人教版高中数学必修4课后习题答案
高中数学必修4习题和复习参考题对应答案
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k ·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k ·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k ·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k ·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k ·360°,k ∈Z },-245°,115°; (5){β|β=90°+k ·360°,k ∈Z },-270°,90°; (6){β|β=270°+k ·360°,k ∈Z },-90°,270°; (7){β|β=180°+k ·360°,k ∈Z },-180°,180°; (8){β|β=k ·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k ·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k ·360°<β<180°+k ·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k ·360°<β<270°+k ·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k ·360°<β<360°+k ·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k ·360°<α<90°+k ·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n ≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cos α,tan α的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin2446663ππππππ-+-++; (4)2423sin cos tan 323πππ+-.答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sin θ·tan θ<0; (2)角θ为第三或第四象限角当且仅当cos θ·tan θ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cos α-sin α的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cos β-1)2+sin 2β=2-2cos β;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cos β+cos 2β+sin 2β=2-2cos β;(4)左边=(sin 2x +cos 2x )2-2sin 2x ·cos 2x=1-2sin 2x ·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tan α说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tan α=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x ·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________;(4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2k π],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2k π,(2k +1)π],k ∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx ≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(k π,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=k π,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g ≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式.t 0 t 0 2t 0 3t 04t 05t 0 6t 0 7t 0 8t 0 9t 010t 0 11t 0 12t 0s-20.0-17.8-10.10.110.317.720.017.710.30.1 -10.1-17.8-20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π;(4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2k π,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sin φ,tan φ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sin φ的值,再求tan φ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cos α表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sin α)(1+cos α)=(1-sin α+cos α)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sin α+2cos α-2sin αcos α=1+sin 2α+cos 2α-2sin α+2cos α-2sin αcos α =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tan α=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sin αcos α;(3)(sin α+cos α)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12- 02232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2k π,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x ≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.17 0.34 0.50 0.64 0.77 0.87 0.94 0.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。
重点高中数学必修4习题和复习参考题及对应参考答案
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角. 2、写出终边在x 轴上的角的集合. 答案:S={α|α=k·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k·360°,k ∈Z },-245°,115°; (5){β|β=90°+k·360°,k ∈Z },-270°,90°; (6){β|β=270°+k·360°,k ∈Z },-90°,270°; (7){β|β=180°+k·360°,k ∈Z },-180°,180°; (8){β|β=k·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k·360°,k ∈Z } 二 {β|90°+k·360°<β<180°+k·360°,k ∈Z }三 {β|180°+k·360°<β<270°+k·360°,k ∈Z }四{β|270°+k·360°<β<360°+k·360°,k ∈Z }说明:用角度制和弧度制写出各象限角的集合. 5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2是( )、A .第一象限角B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角. 6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念. 7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值;(2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理. 2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20 习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值: (1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值. 3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简: (1)asin0°+bcos90°+ctan180°; (2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简. 5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题. 6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号. 7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号. 8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值. 9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0;(2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0;(3)角θ为第一或第四象限角当且仅当sin0 tanθθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34 x x==-.说明:要分别对x 是第三象限角和第四象限角进行讨论. 12、已知3tan 3,2απαπ=<<,求cosα-sinα的值. 答案:1(31)2- 说明:角α是特殊角. 13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α; (3)(cosβ-1)2+sin 2β=2-2cosβ; (4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tanα说明:先变形,再根据同角三角函数的基本关系进行化简. 3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式. 4、从本节的例7可以看出,cos 1sin 1sin cos x xx x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29 习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数. 2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′; (6)26sin()3π-. 答案:(1)22; (2)-0.7193; (3)-0.0151; (4)0.6639;(5)-0.9964; (6)32-说明:先利用诱导公式转化为锐角三角函数,再求值. 3、化简:(1)sin (-1071°)·sin99°+sin (-171°)·sin (-261°); (2)1+sin (α-2π)·sin (π+α)-2cos 2(-α). 答案:(1)0;(2)-cos 2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简. 4、求证:(1)sin (360°-α)=-sinα; (2)cos (360°-α)=cosα; (3)tan (360°-α)=-tanα. 答案:(1)sin (360°-α)=sin (-α)=-sinα; (2)略; (3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B 组1、计算: (1)sin420°·cos750°+sin (-330°)·cos (-660°); (2)tan675°+tan765°-tan (-330°)+tan (-690°);(3)252525sincos tan()634πππ++-. 答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值. 2、已知1sin()2πα+=-,计算: (1)sin (5π-α); (2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46 习题1.4A 组1、画出下列函数的简图: (1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1) (2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究. 5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2kπ],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2kπ,(2k +1)π],k ∈Z 时,y=-cosx 是增函数.说明:利用正弦、余弦函数的单调性研究所给函数的单调性. 6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法. 7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期. 答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解. 8、利用正切函数的单调性比较下列各组中两个函数值的大小:(1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式. 10、设函数f (x )(x ∈R )是以?2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是: f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题. 11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=kπ,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题: (1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗? 答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57 习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2) (3) (4)说明:研究了参数A 、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式. t 0t 02t 03t 0 4t 05t 06t 07t 08t 09t 0 10t 011t 012t 0s-20.0 -17.8 -10.10.110.3 17.7 20.0 17.7 10.30.1-10.1 -17.8 -20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P 的纵坐标关于时间t 的函数关系式为y=rsin (ωt +φ),t ∈[0,+∞);点P 的运动周期和频率分别为2πω和2ωπ. 说明:应用函数模型y=rsin (ωt +φ)解决实际问题. P65 习题1.61、根据下列条件,求△ABC 的内角A :(1)1sin 2A =;(2)2cos 2A =-; (3)tanA=1;(4)3tan 3A =-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论. P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2kπ,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解. 3、确定下列三角函数值的符号: (1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sinφ,tanφ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==; 当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α. 答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形. 7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2; (2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2c osα-2sinαcosα =右边.(2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形. 8、已知tanα=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα; (3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85.说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号. 10、已知1sin()2πα+=-,计算: (1)cos (2π-α);(2)tan (α-7π).答案:(1)当α为第一象限角时,3cos(2)2πα-=, 当α为第二象限角时,3cos(2)2πα-=-; (2)当α为第一象限角时,3tan(7)3απ-=,当α为第二象限角时,3tan(7)3απ-=-. 说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算. 11、先比较大小,再用计算器求值: (1)sin378°21′,tan1111°,cos642.5°; (2)sin (-879°),313ta n (),c o s ()810ππ--;(3)sin3,cos (sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216; (2)sin (-879°)=-0.358,3313tan()0.414,cos()0.588810ππ-=--=-; (3)sin3=0.141,cos (sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证. 12、设π<x <2π,填表:x sinx -1cosx tanx答案:x sinx -1 cosx 0 tanx1不存在-1说明:熟悉各特殊角的三角函数值. 13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z };最小值为1,此时x 的集合为{x|x=2kπ,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤.说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1) (2) (3) (4)说明:可要求学生在作出图象后,用计算机或计算器验证. 17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.B 组1、已知α为第四象限角,确定下列各角的终边所在的位置:(1)2α; (2)3α; (3)2α. 答案:(1)3(1)42k k παππ+<<+,所以2α的终边在第二或第四象限;(2)9012030901203k k α︒+︒<<︒+︒+︒,所以3α的终边在第二、第三或第四象限;(3)(4k +3)π<2α<(4k +4)π,所以2α的终边在第三或第四象限,也可在y 轴的负半轴上.说明:不要求探索α分别为各象限角时,nα和nα的终边所在位置的规律. 2、一个扇形的弧长与面积的数值都是5,求这个扇形中心角的度数. 答案:约143°说明:先用弧度制下的扇形面积公式求出半径,再求出中心角的弧度数,然后将弧度数化为角度数.。
