高分子化学 第五版 课件 PT

合集下载

2013年最新《高分子化学》ppt课件合集(第五版潘祖仁主编)

2013年最新《高分子化学》ppt课件合集(第五版潘祖仁主编)

(c)由两种不同单体聚合生成的聚合物,且其聚合物结构又 不很明显(多数是热固性塑料),取两种单体的简名,在后 面加“树脂” 二字,对于合成橡胶,往往从共聚单体中各取一 字,后缀“橡胶”两字来命名。
如 苯酚 甲醛
酚醛树脂
尿素 甲醛
脲醛树脂
甘油 邻苯二甲酸酐 醇酸树脂
丁二烯 苯乙烯
丁苯橡胶
(d)由两种烯类单体共聚所得聚合物的命名是在两种单体名 称间联以短划,并冠以“聚”字。如聚苯乙烯-丙烯腈(也可称 为苯乙烯-丙烯腈共聚物)等。
IUPAC命名规则; 4给重复结构单元的命名加括弧,并冠以前缀
“聚”。
聚 (1-氯代亚乙基 )
CH CH2 n
聚 (1-苯基亚乙基 )
CH3 C CH2 n COOCH3
聚[1-(甲氧基羰基)-1-甲基亚乙基]
NH(CH2)6NHCO(CH2)4CO n
聚(亚胺基亚己基亚胺基己二酰)
用聚合物的英文缩写符号表示
xn DP n
由聚合度可计算出高分子的分子量:
M xn M0 DP M0
M 是高分子的分子量 M0 是结构单元的分子量
另一种情况:
n H2N ( CH2 )5COOH
NH ( CH2 )5CO n + nH2O
结构单元=重复单元=链节 单体单元
2.由两种结构单元组成的高分子
合成尼龙-66具有另一特征:
链节
1.由一种结构单元组成的高分子
一个大分子往往是由许多相同的、简单的结构 单元通过共价键重复连接而成。 第一种情况 例如:聚苯乙烯
CH2 CH n
链节数
结构单元=单体单元=重复单元=链节
聚合度 聚合度是衡量高分子大小的一个指标。

《高分子化学》PPT课件

《高分子化学》PPT课件
纤维增强效果
纤维增强可以显著提高高分子材料的拉伸强度、弯曲强度 、冲击强度等力学性能,同时还可以改善材料的耐塑料、复合材料等领域,如 玻璃纤维增强塑料(GFRP)、碳纤维增强塑料(CFRP) 等。
加工成型技术
加工成型方法
高分子材料的加工成型方法包括注塑成型、挤出成型、吹塑成型、压延成型等。这些方 法各有特点,适用于不同形状和尺寸的高分子制品的生产。
高分子催化剂
高分子催化剂在石油化工、有机合成 等领域具有催化效率高、选择性好等 优点。
生物医用高分子材料
生物医用高分子材料如人工器官、药 物载体、生物传感器等在医疗卫生领 域具有广泛应用前景。
发展趋势
向高性能、高功能化、智能化方向发 展,同时注重环保和可持续发展。
06
实验部分:高分子化学实验操作与注意事 项
汽车工业
轮胎、密封件、减震件等是汽车橡胶制品的 主要应用领域。
医疗卫生
医用手套、输液管、医用胶布等橡胶制品在 医疗卫生领域具有广泛应用。
日常生活
橡胶鞋、橡胶管、橡胶带等橡胶制品在日常 生活中随处可见。
发展趋势
向高性能、高耐磨、环保型橡胶方向发展, 如绿色轮胎、热塑性弹性体等。
纤维领域应用及发展趋势
发展历程
从天然高分子到合成高分子,经 历了漫长的岁月,随着科技的进 步,高分子化学得到了迅速的发 展。
高分子化合物分类与特点
分类
根据来源可分为天然高分子和合成高 分子;根据性能可分为塑料、橡胶、 纤维等。
特点
高分子化合物具有相对分子质量大、 分子链长、多分散性、物理和化学性 质独特等特点。
高分子化学研究意义
《高分子化学》PPT 课件
目录
• 高分子化学概述 • 高分子化合物合成方法 • 高分子化合物结构与性能 • 高分子材料改性与加工技术 • 高分子材料应用领域及发展趋势 • 实验部分:高分子化学实验操作与注意事

