应用时间序列分析课程论文
应用时间序列论文
应用时间序列在A市GDP预测中的应用学院:商学院专业:金融学班别: 金融1103学生姓名: 王文倩指导教师: 于国才摘要时间序列分析(Time series analysis)是一种动态数据处理的统计方法。
该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。
GDP的增长是指一个国家或一个地区生产商品和劳务能力的增长。
GDP增长不仅代表了人均国民收入增加, 也包括社会制度结构的变化。
目前对投资与经济增长的关系研究一般认为, 投资与GDP增长之间存在着正相关关系, 即投资的增长会促进GDP增长。
改革开放以来, 投资在GDP增长中的作用越来越明显, 所以对GDP增长序列进行时间序列分析。
关键词:时间序列;GDP;预测分析一、时间序列相关概念(一)时间序列一个随着变量t变化的量y(t),当t1 < t2 <…< t N<…时的观测值y(t1), y(t2),…y(t N), …构成离散有序的集合,称为一个时间序列,记为{y(t)}。
如果变量t表示时间,那么一组根据时间顺序排列的观测数据就是一个时间序列。
时间序列分析就是根据这种特殊的数据形成和发展的一套统计分析方法的完整体系。
一般在研究时间序列问题时会涉及下面的记号和概念:●指标集T指标集T够理解为时间t的取值范围。
对于一般的随机过程,它是一个连续的变化范围,例如取(-∞ , +∞),此时前面随机过程可以记为{y(t),t∈(-∞ , +∞)}.●采样间隔△t采样间隔△t表示为时间序列中相邻两个数据的时间间隔。
在实际研究中,整个序列间一般都采取一致的时间间隔,这使得分析结果更有意义。
●平稳随机过程平稳随机过程定义如下:如果对∀ t1 , t2,…,t n,h∈T^和任意整数n,都能使(y t1,y t2,…,y tn)与(y t1+h,y t2+h,…,y tn+h)同分布,那么概率空间(W,F,P)上的随机过程{y(t),t∈T}称为(严)平稳过程。
时间序列分析论文
时间序列分析在我国居民消费价格指数预测上的引用摘要:时间序列是按照时间顺序取得的一系列数据,大多数的经济时间序列存在惯性,通过这种惯性分析可以由时间序列的历史数值对未来值进行预测。
文章主要利用时间序列的趋势外推方法对我国目前居民消费价格指数(CPI)进行了建模析和预测,以达到合理预期和分析的目的。
关键词:时间序列CPI 趋势预测1.我国居民消费价格指数的现状居民消费价格指数(Consumer Price Index,CPI)是一个反映居民家庭一般所购买的消费商品和服务价格水平变动情况的指标。
一般说来当CPI>3% 的增幅时我们称为通货膨胀;而当CPI>5% 的增幅时我们把他称为严重的通货膨胀。
如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。
从国家统计局公布的2003年5月到2012年3月的数据可以明显的看出我国已经进入通货膨胀期,从2007年3月开始就超过3%的警戒线,然而从2007年7月开始更是每月都超过5%的严重通货膨胀的警戒线。
尽管国家已经采取了紧缩的货币政策如2007年6次上调存贷款基准利率;10次上调存款准备金率;加大央行票据发行力度和频率;以特别国债开展正回购操作等。
但是2011年3月以来我国还是维持在高的通货膨胀水平,因此进行居民消费价格指数的预测分析更显得尤为必要。
2.趋势模型的选择(时间数列分解模型)为了对我国CPI的变化有更加全面和深入的把握和认识,现观测从1994—2011年居民消费价格指数的全部数据,见表1。
表1 中国1994—2011 年居民消费价格指数由以上数据可以看出,因为居民消费价格指数受到如经济增长、特别是国家宏观货币政策等因素的影响,分析我国居民消费价格指数的变动不能简单地用一个线性模型来解释。
但是可以看出在一定的时期内,宏观经济波动不大的情况下,居民消费价格指数基本还是呈线性的。
因此笔者将这时间数列分段用线性模型分别分析居民消费价格指数在1994—1999 年、1999—2004年以及2004—2011 年这三个不同的经济状况下的变动情况。
时间序列论文
.《时间序列分析》课程论文基于ARMAX模型的财政收入与税收的时间序列分析与预测班级:13级应用统计学1班学号:*********:乐乐基于ARMAX模型的财政收入与税收的时间序列分析与预测摘要财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和,是衡量一国政府财力的重要指标。
其中税收收入是国家财政收入的重要组成部分,一般占到财政收入的90%以上,是政府机器的经济基础。
