[175,180),[180,185]进行整理,如下表所示:(1)在下面的图纸中,画出频率分布直方图;(2)若在第4,5两组中,用分层抽样的方法抽取6名新兵,再从这6名新兵中随机抽取2名新兵进行体能测试,求这2名新兵来自不同组的概率. 【答案】(1)直方图见解析;(2)815. 【解析】(1)频率分布直方图如下图所示:(2)因为第4,5组共有30名新兵,所以利用分层抽样从中抽取6名,每组应抽取的人数分别为: 4组:206430⨯=名,第5组:106230⨯=名, 设第4组抽取的4名新兵分别为1A ,2A ,3A ,4A ,第5组抽取的2名新兵分别为1B ,2B .从这6名新兵中随机抽取2名新兵,有以下15种情况:12{,}A A ,13{,}A A ,14{,}A A ,11{,}A B ,12{,}A B ,23{,}A A ,24{,}A A ,21{,}A B ,22{,}A B ,34{,}A A ,31{,}A B ,32{,}A B ,41{,}A B ,42{,}A B ,12{,}B B ,这2名新兵来自不同组的情况有以下8种:11{,}A B ,12{,}A B ,21{,}A B ,22{,}A B ,31{,}A B ,32{,}A B ,41{,}A B ,42{,}A B ,故所求的概率P =815. 考法五 概率的基本性质【例5-1】(2020·全国高一课时练习)老师讲一道数学题,李峰能听懂的概率是0.8,是指( )A .老师每讲一题,该题有80%的部分能听懂,20%的部分听不懂B .老师在讲的10道题中,李峰能听懂8道C .李峰听懂老师所讲这道题的可能性为80%D .以上解释都不对 【答案】C【解析】概率的意义就是事件发生的可能性大小,即李峰听懂老师所讲这道题的可能性为80%.故选:C 【例5-2】(2020·全国高一课时练习)在学校运动会开幕式上,100名学生组成一个方阵进行表演,他们按照性别(M (男)、F (女))及年级(1G (高一)、2G (高二)、3G (高三))分类统计的人数如下表:若从这100名学生中随机选一名学生,求下列概率:()P M =____________,()P F =____________,()P M F =____________,()P MF =____________,()1P G =____________,()2P MG =____________,()3P FG =____________【答案】0.52 0.48 1 0 0.35 0.76 0.07 【解析】()()123182014520.52100100100100P M P MG MG MG ==++==; ()()10.48P F P M =-=; ()1P MF =;()()0P MF P =∅=;()()11118170.35100100P G P MG FG ==+=; ()()()()2220.520.440.200.76P MG P M P G P MG =+-=+-=;()370.07100P FG == 故答案为:(1)0.52;(2)0.48;(3)1;(4)0;(5)0.35;(6)0.76;(7)0.07 【一隅三反】1.(2020·全国高一课时练习)在北京消费季活动中,某商场为促销举行购物抽奖活动,规定购物消费每满200元就可以参加一次抽奖活动,中奖的概率为110.那么以下理解正确的是( ) A .某顾客抽奖10次,一定能中奖1次 B .某顾客抽奖10次,可能1次也没中奖 C .某顾客消费210元,一定不能中奖 D .某顾客消费1000元,至少能中奖1次 【答案】B 【解析】中奖概率110表示每一次抽奖中奖的可能性都是110,故不论抽奖多少次,都可能一次也不中奖, 故选:B.2.(2020·全国高一课时练习)某射击运动员平时训练成绩的统计结果如下:如果这名运动员只射击一次,以频率作为概率,求下列事件的概率; (1)命中10环;(2)命中的环数大于8环; (3)命中的环数小于9环; (4)命中的环数不超过5环.【答案】(1)0.2 (2)0.5 (3)0.5 (4)0 【解析】用x 表示命中的环数,由频率表可得. (1)(10)0.2P x ==;(2)(8)P x P >=(9x =或10x =)(9)(10)0.30.20.5P x P x ==+==+=; (3)(9)(6)(7)(8)0.10.150.250.5P x P x P x P x <==+=+==++=; (4)(5)1(6)1(0.10.150.250.30.2)0P x P x =-=-++++=.3.(2021·全国高一课时练习)判断下列说法是否正确,若错误,请举出反例 (1)互斥的事件一定是对立事件,对立事件不一定是互斥事件; (2)互斥的事件不一定是对立事件,对立事件一定是互斥事件;(3)事件A 与事件B 中至少有一个发生的概率一定比A 与B 中恰有一个发生的概率大;(4)事件A 与事件B 同时发生的概率一定比A 与B 中恰有一个发生的概率小.【答案】(1)错误,举例见解析;(2)正确;(3)错误,举例见解析;(4)错误,举例见解析. 【解析】(1)错误;(2)正确;(3)错误:(4)错误. 设某试验的样本空间为{1,2,3,4}Ω=.(1)中反例,取{1},{2}A B ==,则A ,B 互斥但不对立. (2)由互斥事件与对立事件的定义可知(2)正确(3)中反例,取{1},A B ==∅,则1()()4P A B P A ⋃==1()()()4P AB AB P AB P A ⋃===. (4)中反例,取{1},{1,2}A B ==,则1()()4P AB P A ==,1()()4P AB AB P AB ⋃==.4.(2020·全国高一课时练习)甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,求下列事件的概率: (1)两人都中靶; (2)恰好有一人中靶; (3)两人都脱靶; (4)至少有一人中靶.【答案】(1)0.72 (2)0.26 (3)0.02 (4)0.98【解析】设A =“甲中靶”, B =“乙中靶”,则A =“甲脱靶”,B =“乙脱靶”,由于两个人射击的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立 由已知可得,()()()()0.8,0.9,0.2,0.1P A P B P A P B ====. (1)AB = “两人都中靶”,由事件独立性的定义 得()()()0.80.90.72P AB P A P B =⋅=⨯= (2)“恰好有一人中靶” ABAB =,且AB 与AB 互斥根据概率的加法公式和事件独立性定义,得()()()P ABAB P AB P AB=+()()()()P A P B P A P B =⋅+⋅ 0.80.10.20.90.26=⨯+⨯=(3)事件“两人都脱靶”AB =, 所以()()()P AB P A P B =⋅()()10.810.90.02=-⨯-=(4)方法1:事件“至少有一人中靶”AB ABAB =,且AB ,AB 与AB 两两互斥,所以()P ABAB AB()()()P AB P AB P AB =++ ()()P AB P ABAB =+0.720.260.98=+=方法2:由于事件“至少有一人中靶”的对立事件是“两人都脱靶” 根据对立事件的性质,得事件“至少有一人中靶”的概率为()110.020.98P AB -=-=5.(2020·全国高一课时练习)已知n 是一个三位正整数,若n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如135,256,345等)现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由1,2,3,4,5,6组成的所有“三位递增数”中随机抽取1个数,且只抽取1次,若抽取的“三位递增数”是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.(1)由1,2,3,4,5,6可组成多少“三位递增数”?并一一列举出来. (2)这种选取规则对甲乙两名学生公平吗?并说明理由. 【答案】(1)见解析;(2)不公平,理由见解析.【解析】(1)由题意知,所有由1,2,3,4,5,6组成的“三位递增数共有20个.分别是123,124,125,126,134,135,136,145,146,156,234,235,236,245,246,256,345,346,356,456.(2)不公平由(1)知,所有由1,2,3,4,5,6组成的“三位递增数”有20个,记“甲参加数学竟赛”为事件A ,记“乙参加数学竞赛”为事件B.则事件A 含有基本事件有:124,134,234,126,136,146,156,236,246,256,346,356,456共13个. 由古典概型计算公式,得13()20A P A ==事件含有的基本事件的个数试验所有基本事件的总数,又A 与B 对立,所以137()1()12020P B P A =-=-=, 所以()()P A P B >.故选取规则对甲、乙两名学生不公平.。

随机事件与概率练习题及答案

随机事件与概率练习题及答案

第7章 随机事件与概率一、填空题⒈ 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为 .⒉ 若事件A B ,满足A B U AB +==∅,,且P A ().=03,则P B ()= . ⒊ 已知85)(=+B A P ,83)(=AB P ,83)(=B P ,则=)(A P . ⒋ 设A 与B 互不相容的两个事件,0)(>B P ,则有P A B ()= .5. 若事件A B ,满足A B ⊃,则P A B ()-= .二、单项选择题⒈ 设A ,B 为两事件,则下列等式成立的是( ).A .B A B A +=+ B . B A AB ⋅=C . B A B B A +=+D . B A B B A +=+2. 对任意二事件A B ,,等式( )成立。

A .P AB P A P B ()()()= B .P A B P A P B ()()()+=+C .P A B P A P B ()()(())=≠0D .P AB P A P B A P A ()()()(())=≠03. 袋中放有3个红球,2个白球,第一次取出一球,不放回,第二次再取一球.则两次都是红球的概率是( )A . 259B . 103C . 256D . 203 4. 若事件A B ,满足1)()(>+B P A P ,则A 与B 一定( ).A . 不相互独立B . 相互独立C . 互不相容D . 不互不相容5. 甲、乙两人各自考上大学的概率分别为70%,80%,则甲、乙两人同时考上大学的概率为( ).A . 56%B . 50%C . 75%D . 94%三、解答题⒈ 已知4.0)(=A P ,8.0)(=B P ,5.0)(=B A P ,求P B A ().⒉ 设事件A ,B 相互独立,已知6.0)(=A P ,8.0)(=B P ,求A 与B 只有一个发生的概率.⒊ 设箱中有3个白球2个黑球,从中依次不放回地取出3球,求第3次才取到的黑球概率.⒋ 设事件A ,B 的概率分别为21)(=A P ,32)(=B P ,试证A 与B 是相容的. 5.已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立.6. 已知事件A 与B 相互独立,证明A 与B 相互独立.答案及解答:一、填空题⒈)(C B A + ⒉0.7 ⒊375.0 ⒋ 0 5.)()(B P A P -二、单项选择题⒈ C ⒉ D 3.B 4. D 5. A三、解答题⒈ 解 因为B A AB B +=,)()()(B A P AB P B P +=,即)()()(B A P B P AB P -=所以,P B A ())()(A P AB P =434.05.08.0)()()(=-=-=A P B A P B P ⒉ 解 因为A 与B 只有一个发生的事件为:B A B A +,且事件A 与B 相互独立,则事件A 与B ,A 与B 也相互独立. 故)(B A P +=)()(B P A P +=)()()()(B P P P A P +=0.6⨯(1-0.8)+ (1-0.6)⨯0.8 = 0.44⒊ 解 设事件A ={从有3个白球2个黑球的箱中取出一球是白球},B ={从有2个白球2个黑球的箱中取出一球是白球},C ={从有1个白球2个黑球的箱中取出一球是黑球},D ={从有3个白球2个黑球的箱中依次不放回地取出3球,第3次才取到的黑球};则53)(=A P ,42)(=B P ,32)(=C P 且事件A ,B ,C 相互独立,所以 )()()()()(C P B P A P ABC P D P ==324253⨯⨯== 0.2 ⒋ 证 由概率性质和加法公式知 )(3221)()()()(1AB P AB P B P A P B A P -+=-+=+> 6113221)(=-+>AB P ,即0)(≠AB P 所以,由互不相容定义知,事件A 与B 是相容的.5.证 因为事件A ,B ,C 相互独立, 即)()()(C P A P AC P =,)()()(C P B P BC P =, 且 )()()(])[(ABC P BC P AC P C B A P -+=+=)()()()()()()(C P B P A P C P B P C P A P -+=)()]()()()([C P B P A P B P A P -+=)()(C P B A P +所以)(B A +与C 相互独立.6.证 因为事件A 与B 相互独立,即)()()(B P A P AB P =,且 )(1)(B A P B A P +-=)()()(1AB P B P A P +--=)())(1()(1B P A P A P ---=))(1))((1(B P A P --= )()(B P A P = 所以,A 与B 相互独立.4.05.02.0)()()(===A P AB P A B P。

