回归分析公开课优质课件
合集下载
《回归分析 》课件
参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
回归分析ppt优秀课件
方和在总平方和中的比值定义
R2 U S
(16)
y R [0,1] 称为相关系数, R 越大, 与 x1,, xm 相关关系越密
切,通常, R 大于 0.8(或 0.9)才认为相关关系成立。
1.5 回归系数的假设检验和区间估计
当上面的 H0 被拒绝时, j 不全为零,但是不排除其中若
干个等于零。所以应进一步作如下 m 个检验 ( j 1,,m) :
(v)利用回归模型对 y 进行预报或控制。
§1 多元线性回归
回归分析中最简单的形式是 y 0 1x ,x, y 均为标量,
0 , 1 为回归系数,称一元线性回归。它的一个自然推广是 x 为
多元变量,形如
y 0 1x1 m xm
(1)
m 2 ,或者更一般地
y 0 1 f1(x) m fm (x) (2)
示 的 线 性 关 系 是 需 要 检 验 的 , 显 然 , 如 果 所 有 的 | ˆ j |
( j 1,, m) 都很小, y 与 x1,, xm 的线性关系就不明显,
所以可令原假设为
H 0 : j 0( j 1,, m)
当 H0 成立时由分解式(14)定义的U,Q 满足
U /m
F
~ F(m, n m 1)
差最小。
(ii) ˆ 服从正态分布
ˆ ~ N ( , 2 ( X T X )1 )
(11)
(iii)对残差平方和 Q , EQ (n m 1) 2 ,且
Q
2
~
2 (n m 1)
(12)
由此得到 2 的无偏估计
s2 Q ˆ 2
n m1
(13)
s s2 是剩余方差(残差的方差), 称为剩余标准差。
第九章:回归分析30页PPT
TheTahneaalnyasliyssisstasrtatsrtswwitihthaa SSccaatttteerrPPloltootfoYf Yvs vXs X.
Regression and Correlation
Excel will do Regression analysis and Correlation analysis:
Step 2: Analysis via EXCEL
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.85
R Square
0.72
Adjusted R Square 0.71
Standard Error
194.60
Observations
25
ANOVA
Regression Residual Total
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Yrise5Fra bibliotekrun intercept = 1
Using regression for prediction
Predict monthly rent when apartment size is 1000 square feet:
Regression Equation Rent = 177.12082+1.0651439*Size Thus Rent = 177.12082+1.0651439*1000 Rent = $1242.26472
Regression and Correlation
Excel will do Regression analysis and Correlation analysis:
Step 2: Analysis via EXCEL
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.85
R Square
0.72
Adjusted R Square 0.71
Standard Error
194.60
Observations
25
ANOVA
Regression Residual Total
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Yrise5Fra bibliotekrun intercept = 1
Using regression for prediction
Predict monthly rent when apartment size is 1000 square feet:
Regression Equation Rent = 177.12082+1.0651439*Size Thus Rent = 177.12082+1.0651439*1000 Rent = $1242.26472
回归分析法PPT课件
线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。
第二章回归分析ppt课件
U和Q的相对大小反映了因子x对y的影响程度, 在n固定的情况下,如果回归
方差所占y方差的比重越大,剩余方差所占的比重越小,就表明回归的效果
越好, 即:x的变化对y的变化起主要作用, 利用回归方程所估计出的ŷ也会
越接近观测值y。
ŷ的方差占y的方差的比重(U/(U+Q))可作为衡量回归模型效果的标准:
ŷ
y -y
ŷ -y
y
x
syy
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
yt )2
“回归平方和”与“剩余平方和”
对上式两边分别乘以n,研究各变量的离差平方和的关系。为避免过多数学符
号,等号左边仍采用方差的记号syy。
n
n
syy ( yt y)2 ( yt yt )2 U Q
回忆前文所讲, y的第i个观测值yi服从怎样的分布?