高分子化学第五版第6章ppt课件.ppt

高分子化学第五版第6章ppt课件.ppt
分子量分布: 服从Poisson分布,即 x-聚体的摩尔分率为:
Nx N
ν:动力学链长,即每个引发剂分子所引发的单体分子数。
X n = xNNx =ν
Xw=
x Wx = W
xxN x N0
若引发反应包括一个单体分子,则: X n = + 1
21
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
B. 活性聚合物和活性聚合(Living Polymerization) 1956年对萘钠在THF中引 发苯乙烯聚合时首先发现
活性聚合物(Living Polymer): 定义:当单体转化率达到100%时,聚合仍不终止,
形成具有反应活性聚合物,即活性聚合物。
16
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
在非极性溶剂中,则以离子对形式存在。
14
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
阴离子聚合无终止的原因:
活性链末端都是阴离子,无法双基终止; 活性链上脱负氢离子困难; 反离子一般为金属阳离子,无法从其中夺取某个原 子或 H+ 而终止。
(Step Polymerization)
离子聚合
根据中心离子 的电荷性质
阳离子聚合 阴离子聚合

2
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物

高分子化学(第五版)第3章 ppt课件

高分子化学(第五版)第3章 ppt课件
73笼蔽效应cageeffect在聚合体系中引发剂的浓度相对很低引发剂分子处于单体或溶剂的笼子包围中初级自由基形成后像处在笼子中一样而自由基在笼子内的平均寿命约为1011109s若不能及时扩散出来就可能发生副反应而形成稳定分子使引发剂效率降低
国家级精品课程──高分子化学
第三章 自由基聚合 Free-radical Polymerization
.
21
1)热力学的一般概念
热力学状态函数及其相互关系
H-焓
E-内能
S-熵 G-自由焓(自由能)
H =E +pV =G +TS G =H TS
对于某一过程,
H =E +pV =G +TS G =H TS
ΔH =H 2 H1 , E =E2 E1 , G =G2 G1 , ΔS =S2 S1
.
27
单体结构还将影响聚合热。通常: 单体的键能越大(化学位越低,越稳定),聚合热越小 聚合物的键能越大,聚合热越大
聚合热的影响因素
(1)取代基的位阻效应:
1,1 双取代
单体键能↓、聚合物键能↓ ↓
则 -H↓;
结构不对称, 键易断裂
位阻及不对称结构 使键易断裂
.
28
H ethylene =95.0 kJ mol-1 H isobutylene =51.5 kJ mol-1 H MMA =56.5 kJ mol-1 H MSt =35 kJ mol-1
乙烯基醚等) 。
.
20
3.3 聚合热力学和聚合-解聚平衡
热力学讨论范围:反应的可能性、反应进行的方向以 及平衡方面的问题。
α-甲基苯乙烯在0℃常压下 能聚合,但在61℃以上不加压就 无法聚合,这属于热力学范畴。

第五版高分子化学学习ppt课件

第五版高分子化学学习ppt课件

聚氯乙稀这样的聚合物,括号内的化 学结构称为结构单元。
5、重复单元(repeating unit) 聚氯乙稀分子链可以看作结构单元多次 重复构成,因此括号内的化学结构也可称 为重复单元或链节(chain element)。
6、聚合度(degree of polymerigation)
重复单元的数目,表征聚合物分子量大 小的一个物理参数。
2、大分子具有链状结构---- 大分子由 基本链节(结构相同的、简单的结构单 元)通过共价键或配位键重复连接而成。
例如:
3、具有多分散性 分子量有大小,即分子量的多分散性 %&& 结构也有差异,称结构多分散性
4、多种运动单元 链段运动 基团振动 大分子运动(蠕动)
聚乙烯大分子空间结构 示意图
蛋白质大分子空间结构 示意图
三、高分子科学的发展概况与趋势
1、高分子科学的发展概况
19世纪中叶以前 天然高分子的利用与加工
19世纪中叶~20世纪30年代
天然高分子的改性 • 1855年 英国 Parks 由硝纤维素和樟脑 制得赛璐塑料 • 1883年 法国 de Chardoniret 发明了人 造丝