第一章随机事件及其概率典型考试题(有答案)

第一章随机事件及其概率典型考试题(有答案)

1随机事件及其概率1.(2016) 袋中有9个球, 其中3个是红球, 每次取1个球, 取出后不放回, 则第3次才取到红球的概率为 528. 2.(2016)设随机事件,A B 互不相容, 且()0.7P A =, ()0.2P B =, 则()=P A B -0.73.(2016)以下选项, 表示事件,A B 都不发生的是 (B) . (A) A B I (B) A B I (C) A B U (D) 1A B -U4.(2016)一道选择题有4个备选答案, 其中只有一个是正确的, 假设某学生知道正确答案的概率为23, 不知道答案而乱猜的概率为13, 且学生一定会选择一个答案. (1) 求此学生能答对这个题目的概率;(2) 若已知学生答对了这个题目, 求他确实知道正确答案的概率.解答: (1)令事件B 表示此学生知道正确答案, B 表示此学生不知道正确答案而乱猜, A 表示此学生能答对这个题目, 则()()(|)()(|)P A P B P A B P B P A B =+211313344=⋅+⋅=; .....................................5分 (2)()238(|).()349P AB P B A P A === ....................................................................5分 5. (2015)设,A B 为随机事件, 且()0.7P A =, ()0.2P A B -=, 则(|)=P B A 57. 6. (2015)三个人独立地破译一份密码, 已知三人各自能译出的概率分别为111,,234, 则三人至少有一人能将此密码译出的概率为 34.7. (2015)设随机事件,,A B C 相互独立, 则A B U 与C C .(A) 相容(B) 不相容 (C) 相互独立 (D) 不相互独立8.(2015)已知甲、乙两箱中装有同种产品, 其中甲箱中装有2件合格品和2件次品, 乙箱中仅装有2件合格品, 从甲箱中任取2件产品放入乙箱,(1) 求乙箱中恰有1件次品的概率;(2) 设随机变量X 表示乙箱中的次品件数, 求X 的分布律及数学期望.2 (3) 求从乙箱中任取一件产品是次品的概率.解答:(1)11222423C C P C ==; ...................................................................................……3分 (2)X1()0121636E X =⋅+⋅+⋅=. .................................................……4分 (3)设A 表示事件“乙箱中任取一件产品是次品”, 则(){0}{|0}{1}{|1}{2}{|2}P A P X P A X P X P A X P X P A X ===+==+==1211210634644=⋅+⋅+⋅=. ..................................................................……3分 9. (2014)设,A B 为随机事件, 且()0.6P A =, ()=0.5P B A , 则()P AB = 0.7 .10. (2014)袋中有5个球, 其中2个是红球, 每次取1个球, 取出后不放回, 则第3次取出的球是红球的概率为 0.4 . 11. (2014)设,A B 为随机事件, 则下列选项中错误的是 (C) .(A) 若A 包含B , 则B 包含A(B) 若B A ,对立, 则B A ,对立(C) 若B A ,互不相容, 则B A ,互不相容(D) 若B A ,相互独立, 则B A ,相互独立。

《随机事件与概率》同步练习及答案.doc

《随机事件与概率》同步练习及答案.doc

《随机事件与概率》同步练习及答案知识点⒈在一定条件下可能发生的事件,叫随机事件。

2 在一定条件下,一定发生的事件称为,不可能发生的事件称为,这两类事件都称为确定事件。

3一般地,随机事件发生大是有大小的,不同的随机事件发生的可能性的大小。

9969、选择题1.下列事件中,是确定性事件的是()A.明日有雷阵雨B.小明的自行车轮胎被钉子扎坏C.小红买体育彩片D.抛掷一枚正方体骰子,出现点数7点朝上2.下列事件中,属于不确定事件的有()○1太阳从西边升起;○2任意摸一张体育彩票会中奖;○3掷一枚硬币,有国徽的一面朝下;○4小勇长大后成为一名宇航员。

A.○1○2○3B.○1○3○4C.○2○3○4D.○1○2○43.下列成语所描述的事件是必然事件的是()A.水中捞月B.守株待兔C.水涨船高D.画饼充饥4.下列说法正确的是()A.随机的抛掷一枚质地均匀的硬币,落地后反面一定朝上B.从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C.某彩票的中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一套正在播放《新闻联播》5.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面的点数为偶数。

下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件6.一个不透明的布袋中有30个球,每次摸一个,摸一次就一定摸到红球,则红球有()A.15个 B. 20个 C. 29个D.30个二、填空题7.从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是_____。