yi ~ N (β0 +βxi , σ2)
e=yi- (β0 +βxi ) 服从N(0, σ2)
于是, yi (0 xi ) 服从标准正态分布N (0,1)
0.4
在95%的置信概率下:
因为定理: 若有z ~ N (, 2 ), 则有 z ~ N (0,1)
通过方差分析可知,可用“回归平方和”U与“剩余平方和”Q的比值来衡 量回归效果的好坏。可以证明,假设总体的回归系数为0的条件下,统计 量:
U
F=
1 Q
注意Q的自由度为n-2, 即:残差e的方差的无 偏估计为:Q/(n-2)
n2 服从分子自由度为1,分母自由度为n - 2的F分布
上式可以用相关系数的平方来表示:
回归分析 ppt课件
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
回归及相关分析PPT课件
或实际场景中。
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述
第8章 回归分析ppt课件
8.2线性回归分析
电子工业出版社
8.2.2 SPSS实例分析
【例8-1】现有1992年-2006年国家财政收入和国内生产总值的 数据如下表所示,请研究国家财政收入和国内生产总值之间的 线性关系。
年份
国内生产总值 财政收入 (单位:亿元) (单位:亿元)
年份
国内生产总值 财政收入 (单位:亿元) (单位:亿元)
SPSS 23(中文版)统计分析实用教程(第2版)
第八章
回归分析
电子工业出版社
完整版PPT课件
1
SPSS 23(中文版)统计分析实用教程(第2版)
主要内容
8.1 回归分析简介 8.2 线性回归分析 8.3 曲线回归分析 8.4 非线性回归分析 8.5 二元Logistic回归分析
电子工业出版社
完整版PPT课件
在曲线估计中,有很多的数学模型,选用哪一种形式的回归
方程才能最好地表示出一种曲线的关系往往不是一个简单的问
题,可以用数学方程来表示的各种曲线的数目几乎是没有限量
的。在可能的方程之间,以吻合度而论,也许存在着许多吻合
得同样好的曲线方程。因此,在对曲线的形式的选择上,对采
取什么形式需要有一定的理论,这些理论是由问题本质决定的
因变量“财政收入”的97.9%
的差异性。
11
SPSS 23(中文版)统计分析实用教程(第2版)
8.2 线性回归分析
➢方差分析表
模型
平方和
1
回归
1557492999.819
残差
34187286.770
总计 a. 因变量:财政收入
1591680286.589
b. 预测变量:(常量),国内生产总值
电子工业出版社
8.2.2 SPSS实例分析
【例8-1】现有1992年-2006年国家财政收入和国内生产总值的 数据如下表所示,请研究国家财政收入和国内生产总值之间的 线性关系。
年份
国内生产总值 财政收入 (单位:亿元) (单位:亿元)
年份
国内生产总值 财政收入 (单位:亿元) (单位:亿元)
SPSS 23(中文版)统计分析实用教程(第2版)
第八章
回归分析
电子工业出版社
完整版PPT课件
1
SPSS 23(中文版)统计分析实用教程(第2版)
主要内容
8.1 回归分析简介 8.2 线性回归分析 8.3 曲线回归分析 8.4 非线性回归分析 8.5 二元Logistic回归分析
电子工业出版社
完整版PPT课件
在曲线估计中,有很多的数学模型,选用哪一种形式的回归
方程才能最好地表示出一种曲线的关系往往不是一个简单的问
题,可以用数学方程来表示的各种曲线的数目几乎是没有限量
的。在可能的方程之间,以吻合度而论,也许存在着许多吻合
得同样好的曲线方程。因此,在对曲线的形式的选择上,对采
取什么形式需要有一定的理论,这些理论是由问题本质决定的
因变量“财政收入”的97.9%
的差异性。
11
SPSS 23(中文版)统计分析实用教程(第2版)
8.2 线性回归分析
➢方差分析表
模型
平方和
1
回归
1557492999.819
残差
34187286.770
总计 a. 因变量:财政收入
1591680286.589
b. 预测变量:(常量),国内生产总值
《回归分析方法》课件
线性回归模型的评估与优化
评估指标:R平方值、调整R平方值、F统计量、P值等 优化方法:逐步回归、岭回归、LASSO回归、弹性网络回归等 交叉验证:K折交叉验证、留一法交叉验证等 模型选择:AIC、BIC等模型选择方法来自01逻辑回归分析
逻辑回归分析的定义