20世纪20年代
还有一类聚合物是由两种单体聚合生 成高分子,如由己二胺和己二酸缩聚生成 的聚己二酰己二胺(尼龙66)
这类聚合物的结构单元和重复单元含义 不一样,也不存在单体单元。
三、分子量及分子量分布
分子量是聚合物的重要结构指标, 只有分子量很高的聚合物才具有高 的机械强度。
随着分子量增加(AB段),机械强度 增加,但过了B点后,再提高分子量,强 度上升很慢,C点为强度的饱和点。
二、高分子科学研究的内容
Chemistry

高分子化学第五版潘祖仁第1章 绪论1PPT课件

高分子化学第五版潘祖仁第1章 绪论1PPT课件
塑料、橡胶、纤维、涂料、粘合剂…几大类高
分子材料己广泛应用到电子信息、生物医药、航天航空、汽 车工业、包装、建筑等各个领域。
功能高分子材料:导电高分子、高分子半导体、光导
电高分子、压电及热电高分子、磁性高分子、光功能高分子 、液晶高分子和信息高分子材料等近年发展迅速,具有特殊 功能。
2020/11/15
macromolecle chemistry
高分子化学
教材:《高分子化学》潘祖仁主编
2020/11/15
1
2020/11/15
2
复合材料—隐形飞机上的特殊材料
2020/11/15
4
航天技术
1957年10月,苏联第 一颗人造卫星的成功发 射,标志着空间技术的 诞生。
2020/11/15
5
2020/11/15
6
合成有机高分子材料改变了我们的生活
塑料
耐高温、耐 腐蚀的塑料 王--特氟 隆
合成纤维
一座年产万吨 的合成纤维厂 相当于30万亩 棉田或250万头 绵羊的棉毛产 量。
合成橡胶
一座年产8万 吨的合成橡胶 厂相当于145 万亩橡胶园的 年产量。
聚氯乙烯 聚丙烯: 聚苯乙烯
聚乙烯
酚醛塑料

四聚
氟 乙 烯
人造器官组织
共轭链变 化引起颜 色变化
通过上述反应实现了人们的服装可以随光线强弱变化而变化。
2020/11/15
18
《高分子化学》
高分子化学
讲授内容及课时分配
第一章 绪论………………………….…(6h) 第二章 自由基聚合…………………….(8h) 第三章 自由基共聚合………………….(8h) 第四章 聚合方法…………………….... (5h) 第五章 离子聚合………………….…….(2h) 第六章 配位聚合………………………..(2h) 第七章 逐步聚合…………………….....(2h) 第八章 聚合物的化学反应……………..(3h)

高分子化学课件(第五版)潘祖仁6

高分子化学课件(第五版)潘祖仁6

ZnEt2
R / S= 50 / 50
光学活性引发剂
CH2
* * CH S CH2 CH S CH3 CH3
R / S = 75 / 25 光学活性聚合物
将这种光学引发剂优先选择一种对映体进 入聚合物链的聚合反应称为立构选择性聚合。

将侧基中含有手性C*的烯烃聚合
CH2 CH *CHCH3 CH2 CH3
间同立构
R R
无规立构
H
全同和间同立构聚合物统称为有规立构聚合物 如果每个结构单元上含有两个立体异构中心,则 异构现象就更加复杂。
但象其他含杂原子的聚合物的C*为真光活性中心。 聚环氧丙烷
O H2C * CH CH3 CH2 H H * C O CH2 C* O CH3 CH3
对于二烯烃:
有顺、反异构(1,4聚合),光活性(1,2;3,4聚合)

Al / Ti 的mol 比是决定引发剂性能的重要因素 适宜的Al / Ti比为 1. 5 ~ 2. 5
评价Z-N引发剂的依据
产物的立构规整度 质量 聚合速率 产量: g产物/gTi
两组分的Z-N引发剂称为第一代引发剂 500~1000 g / g Ti 引发剂活性随时间而变,通常需陈化1-2小时, 才达到最高活性。聚合物的立构规整度主要决定于过 渡金属组分。
由沸腾正庚烷萃取,无规及其他间规等均溶解。 聚丙烯的全同指数= (I I P) 沸腾正庚烷萃取剩余物重 未萃取时的聚合物总重
也可用红外光谱的特征吸收谱带测定
A975 IIP=K A 1460
K为仪器常数
全同螺旋链段特征吸收,峰面积
甲基的特征吸收,峰面积
二烯烃聚合物的立构规整度用某种立构
体的百分含量表示 应用IR、NMR测定