8.一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性_____。

9.小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中_____的可能性较小。

(完整版)概率论大题附答案

(完整版)概率论大题附答案

第一章 随机事件及其概率1.6 假设一批100件商品中有4件不合格品.抽样验收时从中随机抽取4件,假如都为合格品,则接收这批产品,否则拒收,求这批产品被拒收的概率p . 解 以ν表示随意抽取的4件中不合格品的件数,则4964100C {1}1{0}110.84720.1528C p P P =≥=-==-≈-=νν.1.7 从0,1,2,,10…等11个数中随机取出三个,求下列事件的概率:1A ={三个数最大的是5};2A ={三个数大于、等于和小于5的各一个};3A ={三个数两个大于5,一个小于7}.解 从11个数中随机取出三个,总共有311C 165=种不同取法,即总共有311C 个基本事件,其中有利于1A 的取法有25C 10=种(三个数最大的是5,在小于5的5个数中随意取两个有25C 10=种不同取法);有利于2A 的取法有5×5=20种(在小于5的5个数中随意取一个,在大于5的5个数中随意取一个,有5×5=25种不同取法);有利于3A 的取法有5×25C 70=种(在小于5的5个数中随意取一个,在大于5的5个数中随意取两个).于是,最后得111102550()0.06()0.15()0.30165165165P A P A P A ======,,.1.8 考虑一元二次方程 02=++C Bx x , 其中B , C 分别是将一枚色子接连掷两次先后出现的点数. (1) 求方程无实根的概率α, (2) 求方程有两个不同实根的概率β.解 显然,系数B 和C 各有1,2,3,4,5,6等6个可能值;将一枚色子接连掷两次,总共有36个基本事件.考虑方程的判别式C B 42-=∆.事件{无实根}和{有两个不同实根},等价于事件{0}∆<和{0}∆>.下表给出了事件{∆由对称性知{0}∆<和{0}∆>等价,因此αβ=.易见,方程无实根的概率α和有两个不同实根的概率β为170.47αβ==≈.. ()1()1P AB P AB r =-=-, ()()1P A B P AB r +==-,()1()1[]P A B P A B p q r +=-+=-+-, ()()1[]P AB P A B p q r =+=-+-,([])()()P A A B P A AB P A p +=+==.1.18 假设箱中有一个球,只知道不是白球就是红球.现在将一个白球放进箱中,然后从箱中随机取出一个球,结果是白球.求箱中原来是白球的概率α.解 引进事件:=A {取出的是白球},1H ={箱中原来是白球},2H ={箱中原来是红球},则12,H H 构成完全事件组,并且12()()0.5P H P H ==.由条件知12(|)1(|)0.5P A H P A H ==,.由贝叶斯公式,有1111122()(|)2(|)()(|)()(|)3P H P A H P H A P H P A H P H P A H α===+.1.21 假设一厂家生产的每台仪器,以概率0.7可以直接出厂;以概率0.30需进一步进行调试, 经调试以概率0.90可以出厂,以概率0.10定为不合格品不能出厂.现在该厂在生产条件稳定的情况下,新生产了20台仪器.求最后20台仪器 (1) 都能出厂的概率α; (2) 至少两台不能出厂的概率β.解 这里认为仪器的质量状况是相互独立的.设1H ={仪器需要调试},2H ={仪器不需要调试},A ={仪器可以出厂}.由条件知1212()0.30 ()0.70 (|)0.80(|)1P H P H P A H P A H ====, ,,.(1) 10台仪器都能出厂的概率0112210100()()(|)()(|)0.300.800.700.940.940.5386P A P H P A H P H P A H ααα==+=⨯+===≈ ;.(2) 记ν——10台中不能出厂的台数,即10次伯努利试验“成功(不能出厂)”的次数.由(1)知成功的概率为p =0.06.易见,10台中至少两台不能出厂的概率109{2}1{0}{1}10.94100.940.060.1175P P P βννν=≥=-=-==--⨯⨯≈.1.23 设B A ,是任意二事件,证明:(1) 若事件A 和B 独立且B A ⊂,则()0P A =或()1P B =;(2) 若事件A 和B 独立且不相容,则A 和B 中必有一个是0概率事件.证明 (1) 由于B A ⊂,可见()()()()()()()()P AB P A P B P AB P A P A P A P B ===,,. 因此,若()0P A ≠,则()1P B =;若()0P B ≠,()0P A =.(2) 对于事件A 和B ,由于它们相互独立而且不相容,可见()()()0P A P B P AB ==,因此,概率()P A 和()P B 至少有一个等于0.补充:第二节 事件的关系和运算1. 设A ,B ,C 是三个随机事件,用事件A ,B ,C 的运算关系表示下列事件:⑴ A ,B ,C 三个都发生;⑵ A 发生而B ,C 都不发生;⑶ A ,B 都发生, C 不发生; ⑷ A ,B ,C 恰有一个发生;⑸ A ,B ,C 恰有两个发生;⑹ A ,B ,C 至少有一个发生; ⑺ A ,B ,C 都不发生.解:(1)ABC (2)ABC (3)ABC (4)ABC ABC ABC ++ (5)ABC ABC ABC ++ (6) A B C ++ (7) ABC第三节 事件的概率解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.40.30.6=+-=0.1 ()1()10.10.9P AB P AB =-=-=()()1()10.60.4P AB P A B P A B =+=-+=-= ()()()0.40.10.3P AB P A P AB =-=-=解:由()()()P A B P A P AB -=-,得()()()P A B P A P AB -=-()()()0.70.30.4P AB P A P A B =--=-=, ()1()10.40.6P AB P AB =-=-=3. 已知()09.P A =,()08.P B =,试证()07.P AB ≥. 解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.90.81≥+-0.7=解:由条件()()0P AB P BC ==,知()0P ABC =,()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ++=++---+1111500044488=++---+= 5. 设A ,B 是两事件,且()06.P A =,()07.P B =,问⑴ 在什么条件下,()P AB 取到最大值,最大值是多少? ⑵ 在什么条件下,()P AB 取到最小值,最小值是多少?解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+ 又因为()()P A P A B ≤+,()()P B P A B ≤+,所以(){}max (),()P A P B P A B ≤+, 所以0.7()1P A B ≤+≤,所以0.3()0.6P AB ≤≤.第四节 条件概率及与其有关的三个基本公式1.设有对某种疾病的一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中有5%呈阳性反应,设人群中有1%的人患这种疾病,若某病人做这种化验呈阳性反应,则他患有这种疾病的概率是多少? 解:设{}A =某疾病患者,{}A =非某疾病患者,{}B =检查结果为阳性.依条件得,B A A ⊂+=Ω,且()0.01,P A = ()0.99P A =,(|)0.9P B A =(|)0.05P B A =所以()()()()()()()()0010901500109099005B P A P P AB ..A A P .B P B ....B BP A P P A P A A⨯===≈⨯+⨯+第五节 事件的独立性和独立试验1.设有n 个元件分别依串联、并联两种情形组成系统I 和II ,已知每个元件正常工作的概率为p ,分别求系统I 、II 的可靠性(系统正常工作的概率)解:{}A I =系统正常工作,{}B II =系统正常工作,{}B II =系统不正常工作 {}1,2,,i C i n ==每个元件正常工作,,且()i P C p =,{}i C =每个元件都不正常工作,()1i P C p =- 由条件知,每个元件正常是相互独立的,故1212()()()()()n n n P A P C C C P C P C P C p ===,()1i P C p =-,1212()()()()()(1)n n n P B P C C C P C P C P C p ===-()1()1(1)n P B P B p =-=--2. 设有六个相同的元件,如下图所示那样安置在线路中,设每个元件通达的概率为 p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的. 解: 设{}i A i =第条线路通达,1,2,3,i = {}A =代表这个装置通达,{}i A i =第条线路不通达,1,2,3,i = {}A =代表这个装置不通达, 由条件知,2()i P A p =,2()1i P A p =-,23123()1()1()1(1)P A P A P A A A p =-=-=--第二章 随机变量及其分布2.8 口袋中有7个白球,3个黑球,每次从中任取一球且不再放回. (1) 求4次抽球出现黑球次数X 的概率分布;(2) 抽球直到首次出现白球为止,求抽球次数Y 的概率分布.解 (1) 随机变量X 有4个可能值0,1,2,3,若以W 和B 分别表示白球和黑球,则试验“4次抽球”相当于“含7个W 和3个B ”的总体的4次不放回抽样,其基本事件总数为410C 210=,其中有利于{}X k = (0,1,2,3)k =的基本事件个数为:437C C k k-,因此 437410C C {}(0,1,2,3)C k k P X k k -===,或01230123~351056371131210210210210621030X ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (2) 随机变量Y 显然有1,2,3,4等4个可能值;以W k 和B k 分别表示第(1,2,3,4)k k =次抽到白球和黑球,则“不放回抽球直到首次出现白球为止”相当于“自含7个白球3个黑球的总体的4次不放回抽样”,其基本事件总数410P 10987120=⨯⨯⨯=.易见 7843728{1}{2}10120109120P Y P Y ⨯======⨯,,327732171{3}{4}109812010987120P Y P Y ⨯⨯⨯⨯⨯======⨯⨯⨯⨯⨯, .1234~842871120120120120Y ⎛⎫ ⎪ ⎪ ⎪⎝⎭. 2.11 设X 服从泊松分布,且已知{1}{2}P X P X ===,求{4}P X =.解 以X 表示随意抽取的一页上印刷错误的个数,以)4,3,2,1(=k X k 表示随意抽取的第k 页上印刷错误的个数,由条件知X 和)4,3,2,1(=k X k 服从同一泊松分布,未知分布参数λ决定于条件:2{1}{2}ee 2!P X P X λλλλ--====,.于是λ=2.由于随机变量)4,3,2,1(=k X k 显然相互独立,因此42222{=4}=e =e 0.090243P X --≈ !2.14 设随机变量X 服从区间25[,]上的均匀分布,求对X 进行3次独立观测中,至少有2次的观测值大于3的概率α.解 设Y 3次独立试验事件{3}A X =>出现的次数,则Y 服从参数为(3,)p 的二项分布,其中23p =.因此234820(){2}{3}3(1)92727P B P Y P Y p p p ===+==-+=+=α.2.17 设随机变量X 服从正态分布(3,4)N ,且满足 {}{}P X C P X C <=≥和{}2{}P X C P X C <=≥ ,分别求常数C解 (1)由{}X C <与{}X C ≥为对立事件,又{}{}P X C P X C <=≥得 1{}2P X C <=所以C=3 (2) 由题意可知23{}=32C P X C Φ-<=()所以反查表可得 3.88C ≈2.22 设随机变量X 服从[1,2]-上的均匀分布,求随机变量Y 的分布律,其中10 00 10X Y X X -<==>⎧⎪⎨⎪⎩,若,,若,,若.解 由于X 服从[1,2]-上的均匀分布,知随机变量Y 的概率分布为1{1}{0}{10}{0}{0}032{1}{0}{02}31~1233P Y P X P X P Y P X P Y P X P X Y =-=<=-≤<=======>=<≤=⎛⎫ ⎪ ⎪ ⎪⎝⎭,,;-1.补充:第二节 离散随机变量解:由条件知,随机变量X 的分布列如下:设{}A =至多遇到一次红灯,则54()(0)(1)64P A P X P X ==+==2.设每分钟通过交叉路口的汽车流量X 服从泊松分布,且已知在一分钟内无车辆通过与恰好有一辆车通过的概率相同,求在一分钟内至少有两辆车通过的概率。

第1章 随机事件及其概率课后题答案

第1章 随机事件及其概率课后题答案

1 1 , P( AB) = 0, P( AC ) = P( BC ) = ,则事件 A, B, C 4 8
解 由 P ( AB) = 0 ,得 P ( ABC ) = 0 ,故
P( A B C ) = P( A B C ) = 1 − P( A B C )
= 1 − [ P( A) + P( B) + P(C ) − P( AB) − P( BC ) − P( AC ) + P( ABC )]
( A B) C = A ( B C ) ;
③ 分配律 ( A B ) C = ( A C ) ( B C ) , ( A B ) C = ( A C ) ( B C ) ; ④ 德 • 摩根律 A B = A B , A B = A B , 一般地,
(2) 全概率公式 设事件组 {Bi : i ∈ I } 为 S 的一个划分,且 P ( Bi ) > 0 ( i ∈ I ),则有
P ( A) = ∑ P( A | Bi ) P( Bi ) .
i∈I
(3) 贝叶斯公式 设 {Bi : i ∈ I } 为 S 的一个划分,且 P ( A) > 0 , P ( Bi ) > 0 (i ∈ I ) ,则有
P( A1 A2 An ) = P( An | A1 A2 An −1 ) P( An −1 | A1 A2 An − 2 ) P( A2 | A1 ) P( A1 ) .
3.全概率公式与贝叶斯公式 (1) 划分 若事件组 {Bi : i ∈ I } 满足 一个划分.
4
B
i∈I
i
= S , Bi B j = φ , (i ≠ j ) ,则称事件组 {Bi : i ∈ I } 为 S 的

概率论与数理统计(魏宗舒版)答案完整版

概率论与数理统计(魏宗舒版)答案完整版
4 4
1.11 任取一个正数,求下列事件的概率: (1)该数的平方的末位数字是 1; (2)该数的四次方的末位数字是 1; (3)该数的立方的最后两位数字都是 1; 1 解 (1) 答案为 。 5 (2)当该数的末位数是 1、3、7、9 之一时,其四次方的末位数是 1,所以答 4 2 案为 = 10 5 (3)一个正整数的立方的最后两位数字决定于该数的最后两位数字,所以样 本空间包含 10 2 个样本点。用事件 A 表示“该数的立方的最后两位数字都是 1” , 则该数的最后一位数字必须是 1,设最后第二位数字为 a ,则该数的立方的最后 两位数字为 1 和 3 a 的个位数,要使 3 a 的个位数是 1,必须 a = 7 ,因此 A 所包 含的样本点只有 71 这一点,于是 。 1.12 一个人把 6 根草掌握在手中,仅露出它们的头和尾。然后请另一个人 把 6 个头两两相接,6 个尾也两两相接。求放开手以后 6 根草恰好连成一个环的 概率。并把上述结果推广到 2n 根草的情形。 解 (1)6 根草的情形。取定一个头,它可以与其它的 5 个头之一相接,再取 另一头,它又可以与其它未接过的 3 个之一相接,最后将剩下的两个头相接,故
− n ≤ m ≤ N −1
(3) 指 定 的 m 个 盒 中 正 好 有 j 个 球 的 概 率 为
m + j − 1 N − m + n − j − 1 m −1 n− j N + n − 1 n

1 ≤ m ≤ N ,0 ≤ j ≤ N .
对头而言有 5 ⋅ 3 ⋅ 1 种接法,同样对尾也有 5 ⋅ 3 ⋅ 1 种接法,所以样本点总数为 用 A 表示 “6 根草恰好连成一个环” , 这种连接, 对头而言仍有 5 ⋅ 3 ⋅ 1 种 (5 ⋅ 3 ⋅ 1) 2 。 连接法, 而对尾而言, 任取一尾, 它只能和未与它的头连接的另 4 根草的尾连接。 再取另一尾, 它只能和未与它的头连接的另 2 根草的尾连接,最后再将其余的尾 连接成环,故尾的连接法为 4 ⋅ 2 。所以 A 包含的样本点数为 (5 ⋅ 3 ⋅ 1)(4 ⋅ 2) ,于是

概率练习及答案

概率练习及答案

第一章 事件与概率1、对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)52、一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-3、两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==4、一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=5、设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=346、对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ). 【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+- ()()()P AB P AC P BC ≥+- 7、证明:-σ域之交仍为-σ域。