逻辑回归是一种统计方法,用于预测二分类因变量 逻辑回归使用逻辑函数(logistic function)来估计概率 逻辑回归的目标是找到最佳的参数,使得模型能够准确预测因变量 逻辑回归广泛应用于医学、金融、市场营销等领域
逻辑回归模型的应用场景
预测客户是 否会购买产 品
预测客户是 否会违约
预测客户是 否会流失
预测客户是 否会响应营 销活动
预测客户是 否会购买保 险
预测客户是 否会进行投 资
01
多项式回归分析
多项式回归分析的定义
多项式回归分析是一种统计方法,用于建立因变量与多个自变量之 间的关系模型。 多项式回归分析通过使用多项式函数来拟合数据,从而得到更精确 的预测结果。 多项式回归分析的优点是可以处理非线性关系,并且可以处理多个 自变量之间的关系。
求解结果:得到模型的参 数值,用于预测和评估模
型的性能
套索回归模型的应用场景
预测股票价格 预测房价 预测汇率 预测商品价格
Ppt
感谢观看
汇报人:PPT
岭回归模型的参数求解
岭回归模型: 一种线性回归 模型,通过在 损失函数中加 入一个L2正 则项来防止过
拟合
参数求解方法: 梯度下降法、 牛顿法、拟牛
顿法等
梯度下降法: 通过迭代求解 参数,每次迭 代都沿着梯度 下降的方向更
新参数
牛顿法:通过 求解Hessian 矩阵的逆矩阵 来更新参数, 收敛速度快, 但计算复杂度
回归分析PPT优秀课件1
选修1-2
(一)
2019/5/22
必修3(第二章 统计)知识结构
收集数据
(随机抽样)
整理、分析数据 估计、推断 用样本估计总体 变量间的相关关系
简 单 随 机 抽 样
2019/5/22
分 层 抽 样
系 统 抽 样
用样本 的频率 分布估 计总体 分布
用样本 数字特 征估计 总体数 字特征
线 性 回 归 分 析
3240
4450
5700
7140
8640
10350
12200
2019/5/22
问题:有时散点图的各点并不集中在 一条直线的附近,仍然可以按照求回 归直线方程的步骤求回归直线,显然 这样的回归直线没有实际意义。在怎 样的情况下求得的回归直线方程才有 实际意义? 即建立的线性回归模型是否合理?
如何对一组数据之间的线性相关程 度作出定量分析?
请看下节课分解
2019/5/22
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]
(一)
2019/5/22
必修3(第二章 统计)知识结构
收集数据
(随机抽样)
整理、分析数据 估计、推断 用样本估计总体 变量间的相关关系
简 单 随 机 抽 样
2019/5/22
分 层 抽 样
系 统 抽 样
用样本 的频率 分布估 计总体 分布
用样本 数字特 征估计 总体数 字特征
线 性 回 归 分 析
3240
4450
5700
7140
8640
10350
12200
2019/5/22
问题:有时散点图的各点并不集中在 一条直线的附近,仍然可以按照求回 归直线方程的步骤求回归直线,显然 这样的回归直线没有实际意义。在怎 样的情况下求得的回归直线方程才有 实际意义? 即建立的线性回归模型是否合理?
如何对一组数据之间的线性相关程 度作出定量分析?
请看下节课分解
2019/5/22
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使得上式达到最小值的直线 y a bx 就是我
们所要求的直线,这种方法称为最小二乘法.
y
y a bx
x4, y4
x2, y2
x1, y1
x3, y3
x5, y5
o
x
Q(a,b) y1 (a bx1)2 y2 (a bx2 )2 yn (a bxn )2
n
2
yi (a bxi )
i 1
i 1
为了简化表示,引入以下记号:
lxx
n
2
(xi x)
n
xi
2
n
2
x
i1
i1
n
n
lxy (xi x)( yi y) xi yi nx y
i1
i1
lyy
n
2
(yi y)
n
yi2 n y2
i1
i1
求回归直线方程
对于一组具有线性相关关系的数据x1, y1, x2, y2 ,..., xn , yn
(1)求出肱骨长度y对股骨长度x的线性回归方程; (2)还有一个化石标本不完整,它只有股骨,而肱 骨不见了,现测得股骨的长度为50cm,请预测它的肱 骨长度。始祖鸟.xls
求线性回归方程的步骤
1、算 2、代 3求 3
根据数据计算nnຫໍສະໝຸດ x, y,xi 2 ,
xi yi .