高分子化学(第五版)第5章课件-PPT

高分子化学(第五版)第5章课件-PPT

得到固体聚合物后处理麻烦,成本较高 难以除尽乳化剂残留物
前三种聚合方法中,使聚合速率提高一些的因 素往往使分子量降低。而乳液聚合中,聚合速率和 分子量可同时提高。
26
乳化剂(Emulsifier): 是一类可使互不相容的油和水转变成难以分
层的乳液的物质,属于表面活性剂。
亲水的极性基团 乳化剂分子通常由两部分组成
8
化学的角度更关心其中的科学问题:
均相高粘体系的聚合过程规律
各种非均相聚合过程规律 悬浮聚合 乳液聚合 沉淀聚合
分散聚合 淤浆聚合 气相聚合
聚合速率 聚合物分子量及其分布 共聚组成及其分布……
界面缩聚
……
9
5.2 本体聚合 自由基本体聚合(Bulk Polymerization):不加其它
介质,只有单体本身,在引发剂、热、光等作用下进行的 聚合反应。
1 = Rt +
Rtr =
2kt R
2
p 2
+
CM + CI
[
I
] + CS
[S
]
Xn
Rp
k p [M ]
[M ] [M ]
2
建立这些方程应用了哪些假定? 长链原理:链引发反应所消耗的单体可忽略不计; 双基终止; 等活性原理:链自由基的活性与链长无关; 稳态假定:链引发速度与链终止速度相等,自由基 浓度不随时间变化。 满足后两个假定的通常是: 低转化率的聚合体系; 高转化率的稀溶液聚合体系。
粒径增至6 ~10 nm
粒径约为 1000 nm
相相似似相相容容,,犹犹 如如增增加加了了单单体体在在水水 中中的的溶溶解解度度。。这这种种 溶溶有有单单体体的的胶胶束束称称 为为增增溶溶胶胶束束

高分子化学ppt幻灯片课件

高分子化学ppt幻灯片课件

高分子化学ppt幻灯片课件•高分子化学概述•高分子化合物结构与性质•高分子合成方法与反应机理•高分子材料制备与加工技术•高分子材料性能与应用领域•高分子化学前沿研究领域与展望目录CONTENTS01高分子化学概述高分子化学定义与特点定义高分子化学是研究高分子化合物的合成、结构、性能及其应用的科学。