(完整版)概率统计章节作业答案

(完整版)概率统计章节作业答案

第一章 随机事件与概率一、单项选择题1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是( B ).A. AB ={出现奇数点}B. AB ={出现5点}C. B ={出现5点}D. A B =ΩU2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ).A. ()A B B A +-=B. ()A B B A B A AB +-=-=-C. ()A B B A B -+=+D.AB AB A +=3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为( D ).A.1212A A A A UB.12A AC.12A AD.12A A U4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为( A ).A.123A A AB.123A A A ++C.123A A AD.123A A A5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是( A).A.(|)0P A B =B. (|)0P B A =C. ()0P AB =D. ()1P A B =U6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B =( D ).A. 0.2B. 0.4C. 0.6D. 0.87.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则( C ).A.()1P A B =UB.()()()P AB P A P B =C. ()0P AB =D.()0P AB >8.设P (A )=0, B 为任一事件, 则 ( C ).A.A =ΦB.A B ⊂C.A 与B 相互独立D. A 与B 互不相容9.已知P (A )=0.4, P (B )=0.5, 且A B ⊂,则P (A |B )= ( C ).A. 0B. 0.4C. 0.8D. 110.设A 与B 为两事件, 则AB = ( B ).A.A BB. A B UC. A B ID. A B I11.设事件A B ⊂, P (A )=0.2, P (B )=0.3,则()P A B =U ( A ).A. 0.3B. 0.2C. 0.5D. 0.4412.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )=( D ).A. 0.08B. 0.4C. 0.2D. 013.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ).A.()()P A B P A =UB.A B ⊂C. P (A )=P (B )D. P (AB )=P (A )14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ).A. 0.4B. 0.2C. 0.25D. 0.7515.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为( A ).A.37B.0.4C. 0.25D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ).A. 0.48B. 0.75C. 0.6D. 0.817.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为( A ).A. 0.125B. 0.25C. 0.5D. 0.418.一批产品的合格品率为96%,而合格品中有75%是优质品,从该批产品中任取一件恰好是优质品的概率为( A ).A. 0.72B. 0.75C. 0.96D. 0.7819.设有10个产品,其中7个正品,3个次品,现从中任取4个产品,则这4个都是正品的概率为( C ).A. 710B. 44710C. 47410C C D. 4710⨯ 20.设有10个产品,其中8个正品,2个次品,现从中抽取3次,每次任取1个,取后放回,则取到的3个产品都是正品的概率为( C ).A. 810B. 38310C C C. 33810 D. 38310C 21.某人打靶的命中率为0.4,现独立地射击5次,则5次中恰有2次命中的概率为( C ).A. 20.4B. 30.6C. 22350.40.6CD. 23250.40.6C22.随机地抛掷质地匀称的6枚骰子,则至少有一枚骰子出现6点的概率为( D ).A.15615()66CB.156151()66C - C.15651()66C D.651()6- 23.把3个不同的球分别放在3个不同的盒子中,则出现2个空盒的概率为(A ).A. 19B. 12C. 23D. 13 24.从1,2,3,4,5,6六个数字中,等可能地、有放回地连续抽取4个数字,则取到的4个数字完全不同的概率为( A ).A.518B.4!6!C.4446AAD.44!625.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为( D ).A. p2B. (1-p)2C. 1-2pD. p(1-p)二、填空题1.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为18/35 .2.甲乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为1/16 .3.设袋中有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为0.25 .4.从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为0.0486 .5.甲乙丙三人各自独立地向一目标射击一次,三人的命中率分别是0.5,0.6,0.7,则目标被击中的概率为0.94 .6.甲袋中装有两白一黑共3个球,乙袋中装有一白两黑共3个球,从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,则取到白球的概率为5/12 .7.设事件A与B互不相容,P(A)=0.2, P(B)=0.3, 则()P A BU= 0.5 .8.设事件A与B相互独立,且P(A+B)=0.6, P(A)=0.2, 则P(B)= 0.5 .9.设()0.3,(|)0.6P A P B A==,则P(AB)= 0.42 .10.设11()()(),()(),()046P A P B P C P AB P AC P BC======,则P(A+B+C)=5/12 .11.已知P (A )=0.7, P (A -B )=0.3, 则()P AB = 0.6 .12.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为 0.25 .13.已知P (A )=0.4, P (B )=0.8, P (B|A )=0.25, 则P (A|B )= 0.125 .14.设111(),(|),(|)432P A P B A P A B ===,则()P A B U = 1/3 . 15.一批产品的废品率为4%,而正品中的一等品率为60%,从这批产品中任取一件是一等品的概率为 0.576 .16.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为 0.7 .三、计算题1.设P (A )=0.4, P (B )=0.2, (|)0.3P B A =, 求P (AB )以及P (A |B ).解:由(|)0.3P B A =得:()0.3,()P AB P A =即()()0.31()P B P AB P A -=-, 解得:P (AB )=0.02. 从而, ()0.02(|)0.1()0.2P AB P A B P B ===.2.已知,()0.2,()0.3,A B P A P B ⊂==求:(1)(),()P A P B ;(2)P (AB );(3)()P AB ;(4) ()P A B U ;(5)P (B -A ).(1)由概率的性质,知()1()0.8,P A P A =-=()1()0.7P B P B =-=;(2)因为A B ⊂,所以AB A =,P (AB )=P (A )=0.2; (3)()P AB =P (A -AB )=P (A )-P (AB )=P (A )-P (A )=0;(4) 因为A B ⊂,所以A B B =U , ()P A B U =P (B )=0.3;或者,()P A B U =P (A )+P (B )-P (AB )=0.2+0.3-0.2=0.3;3.若事件A 与B 互不相容,P (A )=0.6, P (A+B )=0.9, 求:(1)()P AB ;(2)(|)P A B ;(3)()P AB .解:(1) 因A 与B 互不相容,故AB =Φ,P (AB )=0,所以()P AB =1-P (AB )=1;(2) 因A 与B 互不相容,由加法公式:P (A+B )=P (A )+P (B ),得P (B )=0.3,从而 (|)P A B =()()()0.661()0.77()P AB P A P AB P B P B -===-; (3) ()P AB =1()1()10.90.1P AB P A B -=-+=-=.4.已知事件A 与B 相互独立,且P (A )=0.4, P (A+B )=0.6, 求(1)P (B );(2) ()P AB ;(3)P (A|B ).解:(1)因为事件A 与B 相互独立,所以P (AB )=P (A )P (B ),()()()()()()()()P A B P A P B P AB P A P B P A P B +=+-=+-0.6=0.4+P (B )-0.4P (B ),解得:P (B )=13; (2) 因为事件A 与B 相互独立,所以A 与B 也相互独立,故()P AB =4()()15P A P B =; (3) 因为事件A 与B 相互独立,所以P (A|B )=P (A )=0.4.四、应用题 1.一批产品共有50个,其中40个一等品、6个二等品、4个三等品,现从中任取3个产品,求3个产品中至少有2个产品等级相同的概率.解:设A “3个产品中至少有2个产品等级相同”,A “3个产品等级都不同”,由古典概率定义,得111406435012()0.049245C C C P A C ==≈,从而 ()10.0490.951P A =-=.2.10把钥匙中有3把能打开门,现从中任取2把,求能打开门的概率.解:A “取出2把钥匙能打开门”,由古典概率知:1123732108()15C C C P A C +==.3.将5双不同的鞋子混放在一起,从中任取4只,求这4只鞋子至少能配成一双的概率.解:A “4只鞋子中至少能配成一双”,则A “4只鞋子都不同”.由古典概率得:41111522224108()21C C C C C P A C ==,故13()1()21P A P A =-=. 4.从0,1,2,3这4个数中任取3个进行排列,求取得的三个数字排成的数是三位数且是偶数的概率.解:A “排成的数是三位数且是偶数”,A 0“排成的三位数末位是0”,A 2“排成的三位数末位是2”,则A =A 0+A 2,且A 0与A 2互不相容,因为230342!1(),3!4C P A C ==11222341(),3!6C C P A C == 所以,015()()()12P A P A P A =+=. 5.一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求下列事件的概率:(1)第三次才取得合格品;(2)如果取得一个合格品后就不再取零件,在三次内取得合格品.解:设A i “第i 次取到合格品”(i =1,2,3),则(1)第三次才取到合格品的概率为:12312131210990()()(|)(|)0.00831009998P A A A P A P A A P A A A ==⨯⨯≈. (2)A “三次内取得合格品”,则112123A A A A A A A =++,所求概率为: 112123()()()()P A P A P A A P A A A =++1121121312()()(|)()(|)(|)P A P A P A A P A P A A P A A A =++90109010990100100991009998=+⨯+⨯⨯0.9993.≈ 6.盒子中有8个红球和4个白球,每次从盒子中任取一球,不放回地抽取两次,试求:(1) 两次取出的都是红球的概率;(2)在第一次取出白球的条件下,第二次取出红球的概率;(3)第二次取到红球的概率.解:A 1“第一次取出的是红球”,A 2“第二次取出的是红球”,则(1)由乘法公式得,两次取出的都是红球的概率为:121218714()()(|)121133P A A P A P A A ==⨯=; (2)在第一次取出白球的条件下,第二次取出红球的概率为:218(|)11P A A =; (3)由全概率公式得,第二次取到红球的概率为:2121121()()(|)()(|)P A P A P A A P A P A A =+7.某工厂有三台设备生产同一型号零件,每台设备的产量分别占总产量的25%,35%,40%,而各台设备的废品率分别是0.05,0.04,0.02,今从全厂生产的这种零件中任取一件,求此件产品是废品的概率.解:设A i “第i 台设备生产的零件”(i =1,2),B “产品是废品”,由题意知:P (A 1)=25%,P (A 2)=35%,P (A 3)=40%,P (B |A 1)=0.05, P (B |A 2)=0.04, P (B |A 3)=0.02,由全概率公式得,产品是废品的概率为:112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++25%0.0535%0.0440%0.020.0345=⨯+⨯+⨯=.8.