i 1
i 1
代入公式求b,a的具体数值
实例探究
例题:始祖鸟是一种已经灭绝的动物。在一次考古
活动中,科学家发现了始祖鸟的化石标本共6个,其
中5个同时保有股骨(一种腿骨)和肱骨(上臂的骨
头)。科学家检查了这5个标本股骨和肱骨的长度如
下:
编号
1
234 5
股骨长x/cm 38 56 59 64 74
肱骨长y/kg 41 63 70 72 84
回归分析
复习引入
回归分析是对具有相关关系的两个变量进行统 计分析的一种常用方法。
回归分析的步骤:
收集数据
画散点图
求回归直线方程
利用程进行估计和预测
实例分析
高二(4)班女生身高和右手一拃长的数据如
下:
身高/cm
右手一拃长 /cm
身高/cm
右手一拃长 /cm
1 152
18.5
16 163
20
2 153
如果有5个样本点,怎样刻画这些点与直线的接 近程度?
如果有n个点呢?
最小二乘法
如果有 n 个点 (x1, y1) ,(x2, y2 ) , ,(xn , yn ) ,
可以用下面的表达式来刻画这些点与直线 y a bx
的接近程度:
y1 (a bx1)2 y2 (a bx2)2 yn (a bxn )2
i 1
为了方便判断何时 Q(a,b)取得最小,先明确以下 数据:
x
x1 x2 n
xn
1 n
n i 1
xi
y
y1
y2
n
yn
1 n
n i 1
yi
n
n
n
n
(xi x) xi nx nx nx 0 ( yi y) yi n y n y n y 0
i 1
i 1
i 1
代入公式求b,a的具体数值
由上面的计算结果求方程
4
作业:
1、作业本:课本P89 习题3.1 第一题 2、完成配套练习
由上面的计算结果求方程
4
课堂训练:
某研究机构对高二学生的记忆力x和判断力y进行 统计分析,得下表数据:
x 6 8 10 12
y2356
(1)请画出上表数据的散点图。 (2)请根据上表提供的数据,用最小二乘法求出y 关于x的线性回归方程。 (3)试根据线性回归方程,预测记忆力为9的同学 的判断力。
实验作业
请大家分小组收集20个同学的物理成绩和数学成绩, 小组合作,建立一个回归模型,用物理成绩来预报 数学成绩,并分析这个模型能否较好的刻画物理成 绩和数学成绩的关系。
要求:请提交数据及分析过程。
小结:求线性回归方程的步骤
1、算 2、代 3求 3
根据数据计算
n
n
x, y,
xi 2 ,
xi yi .
i 1
16
17 164
21
3 156
16
18 164
19
4 158
18
19 164
18
5 159
17.3
20 165
16
6 160
20
21 165
18
7 160
15
22 165
17.5
8 160
16
23 165
18.5
9 160
17.5
24 165
19.5
10 160
19
25 166
19
11 161
19
26 166
19.3
12 161
19.5
27 167
19
13 162
20
28 167
18
14 162
18.2
29 168
16
15 163
18.3
30 169
19
y
x1, y1
y a bx
xi , yi
o
x
思考: 假设一条直线的方程为 y a bx ,如果有 一个样本点 x1, y1 ,怎样刻画这个样本点与直线的接 近程度?
我们知道其回归直线 y bx a 的斜率和截距的最小二
乘估计分别为
n
n
b
lxy lxx
i1
xi x yi y xi yi nx y
n
2
xi x
i1 n
xi 2
2
nx
i1
i 1
a y bx
其中
x
1 n
n i 1
xi ,
y
1 n
n i 1
yi
x, y 称为样本点的中心
们所要求的直线,这种方法称为最小二乘法.