特点高分子化学涉及的高分子化合物具有分子量高、分子结构复杂、性能多样等特点。

高分子化学发展历史早期阶段天然高分子的利用和改性,如橡胶、纤维素等。

合成高分子阶段20世纪初合成第一个高分子化合物——酚醛树脂,之后合成橡胶、塑料等高分子材料。

高分子科学建立20世纪30年代,高分子科学作为一门独立学科得以建立,高分子化学作为高分子科学的重要分支得到迅速发展。

材料领域生物医学领域环保领域其他领域高分子化学研究意义合成具有优异性能的高分子材料,满足航空航天、汽车、建筑等领域对高性能材料的需求。

开发可降解高分子材料,解决传统塑料带来的环境污染问题。

研究生物相容性高分子材料,用于医疗器械、药物载体等方面,提高医疗水平。

高分子化学在能源、信息、农业等领域也有广泛应用,推动相关产业的发展。

02高分子化合物结构与性质由长链分子组成,链上原子以共价键连接,形成线性或支链结构。

链状结构由三维空间的分子链交织而成,具有高度的交联性和空间稳定性。

网状结构高分子链在空间中的排列和堆砌方式,包括晶态、非晶态、液晶态等。

聚集态结构高分子化合物基本结构非晶态结构高分子链在空间中无规则排列,呈现无序状态。

非晶态高分子具有较好的柔韧性和加工性能。

晶态结构高分子链在空间中规则排列,形成晶体。

晶态高分子具有优异的力学性能和热稳定性。

液晶态结构介于晶态和非晶态之间的一种特殊聚集态,高分子链在空间中呈现一定程度的有序排列。

液晶高分子具有独特的光学、电学和力学性能。

高分子化合物聚集态结构物理性质包括颜色、密度、熔点、沸点、溶解度等。

这些性质与高分子的结构密切相关,如支链和交联程度会影响密度和熔点。

高分子化学课件(第五版)潘祖仁5

高分子化学课件(第五版)潘祖仁5


氢卤酸的X-亲核性太强,不能作为阳离子聚合引发 剂,如HCl引发异丁烯
(CH3)3C Cl

(CH3)3C
Cl
HSO4- H2PO4-的亲核性稍差,可得到低聚体。 HClO4,CF3COOH,CCl3COOH的酸根较弱,可 生成高聚物。

Lewis酸引 发 傅-克(俗称Friedel-Grafts催化剂)反应中的各种
X C Y CH2 CH2
X C Y
幅射引发最大特点:碳阳离子活性中心没有反离子存在

电荷转移络合物引发
能进行阳离子聚合的单体都是供电体,当 与适当的受电体配合时,能形成电荷转移络合 物。在外界能量的作用下,络合物会解离形成 阳离子而引发聚合。 如乙烯基咔唑和四腈基乙烯(TCE)的电荷转移 引发:
H2O
BF3 + H2O
H (BF3OH)
(H3O) (BF3OH)
氧鎓离子,活性较低
在工业上,一般采用反应速率较为适中的 AlCl3-H2O引发体系。 对有些阳离子聚合倾向很大的单体,可不需要 共引发剂,如烷基乙烯基醚。

其它
包括:I2,高氯酸乙酸酯,电离辐射
如碘分子歧化成离子对,再引发聚合:
I2 + I2

向反离子转移终止或自发终止
增长链重排导致活性链终止,再生出引发剂-共引 发剂络合物,继续引发单体,动力学链不终止。
CH 3 H CH 2 C CH 3 (BF3OH) n CH 2 C CH 3 CH 3
反应介质的性质对反应也有极大的影响,影响因 素复杂
意义:
1、将难以自由基方式聚合的单体,以离子聚合方式 合成新产品; 2、同一单体通过自由基和离子聚合得到的产物的结 构与性能不同; 3、在一定程度上可对产物的结构和性能进行设计。

高分子化学5.ppt

高分子化学5.ppt

2. 乳化剂
是一类可使互不相容的油和水转变成难以分层的乳液 的物质,属于表面活性剂
分子通常由两部分组成
亲水的极性基团 亲油的非极性基团
如长链脂肪酸钠盐
亲水基(羧酸钠) 亲油基(烷基)
乳化 剂的 作用
降低水的表面张力 降低油水的界面张力
乳化作用
分散作用 增溶作用 发泡作用
利用吸附在聚合物粒 子表面的乳化剂分子
磺酸盐-SO3Na
亲油基团 C11-17直链烷烃 C3-8烷基与苯基、萘基结合体
阳离子型乳化剂
(用于酸性介质)
伯胺盐 仲胺盐 季胺盐 叔胺盐
非离子型乳化剂 聚环氧乙烷类
(酸碱不敏感)
两性乳化剂
(自身带酸碱基团)
5.5 乳液聚合
阴离子型
在碱性溶液中比较稳定,遇酸、金属盐、硬水 会失效 在三相平衡点以下将以凝胶析出,失去乳化能 力。 三相平衡点是指乳化剂处于分子溶解状态、胶 束、凝胶三相平衡时温度。 高于此温度,溶解度突增,凝胶消失,乳化剂 只以分子溶解和胶束两种状态存在
5.5 乳液聚合
胶束的形状
球状 ( 低浓度时 ) 直径 4 ~ 5 nm
棒状 ( 高浓度时 ) 直径 100 ~ 300 nm
胶束的大小和数目取决于乳化剂的用量 乳化剂用量多,胶束的粒子小,数目多
加入单体的情况
在形成胶束的水溶液中加入单体
极小部分单体 以分子分散状 态溶于水中
小部分单体 可进入胶束 的疏水层内
丁二烯,苯乙烯
氯乙烯
氯丁二烯
四种聚合方法的比较
比较项目 本体聚合 溶液聚合 悬浮聚合 乳液聚合
配方主要 成分
单体 引发剂
聚合 场所
聚合 机理
本体内