两台车床加工同一种零件,加工出来的零件放在一起,已知第一台出现废品的概率是0.03,第二台出现废品的概率是0.02,且第一台加工的零件比第二台加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的是废品,求它是由第二台车床加工的概率.解:设B “零件是合格品”,A “第一台车床加工的零件”,则A “第二台车床加工的零件”,由题意知:21(),()33P A P A ==. (1)由全概率公式得:()()(|)()(|)P B P A P B A P A P B A =+21(10.03)(10.02)0.97333=⨯-+⨯-≈; (2)由贝叶斯公式得,如果取出的是废品,求它是由第二台车床加工的概率为:10.02()()(|)3(|)0.252.921()()13P A B P A P B A P A B P B P B ⨯====--9.已知5%的男人和0.25%的女人是色盲,假设男人女人各占一半.现随机地挑选一人,求:(1)此人恰是色盲的概率是多少?(2)若随机挑选一人,此人是色盲,问他是男人的概率多大?(3)若随机挑选一人,此人不是色盲,问他是男人的概率多大?解:设B “色盲患者”,A “随机挑选一人是男人”,由题设知:11(),(),(|)5%,(|)0.25%22P A P A P B A P B A ====,则 (1)由全概率公式得,随机挑选一人是色盲的概率为:()()(|)()(|)P B P A P B A P A P B A =+115%0.25%0.0262522=⨯+⨯=; (2)由贝叶斯公式得,随机选一人是色盲,他是男人的概率为:15%()()(|)2(|)0.952()()0.02625P AB P A P B A P A B P B P B ⨯===≈; (3)由贝叶斯公式得,随机选一人不是色盲,他是男人的概率为:195%()()(|)2(|)0.48781()0.97375()P AB P A P B A P A B P B P B ⨯===≈-. 10.现有10张考签,其中4张是难签,甲、乙、丙三人抽签考试(取后不放回),甲先乙次丙最后,求下列事件的概率:(1)甲乙都抽到难签;(2)甲没有抽到难签,而乙抽到难签;(3)甲乙丙都抽到难签;(4)证明:甲乙丙抽到难签的机会均等.解:设A ,B ,C 分别表示“甲、乙、丙抽到难签”,则(1)甲乙都抽到难签的概率为:432()()(|)10915P AB P A P B A ==⨯=; (2)甲没有抽到难签,而乙抽到难签的概率为:644()()(|)10915P AB P A P B A ==⨯=; (3)甲乙丙都抽到难签的概率为:4321()()(|)(|)109830P ABC P A P B A P C AB ==⨯⨯=; (4)由古典概率知,甲抽到难签的概率为:4()0.410P A ==. 由全概率公式得,乙抽到难签的概率为:()()(|)()(|)P B P A P B A P A P B A =+43640.4109109=⨯+⨯=. 丙抽到难签的概率为:()()(|)()(|)()(|)()(|)P C P AB P C AB P AB P C AB P AB P C AB P AB P C AB =+++ 4326434636541098109810981098=⨯⨯+⨯⨯+⨯⨯+⨯⨯=0.4. 得,P (A )=P (B )=P (C )=0.4,所以,甲乙丙抽到难签的机会均等,各占40%.11.三个人向同一敌机射击,设三人命中飞机的概率分别为0.4,0.5和0.7.若三人中只有一人击中,飞机被击落的概率为0.2;若有两人击中,飞机被击落的概率为0.6;若三人都击中,则飞机必被击落.求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且0()(10.4)(10.5)(10.7)0.09P A =-⨯--=,1()0.4(10.5)(10.7)(10.4)0.5(10.7)(10.4)(10.5)0.70.36P A =⨯-⨯-+-⨯⨯-+-⨯-⨯=, 2()0.40.5(10.7)0.4(10.5)0.7(10.4)0.50.70.41P A =⨯⨯-+⨯-⨯+-⨯⨯=, 3()0.40.50.70.14P A =⨯⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====.故,由全概率公式得,飞机被击落的概率为:00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++ 0.0900.360.20.410.60.1410.458=⨯+⨯+⨯+⨯=.12.在上题中,假设三人的射击水平相当,命中率都是0.6,其他条件不变,再求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且由贝努里公式得:00303()0.60.40.064P A C =⨯⨯=,1213()0.60.40.288P A C =⨯⨯=, 2223()0.60.40.432P A C =⨯⨯=,3333()0.60.216P A C =⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====. 故由全概率公式得,飞机被击落的概率为:30()()(|)i i i P B P A P B A ==∑0.06400.2880.20.4320.60.21610.5328=⨯+⨯+⨯+⨯=13.已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率为0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品,它确实是合格品的概率.解:设A “产品是合格品”,B “经检查产品被判为合格品”,且由题意知:P (A )=95%, ()195%5%,(|)10.020.98,(|)0.03P A P B A P B A =-==-==.则(1)由全概率公式得,任意抽查一个产品,它被判为合格品的概率为: ()()(|)()(|)P B P A P B A P A P B A =+ 95%0.985%0.030.9325=⨯+⨯=;(2)由贝叶斯公式得,一个经检查被判为合格的产品,它确实是合格品的概率为:()0.950.98(|)0.9984()0.9325P AB P A B P B ⨯==≈. 14.一个工人看管三台机床,在一小时内机床不需要工人看管的概率第一台为0.9,第二台为0.8,第三台为0.7,且三台机床是否需要看管彼此独立.求在一小时内三台机床中最多有一台需要工人看管的概率.解:设A i “第i 台机床需要看管”,i =1,2,3. “三台机床中最多有一台需要工人看管”表示为123123123123A A A A A A A A A A A A +++,且这4个事件两两互不相容,由加法与独立性知,所求的概率为: 123123123123()P A A A A A A A A A A A A +++ 123123123123()()()()P A A A P A A A P A A A P A A A =+++123123123123()()()()()()()()()()()()P A P A P A P A P A P A P A P A P A P A P A P A =+++0.10.80.70.90.20.70.90.80.30.90.80.70.902=⨯⨯+⨯⨯+⨯⨯+⨯⨯=15.加工某一零件共需经过三道工序,设第一、第二、第三道工序的次品率分别是2%,3%,5%.假定各道工序是互不影响的,问加工出来的零件的次品率是多少?解:设A i “第i 道工序加工出次品”,i =1,2,3.则加工出来的零件是次品表示为A 1+A 2+A 3,且A 1,A 2,A 3相互独立,从而123,,A A A 也相互独立. 所求概率为:123123123(++)1()1()()()P A A A P A A A P A P A P A =-=- 1(12%)(13%)(15%)0.09693=----=.16.甲、乙、丙三人独立地破译一密码,他们各自能破译出的概率分别是0.4,0.6,0.7,求此密码被破译的概率.解:设A ,B ,C 分别表示“甲、乙、丙破译出密码”,则A+B+C 表示“密码被破译”,且A ,B ,C 相互独立,从而,,A B C 也相互独立,故所求概率为:(++)1()1()()()P A B C P A B C P A P B P C =-=- 1(10.4)(10.6)(10.7)0.928=----=.17.有甲、乙两批种子,发芽率分别为0.8和0.7,各在两批中随机取一粒,求: (1)两粒种子都能发芽的概率; (2)至多有一粒种子能发芽的概率; (3)至少有一粒种子能发芽的概率.解:设A ,B 分别表示“甲、乙种子发芽”,由题设知:()0.8,()0.7,()10.80.2,()10.70.3P A P B P A P B ===-==-=. (1)两粒种子都能发芽的概率为:()()()0.80.70.56P AB P A P B ==⨯=; (2)至多有一粒种子能发芽的概率为:()()()()P AB AB A B P AB P AB P A B ++=++ ()()()()()()P A P B P A P B P A P B =++ 0.80.30.20.70.20.30.44=⨯+⨯+⨯=; (3)至少有一粒种子能发芽的概率为:()()()()()()()()P A B P A P B P AB P A P B P A P B =+-=+-U0.80.70.80.70.94=+-⨯=.18.一批产品有70%的一级品,进行重复抽样检查,共抽取5件样品,求: (1)取出5件样品中恰有2件一级品的概率p 1; (2)取出5件样品中至少有2件一级品的概率p 2; (3)取出5件样品中至少有一件一级品的概率p 3.解:该问题是参数p =0.7的5重贝努里试验,由贝努里公式得: (1)取出5件样品中恰有2件一级品的概率p 1=22350.70.30.1323C ⨯⨯=; (2)取出5件样品中至少有2件一级品的概率为:p 2=55520.70.3k k k k C -=⨯⨯∑=005145510.70.30.70.30.96922C C -⨯⨯-⨯⨯=; (3)取出5件样品中至少有一件一级品的概率为: p 3=55510.70.3k k k k C -=⨯⨯∑=005510.70.30.99757C -⨯⨯=.19.一射手对一目标独立地射击4次,若至少命中一次的概率为8081, 求射手射击一次命中目标的概率..解:设射手射击一次命中目标的概率为p ,由贝努里定理知,4次射击中至少有一次命中目标的概率为:41(1)p --,由题设知:4801(1)81p --=,解得:23p =.20.一射手对一目标独立地射击, 每次射击命中率为p , 求射击到第4次时恰好两次命中的概率.解:射手射击到第4次恰好有两次命中目标,即第四次命中,而前三次中恰有一次命中,由贝努里定理知,所求概率为:12223(1)3(1)P pC p p p p =-=-. 五、证明题1.设0<P (B )<1,证明事件A 与B 相互独立的充分必要条件是(|)(|)P A B P A B =. 证:必要性 设事件A 与B 相互独立,则P (AB )=P (A )P (B ),P (A|B )=P (A ), 又()()()()()(|)()1()1()()P AB P A AB P A P A P B P A B P A P B P B P B --====--, 所以,(|)(|)P A B P A B =.充分性 若(|)(|)P A B P A B =,则()()()()()()1()1()()P AB P AB P A AB P A P AB P B P B P B P B --===--, 对上式两端化简,得:()()()P AB P A P B =,所以A 与B 相互独立2.证明条件概率的下列性质:(1)若P (B )>0,则0(|)1,(|)1,(|)0P A B P B P B ≤≤Ω=Φ=;(2)若A 与B 互不相容,()0P C >,则(|)(|)(|)P A B C P A C P B C =+U ; (3)(|)1(|)P A B P A B =-. 证:(1)因为()(|)()P AB P A B P B =,而0()()P AB P B ≤≤,所以,0(|)1P A B ≤≤,且()()(|)1()()P B P B P B P B P B ΩΩ===,()()(|)0()()P B P P B P B P B ΦΦΦ===; (2)若A 与B 互不相容,则AC 与BC 也互不相容,从而 ()()()(|)(|)(|)()()P AC BC P AC P BC P A B C P A C P B C P C P C +===+U U ;(3)由性质(2)得:(|)(|)(|)P A A B P A B P A B =+U ,又A A =ΩU ,由性质(1)知,(|)1P B Ω=,所以,(|)(|)1P A B P A B +=,即(|)1(|)P A B P A B =-第二章 随机变量及其概率分布 一、单项选择题1.设随机变量X 的分布律为则P {X <1}=( C ).A. 0B. 0.2C. 0.3D. 0.5 2.设随机变量X 的概率分布为 则a =( D ).A. 0.2B. 0.3C. 0.1D. 0.43.设随机变量X 的概率密度为2,1(),0,1cx f x x x ⎧>⎪=⎨⎪≤⎩则常数c =( D ).A. 1-B.12 C. -12D. 1 4.设随机变量X 的概率密度为3,01(),0,ax x f x ⎧≤≤⎪=⎨⎪⎩其它则常数a =( D ).A.14 B. 12C. 3D. 4 5.下列函数中可作为某随机变量的概率密度函数的是 (A ).A.2100,1000,100x x x ⎧>⎪⎨⎪≤⎩ B.10,00,0x xx ⎧>⎪⎨⎪≤⎩ C. 1,020,x -≤≤⎧⎨⎩其它D.113,2220,x ⎧≤≤⎪⎨⎪⎩其它6.