本文利用《应用时间序列分析》的知识通过sas 统计软件对1978-2012年中国财政收入与税收数据进行分析,通过单位根检验,发现两者都是非平稳时间序列,并且存在协整关系,所以拟合了ARIMAX模型。
由于残差序列非白噪声,所以对残差序列又进行了进一步的拟合,最后对模型进行预测,做出预测图。
关键词:财政收入与税收 ARIMAX模型预测一、引言财政与税收关系到国家发展、民生大计。
财政收入与税收对社会资源配置、收入分配、国民经济发展、企业经济活动、居民切身利益及政府决策行为都有重大影响。
近年来,随着我国经济的持续高速发展和国家财政与税收的大幅度增长,以及我国经济体制改革的不断深化和国家对经济发展宏观调控力度的不断加大,国家也适时出台了一系列有关财政与税收管理的新规定、新政策和新的监管制度。
可以看出两者地位越来越重要,作用越来越明显。
通过本文的分析,旨在找出两者的关系,为我国财政与税收做出合理的解释,为以后的收入做出合理的预测。
二、数据分析(一)、序列平稳性检验1、时序图:图 1 原数据时序图图1中,红色为y(财政收入)序列书序图;黑色为x(税收收入)序列时序图。
从时序图中可以看出x序列、y序列均显著非平稳。
并且两者都有明显的增加趋势。
2、单位根检验:表 1 序列x的单位根检验The ARIMA ProcedureAugmented Dickey-Fuller Unit Root TestsType Lags Rho Pr<Rho Tau Pr<Tau F Pr>F表 2 序列y的单位根检验Augmented Dickey-Fuller Unit Root Tests单位根检验的原假设H0:序列为非平稳序列,如果 P> 0.05,则接受原假设,认为序列非平稳,否者序列为平稳序列。
时间序列论文分析与综合
二○一二~二○一三学年第二学期时间序列分析与综合课程论文课程名称:时间序列分析与综合专业:控制理论与控制工程学号:姓名:课程教师:时间序列分析的MATLAB 应用摘要:Matlab 强大的科学计算和可视化功能使其在各个领域中得到了广泛的应用.采用Matlab 进行时序列分析可以极大地简化编程工作,并具有界面友好、操作方便的特点.介绍了使用Matlab 进行时间序列分析的基本方法和步骤,并通过实例进行了说明。
一、问题的提出1984年美国的MathWorks 公司推出了Matlab ,在许多领域得到了充分的利用.其强大的科学计算与可视化功能,开放式的可扩展环境以及其各种功能强大的工具箱(ToolBox),使得它成为计算机辅助设计与分析、算法研究和应用开发的基本工具和首选平台.时间序列分析是采用参数模型对观测得到的有序随机数据进行分析的一种处理方法,通过时间序列可以对系统的动态特性进行分析、对系统的状态进行预测,从而为系统的状态监控和故障诊断提供依据.Matlab 工具箱中包含了许多函数,借助于这些函数可以方便地实现系统的时间序列分析.二、时间序列分析原理及实现时间序列分析(auto Regressive moving Average)是对有序的随机数据(信号)处理的一种方法,它的出发点是承认数据的有序性和相关性,通过数据内部的相互关系来辨识系统的变化规律,它的建模方法是将系统的输出看作是在白噪声输入下的响应.具体地讲,就是针对一组试验数据,建立系统的参数模型,ARMA(m ,n)的参数模型可以表示为:10()()()m nx t x t t τλτλϕτϕσλ==+-=-∑∑ (1) 式中:{ (t), (t 一1), (t 一2)⋯ 。
(t —m)}为有序的时间序列,{ (t), (t 一1),⋯ , (t —A)}为有序的白噪声序列,方程的左边为系统的自回归部分,它反映了系统的固有特性,右边表示系统的滑动平均部分,当0τϕ=时为MA 模型,当0λϕ=时为AR 模型.辨识系统模型参数的方法有很多种,常用的方法主要有最dx-乘法、辅助变量法、Marple 法等.根据不同的需要和研究对象可以采用不同的建模方法.在建立了系统的模型后,可以对系统的状态进行预测、分析预测误差、进行谱分析.关于这些算法的基本原理,可以参考文献[2~4],这些在Matlab 中都提供了相应的函数.采用Matlab 进行时间序列分析主要包括4步.1)数据的读人Matlab 采用类似于C 语言的方式进行数据的读人,可以直接从数据文件中将数据读到一个矩阵中.fid=fopen(fileName ,,r ,); %打开一个文件进行读写data=fscanf(fid ,'g'); % 将数据读人到data 中status=fclose(fid); % 释放文件句柄2)建立模型在获得所要分析的数据后可以对数据进行建模,本文主要介绍2个函数: th = ar(y ,n);h = ivar(y ,n);ar(y ,n)函数采用最小二乘法进行模型参数的估计,该函数要求输入噪声为白噪声,当输入噪声为色噪声时,不能保证模型参数的估计值的无偏性和一致收敛性.