高分子化学全套PPT课件

高分子化学全套PPT课件

2024/1/28
33ቤተ መጻሕፍቲ ባይዱ
THANKS
感谢观看
2024/1/28
34
塑料原料选择与预处理
包括合成树脂、填料、增塑剂、稳定剂等原料的 选择及预处理方法。
塑料加工设备与模具
介绍塑料加工中常用的设备如注塑机、挤出机、 吹塑机等,以及模具的设计与制造。
ABCD
2024/1/28
塑料成型工艺
详细阐述注塑、挤出、吹塑、压延等成型工艺的 原理、特点及应用。
塑料制品质量控制与检测
分析塑料制品常见的质量问题,提出相应的控制 措施及检测方法。
2024/1/28
高分子溶液粘度
粘度与分子量关系,粘度测定 方法
高分子溶液流变性
剪切变稀和剪切增稠现象,触 变性
高分子溶液稳定性
高分子聚集和沉淀,稳定性影 响因素
18
高分子凝胶性质
凝胶形成过程
溶胶-凝胶转变,凝胶结构和性质
凝胶强度与韧性
交联度对凝胶强度影响,增强凝胶韧性的方法
凝胶溶胀与消溶胀
溶胀动力学和热力学,消溶胀过程
发展历程
从天然高分子到合成高分子,经历了 漫长的发展历程,现已成为化学领域 的重要分支。
2024/1/28
4
高分子化合物分类与特点
分类
根据来源可分为天然高分子和合成高分子;根据结构可分为线型、支链型和体 型高分子。
特点
高分子化合物具有相对分子质量大、分子链长、多分散性、物理和化学性质独 特等特点。
24
纤维制备与加工
纤维原料与分类
介绍天然纤维、化学纤维等原料 的来源、分类及性能特点。
纤维制品性能检测与应用
阐述熔融纺丝、湿法纺丝、干法 纺丝等纺丝工艺的原理及设备。