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
人教版高中数学必修4课后习题答案.docx
练习(第5页)1.锐布是第象限仙.第-象限伯不一定是锐伽;K角不I4F任何-个象限.不M Fit何个象限的角不一定是I'ifd;钝伯是第二象限角.第二象限角不-定是钝角.说明认眼-锐伯二“宜漫二“钝角”和“象限角"的区别与联系.2.三.三.ft.说明本题的II的是将终边相同的角的符号表示应用到他篇期性何财匕魂11联系实际•把教科竹中的除数36<>换成每个械期的天数7.利川r •■同汆”(这里.余数是3)来确定7*犬后.7 k犬前也都/星期1.这样的练习不难.可以L1答.3.(1)第象Wff|: <2)第四象限ftl: (3)第二象限/(J. (4)第三象限角.说明俺作出给定的角.并判定以第儿象限角.图略.4.(1) 3O5F2'.第四象限/th (2) 35%'.第一象限ff|; (3) 249*30*.第•:象限角.说明能企给定范围内找出"指定的角终边相同的角・并判定是第儿象限而.5.(1) <仞夕I 30:ri8'+&・360°, A€Z), - 496—2', — 136,42*. 223*I8,|(2)伊I "= 225- I * • 360°. ACZ}. - 585°, — 225°, 135°.说明用乘。
表,K法和符时写出勺指定角终边相同的的的集合.并在给定范国内找出勺指定的角经边相同的仙.练习(第9页〉1.(1> ⑵一?: (3)亨.说明能进存度弧度的换算.2.(1> 15。
<2> 240七(3) 54*.说明fOir*度'j度的换卓.3.(I) {a| a M. A€Z};(2) ja | «=-|+*», A£z}.说明用弧度MA示绕边分别在.r轴和.V袖匕的角的集合.4.(I ) cos 0. 75'>«» 0. 75;(2> tan 1. 2*<ian I. 2.说明体会同数伉木同时位的角对成的三角函数ffi诃能不同•并进一步认识两种爪位制.注意在用计算器求-ffimSffrt之询.卷先对计算器中角的模式进行设??.如求co* 0.75°之询,要将角模式设置为I对;(伯度;M);求CON。
人教版本高中数学必修课后习题包括答案详解.doc
SS 习< JR 5 M)1. iftffι⅛⅛V-⅛IWfh.第象隈如牢亠定建俛Λh直角不属F任何一个映JHfcIM •个象Itt的角不-淀忌怕X Hιff∣l∆^--Stffiffi.第二線限角不一定足钝Hl・说吗认俱-%ft∣,∖-I B Lfll,∖-Hlh- Λi -⅛IW⅛M的IOR联系.2- Ξ∙三■ &本題的Ii的込将塢边枷n的购的应川列Ji他刪删:何Jm:・MlIlX疥取叭把救科苗中的除数≡换底邸伞禺》|的天栽7. m(“同Jrf这甲余数丛和来确足7 A ⅛jβfc7k M 也IlSMMM→<这样的球习不«.RrIaII^・3. Cn弟一跟限仰:(2)t∏W^PHIħ: (3) ^ZWl(II⑷斜三钦限和・说IW礎作出辭宣枷∙n*ι⅛IifeflWi・国略.4. ⑴ M r iβl2∖⅛Wfth <2> 35¾*.鄭一魏IIIflh ⑶ 24δβ30r,第兰象Ruft・说明f½Λfft定范阳内h:l! ∙jfiτ⅛的角终ifiHl同的角・幷判应Ii弟儿规Rwl・5. (!)程IAl 如犷I 密+*•翱b∙上E 幼■ 一496*42'・—13⅛U2,. 223βlβ*s(2> {β∖β22fΓ"∙36n∙∖ ^feZh — 585o∙ -225°. 135二说閔川Ifcfr屋示法和符υfh边郴同的角的集合•并任納定范IH内找出X jflT⅛的仰终边柳同的用・嫁习£第♦页)1. (I) P (Z> ^t l ⑶攀≡的l⅛算.2. (I) I5*∣(2> 2IOβ* (3∙> 54B.说硼能Ia行锻HrqI磴的换口・:L(I) Ia I o二片托■ ⅛∈Z>; ⑵ W ∣α≡∣+*π. ⅛6Z∣.说明HIMttM边分别轴和N M上的励的第合.4. (1) Co⅛ O. 75* ∙<XJΛ V. 75: (Z) Ian L2*<mn∣ 1. 2.说明体会I吋数備仁河小位的角讨应的弓角播数値町能不同■并遷一步认讥购种TM业摘・注慰血:用卄傅器求加两敦{∣⅛之谕・嬰锐对汁©辟Ml的模式劇血他如求gw盯之派變将WIKu设ft‰≡}(MM>∣求Mw乔之ιi⅛・葵加fifi?式Ift氏为RAlXJl加和.XK n∖.说明適过分圳延川倫戍制和弧度剖F的狐氏公虫,冷合引人蠢廈制的必賞性•6. «1Efi 为1.2,说明进•步认肌弧度歡的您对他公朮I l (第爭页》AfaL (I) !K∖第二象Bi; (2) MΓ.第-ftm∣(3) 236∙SO∖第三桑Rh ⑷:««)'.第PM象IK・说明隐4:给定曲H内找出埒指定的#1终边栢同(flffh Jf判定链第儿象限你2. .(J I β A ∙ IKo∖*€ZL说明梅终站相同的Wl川IfcAA杀・:k ( I) {fl ∖ Ii tkΓ f i∙ ∙ 360∖ Fe■迅}・一30OiS 60β∣⑵lβlβ -75β+At 3βO∖⅛∈Zh -75*. 285*?仁和lfl∖ (i- -H2i e3(y+* * ⅛60β. Λ6Zh —IQ∙i'3θ∖ 255WI⑷ A∣" 475* M ∙3W∖ A∈2}i —215% IlS e I(5)少l ∕h !Xf+Ig6叭⅛∈Zh - 270\ 90'<β> l∕∣∣∕J -27tf÷* *3«0\ AeZh — 90*, 2704:⑺IWf H • 360% ⅛6Z}∙ - W. 180%⑻∖fi I β^ l♦W∙ ⅛∈Z∏ — 360\ 0\说明川集含&用医湘苻号i⅛srwtk与新定角坯边Hl的的角的処令.E⅛IHHffi∕ħ l≡⅛的角舞边的角・说朗川ITl度制郝SflCSn岀备歓限角的集S乩<l> CIft明IM 为(r< α<90*.所以Oφ< X l⅛0∖⑵J).说期冈为L 36O v<α<9(Γ4 ⅛ ∙ 364)∖>€去所以i ∙ l^<∣<W∙ M •卅汽底去和为侖暫时・专址?β XftKfft5∙v为偶数时.牙是第Tk醍角.G∙ MI"滕⅛MW⅛⅜于半枪辰的弧所对的側心轴为!孤度•而等『半栓枪的弦所坤的阪比爭#K.说朗 r解囊度的權念.C3> ?殊 (4) 8».说明值逬仃便勺弧股的抉算・& (1) - 2HΓχ <2> -GoO e l (3) 8O i 21*ι(4) 38. 2*.说朗⅛i8irΛltt 4i ∣∣r 的换讯9* 61:说删 4W5L⅛≡川如度制卜的如K 公式求出圈心角的弧度敷•禅将贏度换算为(ħ∏ΓWΛl⅛⅛≡∣llJfllftMF 的 *启%、比 10. 11 oil.说明HIU ⅛tt ∣ttWtn ⅛*∣t.再运用《1度SM 下的46氏公式•也mtι搖远川介度划卜的假氏公丸BfiLL <1) (M)<2)⅛⅛if 的懈心"I 为伉山可i⅛MOao ・“8(2 黄一&)•Wα=0. 764« ^Mo*.说明 本18楚一个故学实我活动.BSIW -««的⅛l 子”井Bt 有締出标假Il 的Jii 匕学生先生体軼.然斤何运川所学知U!5⅛现.大翁数囁子之所以見與为"本都構足J ∏.<i ∣H(⅛金分割 比)h⅛ιrr 理. Λ.<1>射针转Γ-t20∖等于一号瓠度I 分针转了一 I 440\筹于一知瓠此 <2> Kftitr rain i>H 就峙旳针疵合,"为常针肅合的Stflt. 闵为分 f FMi 转的如建度为6O =⅛ft Z∕min),Wl ⅛转的帥速度为⅛>=≡<rMIzminb所M I(⅛-3⅛)^2ΛN即■ 720 f = -W-*- >1 e HAmWndCilM≡作也歯Ifcfg 器®的图勲卿下買图)或表权 从∙ι<≡≡rwi⅛⅛Λrtmt 耳分件 毎次St 合所Ui 的IlJ泗.5«TCI)百:*0∙ 6)8.⅛ —・一⅛IW为1唯1敞转一人两;U的时IH为24X60 1 44O<min).所以豁r≤l 110.J JΔJi^22.故IMflAj分fl 一天内只会肛介眈次.说明通过时FIr分计的症转间題进一步胞认识弧度的槪念.并将问題引向深人.IHFIqttm想进行分折.化研丸时针勺分针一犬的顷合次数时•町利川讣靜器或i∣tT机・从楼股的闍形.我格中的数粧,躺IR的Wf折成城阳彖等角度.4<<n∣JlJEWWMife・3∙ ae>Γ< ^jγ. I5l.2π<m说啊通过胃轮的我动何IB进"步地认机银度的1«念W<K^Λ. '1KW轮转动-MlRr.小坷轮转动的务昱舄× 36O e≡ 864 "* =r a<l.III F大W½ft9转建为3 r«・所以小t⅛轮周忙一点毎I滾转过的捉艮是gx3×2<XIO.5=15l.≡lEUmL姊习(Ml5 35>说明匚知卅。
人教版高中数学必修4课后习题答案详解
第二章平面向量2.1 平面向量的实质背景及基本观点练习(P77)1、略.uuur uuur这两个向量的长度相等,但它们不等 .2、AB,BA .uuur uuur uuur uuur3、 AB2, CD 2.5 , EF3,GH 2 2.4、( 1)它们的终点同样;(2)它们的终点不一样 .习题 A 组(P77)1、( 2 )B45°O30°CAD.CA Buuur uuur uuuruuur uuur uuur3、与 DE 相等的向量有:AF , FC ;与 EF 相等的向量有: BD , DA ;uuur uuur uuur与 FD 相等的向量有: CE , EB .r uuur uuur uurr uuuur uuur4、与 a 相等的向量有:CO , QP, SR;与 b 相等的向量有: PM , DO ;r uuur uuur uuur与 c 相等的向量有: DC , RQ, STuuur 3 36、(1)×;(2)√;(3)√;(4)× .5、 AD.2习题 B 组(P78)1、海拔和高度都不是向量 .uuuur2、相等的向量共有24 对.模为 1的向量有 18对 . 此中与 AM 同向的共有 6uuuur uuur uuur对,与 AM 反向的也有 6 对;与 AD 同向的共有 3 对,与 AD 反向的也有 6 对;模为 2 的向量共有 4 对;模为 2 的向量有 2 对2.2 平面向量的线性运算 练习(P84)1、图略 .2、图略 .uuur uuur3、(1) DA ; (2) CB .r ururur 4、( 1) c ; ( 2) f ; (3) f ;( 4) g . 练习(P87) uuuruuur uuur1、图略 . uuur uuur3、图略 .2、DB ,CA , AC ,AD ,BA.练习(P90)1、图略 .5 uuur uuur 2 uuuruuur2、 ACAB ,BCAB .7 7uuur说明:此题可先画一个表示图,依据图形简单得出正确答案. 值得注意的是BCuuur与 AB 反向.rrr7rr1rr8r3、( 1) b2a ;(2) b4 a ;(3) ba ;(4) ba .294、( 1)共线;( 2)共线 .r r( 2)11r1rr6、图略 .5、( 1) 3a2b ;12 ab ;( 3) 2 ya .习题 A 组(P91)31、( 1)向东走 20 km ; (2)向东走 5 km ; (3)向东北走 10 2 km ;( 4)向西南走 5 2 km ;( 5)向西北走 10 2 km ;(6)向东南走 10 2 km.2、飞机飞翔的行程为 700 km ;两次位移的合成是向北偏西53°方向飞翔 500 km.uuur uuur3、解:如右图所示: AB 表示船速, AD 表示河水的流速,以 AB 、 AD 为邻边作 □ ABCD ,则uuurAC 表示船实质航行的速度 .uuur uuur在 Rt △ABC 中, AB 8 , AD 2 ,uuuruuur 2uuur 2222 17所以 ACAB AD82 因为 tan CAD4 ,由计算器得 CAD 76BCAD水流方向所以,实质航行的速度是 2 17 km/h ,船航行的方向与河岸的夹角约为 76°.r uuur uuur r r uuur4、(1) 0; (2) AB ; (3) BA ; (4)0 ; (5)0 ; (6)CB ; (7) r0 .5、略6、不必定组成三角形 . 说明:联合向量加法的三角形法例,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段必定能组成三角形 .7、略. 8、(1)略; r r r r r r(2)当 a b 时, a b a b9、(1) r r rr r ;r 1 r( 4)2( xr2a2b ; ( 2)10a 22b 10c (3)3a b ; y)b .r r ur r rur uur r r uruur 210、 a b 4e 1 , a be 1 4e 2 , 3a 2b3e 1 10e 2 .uuurr uuur r 11、如下图, OCa , ODb ,uuur r r uuur r rDCb a , BCa b .(第 11 题)uuur1ruuurr r uuur 1 r r uuur 3 r12、 AEb , BCb a , DE (b a) , DBa ,44 1 uuuur4uuur3ruuur1 r r uuur 1 r rEC b , DN8 (b a) , AN 4 AM (ab) .4813、证明:在ABC 中, E, F 分别是 AB, BC 的中点,所以 EF //AC 且EF 1AC ,(第 12 题)Guuur 1 uuur2D即 EF 2 AC ;1 uuuruuur同理, HG AC ,H2 uuur uuur所以 EFHG .E习题 B 组(P92) A(第 13 题)1、丙地在甲地的北偏东45°方向,距甲地 1400 km.乙2、不必定相等,能够考证在 r ra,b 不共线时它们不相等 .uuuur uuur uuuuruuur 1 uuur uuuur 1 uuur3、证明:因为 MN AN AM ,而 AN3 AC , AMAB ,1 uuur1 uuur1 uuur 3uuuur1 uuur uuur所以 MN3 AC3 AB 3 ( AC AB) 3 BC .甲4、( 1)四边形 ABCD 为平行四边形,证略(第 1 题)( 2)四边形 ABCD 为梯形 .Cuuur 1 uuur证明:∵ AD BC ,3∴ AD//BC 且 AD BC∴四边形 ABCD 为梯形 .DCFB丙BA( 3)四边形 ABCD 为菱形 .(第 4 题 (2))uuur uuurB证明:∵ AB DC ,∴ AB/ /DC 且 AB DC C A∴四边形 ABCD 为平行四边形uuur uuurD又 AB AD(第 4题 (3))∴四边形 ABCD 为菱形.M5、( 1)经过作图能够发现四边形ABCD 为平行四边形.uuur uuur uuur uuur uuur uuur证明:因为 OA OB BA,OD OC CDuuur uuur uuur uuur A D而OA OC OB ODuuur uuur uuur uuur B C 所以 OA OB OD OCuuur uuurO所以 BA CD ,即AB∥CD.所以,四边形 ABCD 为平行四边形.(第 5题)2.3 平面向量的基本定理及坐标表示练习(P100)r r r r r r r r1、( 1) a b(3,6) , a b(7,2) ;( 2) a b(1,11), a b(7,5);r r r r(4,6) ;r r r r(3,4) .( 3) a b(0,0) , a b(4) a b(3, 4) , a b r r r r(12,5) .2、 2a 4b( 6,8) , 4a3buuur(3, 4)uuur( 3,4) ;uuur(9,1)uuur(9,1)3、( 1) AB, BA(2) AB, BA;uuur(0, 2)uuur(0,2)uuur uuur(5,0)(3) AB, BA;(4) AB(5,0) , BA4、AB∥CD .uuur uuur(1,uuur uuur证明: AB(1, 1) , CD1) ,所以 ABCD.所以AB∥CD .5、(1)(3, 2);( 2) (1,4) ;(3)(4,5) .6、(10,1)或(14,1)33uuur3uuur uuur3 uuur7、解:设 P( x, y) ,由点P在线段AB的延伸线上,且AP2PB ,得 AP2PBuuur uuur( x, y) (2,3)( x(4,3)(x, y)(4x,3y) AP2, y 3) , PB3x23(4x)∴ ( x2, y3)x, 3 y)∴2(43( 32y3y)2x 8 ∴,所以点 P 的坐标为 (8, 15) .y15习题A 组(P101)1、( 1) ( 2,1) ;( 2) (0,8) ;( 3) (1,2) .说明:解题时可设 B(x, y) ,利用向量坐标的定义解题 .uur uur uur 2、 F 1 F 2 F 3(8,0)uuur ( 1, uuur (53,6 (1)) (2,7)3、解法一: OA 2),BCuuuruuur uuur uuuruuur uuur uuur (1,5) .