设函数()f x 在区间[,]a b 上等于sin x ,而在此区间外等于0;若()f x 可以作为某连续型随机变量的概率密度函数,则区间[,]a b 为 ( A ).A. [0,]2πB. [0,]πC. [,0]2π-D. 3[0,]2π7.下列函数中,可以作为某随机变量X 的分布函数的是 ( C ).A. 0,00.3,01()0.2,121,2x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩B. 0.5,0()0.8,011,1x x F x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,00.1,05()0.6,561,6x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩ D. 0,2()sin ,021,0x F x x x x ππ⎧<-⎪⎪⎪=-≤<⎨⎪≥⎪⎪⎩8.设()F x 是随机变量X 的分布函数,则 ( B ). A. ()F x 一定连续 B. ()F x 一定右连续 C. ()F x 是不增的 D. ()F x 一定左连续9.设()()F x P X x =≤是随机变量X 的分布函数,则下列结论错误的是(D ).A.()F x 是定义在(,)-∞+∞上的函数B.lim ()lim ()1x x F x F x →+∞→-∞-=C.()()()P a X b F b F a <≤=-D.对一切实数x ,都有0<()F x <110.设随机变量的概率分布为2()(),(1,2,3...)3k P X k a k ===,则常数a =( B ).A. 1B. 12C. 2D. 12-11.已知随机变量X 的分布律为()F x 是X 的分布函数,则F (2.5)=( B ). A. 0.7 B. 0.8 C. 0.1 D. 112.随机变量X 的概率密度2,01()0,x x f x <<⎧=⎨⎩其它,则11{}22P X -≤≤=( A ).A.14B.13C.12D.3413.已知随机变量X 的分布律为 若随机变量Y =X 2,则P {Y =1}=( C ).A. 0.1B. 0.3C. 0.4D. 0.2 14.设随机变量X ~B (4, 0.2),则P {X >3}=( A ).A. 0.0016B. 0.0272C. 0.4096D. 0.819215.设随机变量X ~N (1,4),Y =2X +1,Y ~ ( C). A. N (1, 4) B. N (0, 1) C. N (3, 16) D. N (3, 9) 16.设2~(,)X N μσ,()x Φ是N (0, 1)的分布函数,则()P a X b ≤≤= ( D ). A.()()b a Φ-Φ B.()()b a Φ+ΦC.22()()b a μμσσ--Φ-Φ D.()()b a μμσσ--Φ-Φ17.设X ~N (-1,4),()x Φ是N (0, 1)的分布函数,则P (-2<X <0)= ( A ).A.12()12Φ- B.(0)(2)Φ-Φ- C.1(2)2Φ- D.(2)(0)Φ-Φ18.设X ~N (0,1),()x ϕ是X 的概率密度函数,则(0)ϕ= (C ). A. 0 B. 0.5C.D. 1 19.设X 服从均匀分布U[0,5],Y =3X +2,则Y 服从 ( B ). A. U[0, 5] B. U[2, 17] C. U[2, 15] D. U[0, 17] 20.某种商品进行有奖销售,每购买一件有0.1的中奖率.现某人购买了20件该商品,用随机变量X 表示中奖的件数,则X 的分布为 ( D ).A.正态分布B.指数分布C.泊松分布D.二项分布 21.设X 服从参数2λ=的泊松分布,()F x 是X 的分布函数,则下列正确的选项是 ( B ).A.2(1)F e -=B.2(0)F e -=C.P (X =0)=P (X =1)D.2(1)2P X e -≤= 22.设X 服从参数λ的泊松分布,且2(1)(3)3P X P X ===,则λ= ( C ). A. 1 B. 2 C. 3 D. 4二、填空题1.若2()1P X x β≤=-,1()1P X x α≥=-,其中x 1<x 2, 则12()P x X x ≤≤= 1 .2.设随机变量X 的概率分布为记Y =X 2, 则P (Y =4)= 0.5 .3.若X 是连续型随机变量, 则P (X =1)= 0 .4.设随机变量X 的分布函数为F (x ), 已知F (2)=0.5, F (-3)=0.1, 则(32)P X -<≤= 0.4 .5.设随机变量X的分布函数为212()xt F x edt --∞=⎰,则其密度函数为 .6.设连续型随机变量X 的分布函数为0,0()sin ,021,2x F x x x x ππ⎧⎪<⎪⎪=≤<⎨⎪⎪≥⎪⎩, 其密度函数为()f x ,则()6f π= 1/2 .7.设随机变量X 的分布函数为1,0()0,x e x F x x -⎧-≥=⎨<⎩, 则当x >0时, X 的概率密度()f x = 1 . .8.设随机变量X 的分布律为则(01)P X ≤≤= 0.6 .9.设随机变量X ~N (3, 4), 则(45)P X <<= 0.148 . (其中(1)0.8413,(0.5)0.6915Φ=Φ=)10.设随机变量X 服从参数为6的泊松分布, 写出其概率分布律 P(X=K)=6K/K! K=0,1,2,3 .11.若随机变量X ~B (4, 0.5), 则(1)P X ≥= 15/16 .12.若随机变量X ~U (0, 5),且Y =2X ,则当010y ≤≤时, Y 的概率密度()Y f y = 1/10 .13.设随机变量X ~N (0, 4),则(0)P X ≥= 0.5 .14.设随机变量X ~U (-1, 1),则1(||)2P X ≤= 0.5 .15.设随机变量X 在[2, 4]上服从均匀分布,则(23)P X <<= 0.5 .16.设随机变量X ~N (-1, 4),则1~2X Y +=N(0,1) . 17.设随机变量X 的分布律为(),0,1,2, (3)k aP X k k ===,则a = 2/3 .18.设连续型随机变量X 的概率密度为1,02()0,kx x f x +<<⎧=⎨⎩其它,则k =-1/2 .19.若随机变量X ~N (1, 16),Y =2X -1,则Y ~ N(1,64) . 20.若随机变量X ~U (1, 6),Y =3X +2,则Y ~ U(5,20) . 三、计算题1.设连续型随机变量X 的分布函数为20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩,求X 的概率密度函数.解:由分布函数与概率密度函数之间的关系()()F x f x '=知,当0<x <1时, 2()()2f x x x '==,当1x ≥或0x ≤时,()f x =0,所以,X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其它.2.设X 服从参数p =0.2的0-1分布,求X 的分布函数及P (X <0.5). 解:X 的分布律为当0x <时,()()F x P X x =≤=0;当01x ≤<时,()()F x P X x =≤=(0)0.8P X ==;当1x ≥时,()()F x P X x =≤=(0)(1)0.80.21P X P X =+==+=.所以,X 的分布函数为0,0()0.8,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩;而P (X <0.5)= P (X =0)=0.8.3.设随机变量X ~U (a , b ),求X 的密度函数与分布函数.解:X 的密度函数为1,()0,a xb f x b a ⎧<<⎪=-⎨⎪⎩其它;分布函数()()x F x f t dt -∞=⎰,当x a <时,()()xF x f t dt -∞=⎰00xdt -∞==⎰;当a x b ≤<时,()()x F x f t dt -∞=⎰10a xax adt dt b a b a-∞-=+=--⎰⎰; 当x b ≥时,()()x F x f t dt -∞=⎰1001abx ab dt dt dt b a-∞=++=-⎰⎰⎰.所以,X 的分布函数为0,(),1,x a x a F x a x b b ax b <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩.4.设随机变量X ~N (3, 4),求:(1)P (2<X <3);(2) P (-4<X <10);(3) P (|X|>2);(4)P (X >3).解:(1)P (2<X <3)=3323(3)(2)()()22F F ---=Φ-Φ(0)(0.5)=Φ-Φ- (0)[1(0.5)]=Φ--Φ=0.1915;(2) P (-4<X <10)=10343(10)(4)()()22F F -----=Φ-Φ=(3.5)( 3.5)2(3.5)1Φ-Φ-=Φ-=0.9996; (3) P (|X|>2)=1(||2)P X -≤=1(22)1[(2)(2)]P X F F --≤≤=---=23231[()()]22----Φ-Φ=(0.5)(2.5)1Φ-Φ+=0.6977; (4)P (X >3)=1(3)P X -≤=331(3)1()1(0)2F --=-Φ=-Φ=0.5.5.已知随机变量X 的密度函数为2,01()0,kx x f x ⎧<<=⎨⎩其它,求:(1)常数k ;(2)分布函数;(3)(10.5)P X -<<..解:(1)因为()1f x dx +∞-∞=⎰,所以123100|133k kkx dx x ===⎰,故k =3. 即随机变量X 的概率密度为23,01()0,x x f x ⎧<<=⎨⎩其它;(2)当0x <时,()()xF x f t dt -∞=⎰=0,当01x ≤<时,()()xF x f t dt -∞=⎰=023003xdt t dt x -∞+=⎰⎰,当1x ≥时,()()x F x f t dt -∞=⎰=012010301xdt t dt dt -∞++=⎰⎰⎰所以,随机变量X 的分布函数为30,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩;(3)(10.5)P X -<<3(0.5)(1)0.500.125F F =--=-=;6.设随机变量X 的概率密度为,011(),1220,x x f x x <<⎧⎪⎪=≤<⎨⎪⎪⎩其它,求X 的分布函数.解:当0x <时,()()xF x f t dt -∞=⎰=0;当01x ≤<时,()()xF x f t dt -∞=⎰=020102xdt tdt x -∞+=⎰⎰;当12x ≤<时,()()x F x f t dt -∞=⎰=010111022x dt tdt dt x -∞++=⎰⎰⎰;当2x ≥时,()()x F x f t dt -∞=⎰=01201210012xdt tdt dt dt -∞+++=⎰⎰⎰⎰.所以,随机变量X 的分布函数为20,01,012()1,1221,2x x x F x x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.7.设随机变量X~,01()2,120,x x f x x x ≤<⎧⎪=-≤<⎨⎪⎩其它,求:(1)1()2P X ≥;(2)13()22P X <<.解:(1)1()2P X ≥=+1211122()(2)f x dx xdx x dx ∞=+-⎰⎰⎰=2122112117|(2)|228x x x +-=; (2)13()22P X <<=3312211122()(2)f x dx xdx x dx =+-⎰⎰⎰=32122112113|(2)|224x x x +-=.8.设随机变量X 在[0,5]上服从均匀分布,求方程24420x Xx X +++=有实根的概率.解:X ~1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它,而方程24420x Xx X +++=有实根的充分必要条件是21616(2)0X X ∆=-+≥,即220X X --≥,故所求概率为:2{20}(1)(2)P X X P X P X --≥=≤-+≥=0+5215dx ⎰=0.6.9.设随机变量X 的分布律为求:(1)Y =2X 的分布律;(2)Z =|X |的概率分布;(3)X 2的分布律.解:(1)由X 的分布律知,Y 的取值为-2,0,2,4.且(2)(1)0.1P Y P X =-==-=,(0)(0)0.2P Y P X ====, (2)(1)0.3P Y P X ====,(4)(2)0.4P Y P X ====. 所以,Y 的分布律为(2)Z =|X |的取值为0,1,2.2(0)(0)0.2P X P X ====,2(1)(1)(1)0.4P X P X P X ===-+==,2(4)(2)0.4P X P X ====.所以,X 2的分布律为:10.设X ~U [0,4], Y =3X +1,求Y 的概率密度.解:X ~1,04()40,x f x ⎧≤≤⎪=⎨⎪⎩其它,Y =3X +1的取值范围是[1,13].Y 的分布函数131()()(31)()()3y Y y F y P Y y P X y P X f x dx --∞-=≤=+≤=≤=⎰ 当1y <时,有103y -<,13()00y Y F y dx --∞==⎰;当113y ≤<时,有1043y -≤<,103011()0412y Y y F y dx dx --∞-=+=⎰⎰; 当13y ≥时,有143y -≥,1043041()0014y Y F y dx dx dx --∞=++=⎰⎰⎰.11.已知随机变量X ~N (1,4),Y =2X +3,求Y 的概率密度..解:X~2(1)8(),()x f x x --=-∞<<+∞,建立Y 的分布函数与X 的分布函数之间的关系.