高分子化学第五版课件PT

高分子化学第五版课件PT
当St 与之共聚时,可显著改善其流动性能和加工性 能,成为用途广泛的塑料。
18
PVC世界年产量超过1000
氯乙烯(Vinyl Chloride,VC ) 万吨,占第二位,仅次于PE。
PVC机械性能好,但对光、热稳定性差,脆性大。 VC与VAc共聚:VAc 起着内增塑作用,改善流动性能,易加 工。含5%VAc 的硬共聚物可制造挤压管、薄板等;含20~ 40% VAc的软质共聚物可制造管材、手提包和地板砖等。 VC与偏氯乙烯共聚:具有耐油脂、抗氧和抗水蒸气性能,广 泛用于包装薄膜和涂料。
R11
=
k11
[
M
• 1
][
M
1
]
R12
=
k12 [
M
• 1
][
M
2
]
R 22 = k 22 [ M• 2 ][ M 2 ]
R 21 = k 21 [ M• 2 ][ M 1 ]
− d [M1] m1 = dt = d [ M 1 ] m2 − d [ M 2 ] d [ M 2 ]
dt
R=11 + R21
醇酸树脂: 含羟基的两种单体:丙三醇、1,2丙二醇 含羧基的两种单体:亚麻仁油酸、邻苯二甲酸酐
缩聚
5
共聚物按照组成的单体数可分为二元共聚物、三元 共聚物和多元共聚物。 1)共聚物的类型 二元共聚物按结构单元在大分子链上的排列方式,可分:
无规共聚物(Random Copolymer) 交替共聚物(Alternating Copolymer) 嵌段共聚物( Block Copolymer) 接枝共聚物( Graft Copolymer)
如HIPS:以PB作主链,接枝上St作为支链,以提 高其抗冲性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-2或2体系:线形缩聚 单体含有两个官能团,形成的大分子向两个方向增
长,得到线形缩聚物的反应。如涤纶聚酯、尼龙等 2-3、2-4等多官能度体系:体形缩聚 至少有一单体含两个以上官能团,形成大分子向三
个方向增长,得到体形结构缩聚物的反应。如酚醛树脂、 环氧树脂
14
2.3 线形缩聚反应的机理
1)线形缩聚单体 条件:
聚酰胺等本身都可以进行链交换反应。
24
自由基聚合与线形缩聚特征的比较
自由基聚合
线形缩聚
有链引发、增长、终止等基元 反应,其速率常数和活化能不 同。引发最慢,控制总速率。
活性中心迅速和单体加成,使 链增长。单体间或与聚合物均 不反应。
从单体自由基增长到高聚物时 间极短,无中等聚合度阶段。
聚合过程中单体逐渐减少,转 化率提高。延长聚合时间,主 要是提高转化率,对分子量影 响较少。
在及时脱水的条件下,k4=0;k1、k2、k5都比k3大,聚 酯化速率或羧基消失速率由第三步反应来控制。
27
K
HA
=
[
H+ ][ A HA
]
HA的电离平衡
HA
H+
_ +A
− d[COOH ] = k1k3[COOH ][OH ][H+ ]
dt
k2 K HA
上式中氢离子可来自羧酸本身,进行自催化,但因为 酯化反应为慢反应,一般采用外加无机酸催化加速。
( C N R N C OR'O ) n
OH
HO
聚氨基甲酸酯,简称聚氨酯
4
含活泼氢的功能基:-NH2, -OH, -COOH等
亲电不饱和功能基:主要为连二双键和三键,如:C=C=O, -N=C=O,-N=C=S,-C≡C,-C≡N等
HO(CH 2)4OH + nO=C=N(CH2)6N=C=O
丁二醇
CH3 OH +O2 CH3
CH3 On CH3
6
Diels-Alder 反应: 共轭双烯烃与另一烯类发生1,4加成,制得梯形聚合
物,即多烯烃的环化聚合。
O
H2C
CH2
+
(
H2C
CH2
O
O
)n
O
7
逐步聚合与连锁聚合的比较
Chain Polymerization
Stepwise Polymerization
N = N 0 (1 p)
C = C0 (1 p)
1 = 2C 02 kt + 1
(1 p) 2
自催化作用下的聚酯化反应,1/(1-p)2 与 t 成线性关系
30
引入聚合度与反应程度的关系式
1 (1 p)2 = 2C02 kt + 1
X n =1 1 p
( X n ) 2 = 2kC02 t + 1
n 聚体 + m 聚体 (n + m) 聚体 + 水
缩聚是官能团间的逐步反应,且每一步都是可逆的。 ∴ 逐步的可逆平衡反应
17
3)缩聚反应的平衡常数(Equilibrium Constant,K)
k1
多数缩聚反应属可逆平衡反应: aAa + bBb aABb + ab
k1
平衡常数: K = k1 / k 1
如聚酯化反应:
聚合
HOOC R COOH + nHO R, OH
水解
O (OC R CO O R, O )n H + (2n 1) H 2O
16
aAa + bBb aABb + ab
机理特征: 逐步、可逆
aABb + aAa (bBb ) aABAa (bBABb ) + ab
a ( AB )b + a ( AB )b a ( ABAB )b + ab
需活性中心:自由基、阳离子 或阴离子,有链引发、增长、 转移、终止等基元反应
官能团间反应,无特定的活性 中心,无链引发、增长、终止 等基元反应