所以点 D 的坐而 ADBC ,ODOAADOA BC标为 (1,5) .uuur ( x( 1), y ( 2)) ( x 1, y2) ,解法二:设 D( x, y) ,则 AD uuur (5 3,6 ( 1)) (2,7)BCuuur uuur1 2,解得点 D 的坐标为 (1,5) .由 ADBC 可得, xy 2 7uuur uuur2,4) .4、解: OA (1,1), AB (uuur 1 uuuruuuruuuruuur1 uuur(1, 2) .ACAB ( 1,2) , AD2 AB( 4,8) , AE2AB2uuur uuur uuur(0,3) ,所以,点 C 的坐标为 (0,3) ; OC OA ACuuur uuur uuur ( 3,9) ,所以,点 D 的坐标为 (3,9)OD OA AD;uuur uuur uuur(2, 1) ,所以,点 E 的坐标为 (2,1) .OE OA AE r r (2,3)(x,6),所以23,解得 x 4 .5、由向量 a,b 共线得x 6uuur (4, 4) uuur ( 8,uuur uuur uuuruuur 6、 AB , CD 8),CD 2AB ,所以 AB 与CD 共线 .uuuruuur(2, 4) ,所以点 A 的坐标为 (2, 4) ;7、 OA2OAuuur uuur ( 3,9)B 的坐标为( 3,9)OB 3OB ,所以点;故uuuur( 3,9) (2, 4) ( 5,5)A B 习题B 组(P101)uuur (1,2)uuur (3,3) . 1、 OA , AB当 tuuur uuur uuur uuur(4,5) ,所以 P(4,5) ; 1时, OP OA AB OB当 t1 uuur uuur1 uuur(1,2) 3 35 7 ) ,所以 5 , 7时, OPOAAB( , ) ( , P( ) ;222 2 2 2 2 2uuur uuuruuur( 5, 4) ,所以 P( 5, 4);当 t2时, OP OA 2AB(1,2) (6,6) 当 tuuur uuur uuur (7,8) ,所以 P(7,8) .2时, OP OA 2 AB (1,2) (6,6)uuur ( 4, 6) uuur uuur uuur2、(1)因为 AB , AC (1,1.5) ,所以 AB4AC ,所以 A 、B 、C 三 点共线;uuuruuuruuur uuur( 2)因为 PQ(1.5,2),PR(6, 8) ,所以 PR 4PQ ,所以 P 、Q 、R 三点共线;uuuruuur( 8,( 1, uuur uuur( 3)因为 EF4) ,EG 0.5) ,所以 EF 8EG ,所以 E 、F 、G三点共线 .uruur r ur uur3、证明:假定10 ,则由 1 e 12 e 2 0 ,得 e 12e 2 .1ur uurur uur 是平面内的一组基底矛盾 ,所以 e 1 ,e 2 是共线向量,与已知 e 1,e 2 所以假定错误,10 .同理 2 0 .综上 120 .uuuruuur ur uur4、(1) OP19 .( 2)关于随意愿量 OP xe 1 ye 2 , x, y 都是独一确定的,所以向量的坐标表示的规定合理 .2.4 平面向量的数目积 练习(P106)ur rur r ur r 8 6124 .1、 p q p q cos p, q2r rr rABC 为直角三角形 .2、当 a b 0 时,ABC 为钝角三角形;当 a b 0 时,3、投影分别为 3 2 , 0, 3 2 . 图略 练习(P107)r( 3)2 42r 52 22r r35427 .1、 a 5 , b29 , a br rr r rrr r rr r49 .2、 a b8 , (a b)(a b)7 , a (b c) 0 , (a b)2r r rr74,88 . 3、 a b 1, a13 , b习题 A 组(P108)r r r rr 2 r r r 2r r25 12 3.1、 a b6 3 , (a b)2 a2a b b25 12 3 , a buuur uuuruuur uuur 20 .2、 BC 与 CA 的夹角为 120°, BC CAr rr 2 r r r 2r rr 2 r r r 2 35 .3、 a ba 2ab b23 , a ba 2ab br r4、证法一:设 a 与 b 的夹角为 .( 1)当 0 时,等式明显建立;( 2)当r r rr时, a 与 b , a 与 b 的夹角都为 ,所以( r r r r r ra) b a b cosa b cos r rr r( a b)a b cosr r r r r r a ( b)ab cosa b cosr rr r r r所以 ( a) b(a b) a ( b) ;( 3)当r r r r180时, a 与 b , a 与 b 的夹角都为 ,则 (r r r r ) r r a) b a b cos(180 a b cosr r r r r r ( a b)a b cosa b cosr r r r )r r a ( b)ab cos(180a b cosr rr r r r 所以 ( a) b(a b) a ( b) ;综上所述,等式建立 .r r证法二:设 a (x 1, y 1 ) , b ( x 2 , y 2 ) ,r r那么 ( a) b ( x 1 , y 1 ) ( x 2 , y 2 ) x 1 x 2 y 1 y 2 r r( a b) ( x 1 , y 1 ) ( x 2, y 2 ) ( x 1 x 2 y 1 y 2 ) x 1x 2 y 1 y 2r r a ( b) (x 1, y 1 ) ( x 2 , y 2 ) x 1x 2 y 1 y 2所以 (r rr r r ra) b (a b)a ( b) ;5、( 1)直角三角形, B 为直角 .uuur( 1, 4)(5, 2) ( 6, 6)uuur(3, 4)(5, 2) ( 2, 2)证明:∵ BA , BCuuur uuur 6 ( 2) ( 6)2 0∴ BA BCuuur uuur B 为直角,ABC 为直角三角形∴ BABC , ( 2)直角三角形, A 为直角uuur (19,4) ( 2, 3) (21,7)uuur ( 1, 6) ( 2,3) (1, 3)证明:∵ AB , ACuuur uuur21 1 7 ( 3) 0∴ AB ACuuur uuur A 为直角,ABC 为直角三角形∴ ABAC ,( 3)直角三角形, B 为直角uuuruuur证明:∵ BA (2,5) (5, 2)( 3,3) , BC(10,7) (5, 2) (5,5)uuur uuur 3 5 3 5 0∴BA BCuuur uuur B 为直角,ABC 为直角三角形∴ BABC , 6、 135 . 7、120 .r r r r r 2 r r r 2 r r 6 ,(2a 3b)(2 a b)4a 4a b 3b 61 ,于是可得 a br r 1cosa b,所以 120 .r r2a b8、 cos23 , 55 .40uuuruuur9、证明:∵ AB(5, 2) (1,0) (4, 2) , BC(8, 4)(5, 2) (3,6) ,uuur(8, 4) (4,6) (4, 2)DCuuur uuur uuur uuur 4 3 ( 2) 6 0∴ AB DC ,AB BC∴ A, B,C , D 为极点的四边形是矩形 .r( x, y) ,10、解:设 ax 2y 2 9x 3 5x 3 5则y ,解得6 5 ,或 5 .x2y5 y6 55 5rr 3 5 , 6 5).于是 a (3 5 , 6 5) 或 a (5 55 5r r11、解:设与 a 垂直的单位向量 e (x, y) ,则 x2y 21x5或 x5,解得 5 5 . 4x2 y 0 y2 5 2 55 y 5r 5 ,r 5,2 5). 于是 e (2 5) 或 e (5555习题 B 组(P108)r r r r r rr rr r rr r r 1、证法一: a b a ca b a ca (b c)a(b c)rr r证法二:设 a( x 1 , y 1) , b (x 2 , y 2 ) , c ( x 3 , y 3 ) .r r r rr r r 先证 a b a ca(b c)r rr ra b x 1 x 2y 1 y 2 , a c x 1 x 3 y 1 y 3r r r r由a b a c得x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3,即x 1( x 2 x 3 ) y 1 ( y 2y 3 ) 0r rr r r而 b c ( x 2 x 3 , y 2y 3 ) ,所以 a (b c) 0rr r r r r r 再证 a(b c)a b a cr r r由 a (b c)0 得 x 1 (x 2x 3 ) y 1 ( y 2 y 3 )0 ,r rr r 即 x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3 ,所以 a ba cuuur uuur2、 cos AOBOA OB cos cos sinsin .uuur uuurOA OBr r (c, d) .3、证明:结构向量 u (a,b) , vr r r r r r,所以 acbda 2b 2c 2d 2 cos r ru v u v cos u,vu, v∴ (ac bd )2 (a 2 b 2 )(c 2d 2 ) cos 2 r r ( a 2 b 2 )( c 2 d 2 )u, vuuur uuur 4、 AB AC 的值只与弦 AB 的长相关,与圆的半径没关 .C证明:取 AB 的中点 M ,连结 CM ,则 CMuuuur 1 uuurAB,AM AB2uuuuruuur uuur uuur uuurBAC AM又AB AC AB AC cos BAC ,而uuurAC uuur uuur uuur uuuur1uuur 2所以 AB AC AB AM2ABuuur uuur 2uuur 25、( 1)勾股定理:Rt ABC中,C902,则 CA CB ABuuur uuur uuur证明:∵ AB CB CAuuur 2uuur uuur uuur 2uuur uuur uuur 2∴ AB(CB CA)2CB2CA CB CA .uuur uuur由 C 90 ,有 CA CB,于是CA CB 0uuur 2uuur2uuur2∴ CA CB AB(2)菱形ABCD中,求证:AC BDuuur uuur uuur uuur uuur uuur证明:∵ AC AB AD, DB AB AD ,uuur uuur uuur uuur uuur uuur uuur 2uuur 2∴ AC DB (AB AD) (AB AD)AB AD .∵四边形 ABCD 为菱形,∴ ABuuur 2uuur 2 AD ,所以AB AD0uuur uuurBD∴ AC DB 0,所以AC(3)长方形ABCD中,求证:AC BDuuur uuur 证明:∵ 四边形 ABCD 为长方形,所以 AB0AD ,所以AB ADuuur 2uuur uuur uuur 2uuur 2uuur uuur uuur 2.∴ AB2AB AD AD AB2AB AD ADuuur uuur uuur uuur uuur2uuur2BD ∴ (AB AD )2 (AB AD )2,所以 AC BD,所以 AC (4)正方形的对角线垂直均分. 综合以上( 2)( 3)的证明即可 .2.5 平面向量应用举例习题 A 组(P113)1、解:设 P(x, y) , R( x1 , y1)uuur uuur则 RA(1,0)(x1, y1 )(1x1,y1 ) ,AP(x, y)(1,0)( x1,0)uuur uuurx1,y1)2( x1, y) ,即x12x3由 RA2AP 得(1y12y代入直线 l 的方程得 y 2x . 所以,点 P 的轨迹方程为 y2x .A2、解:(1)易知, OFD ∽ OBC , DF1BC ,2BF .2DF所以 BOuuur uuur 32 uuurr 2 1 r rr1rrOuuurAOBOBABF a3 ( ba)a(a b)uuurr323BCr E(2)因为 AE1(ab)2(第 2 题) uuur 2 uuurAO 所以 AOAE ,所以 A,O, E 三点共线,并且23OE同理可知:BO2,CO2 ,所以AOBO CO 2r uur uurOFODOEOFOD3、解:(1) v v B v A( 2,7) ;uurr uurrv v A 13 . (2) v 在 v A 方向上的投影为uurv A5(第 4题)uuruur ur ur uur4、解:设 F 1 , F 2 的协力为 F , F 与 F 1 的夹角为 ,ur uur uur uur则 F 3 1, 30 ; F 3 3 1 , F 3 与 F 1 的夹角为 150°. 习题 B 组(P113)uuruuruur1、解:设 v 0 在水平方向的速度大小为v x ,竖直方向的速度的大小为v y ,uur uur uur uursin .则 v x v 0 cos , v y v 0设 在 时 刻 t时 的 上 升 高 度 为 h , 抛 掷 距 离 为 s, 则uur1gt,( g 为重力加快度 )hv 0 t sinuur2sv 0 t cosuur 2 uur 2v 0 sin2v 0 sin 2所以,最大高度为,最大扔掷距离为g.2guruur r uur r,行驶距离为 d .2、解:设 v 1 与 v 2 的夹角为 ,合速度为 v , v 2 与 v 的夹角为 ur r则 sin v 1 sin 10sin , d 0.5 v . d 1 .r r sin20sin ∴ r 20sinv v v所以当90 ,即船垂直于对岸行驶时所用时间最短 .3、( 1) (0, 1)uuur( x 1, y 2) . uuur2 2) .解:设 P( x, y) ,则 APAB(2,uuuruuur 7 将 AB 绕点 A 沿顺时针方向旋转到 AP ,相当于沿逆时针方向旋转到44uuur AP ,uuur7 2 7 7 2 7 (1,3)于是 AP( 2 cos2 sin, 2 sin2 cos )4444所以x1 1,解得 x0, y1y233( 2) y2 xuuur后,点 P 的坐解:设曲线 C 上任一点 P 的坐标为 ( x, y) , OP 绕 O 逆时针旋转4标为 (x , y )x x cosysin x2( x y)则44,即2yx siny cosy2y)4( x42又因为 x2y23,所以1( xy) 21( xy) 2 3 ,化简得 y32 22x第二章复习参照题 A 组( P118)1、( 1)√; (2)√;(3)×; (4)× .2、(1) D ;(2) B ;(3) D ;(4)C ;(5)D ;(6) B.uuur1rruuur 1 r r3、 AB(a b) , AD 2( a b)2uuur uuur uuur uuur2 r 1r4、略解: DEBAMA MBab3 3uuur 2 r2 ruuur1 r1 rAD ab , BC a b333 3uuur 1r1ruuuruuur 1 r 2rEFab , FA DC ab3333uuur 1r2ruuur 2r1rCDab , ABab33 3 3uuur r r CE abuuur (8, 8) uuur8 2 ;5、( 1) AB , AB(第 4题)uuur uuur( 8,8) ;uuur uuur(2) OC (2, 16) , OD (3) OA OB 33.uuur uuur6、AB与CD共线.uuur uuur uuur uuur uuur uuur 证明:因为 AB(1, 1) , CD(1, 1) ,所以 AB CD.所以 AB与CD 共线.7、D(2,0) .8、n 2 .9、1,0.30,cos C 410、cos A ,cos B55r ur ur r ur ur 21r ur ur11、证明:(2 n m) m2n m m 2cos600 ,所以 (2n m)m .12、 1 .r r r r1.14、cos5,cos19 13、a b13 , a b820第二章复习参照题B组(P119)1、(1) A;(2)D;(3)B;(4)C;(5)C;(6)C;(7)D .r r r r r r2、证明:先证a b a b a b .r r r r r 2r 2r ra b(a b)2a b2a b,r r r r r2r2r ra b( a b)2a b2ab .r r r r r r r 2r 2r r因为 a b ,所以 a b0 ,于是 a b a b a b .r r r r r r再证 a b a b a b .r r r 2r r r 2r r r 2r r r 2因为 a b a2a b b, a b a2a b br r r r r r r r由 a b a b 可得 a b0 ,于是 a br r r r r r所以 a b a b a b .【几何意义是矩形的两条对角线相等】r r r ur3、证明:先证a b c dr ur r r r r r2r 2c d(a b) (a b)a br r r ur r ur又 a b,所以 c d0 ,所以 c dr ur r r再证 c d a b .r ur r ur r r r r r 2r 20(第 3题)由 c d 得 c d0,即 ( a b) (a b) a br r所以 a b【几何意义为菱形的对角线相互垂直,如图所示】uuur uuur uuuruuur 1rr uuur1r1r4、 AD AB BCCDa b , AEa b P 3242uuur 3ruuuur 1 ruuuur uuuruuuur 1 r1 r1 r1 r r 而 EF4 a , EM4 a ,所以 AM AEEMa b a (a b)4 2 4 25、证明:如下图,uuur uuur uuuuruuur uuuur uuur rOD OP OP ,因为 OP OPOP0 ,12 1 23 Ouuuruuuruuur所以 OP 3 OD ,OD 1uuuruuur uuurP 1P 2所以 ODOP PD11所以 OPP 1 2 30 ,同理可得OPP 1330D(第 5题)所以3 1 260 ,同理可得1 2360, 23 160 ,所以123为P PPPP PP P PPP P正三角形 .6、连结 AB.uuuur uuur r rN.由对称性可知, AB 是 SMN 的中位线, MN 2AB 2b 2a7、( 1)实质行进速度大小为 42 (4 3) 2 8(千米/时),沿与水流方向成 60°的方向行进;( 2)实质行进速度大小为 4 2 千米/时,MBA沿与水流方向成 90arccos 6的方向行进 .OSuuur uuuruuur uuur 3uuur uuur uuur uuur uuur (第 6题)8、解:因为 OA OBOB OC ,所以 OB (OA OC ) 0 ,所以 OB CA uuur uuur0 , uuur uuur0 ,所以点 O 是 ABC 的垂心 .