因为:33()()(23)()()22Y X y y F y P Y y P X y P X F --=≤=+≤=≤=, 两边对y 求导:3313()()()()2222Y X X y y y f y F f ---''=⋅=223(1)(5)2832y y -----==,即Y ~N (5,16).12.已知X 服从参数1λ=的指数分布,Y =2X -1,求Y 的概率密度.解:由题设知,X ~,0()0,0x e x f x x -⎧>=⎨≤⎩,方法1 11()()(21)()()22Y X y y F y P Y y P X y P X F ++=≤=-≤=≤=, 两边对y 求导:1111()()()()2222Y X X y y y f y F f +++''=⋅=, 又因为12121,012,1()210,10,02y y X y e y e y f y y +-+-⎧+>⎧⎪+⎪⎪>-==⎨⎨+⎪⎪≤-⎩≤⎪⎩,所以,Y 的概率密度为:121,1()20,1y Y e y f y y +-⎧>-⎪=⎨⎪≤-⎩.四、应用题1.一批零件中有10个合格品和2个废品,安装机器时,从这批零件中任取一个,如果每次取出废品后不再放回,用X 表示在取得合格品以前已取出的废品的个数,求:(1)随机变量X 的分布律;(2)随机变量X 的分布函数.解:(1)随机变量X 的可能取值为0,1,2,且105(0)126P X ===,2105(1)121133P X ==⨯=,21101(2)12111066P X ==⨯⨯=, 得到X 的分布律为:(2)X 的可能取值0,1,2将分布函数F (x )的定义域(,)-∞+∞分为四部分: 当0x <时,()()0F x P X x =≤=,当01x ≤<时,()()F x P X x =≤5(0)6P X ===,当12x ≤<时,()()F x P X x =≤65(0)(1)66P X P X ==+==, 当2x ≤时,()()F x P X x =≤(0)(1)(2)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,05,016()65,12661,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.2.袋中有标号为1,2,2,3,3,3的六个球,从中任取一个球,求所取出的球的号码X 的概率分布及分布函数..解:X 的可能取值为1,2,3.且1(1)6P X ==,21(2)63P X ===,31(3)62P X ===, 所以,X 的概率分布为:当1x <时,()()0F x P X x =≤=,当12x ≤<时,()()F x P X x =≤1(1)6P X ===,当23x ≤<时,()()F x P X x =≤1(1)(2)2P X P X ==+==, 当3x ≥时,()()F x P X x =≤(1)(2)(3)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,11,126()1,2321,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩3. 袋中有标号为1,2,2,3,3,3的六个球,从中任取两个球,X 表示取出的两个球的最大号码,求X 的概率分布..解:X 的所有可能的取值为2,3.且112122261(2)5C C C P X C +===,112333264(3)5C C C P X C +===, 从而得到X 的概率分布为:4.设一批产品共1000个,其中40个是次品,随机抽取100个样品,按下列两种方式抽样,分别求样品中次品数X 的概率分布.(1)不放回抽样; (2)有放回抽样.解:(1)不放回抽样,X 的可能取值为0,1,2,…,40.{X =k }表示100个样品中恰好有k 个次品,则100401000401001000()k kC C P X k C --==,得到X 的概率分布为: 100409601001000(),0,1,2,...,40.k kC C P X k k C -=== (2)有放回抽样,X 的可能取值为0,1,2,…,100.由于有放回抽样,抽取100个样品可看作进行了100重贝努里试验,且每次抽到次品的概率都是0.04,抽到正品的概率为0.96,X ~B (100,0.04).则X 的概率分布为:100100()0.040.96,0,1,2,...,100.kk k P X k C k -===5.抛掷一枚质地不均匀的硬币,每次正面出现的概率为13,连续抛掷10次,以X 表示正面出现的次数,求X 的分布律.由题设知,X ~B (10,13). 则X 的分布律为:101012()()(),0,1,2,...,10.33k k kP X k C k -===6.有一繁忙的交通路口,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率.解:设X 表示1000辆汽车通过路口时出事故的次数,由题意知,X ~B (1000,0.0001).由于n =1000很大,p =0.0001很小,故利用泊松分布近似代替二项分布计算.其中,10000.00010.1np λ==⨯=,0.10.1(),0,1,2,...!k P X k e k k -=≈=, 查泊松分布表可得,所求概率为:7.以电话交换台每分钟收到的呼唤次数服从参数为4的泊松分布,求: (1)每分钟恰有4次呼唤的概率; (2)每分钟的呼唤次数至少有4次的概率.解:设X 表示电话交换台每分钟收到的呼唤次数,由题意知,X ~P (4),其分布律为:44(),0,1,2...!k P X k e k k -===,则(1)每分钟恰有4次呼唤的概率444(4)0.1953674!P X e -===;(2)每分钟的呼唤次数至少有4次的概率444(4)0.56653!k k P X e k ∞-=≥==∑8.袋中装有8个球,其中3个红球、5个白球,现从袋中任取3个球,求取出红球数的概率分布.解:X 表示取出3个球中含有红球的个数,则X 的可能取值为0,1,2,3. 且35385(0)28C P X C ===,12353815(1)28C C P X C ===,21353815(2)56C C P X C ===,33381(3)56C P X C ===,于是,X 的概率分布为:9.已知某类电子元件的寿命X (单位:小时)服从指数分布,其概率密度为110001,0()10000,0x e x f x x -⎧>⎪=⎨⎪≤⎩, 一台仪器装有3个此种类型的电子元件,其中任意一个损坏时仪器便不能正常工作,假设3个电子元件损坏与否相互独立.试求:(1)一个此类电子元件能工作1000小时以上的概率p 1; (2)一台仪器能正常工作到1000小时以上的概率p 2. 解:(1)一个此类电子元件能工作1000小时以上的概率为:p 1=11110001000100010001(1000)|1000x x P X e dx e e --+∞+∞-≥==-=⎰; (2)一台仪器能正常工作到1000小时以上,需要这3个电子元件的寿命都在1000小时以上,由独立性知,所求概率为:p 2=33[(1000)]P X e -≥=.10.公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的.设男子身高X 服从170μ=(厘米),6σ=(厘米)的正态分布,即2~(170,6)X N .问车门高度应如何确定?解:设车门高度为h 厘米,由题意知,()0.01P X h >≤,即()0.99P X h ≤≥. 因为X ~N (170,36),所以170()()()0.996h P X h F h -≤==Φ≥, 查表得:(2.33)0.99010.99Φ=>,所以1702.336h -=,解得h =183.98. 设计车门的高度为183.98厘米时,可使男子与车门碰头的机会不超过0.01.五、综合题1.设10件产品中有2件次品,现进行连续无放回抽样,直至取到正品为止,求:(1)抽样次数X 的概率分布; (2)X 的分布函数F (x ); (3)(2),(13)P X P X >-<<. .解:(1)X 的可能取值为1,2,3.且84(1)105P X ===,288(2)10945P X ==⨯=,2181(3)109845P X ==⨯⨯=. 所以,X 的概率分布为:(2)当1x <时,()()0F x P X x =≤=, 当12x ≤<时,4()()(1)5F x P X x P X =≤===, 当23x ≤<时,44()()(1)(2)45F x P X x P X P X =≤==+==, 当3x ≥时,()()(1)(2)(3)1F x P X x P X P X P X =≤==+=+==. 所以,X 的分布函数为:0,14,125()44,23451,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩;(3)(2)(1)(2)(3)1P X P X P X P X >-==+=+==; 或(2)1(2)1(2)101P X P X F >-=-≤=-=-=.8(13)(2)45P X P X <<===.2.司机通过某高速路收费站等候的时间X (单位:分钟)服从参数15λ=的指数分布.(1)求某司机在此收费站等候时间超过10分钟的概率p ;(2)若该司机一个月要经过此收费站两次,用Y 表示等候时间超过10分钟的次数,写出Y 的分布律,并求(1)P Y ≥.解:(1)由题设知,151,0~()50,0x e x X f x x -⎧>⎪=⎨⎪≤⎩,则司机在此收费站等候时间超过10分钟的概率为:125101(10)5x p P X e dx e -+∞-=>==⎰; (2)由题意知,2~(2,)Y B e -,Y 的分布律为:22222222()()(1)(1),0,1,2.k k k k k k P Y k C e e C e e k ------==-=-= 2224(1)1(0)1(1)2P Y P Y e e e ---≥=-==--=-.3.甲乙丙三人独立地等1,2,3路公共汽车,他们等车的时间(单位:分钟)都服从[0,5]上的均匀分布,求三人中至少有两人等车不超过2分钟的概率.解:设一个人等车的时间为X ,由题设知,X ~U [0,5],其密度函数:1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它. 则一个人等车不超过2分钟的概率为:221(2)()0.45p P X f x dx dx -∞=≤===⎰⎰. 设Y 表示三人中等车时间不超过2分钟的人数,则Y ~B (3,0.4),则三人中至少有两人等车不超过2分钟的概率为:223333(2)(2)(3)0.40.60.4P Y P Y P Y C C ≥==+==+=0.352.4.设测量距离时产生的随机误差X ~N (0,102)(单位:米),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知(1.96)0.975.Φ=(1)求每次测量中误差绝对值大于19.6的概率p ; (2)问Y 服从何种分布,并写出其分布律;(3)求三次测量中至少有一次误差绝对值大于19.6的概率. 解:(1) p =(||19.6)1(||19.6)P X P X >=-≤019.601(||)1[2(1.96)1]1010X P --=-≤=-Φ-=0.05. (2)由题意知,Y ~B (3, 0.05),Y 的分布律为:33()0.050.95,0,1,2,3.k k k P X k C k -===(3)三次测量中至少有一次误差绝对值大于19.6的概率为: 3(1)1(0)10.95P Y P Y ≥=-==-=0.142625.5.设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从参数110λ=的指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.(1)写出Y 的分布律;(2)求该顾客一个月至少有一次未等到服务而离开窗口的概率.解:(1)由题设知,等待服务的时间X ~1101,0()100,0x e x f x x -⎧>⎪=⎨⎪≤⎩,顾客离开银行的概率为:1110101(10)10x p P X e dx e -+∞-=>==⎰.由题意知,Y ~B (5,e -1),其分布律为:1155()()(1),0,1,...,5.k k k P Y k C e e k ---==-=(2)所求概率为(1)P Y ≥=151(0)1(1)P Y e --==--0.899≈.6.设连续型随机变量X 的分布函数为:20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩,求:(1)系数A ; (2)X 的概率密度; (3)(0.30.7)P X <≤; (4)Y =X 2的概率密度.解:(1)由F (x )的连续性知,11lim ()lim ()(1)x x F x F x F -+→→==,有21lim 1x Ax -→=,得1A =; (2)X 的概率密度2,01()()0,x x f x F x <<⎧'==⎨⎩其它;(3)(0.30.7)P X <≤22(0.7)(0.3)0.70.30.4F F =-=-=,或(0.30.7)P X <≤=0.720.70.30.32|0.4xdx x ==⎰; (4)因为20Y X =≥,所以,当0y <时,()()0Y F y P Y y =≤=, 当01y ≤<时,2()()()(Y F y P Y y P X y P X =≤=≤=≤≤()f x dx xdx y ===,当1y ≥时,101()(()21Y F y P X f x dx xdx dx =≤≤==+=⎰所以,X 的分布函数为:0,0(),011,1Y y F y y y y <⎧⎪=≤<⎨⎪≥⎩,X 的概率密度为:1,01()0,Y y f y <<⎧=⎨⎩其它.7.连续型随机变量X 的分布函数为()arctan ,()F x A B x x =+-∞<<+∞,求:。