y
y a bx
x4, y4
x2, y2
x1, y1
x3, y3
x5, y5
o
x
Q(a,b) y1 (a bx1)2 y2 (a bx2 )2 yn (a bxn )2
n
2
yi (a bxi )
i 1
i 1
为了简化表示,引入以下记号:
lxx
n
2
(xi x)
n
xi
2
n
2
x
i1
i1
n
n
lxy (xi x)( yi y) xi yi nx y
i1
i1
lyy
n
2
(yi y)
n
yi2 n y2
i1
i1
求回归直线方程
对于一组具有线性相关关系的数据x1, y1, x2, y2 ,..., xn , yn
(1)求出肱骨长度y对股骨长度x的线性回归方程; (2)还有一个化石标本不完整,它只有股骨,而肱 骨不见了,现测得股骨的长度为50cm,请预测它的肱 骨长度。始祖鸟.xls
求线性回归方程的步骤
1、算 2、代 3求 3
根据数据计算nnຫໍສະໝຸດ x, y,xi 2 ,
xi yi .
i 1
i 1
代入公式求b,a的具体数值
实例探究
例题:始祖鸟是一种已经灭绝的动物。在一次考古
活动中,科学家发现了始祖鸟的化石标本共6个,其
中5个同时保有股骨(一种腿骨)和肱骨(上臂的骨
头)。科学家检查了这5个标本股骨和肱骨的长度如
下:
编号
1
234 5
股骨长x/cm 38 56 59 64 74
肱骨长y/kg 41 63 70 72 84
回归分析
复习引入
回归分析是对具有相关关系的两个变量进行统 计分析的一种常用方法。
回归分析的步骤:
收集数据
画散点图
求回归直线方程
利用程进行估计和预测
实例分析
高二(4)班女生身高和右手一拃长的数据如
下:
身高/cm
右手一拃长 /cm
身高/cm
右手一拃长 /cm
1 152
18.5
16 163
20
2 153
如果有5个样本点,怎样刻画这些点与直线的接 近程度?
如果有n个点呢?
最小二乘法
如果有 n 个点 (x1, y1) ,(x2, y2 ) , ,(xn , yn ) ,
可以用下面的表达式来刻画这些点与直线 y a bx
的接近程度:
y1 (a bx1)2 y2 (a bx2)2 yn (a bxn )2
i 1
为了方便判断何时 Q(a,b)取得最小,先明确以下 数据:
x
x1 x2 n
xn
1 n
n i 1
xi
y
y1
y2
n
yn
1 n
n i 1
yi
n
n
n
n
(xi x) xi nx nx nx 0 ( yi y) yi n y n y n y 0
i 1
i 1
i 1
代入公式求b,a的具体数值
由上面的计算结果求方程
4
作业:
1、作业本:课本P89 习题3.1 第一题 2、完成配套练习
由上面的计算结果求方程
4
课堂训练:
某研究机构对高二学生的记忆力x和判断力y进行 统计分析,得下表数据:
x 6 8 10 12
y2356
(1)请画出上表数据的散点图。 (2)请根据上表提供的数据,用最小二乘法求出y 关于x的线性回归方程。 (3)试根据线性回归方程,预测记忆力为9的同学 的判断力。
实验作业
请大家分小组收集20个同学的物理成绩和数学成绩, 小组合作,建立一个回归模型,用物理成绩来预报 数学成绩,并分析这个模型能否较好的刻画物理成 绩和数学成绩的关系。
要求:请提交数据及分析过程。
小结:求线性回归方程的步骤
1、算 2、代 3求 3
根据数据计算
n
n
x, y,
xi 2 ,
xi yi .
i 1
16
17 164
21
3 156
16
18 164
19
4 158
18
19 164
18
5 159
17.3
20 165
16
6 160
20
21 165
18
7 160
15
22 165
17.5
8 160
16
23 165
18.5
9 160
17.5
24 165
19.5
10 160
19
25 166
19
11 161
19
26 166
19.3
12 161
19.5
27 167
19
13 162
20
28 167
18
14 162
18.2
29 168
16
15 163
18.3
30 169
19
y
x1, y1
y a bx
xi , yi
o
x
思考: 假设一条直线的方程为 y a bx ,如果有 一个样本点 x1, y1 ,怎样刻画这个样本点与直线的接 近程度?
我们知道其回归直线 y bx a 的斜率和截距的最小二
乘估计分别为
n
n
b
lxy lxx
i1
xi x yi y xi yi nx y
n
2
xi x
i1 n
xi 2
2
nx
i1
i 1
a y bx
其中
x
1 n
n i 1
xi ,
y
1 n
n i 1
yi
x, y 称为样本点的中心