同理, OA BCOC AB9、( 1) a 2 x a 1 y a 1 y 0 a 2 x 0 0 ; (2)垂直;( 3)当 A 1B 2 A 2B 1 0时, l 1 ∥ l 2 ;当 A 1 A 2 B 1B 2 0时, l 1 l 2 ,夹角 的余弦 cosA 1A 2B 1B 2;A 1 2B 12A 22B 22Ax 0 By 0 C( 4) dA 2B 2第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 练习(P127)1、 cos()coscossin sin0 cos1 sinsin .222cos(2) cos2 cossin2 sin 1 cos 0 sincos.2、解:由 cos3 , ( , ) ,得 sin 1cos 21 ( 3)24 ;525 5所以 cos()cos cossin sin 2 ( 3 ) 2 42 .4442 5 25 103、解:由 sin15 , 是第二象限角,得 cos 1 sin 21(15 )28 ;171717所以 cos() cos cossin sin8 1 153 8 15 3 .33317 2 172344、解:由 sin2 , ( ,3) ,得 cos1 sin 21 (2 )25 ;3 23 3 又由 cos3 , (3,2 ) ,得 sin1 cos21 (3)27 .4244所以cos()cos cossin sin3 (5 ) ( 7) ( 2) 3 5 2 7 .43 4 312练习(P131)1、( 1)6 2; (2)6 2; (3)62; (4)2 3.4442、解:由 cos3 , ( , ) ,得 sin 1 cos 21 ( 3)24 ;525 5所以 sin() sin coscos sin4 1 ( 3 ) 3 4 3 3 .3335 2 5 210 3、解:由 sin12 , 是第三象限角,得 cos 1 sin 21( 12) 25 ;131313所以cos()cos cossinsin 3 ( 5 ) 1 (12) 5 3 12 .666213 2 1326tantan3 14、解: tan()4 2 .41 tantan 1 3 145、( 1)1;(2)1;(3)1;(4)3 ;22( 5)原式 = (cos34 cos26sin34 sin 26 )cos(3426 )cos601 ;2(6)原式= sin20cos70 cos20 sin70 (sin 20 cos70 cos20 sin70 ) sin901 .6、( 1)原式 = cos cosx sinsin x cos( x) ;333( 2)原式 = 2(3sin x1cosx)2(sin x coscosxsin) 2sin( x) ;22666( 3)原式 = 2(2sin x2cos x) 2(sin x cos cos xsin 4) 2sin( x ) ;22 44( 4)原式 = 2 2( 1cos x3sin x)2 2(cos3 cosx sin sin x)2 2 cos(x) .22337、解:由已知得 sin()cos cos()sin3 ,5即 sin[()]3, sin()355所以 sin3. 又 是第三象限角,5于是 cos1 sin 21 (3) 2 4 .55因此sin(5 ) sin cos 5cos sin 5( 3 )( 2 ) ( 4 )(2 ) 7 2 .444 52 5 210练习(P135)31、解:因为 812 ,所以82443sin 335 又由 cos,得 sin1 (2, tan85)5 84 4 885cos85所以 sinsin(2) 2sin cos2 (3) ( 4)24 488 85525 coscos(2) cos 2 sin 28( 4 )2 ( 3 )2 7 48 85 5 252tan82 3 3 16 24tantan(2)432 774821 (21 tan8 )42、解:由 sin()3,得 sin3,所以 cos 21 sin 21 ( 3)2 16555 25所以 cos2cos 2sin 216 ( 3) 2 725 5 253、解:由 sin2sin 且 sin0 可得 cos1 ,2又 由( 2 , ),得sin1 cos 21 ( 1 )23, 所以2 2tansin 3 ( 2) 3 .cos24、解:由tan21 , 得 2tan1.所 以 tan 26tan1 0,所以3 1 tan 23tan3 105、(1)1sin30 1 ;(2)cos2sin2cos2 ;sin15 cos1582484 2( 3)原式 = 1 2tan 22.51 tan45 1 ;( 4)原式 = cos452 .2 1 tan 2 22.5 222习题A 组(P137)1、( 1) cos(3)cos3cossin3sin0 cos( 1) sinsin;222( 2) sin(3) sin3coscos3sin1 cos0 sincos ;222( 3) cos() cos cos sin sin1 cos 0 sincos ;( 4) sin( ) sin coscos sin0 cos( 1) sinsin .2、解:由 cos3,0,得 sin1 cos21 (3)24 ,55 5所以 cos() cos cos 6sinsin6 4 3 3 1 4 3 3 .65 25 2 103、解:由 sin2 , ( , ) ,得 cos1 sin 21( 2)25 ,3 233又由 cos3 , ( ,3) ,得 sin1 cos 21 ( 3) 27 ,4244所以cos() cos cossin sin5 ( 3 ) 2 ( 7 ) 3 5 2 7 .34 3 4 124、解:由 cos1 , 是锐角,得 sin1 cos21 (1)24 3777因为 , 是锐角,所以 (0, ) ,又因 为sin( )1 cos2 ()1 (所以 coscos[( )( 11) 1 5 314 7 14 5、解:由 60150 ,得 90cos()11 ,所以1411)25 3 1414] cos()cossin()sin4 3 17230 180又由 sin(30)3,得 cos(30)1 sin 2(30)1 (3)2455 5所以 coscos[(30 ) 30 ] cos(30)cos30 sin(30)sin304 3 3 1 4 3 35 252106、( 1)6 2 ;(2)24 6 ;(3) 2 3 .47、解:由 sin2 , (, ) ,得 cos 1 sin21 (2)25 .3233又由cos 3 ,是第三 象限角, 得4sin1cos 21 ( 3) 27 .4 4所以 cos() cos cossin sin5 ( 3 ) 2 ( 7 )3 4 3 4 3 52 712 sin() sincos cos sin2 ( 3) (5 ) ( 7 )3 4 3 46 35128、解:∵ sin A5 ,cos B3且 A, B 为 ABC 的内角13 5∴ 0 A,0 B, cos A12,sin B42135当 cos A12 时, sin( A B) sin AcosB cos Asin B 135 3 ( 12) 4 33 013 5 13565A B,不合题意,舍去∴ cos A12,sin B4135∴ cosCcos( A B)(cos AcosB sin Asin B)(123 5 4) 1613 5 13 5659、解:由 sin3 , ( , ) ,得 cos 1 sin21 (3)24 . 5255∴ tansin 3 ( 5 ) 3 . cos 5 44tantan 3 1 2∴ tan()43 21.1 tan tan1 ( )114 2tantan3 1tan()43 212 .1 tantan1 ( )4 210、解:∵ tan ,tan 是 2x 23x 7 0 的两个实数根 .∴ tantan3, tantan7 .22tantan3 1 ∴ tan( )21 tantan7.1 () 3211、解:∵ tan() 3,tan( ) 5∴ tan2tan[( )()]tan( ) tan()3 5 41 tan() tan( ) 1 3 57tan 2tan[()( )]tan() tan( ) 3511 tan() tan()1 3 5812、解:∵ BD : DC : AD2:3:6B∴ tanBD 1,tanDC 1AD3AD2D1 1tan tan∴ tan BAC tan(3 21)tantan1 111α3 2 AβC又∵ 0BAC180 ,∴ BAC45(第 12 题)13、( 1)6 5 sin( x) ;(2) 3sin( x) ;(3) x) ;(4) 27 x) ;3 2sin(2sin(62612(5)2;( 6) 1;(7)sin() ;( 8) cos();(9) 3 ; (10)22tan() .14、解:由 sin0.8,(0,) ,得 cos1 sin 21 0.820.62∴ sin22sin cos 2 0.8 0.6 0.96cos2 cos 2sin 20.620.820.2815、解:由 cos3,180270 ,得 sin1 cos 21( 3 ) 26333∴ sin 22sincos2 ( 6 ) ( 3)2 2333cos2cos 2sin 2(3 )2 ( 6 ) 2 13 3 3tan 2sin 2 2 2 (3)2 2cos2 316、解:设 sin Bsin C5,且0B 90 ,所以 cosB12 .1313∴ sin A sin(1802B) sin2 B 2sin Bcos B25 12 12013 13169cos A cos(1802B)cos2B(cos 2 Bsin 2 B)(( 12 )2 ( 5 )2 ) 11913 13169sin Atan Acos Atan 22tan 17、解: 1 tan 2120(169) 169 1192131 (1)2 3120 1193 ,tantan 21 3 7 41 . tan(2 )tan2141 tan 314718、解: cos()cossin()sin1cos[()]1,即 cos1333又( 3 ,2 ) ,所以 sin1 cos21 (1)22 2 233∴ sin 22sin cos2 ( 2 2 ) 14 23 39cos2cos 2sin 2( 1 )2( 2 2 ) 2733 9∴cos(2) cos2 cossin 2 sin7 2 4 2272 892(9 )184 44219、(1) 1 sin2;(2) cos2 ;(3) 1sin 4x ;(4) tan2 .4习题 B 组(P138)1、略.2、解:∵ tan A,tan B 是 x 的方程 x 2 p(x 1) 1 0 ,即 x 2px p 1 0 的两个实根∴ tan A tan B p , tan A tan B p 1∴ tan C tan[(A B)]tan(A B)tan A tan B p 1 tan A tan B11 ( p 1)因为 0 C,所以 C3 .43、反响一般的规律的等式是(表述形式不独一)sin 2cos 2 (30 )sincos(30 )3 (证明略)4 此题是开放型问题,反应一般规律的等式的表述形式还能够是:sin 2 (30 ) cos 2sin(30 )cos34sin 2 (15 ) cos 2 (15 ) sin( 15 )cos(15 ) 34 sin2cos2sincos3,此中30 ,等等4思虑过程要求从角,三角函数种类,式子结构形式三个方面找寻共同特色,进而作出概括 . 对认识三角函数式特色有帮助,证明过程也会促使推理能力、运算能力的提升 .4、因为 PAPP ,则 (cos() 1)2 sin 2 ()(coscos ) 2 (sinsin )21 2即 2 2cos() 2 2cos cos 2sin sin所以 cos() cos cossinsin3.2 简单的三角恒等变换 练习(P142)1、略.2、略 .3、略 .4、( 1) y1sin 4x . 最小正周期为,递加区间为 [8k , k ], k Z ,最222 82大值为 1;2( 2) y cosx 2 . 最小正周期为 2 ,递加区间为 [2k ,22k ], k Z ,最大值为 3;( 3) y 2sin(4 x) . 最小正周期 , 增区 [5k , k ], k Z ,最32242 24 2大 2.A ( P143)1、( 1)略;(2)提示:左式通分后分子分母同乘以2;( 3)略; ( 4)提示:用 sin 2 cos 2 取代 1,用 2sincos 取代 sin 2;( 5)略;( 6)提示:用 2cos 2 取代 1 cos2 ;( 7)提示:用 2sin 2 取代 1 cos2 ,用 2cos 2 取代 1 cos2 ; (8)略.2、由已知可有 sincoscos sin1⋯⋯①, sincoscos sin1⋯⋯②23(1)②× 3-①× 2 可得 sin cos 5cos sin(2)把( 1)所得的两 同除以 cos cos 得 tan5tan注意: 里 coscos0 含与①、②之中1. 于是 tan22tan2 (1) 4 3、由已知可解得tan221 tan 21 ( 1 ) 232tan tan1 11tan()42 141 tantan 1 ( ) 1 342∴ tan24tan()44、由已知可解得 x sin , ycos ,于是 x 2 y 2 sin 2cos 21.5、 f ( x) 2sin(4 x) ,最小正周期是 , 减区 [k , 7 k ], k Z .2 2423224B (P143)1、略.2、因为 76 2790 ,所以 sin76 sin(9014 ) cos14 m即 2cos 2 71 m ,得 cos7m 123、 存在 角,使22,所以23, tan(2)3 ,3tan tan又 tan tan23 ,又因 tan(2 ) 2,21 tan tan2所以 tantan tan()(1 tantan ) 33222由此可解得 tan1 ,4 ,所以.6经查验6 ,是切合题意的两锐角 .41(cos cos ), 1(sin sin)). 过M 作MM 1 垂4、线段 AB 的中点 M 的坐标为 (22直于 x 轴,交 x 轴于 M 1 , MOM 1 1 ()1 () .y22B在 Rt OMA 中, OMOA cos2 cos2.CMA在 Rt OM 1 M 中, OM 1 OM cos MOM 1cos 2 cos ,2M 1 M OM sin MOM 1sincos .OM 1x22于是有1cos ) coscos,(cos2 221(sinsin ) sin2cos2(第 4题)25、当 x2 时, f ( ) sin 2 cos 2 1 ;当 x 4 时, f ( ) sin 4cos 4(sin 2cos 2 )2 2sin 2 cos 21 1 sin 22 ,此时有 1≤ f ( )≤1;2 2当x 6时,f ( ) sin 6cos 6(sin 2 cos 2 )33sin 2 cos 2 (sin 2 cos 2 )1 3 sin 22 ,此时有 1≤ f ( )≤1;4 4 由此猜想,当 x2k,k N 时,k11 ≤ f ( ) ≤ 126、( 1) y 5( 3sin x4cosx) 5sin( x) ,此中 cos3,sin45 555所以, y 的最大值为 5,最小值为﹣ 5;( 2) ya 2b 2 sin( x) ,此中 cosa ,sin a 2ba 2b 2b 2所以, y 的最大值为a 2b 2 ,最小值为a 2b 2 ;第三章复习参照题 A 组( P146)。
高中数学必修4课后练习题、习题答案优选教学课件
还有一件有趣的事也不得不提。我的前桌坐着一个很秀气的姑娘,常常梳着一个麻花辫,说起话来总是温温柔柔的,暂且起名叫她“淑女”吧!有一天早上,我惊奇地发现她纤纤的十指,涂了黑漆漆的指甲油,她迫不及待地和班上的人炫耀了她的杰作。很不巧的是第一堂课是内科,老师教的又是“叩诊”,国字脸的女老师,用严厉的目光环顾了教室一周,最后锁定了我的前座,她冷冷地说:“来,这位同学,你上黑板给大家演示一下—叩诊的方法。” “淑女”显得有些难为情,慢腾腾地起身走到在黑板前,低下头,缓慢地伸出涂着黑色指甲油的双手,给大家表演着“叩诊”。如果老师当时没问也还好,可老师偏偏问了,“你这手怎么弄的,指甲都成这样了,怎么没上医院啊?”这一问引起全班哄堂大笑,老师感到有些莫名其妙,纳闷地问:“你们都笑什么?”不料班级最捣蛋的一个男 生出卖了她,“她涂的是黑色指甲油,不是病。”从此以后,我没见她再涂过任何颜色的指甲油。
甚至不知所措。我傻傻地站在那里,也不知道是过去一个小时,还是几个小时,人才渐渐地少了,突然间我的耳朵捕获了一串数字,是住宿费的缴费窗口传出来的,我不由得摸了一下包,心里便有了主意:先把住宿费交了,其他再说。于是,我深吸了一口气,故作镇定地交了住宿费,领了被罩和盆,就忐忑不安地住进了宿舍。 宿舍共八个人,来自不同的地方,因为都是年轻人,很快都熟络了起来。我的班主任则是一个娇小的,长得很漂亮的女老师,叫李丽。医学虽然看上枯燥,但很多东西都与我们息息相关,所以学起来也没有那么难。不论解剖课的死人骷髅头,各类人骨,还是内外科的各种病理药理,以及活体的各种器官,我都学得津津有味。可是学习的高涨的热情,无法掩盖我内心的不安,我很害怕触碰到老师的目光,怕她对我说:白XX,你不知道学费没有交吗?就这样我怀着惴惴不安的心情,熬过了整整三个月。直到有一天,李丽老师气匆匆地走进教室,用鄙夷的略带愤怒的目光注视着我时,我心虚了,低下头不敢再去看她,我心跟明镜似的。她喝道:“白XX, 王校长要见你,在二楼校长室。” 走廊里我挪着步,每走一步都觉得很沉,不知道校长会怎么批评我,或者是严惩我,害怕与紧张让我在房门前不得不倒吸了一口气,接着又闭上眼睛静等五秒钟后,我才敢扣响房门,听到里面传出:进来,我才小心翼翼地推开那扇门。我径直地站在校长的办公桌前,不敢发出一点声响。看见王校长端坐在桌前书写着什么,看见我进来,便马上收起笔,他从椅子上慢慢站起来,用惊愕的眼神上下打量着我,他严肃的目光里还带着一股寒气,仿佛瞬间就能将我冰封,我连大气都不敢出。紧接着他开始发怒了,大声呵斥道:“你,你就是XXX。”我不敢说话,只是点点头。他猛然摘下眼镜,愤怒下的眼睛突出的更加厉害,手在不停地拍打着豪华的办公桌,来压抑着他内心的烦躁,他一声高过一声地责问我:“你小小年纪,也太有主意了,这么多钱没交,竟然能瞒这么久”。我羞愧地低下了头了,
高中数学习题必修4及答案
高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。
罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。
()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。
人教A版高中数学必修四宁波外国语学校平面向量同步练习题向量的加法运算及其几何意义答案