而ivar(y ,n)则采用最优辅助变量的方法进行参数的估计,计算得到的参数模型存放在th 中.th 中的数据采用Matlab 独有的THETA 格式模型进行定义.通过th2arx()函数可以得到模型参数和THETA 格式的转换.3)模型分析模型的分析包括模型的仿真、预测及误差分析和谱分析.e= pe(y ,th);y1= idsim(y ,th);y1= predict(y ,th);y2=th2ff(th);pe(y ,th)用于计算模型实测值与估计值之间的误差,误差值存放在e 中. idsim (y ,th)对输入的数据进行仿真,并将仿真结果存放在y 中.dict(y ,th)则针对模型的输人数据和模型格式进行预测,并将预测值存放在Y 中,th2f(th)可以实现求数据的频响函数.4)图形输出Matlab 提供了强大的数据输入输出的功能.对数据的分析结果,可以采用图形的方式进行直观的表示,常用的针对时间序列分析的绘图函数有:Plot(x,y1,x,y2 ),在同一个图中对分析结果进行表示.Bodeplot(e),直接画出波德图.Ffplot(e),画频谱图.Nyqplot(),画奈氏图.三、Theta 模型参数Theta 格式是Matlab 系统辨识工具箱中通用的参数模型格式,Theta 模型的定义可以分为两种,即基于输入输出表示的Theta 模型和基于状态空间表示的Theta 模型.基于输入输出的Theta 模型可以对应各种输入输出参数模型,如AR 、ARX 、ARMA 、BJ 等;基于状态空间表示的Theta 模型则与连续或离散状态空间参数模型对应,它们的信息都以矩阵的形式存储,但模型信息数据的组织结构不同.在时间序列分析中,常用的是第一种数据模型,其结构可以表示为:1111()()()()()()()()()()()n nu nu n B q B q C q A q y t u t nk u t nk e t F q F q D q =-+Λ+-+ (2) 公式(2)中,A(q)、B(q)、F(q)( =1,2⋯ .^n)、C(q)、D(q)为平移算子q 的多项式,其阶次分别为M 、nbi 、nfi( =1,2⋯ .,n)、ItC 、nd ,nix 为系统的输入变量个数.设n 为所有多项式的阶次之和,令r=max(凡,7,6+3nu),则系统的输入输出The —ta 模型格式为如下定义的(3+凡)X r 矩阵,矩阵中每行的内容表示为:1)矩阵的第1行为估计方差,采样时间 ,输入个数眦,各个多项式的阶次M 、nb、ItC、nd、nf,nk;2)第2行为最终预测误差FPE,模型生成的13期、时间和命令;3)第3行为估计参数的向量,即A、、C、D、F 的系数;4)第4行到第3+凡行为估计的方差矩阵;5)对于连续系统,该矩阵可能增加到凡+4行,其中包含系统的死区时间.对于时间序列分析而言,在生成Theta模型以后,需要根据不同的需要对该模型进行分析,以便从中提取所需的估计参数以及最终的误差.四、应用实例为了对上面的方法进行说明,采用5个问题加以说明,第1个问题利用小波时间序列进行消噪或压缩.第2个问题利用ddencmp和wdencmp函数实现数据降噪.第3个问题利用函数wavedec对时间序列进行一维多分辨分析.第4个问题用wthcoef对时间序列的小波系数进行阈值处理.第5个问题利用wprcoef,由wpdec 得到的t对时间蓄力分解的一位小波包系数重构.5个问题的源程序如下:问题1格式:(1)[xc,cxc,lxc,perf0,petfl2]=wdencmp('gbl,x,'wname',N,thr,sorh,keepapp)(2)[xc,cxc,lxc,perf0,perfl2]=wdencmp('lvd',x,'wname',N,thr,sorh) (3)[xc,cxc,lxc,perf0,pefgl2]=wdencmp('lvd',C,L,'wname',N,thr,sorh) 说明:x:待消噪或压缩的时间序列。
时间序列论文
《时间序列分析》课程论文基于ARMAX模型的财政收入与税收的时间序列分析与预测班级:13级应用统计学1班学号:131412820姓名:崔乐乐基于ARMAX模型的财政收入与税收的时间序列分析与预测摘要财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和,是衡量一国政府财力的重要指标。
其中税收收入是国家财政收入的重要组成部分,一般占到财政收入的90%以上,是政府机器的经济基础。