单体一经引发,便迅速连锁增 长,各步反应速率和活化能差 别很大
反应逐步进行,每一步反应速 率和活化能大致相同
体系中只有单体和聚合物,无 体系含单体和一系列分子量递
28
自催化缩聚
当醇和酸为等摩尔,且浓度 为C 时,并认为羧酸不电离
[ H+] [COOH ] = [OH ] = C
d[COOH] = k[COOH][OH ][COOH] dt
dC = kC 3 dt
三级反应
29
11
2 0
引入反应程度p,并用羧基浓度C0 、 C代替羧基数N0、N
p = 1 −N N0
9
2)缩聚反应体系 官能度(Functionality):一个分子中能参与反应的官能团数 官能团:OH,NH2,COOH,COOR,COCl,(CO)2O,SO3H
1-1官能度体系 缩合反应 例:醋酸与乙醇的酯化反应,它们均为单官能团物质。 1-2官能度体系 例:辛醇与邻苯二甲酸酐(官能度为2)反应形成邻苯 二甲酸二辛酯。
国家级精品课程──高分子化学
第二章 缩聚和逐步聚合 Polycondensation and Stepwise Polymerization
1
2.1 引言 按聚合机理或动力学分类: 连锁聚合(Chain Polymerization) 活性中心(Active Center)引发单体,迅速连锁增长 自由基聚合 活性中心不同 阳离子聚合 阴离子聚合
K中等:如聚酰胺反应(K≈300~500),低分子 副产物对分子量有所影响。
K很大:可看作不可逆反应。如聚砜、聚碳酸酯等 反应(K>1000)。
19
4)聚合度与反应程度p的关系
以等当量的二元酸和二元 醇或羟基酸的缩聚为例。
N0:体系中起始的官能团数(羧基数或羟基数),等 于二元酸与二元醇的分子总数,也等于反应时间 t 时所有
p=0.9 p=0.995
X n = 10 X n = 200
聚合度与反应程度的关系
23
ቤተ መጻሕፍቲ ባይዱ
5)缩聚过程中的副反应 官能团消去反应 如合成聚酯时,二元羧酸在高温下脱羧反应; 合成聚酰胺时,二元胺发生分子内(间)的脱氨反应。 化学降解 聚酯化和聚酰胺化的逆反应水解属于化学降解。 链交换反应 大分子端基与另一大分子的弱键进行链交换反应,如聚酯、
逐步聚合(Stepwise Polymerization) 无活性中心,单体中不同官能团间相互反应而逐步增长 大部分缩聚属逐步机理,大多数烯类加聚属连锁机理
2
逐步聚合反应的种类 缩聚:官能团间的缩合聚合反应,同时有小分子产生。 如二元酸与二元醇的聚酯化反应,二元胺与二元酸的 聚酰胺化反应
naAa + nbBb a[ AB]n b + (2n 1)ab
26
羧酸和醇的酯化为可逆平衡反应,如及时排除
副产物水,符合不可逆条件,且属于酸催化反应 以聚酯反
应为例
O
||
_
~~C- OH + H + A
k1 k2
OH | ~~C+ - OH + A-
OH | ~~C- OH + ~~OH
+
OH
k3
| ~~C- OH
k4
|
~~OH
+
O
k5
|| ~~ C- O~~ + H 2O + H +
25
2.4 线形缩聚动力学
官能团等活性概念
“官能团等活性”假定:任何反应阶段,不论单体、低 聚体、多聚体或高聚物,其两端官能团的反应能力不随分 子链的增长而变化,每一步反应的平衡常数K相同。
线形缩聚动力学
1)不可逆的缩聚动力学 若将体系中的低分子副产物不断排出,则反应不可逆
地向正方向进行。如聚酯反应采用减压脱水使平衡向产物 方向移动,可视为不可逆。
必须是2-2、2官能度体系; 反应单体不易成环; 少副反应。
参与反应的单体只含两个功能基团,大分子链只会 向两个方向增长,分子量逐步增大,体系的粘度逐渐上 升,获得的是可溶可熔的线形高分子。
15
2)平衡线形缩聚 指缩聚过程中生成的产物可被反应中伴生的小分子降
解,单体分子与聚合物分子之间存在可逆平衡的逐步聚合 反应。
naRb a[ R ]n b + ( n 1) ab
2-2或2官能度体系的单体进行缩聚,形成线形缩聚物。
11
2-3官能度体系: 如邻苯二甲酸酐(官能度为2)与甘油(即丙三 醇,官能度为3)或季戊四醇(官能度为4) ,除线形 方向缩聚外,侧基也能缩聚,先形成支链,而后进一 步形成体形结构,故称为体形缩聚。
= N0 N
1 X n =1 p
21
Example
1mol二元酸与1mol二元醇反应:
体系中的羟基数或羧基数N0为:1x2=2mol 反应 t 时间后体系中所有分子中的结构单元数:1+1=2mol (也为N0 )( 注意:二元酸或二元醇,虽均有两个官能团, 但结构单元只有一个)
若反应 t 时间后体系中残存的羧基数N为 0.5mol,则大分 子数:0.5mol(有一个羧基,就有一条大分子,也即N)∴
聚酯化反应:二元醇与二元羧酸、二元酯、二元酰氯等反应: n HO-R-OH + n HOOC-R’-COOH H-(ORO-OCR’CO)n-OH + (2n-1) H2O
3
聚加成:形式上是加成,机理是逐步的。 含活泼氢功能基的亲核化合物与含亲电不饱和功能
基的亲电化合物之间的聚合。如: n O=C=N-R-N=C=O + n HO-R’-OH
分子量递增的中间产物
相关文档
最新文档