作业26-向量的加法运算及其几何意义(答案)班级___________ 姓名__________1. 平行四边形ABCD 中,BC →+CD →+DA →=( D )A. BD →B. AC →C. AB →D. BA →2. 向量AB →+MB →+BO →+BC →+OM →化简后等于(C )A. BC →B. AB →C. AC →D. AM →3. 设a →,b →,a →+b →均为非零向量,且a →+b →平分a →与b →的夹角,则( B ) A. a →= b →B. |a →|=|b →| C. |a →|=2|b →| D. 以上都不对 4. 在矩形ABCD 中,|AB →|=4, |BC →|=2, 则向量AB →+AD →+AC →的长度等于( B ) A. 2 5 B. 4 5 C. 12 D. 65. 若在ΔABC 中, AB →= a →, BC →= b →, 且|a →| = |b →| = 1, |a →+b →|= 2 , 则ΔABC 的形状是( D ) A. 正三角形 B. 锐角三角形 C. 斜三角形 D. 等腰直角三角形 6. 向量a →, b →皆为非零向量,下列说法不正确的是( B ) A. a →与b →反向,且|a →|>|b →|,则a →+b →与a →同向 B. a →与b →反向,且|a →|>|b →|,则a →+b →与b →同向 C. a →与b →同向,则a →+b →与a →同向 C. a →与b →同向,则a →+b →与b →同向7. 设a →表示“向东走了2km”,b →表示“向南走了2km”, c →表示“向西走了2km”, d →表示“向北走了2km”,则( ) (1) a →+d →表示向 东北 走了(2) b →+c →表示向 西南 走了 (3) a →+c →+d →表示向 北 走了 2 km; (4) b →+c →+d →表示向 西 走了 2 km. 8. 设A 1A 2A 3A 4A 5A 6为正六边形,O 为它的中心,则OA →1+OA →2+OA →3+OA →4+OA →5+OA →6= 0→. 9. 若向量a →,b →满足|a →+b →|=|a →|+|b →|,则a →与b →必须满足的条件是 a →,b →同向,或其中一个为0→. 10. 设a →,b →都是单位向量,则|a →+b →|的取值范围是 [0,2] . 11. 如图,已知向量a →,b →,c →,试作向量a →+b →+c →+c →12. P 、Q 是ΔABC 的边BC 上的两点,且BP=QC ,求证:AB →+ AC →= AP →+ AQ →证:AB →+AC →=AP →+PB →+AQ →+QC →∵ PB →=—QC → ∴ PB →+QC →=0→∴ AB →+ AC →= AP →+ AQ →13. 根据下列条件,分别判断四边形ABCD 的形状:a → c →b →(1) AD →//BC → (2) AD → = BC → (3) AB →=DC →且|AB →|=|AD →| 答案:(1) 梯形 (2) 平行四边形 (3) 菱形14. 已知ΔABC 为直角三角形,∠BAC = 90°, AD ⊥ BC 于D ,求证:|BC →|2 = |DB → + DA →|2 + |DC → + DA →|2.证:平移AD 至EC ,FB ,则ADCE, ADBF 是矩形右=|DB →+DA →|2+|DC →+DA →|2 = |DF →|2+|DE →|2=|AB →|2+|AC →|2=|BC →|2=左15. 在四边形ABCD 中,AB → = DC →, AC ⊥ BD, |AC →|=6, |BD →|=8, 求:(1) |AB →|的值; (2) 四边形ABCD 的面积答案:(1) |AB →|=5 (2) ABCD 是菱形,S = 2416. 船在静水中的速度为6km/h, 水流速度为3km/h, 当船以最短时间到达对岸时, 求船的实际速度的大小和方向(用与水流速度的夹角的正弦表示).解析:sin α = 255。
人教版高中数学必修4课后习题答案详解
5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -. 10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =, 34EC b =,1()8DN b a =-,11()48AN AM a b ==+. 13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点, 所以EF AC //且12EF AC =, 即12EF AC =; 同理,12HG AC =, 所以EF HG =.习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=. 4、(1)四边形ABCD 为平行四边形,证略(2)四边形ABCD 为梯形.证明:∵13AD BC =, ∴AD BC //且AD BC ≠∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形. (第11题) (第12题) (第13题) E H GF D CA B 丙甲乙(第1题) (第4题(2)) B A C D证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OB BA -=,OD OC CD -=而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即AB ∥CD .因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示练习(P100) 1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-;(3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-;(3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3- 7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32A P P B =- (,)(2,3)(2,A P x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩ (第4题(3)) A D C B A D M O B C(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-.1(1,2)2A C A B ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)O C O A A C =+=,所以,点C 的坐标为(0,3); (3,9)O D O A A D =+=-,所以,点D 的坐标为(3,9)-; (2,1)O E O A A E =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线.7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)O B O B '==-,所以点B '的坐标为(3,9-;故 (3,9)(2,4)(5,5)A B ''=--=-习题2.3 B 组(P101)1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ;当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP =. (2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积练习(P106) 1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为32,0,32-. 图略练习(P107)1、22(3)45a =-+=,225229b =+=,35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒.习题2.4 A 组(P108)1、63a b ⋅=-,222()225123a b a a b b +=+⋅+=-,25123a b +=-.2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=.4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅== ()c o s a b a b λλθ⋅= ()cos cos a b a b a b λλθλθ⋅==所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=- ()cos cos a b a b a b λλθλθ⋅==- ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-所以 ()()()a b a b a b λλλ⋅=⋅=⋅;综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-, 1cos 2a b a b θ⋅==-,所以120θ=︒. 8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯=∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y y x ⎧+=⎪⎨=⎪⎩,解得355655x y ⎧=⎪⎪⎨⎪=⎪⎩,或355655x y ⎧=-⎪⎪⎨⎪=-⎪⎩.于是3565(,)55a =或3565(,)55a =--. 11、解:设与a 垂直的单位向量(,)e x y =,则221420x y x y ⎧+=⎨+=⎩,解得55255x y ⎧=⎪⎪⎨⎪=-⎪⎩或55255x y ⎧=-⎪⎪⎨⎪=⎪⎩. 于是525(,)55e =-或525(,)55e =-. 习题2.4 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥- 证法二:设11(,)a x y =,22(,)b x y =,33(,)c x y =.先证()a b a c a b c ⋅=⋅⇒⊥-1212a b x x y y ⋅=+,1313a c x x y y ⋅=+由a b a c ⋅=⋅得12121313x x y y x x y y +=+,即1231()()0x x x y y y -+-= 而2323(,)b c x x y y -=--,所以()0a b c ⋅-=再证()a b c a b a c ⊥-⇒⋅=⋅由()0a b c ⋅-=得 123123()()0x x x y y y -+-=,即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅2、cos cos cos sin sin OA OBAOB OA OB αβαβ⋅∠==+.3、证明:构造向量(,)u a b =,(,)v c d =.c o s ,u v u v u v ⋅=<>,所以2222cos ,ac bd a b c d u v +=++<>∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++4、AB AC ⋅的值只与弦AB 的长有关,与圆的半径无关.C证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB = 又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC ∠=所以212AB AC AB AM AB ⋅== 5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+.由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+.∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题2.5 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=- 由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =.2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+ (2)因为1()2AE a b =+ 所以23AO AE =,因此,,A O E 三点共线,而且2AO OE = 同理可知:2,2BO CO OF OD ==,所以2AO BO CO OE OF OD=== 3、解:(1)(2,7)B A v v v =-=-;(2)v 在A v 方向上的投影为135AA v v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°. 习题2.5 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001s i n ,()2c o s h v t g t g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v g θ,最大投掷距离为20sin 2v g θ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v v v θθα==,0.5sin 20sin v d αθ==. ∴120sin d vθ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)-O DF E A B C (第2题) (第4题)解:设(,)P x y ,则(1,2)AP x y =--. (2,22)AB =-.将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP , 于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=-- 所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==- (2)32y x=- 解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos 44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()22()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩ 又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=- 第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+4、略解:2133DE BA MA MB a b ==-=-+ 2233AD a b =+,1133BC a b =+ 1133EF a b =--,1233FA DC a b ==- 1233CD a b =-+,2133AB a b =- CE a b =-+ 5、(1)(8,8)AB =-,82AB =; (2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=.(第4题)6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥.12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b+=+=++⋅,222()2a b a b a b a b -=-=+-⋅.因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-. 再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+ 由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=- 又a b =,所以0c d ⋅=,所以c d ⊥ 再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所(第3题)NMOABS(第6题)示】4、12AD AB BC CD a b =++=+,1142AE a b =+而34EF a =,14EM a =,所以1111()4242AM AE EM a b a a b =+=++=+5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD = 所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-. 7、(1)实际前进速度大小为224(43)8+=(千米/时), 沿与水流方向成60°的方向前进; (2)实际前进速度大小为42千米/时, 沿与水流方向成690arccos3︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心. 9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦121222221122cos A A B B A BA B θ+=++;(4)0022Ax By Cd A B++=+DOP 3P 1P 2(第5题)第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.c o s (2)c o s 2c o ss i n 2s i n 1c o s 0παπαπαααα-=+=⨯+⨯=. 2、解:由3cos ,(,)52πααπ=-∈,得2234sin 1cos 1()55αα=-=--=;所以23242cos()cos cos sin sin ()444252510πππααα-=+=⨯-+⨯=.3、解:由15sin 17θ=,θ是第二象限角,得22158cos 1sin 1()1717θθ=--=--=-;所以811538153cos()cos cos sin sin 33317217234πππθθθ-+-=+=-⨯+⨯=.4、解:由23sin ,(,)32πααπ=-∈,得2225cos 1sin 1()33αα=--=---=-;又由33cos ,(,2)42πββπ=∈,得2237sin 1cos 1()44ββ=--=--=-.所以3co4βα-+-=+=⨯-+-⨯-=. 练习(P131) 1、(1)624-; (2)624-; (3)624+; (4)23-. 2、解:由3cos ,(,)52πθθπ=-∈,得2234sin 1cos 1()55θθ=-=--=;所以4133433sin()sin cos cos sin ()333525210πππθθθ-+=+=⨯+-⨯=.3、解:由12sin 13θ=-,θ是第三象限角,得22125cos 1sin 1()1313θθ=--=---=-;所以3c o66ππθθ-++=-=⨯--⨯-=. 