概率练习及答案

概率练习及答案

106第一章事件与概率1对一个五人学习小组考虑生日'可题:(1)求五个人的生日都在星期日的概率; (2)求五个人的生日都不在星期日的概率;(3)求五个人的生日不都在星期日的概率.【解】(1)设A i ={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故、11、5P (A 1)=飞=(—)77(2)设A 2={五个人生日都不在星期日},有利事件数为65,故/ 、 6565P (A 2)=〒=()(3)设A 3={五个人的生日不都在星期日 }1 5P ( A 3)=1 -P (A 1)=1 _()2、一架升降机开始时有 6位乘客,并等可能地停于十层楼的每一层 •试求下列事件的概率:(1) A= “某指定的一层有两位乘客离开”;(2) B= “没有两位及两位以上的乘客在同一层离开” ; (3) C= “恰有两位乘客在同一层离开”; (4) D= “至少有两位乘客在同一层离开”【解】 由于每位乘客均可在 10层楼中的任一层离开,故所有可能结果为 106种• (1)(2) 6个人在十层中任意六层离开,故(3)由于没有规定在哪一层离开,故可在十层中的任一层离开,有C 1O 种可能结果,再从六人中选二人在该层离开, 有C 2种离开方式.其余4人中不能再有两人同时离开的情 况,因此可包含以下三种离开方式:① 4人中有3个人在同一层离开,另一人在其余 8层中任一层离开,共有 C 9C 4C 8种可能结果;②4人同时离开,有 C 9种可能结果; ③4个人都不在同一层离开,有 戌种可能结果,故p (c )二c ;o c 2(c 9c 4c 8 c 9 戌)/106(4) D= B .故P(D) =1 _P(B) =1P(B)二P 10 10i3、两人约定上午 9 : 00~10 : 00在公园会面,求一人要等另一人半小时以上的概率【解】设两人到达时刻为 x,y,则O W x,y w 60•事件“一人要等另一人半小时以上” 等价于|x_y|>30.如图阴影部分所示•302 1 602 _ 44、一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取 3个,计算至少有两个是白球的概率 •【解】 设A={恰有i 个白球} (i=2,3),显然A 2与A 3互斥•【解】 P (A U B U C ) =P(A)+P(B)+P(C)-P(AB)—P(BC)-P(AC)+P(ABC)3= + + —' =4 4 3 12 46、 对任意的随机事件 A , B , CP (AB ) +P (AC ) -P ( BC )< P(A).【证】P(A)_P[A(B C)]二 P(AB AC)-P(AB) P(AC) - P(ABC) -P(AB) P(AC) - P(BC)7、 证明:;「-域之交仍为;「-域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )AB (D )AB4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ](A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A ](A )C A C B ; (B )C AB ;(C )C AB C B A BC A ; (D )A B C .8.假设随机事件A,B 满足P(AB)=0,则 [ D ](A )A,B 互为对立事件 (B)A,B 互不相容(C )AB 一定为不可能事件 (D )AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互不相容 。

2.“A ,B ,C 三个事件中至少发生二个”此事件可以表示为 AB BC AC 。

三、简答题:1.写出下列随机试验的样本空间。

(1)一盒内放有四个球,它们分别标上1,2,3,4号。

现从盒这任取一球后,不放回盒中,再从盒中任取一球,记录两次取球的号码。

(2)将(1)的取球方式改为第一次取球后放回盒中再作第二次取球,记录两次取球的号码。

解:()()()()()()()()()()()()(){}11,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3 ()()()()()()()()()()()()(){21,1,1,2,1,3,1,4,2,1,2,2,2,3,2,4,3,1,3,2,3,3,3,4 ()()()()}4,1,4,2,4,3,4,42.设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件。

(1)A 、B 、C 中只有A 发生; (2)A 不发生,B 与C 发生;(3)A 、B 、C 中恰有一个发生; (4)A 、B 、C 中恰有二个发生;(5)A 、B 、C 中没有一个发生; (6)A 、B 、C 中所有三个都发生;(7)A 、B 、C 中至少有一个发生; (8)A 、B 、C 中不多于两个发生。

解:()1ABC ()2ABC ()3A B C A B CA B C ()4A B C A B C A BC ()5ABC ()6ABC ()7A B C ()8ABC Ω-3、设事件A 、B 、C 满足abc φ≠,试把下列事件表示为一些互不相容的事件的和:(1)A B C ⋃⋃ (2)AB C ⋃解: (1)()()()()()A B A C A B A AB CAB A AB B BC C CA ABC ---==---()()2A B C C-概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(二)一、选择题:1.掷两颗均匀的骰子,事件“点数之和为3”的概率是 [ B ](A )136(B )118 (C )112 (D )111 2.袋中放有3个红球,2个白球,第一次取出一球,不放回,第二次再取一球,则两次都是红球的概率是 [ B ](A )925 (B )310 (C )625(D )320 3. 已知事件A 、B 满足A B ⊂,则()P B A -≠ [ B ](A )()()P B P A - (B )()()()P B A P AB -+(C )()P AB (D )()()P B P AB -4.A 、B 为两事件,若()0.8,()0.2,()0.4P A B P A P B ⋃===,则 [ B ](A )()0.32P A B = (B )()0.2P A B =(C )()0.4P B A -= (D )()0.48P B A =5.有6本中文书和4本外文书,任意往书架摆放,则4本外文书放在一起的概率是 [ D ](A )4!6!10!⋅ (B )710 (C )410 (D )4!7!10!⋅ 二、选择题:1.设A 和B 是两事件,则()()P A P AB =+ P (AB )2.设A 、B 、C 两两互不相容,()0.2,()0.3,()0.4P A P B P C ===,则[()]P A B C ⋃-= 0.53.若()0.5,()0.4,()0.3P A P B P A B ==-=,则()P A B ⋃= 0.8 。

4.设两两独立的事件A ,B ,C 满足条件ABC φ=,1()()()2P A P B P C ==<,且已知 9()16P A B C ⋃⋃=,则()P A = 0.25 。

5.设1()()()4P A P B P C ===,1()0,()()8P AB P AC P BC ===,则A 、B 、C 全不发生的概率为 0.5 。

6.设A 和B 是两事件,B A ⊂,()0.9,()0.36P A P B ==,则()P AB = 0.54 。

三、计算题:1.罐中有12颗围棋子,其中8颗白子,4颗黑子,若从中任取3颗,求:(1)取到的都是白子的概率;(2)取到的两颗白子,一颗黑子的概率;(3)取到的3颗中至少有一颗黑子的概率;(4)取到的3颗棋子颜色相同的概率。

解:设A =“取到三颗白球” B = “取到三颗黑球” C =“两颗白球,一颗黑球”D =“至少一颗黑球”(1) 3831214()55C P A C == (2) 218431228()55C C P C C == (3)41()1()55P D P A =-= (4)33843312123()()()11C C P A B P A P B C C ⋃=+=+=2.加工某一零件共需经过4道工序,设第一、二、三和四道工序的次品率分别为2%、3%、5%和3%,假定各道工序是互不影响的,求加工出来的零件的次品率。

解:设A i =“第i 道工序出现次品” (i =1,2,3,4) B =“次品”1234()1[1()][1()][1()][1()]P B P A P A P A P A =----- 10.940.970.950.970.124=-⨯⨯⨯=3.袋中人民币五元的2张,二元的3张和一元的5张,从中任取5张,求它们之和大于12元的概率。

解:设A =“5张的金额之和大于12元”23285102()9C C P A C ==概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(三)一、选择题:1.设A 、B 为两个事件,()()0P A P B ≠>,且A B ⊃,则下列必成立是 [ A ](A )(|)1P A B = (D )(|)1P B A = (C )(|)1P B A = (D )(|)0P A B =2.设盒中有10个木质球,6个玻璃球,木质球有3个红球,7个蓝色;玻璃球有2个红色,4个蓝色。

现在从盒中任取一球,用A 表示“取到蓝色球”,B 表示“取到玻璃球”,则P (B |A )=[ D ]。

(A )610 (B )616 (C )47 (D )4113.设A 、B 为两事件,且(),()P A P B 均大于0,则下列公式错误的是 [ B ](A )()()()()P A B P A P B P AB ⋃=+- (B )()()()P AB P A P B =(C )()()(|)P AB P A P B A = (D )()1()P A P A =-4.设10件产品中有4件不合格品,从中任取2件,已知所取的2件产品中有一件是不合格品,则另一件也是不合格品的概率为 [ B ](A )25 (B )15 (C )12 (D )355.设A 、B 为两个随机事件,且0()1,()0,(|)(|)P A P B P B A P B A <<>=,则必有 [ C ](A )(|)(|)P A B P A B = (B )(|)(|)P A B P A B ≠(C )()()()P AB P A P B = (D )()()()P AB P A P B ≠二、填空题:1.设A 、B 为两事件,()0.8,()0.6,()0.3P A B P A P B ⋃===,则(|)P B A = 1/62.设()0.6,()0.84,(|)0.4P A P A B P B A =⋃==,则()P B = 0.63.若()0.6,()0.8,(|)0.2P A P B P B A ===,则(|)P A B = 0.94.某产品的次品率为2%,且合格品中一等品率为75%。

如果任取一件产品,取到的是一等品的概率为 0.75*0.98 = 0.7535.已知123,,A A A 为一完备事件组,且121()0.1,()0.5,(|)0.2P A P A P B A ===2(|)0.6P B A = 3(|)0.1P B A =,则1(|)P A B = 1/18 = 0.0556三、计算题:1.某种动物由出生活到10岁的概率为0.8,活到12岁的概率为0.56,求现年10岁的该动物活到12岁的概率是多少?解:设A=“活到10岁” B =“活到15岁“0560708()().(|).()().P AB P B P B A P A P A ==== 2.某产品由甲、乙两车间生产,甲车间占60%,乙车间占40%,且甲车间的正品率为90%,乙车间的正品率为95%,求:(1)任取一件产品是正品的概率;(2)任取一件是次品,它是乙车间生产的概率。

相关文档
最新文档