4、解:tan tan314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4)32-;(5)原式=1(cos34cos26sin34sin26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin 70(sin 20cos70cos20sin 70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=312(sin cos )2(sin cos cos sin )2sin()22666x x x x x πππ+=+=+;(3)原式=222(sin cos )2(sin cos cos sin )2sin()22444x x x x x πππ-=-=-; (4)原式=1322(cos sin )22(cos cos sin sin )22cos()22333x x x x x πππ-=-=+. 7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是2234cos 1sin 1()55ββ=--=---=-. 因此55s i 44ππββ+=.练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得243sin 1()855α=---=-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2222437c o s c o s (2)c o s s i n ()()48885525αααα=⨯=-=---=2232tan23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--= 3、解:由sin 2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得2213sin 1cos 1()22αα=-=--=,所以s i n3ta n(2)3c o s2ααα==⨯-=-. 4、解:由1t a n 23α=,得22t a n 11t a n 3αα=-. 所以2t a n 6t a n 10αα+-=,所以t a n 310α=-± 5、(1)11sin15cos15sin3024︒︒=︒=; (2)222cos sin cos 8842πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=2cos 452︒=. 习题3.1 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得2234sin 1cos 1()55αα--=-=,所以4331433cos()cos cos sin sin 666525210πππααα+-=+=⨯+⨯=.3、解:由2sin ,(,)32πααπ=∈,得2225cos 1sin 1()33αα=--=--=-,又由33cos ,(,)42πββπ=-∈,得2237sin 1cos 1()44ββ=--=---=-,所以5co 3αβ--=. 4、解:由1cos 7α=,α是锐角,得22143sin 1cos 1()77αα=-=-=因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以221153sin()1cos ()1()1414αβαβ+=-+=--= 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++11153431()1471472=-⨯+⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得2234cos(30)1sin (30)1()55αα︒+=--︒+=--=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒4331433525210-+=-⨯+⨯= 6、(1)624+-; (2)264+-; (3)23-+.7、解:由2sin ,(,)32πααπ=∈,得2225cos 1sin 1()33αα=--=--=-.又由3c o s4β=-,β是第三象限角,得2237sin 1cos 1()44ββ=--=---=-.所以cos()cos cos sin sin αβαβαβ+=-5327()()3434=-⨯--⨯- 352712+=sin()sin cos cos sin αβαβαβ-=-2357()()()3434=⨯---⨯- 63512--=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得2234cos 1sin 1()55θθ=--=--=-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒βαDACB(第12题)13、(1)65sin()6x π+; (2)3sin()3x π-; (3)2sin()26x π+;(4)27sin()212x π-; (5)22; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9)3-; (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得22cos 1sin 10.80.6αα=-=-=∴sin 22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由3cos ,1802703ϕϕ=-︒<<︒,得2236sin 1cos 1()33ϕϕ=--=---=- ∴6322sin 22sin cos 2()()333ϕϕϕ==⨯-⨯-= 2222361cos 2cos sin ()()333ϕϕϕ=-=---=- sin 222tan 2(3)22cos23ϕϕϕ==⨯-=- 16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以22122sin 1cos 1()33αα=--=--=-∴22142sin 22sin cos 2()339ααα==⨯-⨯=- 22221227cos 2cos sin ()()339ααα=-=--=-∴72422728cos(2)cos2cos sin 2sin ()444929218πππααα-++=-=-⨯--⨯=19、(1)1sin 2α+; (2)cos 2θ; (3)1sin 44x ; (4)tan 2θ.习题3.1 B 组(P138) 1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(c o s ()1)s i n ()(c o s c o s )(s i n s i n )αβαβαβαβ+-++=-++即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题3.2 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos 2θ+;(7)提示:用22sin θ代替1cos 2θ-,用22cos θ代替1cos 2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- 1tan tan1142tan()1431tan tan 1()142πθπθπθ+-++===-⋅--⨯ ∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题3.2 B 组(P143) 1、略.2、由于762790+⨯=,所以sin 76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得1cos72m +︒= 3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()32αβ+=, 又tantan 232αβ=-,又因为tantan 2tan()21tan tan 2αβαβαβ++=-,所以tantan tan()(1tan tan )33222αααβββ+=+-=- 由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+. 在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=, 11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,66()s inf αααα=+=+ 231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2)22sin()y a b x ϕ=++,其中2222cos ,sin a b a ba bϕϕ==++所以,y 的最大值为22a b +,最小值为22a b -+;第三章 复习参考题A 组(P146)xy M 1M C AO B (第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2)3; (3)2; (4)3-. 提示:利用(1)的恒等式.5、(1)原式=cos103sin104sin(3010)4sin10cos10sin 20︒-︒︒-︒==︒︒︒;(2)原式=sin10sin103cos10sin 40(3)sin 40cos10cos10︒︒-︒︒-=︒⋅︒︒=2sin40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=3sin 203sin 20cos 20tan 70cos10(1)tan 70cos10cos 20cos 20︒︒-︒︒︒-=︒︒⋅︒︒=sin702sin10sin20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒; (4)原式=3sin10cos103sin10sin50(1)sin50cos10cos10︒︒+︒︒⋅+=︒⋅︒︒2cos50sin100sin501cos10cos10︒︒=︒⋅==︒︒6、(1)95; (2)2425;(3)223±. 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-;(4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos 22cos 212(cos 22cos 21)34cos 22cos 212(cos 22cos 21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222sin(2)24y x x x x x π=+++=++=++递减区间为5[,],88k k k Z ππππ++∈(2)最大值为22+,最小值为22-.10、2222()(cos sin )(cos sin )2sin cos cos2sin22cos(2)4f x x x x x x x x x x π=+--=-=+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-. ()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin22sin(2)14f x x x x x x x π=+=-+=-+(1)最小正周期是π,最大值为21+;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2s i n h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=,αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-, 312sin(2)sin 2cos cos 2sin 44450πππααα-=-=.解法二:由1s i n c o s 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得2sin()410πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,22sin()4210πα->≥.所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.312sin(2)450πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由43sin()sin 35παα++=- 可得 3343sin cos 225αα+=-,4sin()65πα+=-.又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以334cos cos[()]6610ππαα-=+-=4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin2sin2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以2cos cos[()]cos()cos sin()sin 44444410x x x x ππππππ=+-=+++=-,72sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222s i n c o s (s i n c o s )2s i nθθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos 2cos 2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法6、()3sin21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2s i n (2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即222x y x y +++=,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。
人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)
第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。
2019【人教A版】高中数学:必修4课本例题习题改编(含答案)
人教版高中数学必修精品教学资料人教A 版必修4课本例题习题改编1.原题(必修4第十页A 组第五题)改编1 下列说法中正确的是( ) A .第一象限角一定不是负角 B .-831°是第四象限角C .钝角一定是第二象限角D .终边与始边均相同的角一定相等 解:选C. -330°=-360°+30°,所以-330°是第一象限角,所以A 错误;-831°=(-3)×360°+249°,所以-831°是第三象限角,所以B 错误;0°角,360°角终边与始边均相同,但它们不相等,所以D 错误. 改编2 已知θ为第二象限角,那么3θ是( ) A. 第一或第二象限角 B. 第一或四象限角 C. 第二或四象限角 D. 第一、二或第四象限角解:选D.36090360180,,1203012060,3k k k z k k k z θθ+〈〈∙+∈∴∙+〈〈∙+∈(1)当()3,36030360180,,3k n n z n n n z θ=∈∙+〈〈∙+∈时此时3θ为第一象限角;(2)当()31,360150360180,,3k n n z n n n z θ=+∈∙+〈〈∙+∈时此时3θ为第二象限角;(3)当()32,360270360300,3k n n z n n θ=+∈∙+〈〈∙+时此时3θ为第四象限角。
改编3 设α角属于第二象限,且2cos2cosαα-=,则2α角属于( )A .第一象限B .第二象限C .第三象限D .第四象限 解:22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限;而coscoscos0222ααα=-⇒≤,2α∴在第三象限;答案:C2.原题(必修4第十页B 组第二题)改编 时钟的分针在1点到3点20分这段时间里转过的弧度数为( ) A.143 π B .-143 π C.718 π D .-718 π解:选B. 显然分针在1点到3点20分这段时间里,顺时针转过了两周又一周的13,用弧度制表示就是-4π-13×2π=-143π.故选B.3.原题(必修4第十九页例6)改编 (1)已知sin α 13=,且α为第二象限角,求tan α;(2)已知sin α= m (0,1)m m ≠≠±,求tan α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 平面向量2.1平面向量的实际背景及基本概念练习(P77)1、略.2、AB u u u r ,BA u u u r . 这两个向量的长度相等,但它们不等.3、2AB =u u u r , 2.5CD =u u u r ,3EF =u u u r,GH =u u u r4、(1)它们的终点相同; (2)它们的终点不同.习题 A 组(P77)1、(2).3、与DE u u u r 相等的向量有:,AF FC u u u r u u u r ;与EF u u u r 相等的向量有:,BD DA u u u r u u u r ;与FD u u u r 相等的向量有:,CE EB u u u r u u u r .4、与a r 相等的向量有:,,CO QP SR u u u r u u u r u u r ;与b r 相等的向量有:,PM DO u u u u r u u u r ;与c r 相等的向量有:,,DC RQ ST u u u r u u u r u uu r5、AD =u u u r .6、(1)×; (2)√; (3)√; (4)×. 习题 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM u u u u r 同向的共有6对,与AM u u u u r 反向的也有6对;与AD u u u r 同向的共有3对,与AD u u ur 反向的也有6对;模的向量共有4对;模为2的向量有2对2.2平面向量的线性运算练习(P84)1、图略.2、图略.3、(1)DA u u u r ; (2)CB u u u r .4、(1)c r ; (2)f u r ; (3)f u r ; (4)g u r .练习(P87)1、图略.2、DB u u u r ,CA u u u r ,AC u u u r ,AD u u u r ,BA u u u r .3、图略.练习(P90)1、图略.2、57AC AB =u u u r u u u r ,27BC AB =-u u u r u u u r . 说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BCuuu r 与AB u u u r 反向.3、(1)2b a =r r ; (2)74b a =-r r ; (3)12b a =-r r ; (4)89b a =r r . 4、(1)共线; (2)共线.5、(1)32a b -r r ; (2)111123a b -+r r ; (3)2ya r . 6、图略. 习题 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ; (3)向东北走km;(4)向西南走;(5)向西北走;(6)向东南走2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB u u u r 表示船速,AD u u u r 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则 AC u u u r 表示船实际航行的速度.在Rt △ABC 中,8AB =u u u r ,2AD =u u u r , 所以222282217AC AB AD =+=+=u u u r u u u r u u u r因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是217km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0r ; (2)AB u u u r ; (3)BA u u u r ; (4)0r ; (5)0r ; (6)CB u u u r ; (7)0r .5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥r r 时,a b a b +=-r r r r9、(1)22a b --r r ; (2)102210a b c -+r r r ; (3)132a b +r r ; (4)2()x y b -r . 10、14a b e +=r r u r ,124a b e e -=-+r r u r u u r ,1232310a b e e -=-+r r u r u u r .11、如图所示,OC a =-u u u r r ,OD b =-u u u r r ,DC b a =-u u u r r r ,BC a b =--u u u r r r .12、14AE b =u u u r r ,BC b a =-u u u r r r ,1()4DE b a =-u u u r r r ,34DB a =u u u r r , 34EC b =u u u r r ,1()8DN b a =-u u u r r r ,11()48AN AM a b ==+u u u r u u u u r r r . 13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =, 即12EF AC =u u u r u u u r ; 同理,12HG AC =u u u r u u u r , 所以EF HG =u u u r u u u r .习题 B 组(P92) (第11题)(第12题) (第13题) E H G F C AB1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b r r 不共线时它们不相等.3、证明:因为MN AN AM =-u u u u r u u u r u u u u r ,而13AN AC =u u u r u u u r ,13AM AB =u u u u r u u u r , 所以1111()3333MN AC AB AC AB BC =-=-=u u u u r u u u r u u u r u u u r u u u r u u u r . 4、(1)四边形ABCD 为平行四边形,证略(2)四边形ABCD 为梯形. 证明:∵13AD BC =u u u r u u u r , ∴AD BC //且AD BC ≠∴四边形ABCD 为梯形.(3)四边形ABCD 为菱形. 证明:∵AB DC =u u u r u u u r ,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =u u u r u u u r∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=u u u r u u u r u u u r ,OD OC CD -=u u u r u u u r u u u r而OA OC OB OD +=+u u u r u u u r u u u r u u u r所以OA OB OD OC -=-u u u r u u u r u u u r u u u r所以BA CD =u u u r u u u r ,即∥.因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示练习(P100) 1、(1)(3,6)a b +=r r ,(7,2)a b -=-r r ; (2)(1,11)a b +=r r ,(7,5)a b -=-r r ;(第1题)(第4题(2))(第4题(3))(第5题)(3)(0,0)a b +=r r ,(4,6)a b -=r r ; (4)(3,4)a b +=r r ,(3,4)a b -=-r r .2、24(6,8)a b -+=--r r ,43(12,5)a b +=r r .3、(1)(3,4)AB =u u u r ,(3,4)BA =--u u u r ; (2)(9,1)AB =-u u u r ,(9,1)BA =-u u u r ;(3)(0,2)AB =u u u r ,(0,2)BA =-u u u r ; (4)(5,0)AB =u u u r ,(5,0)BA =-u u u r4、AB ∥CD . 证明:(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r .所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =u u u r u u u r ,得32AP PB =-u u u r u u u r (,)(2,3)(2,3)AP x y x y =-=--u u u r ,(4,3)(,)(4,3)PB x y x y =--=---u u u r∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩ ∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F ++=u u r u u r u u r3、解法一:(1,2)OA =--u u u r ,(53,6(1))(2,7)BC =---=u u u r而AD BC =u u u r u u u r ,(1,5)OD OA AD OA BC =+=+=u u u r u u u r u u u r u u u r u u u r . 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++u u u r ,(53,6(1))(2,7)BC =---=u u u r由AD BC =u u u r u u u r 可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =u u u r ,(2,4)AB =-u u u r . 1(1,2)2AC AB ==-u u u r u u u r ,2(4,8)AD AB ==-u u u r u u u r ,1(1,2)2AE AB =-=-u u u r u u u r . (0,3)OC OA AC =+=u u u r u u u r u u u r ,所以,点C 的坐标为(0,3);(3,9)OD OA AD =+=-u u u r u u u r u u u r ,所以,点D 的坐标为(3,9)-;(2,1)OE OA AE =+=-u u u r u u u r u u u r ,所以,点E 的坐标为(2,1)-.5、由向量,a b r r 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-.6、(4,4)AB =u u u r ,(8,8)CD =--u u u r ,2CD AB =-u u u r u u u r ,所以AB u u u r 与CD uuu r 共线.7、2(2,4)OA OA '==u u u r u u u r ,所以点A '的坐标为(2,4); 3(3,9)OB OB '==-u u u r u u u r ,所以点B '的坐标为(3,9)-; 故 (3,9)(2,4)(5,5)A B ''=--=-u u u u r习题 B 组(P101)1、(1,2)OA =u u u r ,(3,3)AB =u u u r .当1t =时,(4,5)OP OA AB OB =+==u u u r u u u r u u u r u u u r ,所以(4,5)P ;当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=u u u r u u u r u u u r ,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--u u u r u u u r u u u r ,所以(5,4)P --;当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=u u u r u u u r u u u r ,所以(7,8)P .2、(1)因为(4,6)AB =--u u u r ,(1,1.5)AC =u u u r ,所以4AB AC =-u u u r u u u r ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-u u u r ,(6,8)PR =-u u u r ,所以4PR PQ =u u u r u u u r ,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--u u u r ,(1,0.5)EG =--u u u r ,所以8EF EG =u u u r u u u r ,所以E 、F 、G三点共线.3、证明:假设10λ≠,则由11220e e λλ+=u r u u r r ,得2121e e λλ=-u r u u r . 所以12,e e u r u u r 是共线向量,与已知12,e e u r u u r 是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)OP =u u u r (2)对于任意向量12OP xe ye =+u u u r u r u u r ,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=u r r u r r u r r . 2、当0a b ⋅<r r 时,ABC ∆为钝角三角形;当0a b ⋅=r r 时,ABC ∆为直角三角形.3、投影分别为0,-图略练习(P107)1、5a ==r ,b ==r 35427a b ⋅=-⨯+⨯=-r r .2、8a b ⋅=r r ,()()7a b a b +-=-r r r r ,()0a b c ⋅+=r r r ,2()49a b +=r r .3、1a b ⋅=r r ,a =r b =r 88θ≈︒.习题 A 组(P108)1、a b ⋅=-r r 222()225a b a a b b +=+⋅+=-r r r r r r a b +=r r2、BC uuu r 与CA u u u r 的夹角为120°,20BC CA ⋅=-u u u r u u u r .3、a b +==r r a b -==r r4、证法一:设a r 与b r 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λr 与b r ,a r 与b λr 的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅==r r r r r r()cos a b a b λλθ⋅=r r r r()cos cos a b a b a b λλθλθ⋅==r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r ;(3)当0λ<时,a λr 与b r ,a r 与b λr 的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r()cos cos a b a b a b λλθλθ⋅==-r r r r r r()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r ;综上所述,等式成立.证法二:设11(,)a x y =r ,22(,)b x y =r ,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+r r11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r ;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--u u u r ,(3,4)(5,2)(2,2)BC =-=-u u u r∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r ,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=u u u r ,(1,6)(2,3)(1,3)AC =-----=-u u u r∴2117(3)0AB AC ⋅=⨯+⨯-=u u u r u u u r∴AB AC ⊥u u u r u u u r ,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-u u u r ,(10,7)(5,2)(5,5)BC =-=u u u r∴35350BA BC ⋅=-⨯+⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r ,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=r r r r r r r r ,于是可得6a b ⋅=-r r ,1cos 2a b a bθ⋅==-r r r r ,所以120θ=︒. 8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-u u u r ,(8,4)(5,2)(3,6)BC =--=u u u r , (8,4)(4,6)(4,2)DC =-=-u u u r∴AB DC =u u u r u u u r ,43(2)60AB BC ⋅=⨯+-⨯=u u u r u u u r∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =r , 则2292x y y x ⎧+=⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩.于是(55a =r或(55a =--r . 11、解:设与a r 垂直的单位向量(,)e x y =r ,则221420x y x y ⎧+=⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩.于是,55e =-r或(55e =-r . 习题 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-r r r r r r r r r r r r r r证法二:设11(,)a x y =r ,22(,)b x y =r ,33(,)c x y =r .先证()a b a c a b c ⋅=⋅⇒⊥-r r r r r r r1212a b x x y y ⋅=+r r ,1313a c x x y y ⋅=+r r由a b a c ⋅=⋅r r r r 得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-=而2323(,)b c x x y y -=--r r ,所以()0a b c ⋅-=r r r再证()a b c a b a c ⊥-⇒⋅=⋅r r r r r r r由()0a b c ⋅-=r r r 得 123123()()0x x x y y y -+-=,即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅r r r r2、cos cos cos sin sin OA OB AOB OA OBαβαβ⋅∠==+u u u r u u u r u u u r u u u r . 3、证明:构造向量(,)u a b =r ,(,)v c d =r . cos ,u v u v u v ⋅=<>r r r r r r,所以,ac bd u v +=<>r r∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++r r 4、AB AC ⋅u u u r u u u r 的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =u u u u r u u u r 又cos AB AC AB AC BAC ⋅=∠u u u r u u u r u u u r u u u r ,而AM BAC AC∠=u u u u r u u u r 所以212AB AC AB AM AB ⋅==u u u r u u u r u u u r u u u u r u u u r(第4题)5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=u u u r u u u r u u u r证明:∵AB CB CA =-u u u r u u u r u u u r∴2222()2AB CB CA CB CA CB CA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r .由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅=u u u r u u u r ∴222CA CB AB +=u u u r u u u r u u u r(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+u u u r u u u r u u u r ,,DB AB AD =-u u u r u u u r u u u r∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=u u u r u u u r∴0AC DB ⋅=u u u r u u u r ,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=u u u r u u u r∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴22()()AB AD AB AD +=-u u u r u u u r u u u r u u u r ,所以22AC BD =u u u r u u u r ,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--u u u r ,(,)(1,0)(1,0)AP x y x =-=-u u u r由2RA AP =u u u r u u u r 得11(1,)2(1,)x y x y --=-,即11232x x y y =-+⎧⎨=-⎩ 代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =,所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+u u u r u u u r u u u r u u u r r r r r r r (2)因为1()2AE a b =+u u u r r r 所以23AO AE =u u u r u u u r ,因此,,A O E 三点共线,而且2AO OE= 同理可知:2,2BO CO OF OD ==,所以2AO BO CO OE OF OD === 3、解:(1)(2,7)B A v v v =-=-r u u r u u r ;(2)v r 在A v u u r 方向上的投影为135A A v v v ⋅=r u u r u u r . 4、解:设1F u u r ,2F u u r 的合力为F u r ,F u r 与1F u u r 的夹角为θ,则31F =+u r ,30θ=︒; 331F =+u u r ,3F u u r 与1F u u r 的夹角为150°.习题 B 组(P113)1、解:设0v u u r 在水平方向的速度大小为x v u u r ,竖直方向的速度的大小为y v u u r ,则0cos x v v θ=u u r u u r ,0sin y v v θ=u u r u u r .设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩u u r u u r 为重力加速度 所以,最大高度为220sin 2v g θu u r ,最大投掷距离为20sin 2v g θu u r .2、解:设1v u r 与2v u u r 的夹角为θ,合速度为v r ,2v u u r 与v r 的夹角为α,行驶距离为d .则1sin 10sin sin v v vθθα==u r r r ,0.5sin 20sin v d αθ==r . ∴120sin d v θ=r . 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)-解:设(,)P x y ,则(1,2)AP x y =--u u u r .(2,22)AB =-u u u r . (第4题)将AB u u u r 绕点A 沿顺时针方向旋转4π到AP u u u r ,相当于沿逆时针方向旋转74π到AP u u u r , 于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--u u u r 所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==- (2)32y x=- 解:设曲线C 上任一点P 的坐标为(,)x y ,OP u u u r 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos 44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩ 又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=- 第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-u u u r r r ,1()2AD a b =+u u u r r r 4、略解:2133DE BA MA MB a b ==-=-+u u u r u u u r u u u r u u u r r r 2233AD a b =+u u u r r r ,1133BC a b =+u u u r r r 1133EF a b =--u u u r r r ,1233FA DC a b ==-u u u r u u u r r r 1233CD a b =-+u u u r r r ,2133AB a b =-u u u r r r CE a b =-+u u u r r r5、(1)(8,8)AB =-u u u r ,82AB =u u u r ;(2)(2,16)OC =-u u u r ,(8,8)OD =-u u u r ; (3)33OA OB ⋅=u u u r u u u r . (第4题)6、AB u u u r 与CD u u u r 共线.证明:因为(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r . 所以AB u u u r 与CD u u u r 共线.7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C === 11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=r u r u r r u r u r ,所以(2)n m m -⊥r u r u r . 12、1λ=-. 13、13a b +=r r ,1a b -=r r . 14、519cos ,cos 820θβ== 第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-r r r r r r .222()2a b a b a b a b+=+=++⋅r r r r r r r r ,222()2a b a b a b a b -=-=+-⋅r r r r r r r r .因为a b ⊥r r ,所以0a b ⋅=r r ,于是22a b a b a b +=+=-r r r r r r . 再证a b a b a b +=-⇒⊥r r r r r r .由于222a b a a b b +=+⋅+r r r r r r ,222a b a a b b -=-⋅+r r r r r r由a b a b +=-r r r r 可得0a b ⋅=,于是a b ⊥r所以a b a b a b +=-⇔⊥r r r r r r . 【几何意义是矩形的两条对角线相等】3、证明:先证a b c d =⇒⊥r r r u r22()()c d a b a b a b ⋅=+⋅-=-r u r r r r r r r又a b =r r ,所以0c d ⋅=r u r ,所以c d ⊥r u r再证c d a b ⊥⇒=r u r r r .由c d ⊥r u r 得0c d ⋅=r u r ,即22()()0a b a b a b +⋅-=-=r r r r r r (第3题)(第6题) 所以a b =r r 【几何意义为菱形的对角线互相垂直,如图所示】4、12AD AB BC CD a b =++=+u u u r u u u r u u u r u u u r r r ,1142AE a b =+u u u r r r 而34EF a =u u u r r ,14EM a =u u u u r r ,所以1111(4242AM AE EM a b a =+=++=u u u u r u u u r u u u u r r r r 5、证明:如图所示,12OD OP OP =+u u u r u u u r u u u u r ,由于1230OP OP OP ++=u u u r u u u u r u u u r r ,所以3OP OD =-u u u r u u u r ,1OD =u u u r 所以11OD OP PD ==u u u r u u u r u u u r 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒ 所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,22MN AB b ==-u u u u r u u u r r 7、(18=(千米/时),沿与水流方向成60°的方向前进;(2)实际前进速度大小为沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅u u u r u u u r u u u r u u u r ,所以()0OB OA OC ⋅-=u u u r u u u r u u u r ,所以0OB CA ⋅=u u u r u u u r同理,0OA BC ⋅=u u u r u u u r ,0OC AB ⋅=u u u r u u u r ,所以点O 是ABC ∆的垂心.9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=; (4)d =P 2(第5题)第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=. cos(2)cos2cos sin2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-+=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ==-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=.4、解:由23sin ,(,)32πααπ=-∈,得cos α===又由33cos ,(,2)42πββπ=∈,得sin β=== 所以32cos()cos cos sin sin ((()434312βαβαβα--=+=⨯+⨯-=. 练习(P131)1、(1; (2) (3 (4)22、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ===;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=.3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-;所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅. 5、(1)1; (2)12; (3)1; (4); (5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-; (6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+; (2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+; (3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-; (4)原式=12(cos )cos sin sin )cos()2333x x x x x πππ=-=+. 7、解:由已知得3sin()cos cos()sin 5αβααβα---=, 即3sin[()]5αβα--=,3sin()5β-= 所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-. 因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=. 练习(P135)1、解:因为812παπ<<,所以382αππ<< 又由4cos 85α=-,得3sin 85α=-,3sin 385tan 484cos 85ααα-===-所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---=2232tan23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--=3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α=,所以sin tan (2)cos ααα==-= 4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-; (2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin coscos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α=,所以431cos()coscos sin sin 666552πππααα-=+=⨯=. 3、解:由2sin ,(,)32πααπ=∈,得cos α==,又由33cos ,(,)42πββπ=-∈,得sin β===,所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈, 又因为11cos()14αβ+=-,所以sin()αβ+=== 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+===-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-+⨯=6、(1) (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α==.又由3cos 4β=-,β是第三象限角,得sin β==.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((=⨯--⨯ =8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B == ∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ==== ∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(4)7sin()212x π-; (5; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯=2222cos2cos sin 0.60.80.28ααα=-=-=-15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cos sin ((3ϕϕϕ=-=-=-sin 2tan 2(3)cos 2ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-(第12题)sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sin 3α==-∴1sin 22sin cos 2(3ααα==⨯⨯=222217cos2cos sin ()(39ααα=-=-=-∴7cos(2)cos2cos sin 2sin (4449πππααα+=-=-=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题 B 组(P138) 1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等 思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题 A 组( P143)1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ; (5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略. 2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……② (1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ=注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===----1tan tan1142tan()1431tan tan 1()142πθπθπθ+-++===-⋅--⨯∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-=由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sincos22M M OM MOM αβαβ+-=∠=.于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5;(2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4)提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒=2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 2cos50sin100sin501cos10cos10︒︒=︒⋅==︒︒6、(1)95; (2)2425;(3)3±. 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==.8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边 (4)左边=222234cos 22cos 212(cos 22cos 21)34cos 22cos 212(cos 22cos 21)A A A A A A A A -+--+=++-++2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边9、(1)1sin 21cos2sin 2cos22)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(22,最小值为2.(第12(2)题)10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-; (2)2{22,}3x k x k k Z πππ+∈≤≤. 13、如图,设ABD α∠=,则CAE α∠=, 2sin h AB α=,1cos hAC α= 所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<< 当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=,13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-, 312sin(2)sin 2cos cos2sin 444πππααα-=- 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得2sin()4πα-=.αh 1h 2l 2l 1BDE AC(第13题)。