本文利用《应用时间序列分析》的知识通过sas 统计软件对1978-2012年中国财政收入与税收数据进行分析,通过单位根检验,发现两者都是非平稳时间序列,并且存在协整关系,所以拟合了ARIMAX模型。
由于残差序列非白噪声,所以对残差序列又进行了进一步的拟合,最后对模型进行预测,做出预测图。
关键词:财政收入与税收 ARIMAX模型预测一、引言财政与税收关系到国家发展、民生大计。
财政收入与税收对社会资源配置、收入分配、国民经济发展、企业经济活动、居民切身利益及政府决策行为都有重大影响。
近年来,随着我国经济的持续高速发展和国家财政与税收的大幅度增长,以及我国经济体制改革的不断深化和国家对经济发展宏观调控力度的不断加大,国家也适时出台了一系列有关财政与税收管理的新规定、新政策和新的监管制度。
可以看出两者地位越来越重要,作用越来越明显。
通过本文的分析,旨在找出两者的关系,为我国财政与税收做出合理的解释,为以后的收入做出合理的预测。
二、数据分析(一)、序列平稳性检验图1中,红色为y(财政收入)序列书序图;黑色为x(税收收入)序列时序图。
从时序图中可以看出x序列、y序列均显著非平稳。
并且两者都有明显的增加趋势。
2、单位根检验:表 1 序列x的单位根检验The ARIMA ProcedureAugmented Dickey-Fuller Unit Root Tests表 2 序列y的单位根检验Augmented Dickey-Fuller Unit Root TestsType Lags Rho Pr<Rho Tau Pr<Tau F Pr>FZero Mean 0 6.28020.999917.990.99991 6.01590.9999 5.020.9999Sing Mean 0 6.22760.999914.350.9999157.070.0011 6.01740.9999 4.690.999912.190.001Trend 0 5.55330.99997.70.9999104.870.0011 5.56610.9999 3.870.999911.550.001单位根检验的原假设H0:序列为非平稳序列,如果 P> 0.05,则接受原假设,认为序列非平稳,否者序列为平稳序列。
时间序列分析课程论文
时间序列分析课程论文 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】对70个化学反应数据序列建立时间序列模型班级:统计二班姓名:李灿对70个化学反应数据序列建立时间序列模型一、数据平稳性检验(1)用时序图进行初步判断Xt时序图从时序图可以看出70个化学反应的数据是平稳的,但这个判断比较粗糙,需要用统计方法进一步验证。
(2)用序列相关性进行检验Xt自相关图从相关图看出,自相关系数从二阶后迅速衰减为0,说明序列是平稳的。
(3)对该序列做单位根检验检验结果如下图所示T检验统计量的相伴概率值很显着,说明不存在绝对值大于1的单位根,说明序列是平稳的。
二、对序列进行的随机性进行检验Xt自相关图最后一列白噪声检验的Q统计量和相应的伴随概率表明序列存在相关性,因此序列为非白噪声序列。
我们可以对序列采用B-J方法建模研究。
三、模型识别(即模型定阶)从自相关图可以看出自相关系数前两阶显着异于零外,其他都落入两倍标准差内,所以可以考虑用MA(2)拟合;偏自相关系数除了第一个显着异于零外,其他都落入两倍标准差内,且由非零转变为零的过程非常突然,所以可以尝试用AR(1)进行拟合;还可以考虑用ARMA(1,2)进行拟合。
对原序列做描述统计分析见图1,可见序列均值非0,我们通常对0均值平稳序列做建模分析,所以需要在原序列基础上生成一个新的0均值序列。
新序列的描述统计量见图2,相当于在原序列基础上作了个整体平移,所以统计特性没有发生根本改变。
我们对序列x进行分析。
Xt的描述统计量中心化处理后的Xt的描述统计图四、对模型的参数进行估计(1)尝试用AR(1)进行拟合从表中的数据可以看出T统计量的相伴概率非常显着,且模型的特征根在单位圆内,说明该过程是平稳的。
所以可得到如下AR(1)模型:(2)尝试用MA(2)模型进行拟合从表中可以看出MA(1)和MA(2)的相伴概率在显着性水平为的情况下是显着的,所以可以建立如下MA(2)模型(3)尝试建立ARMA(1,2)模型由参数估计结果看出,各系数均不显着,说明模型并不适合拟合ARMA(1,2) 模型。
应用时间序列分析课程论文
应用时间序列分析课程论文班级:13应用统计1班学号:20133695 :彭鹏学习了本学期的应用时间序列分析课程内容,学习了使用EVIEWS软件对平稳时间序列的平稳性进行分析,学习平稳时间序列模型的建立、学会根据自相关系数和偏自相关系数判断ARMA模型的阶数p 和q,学会利用信息准则对估计的ARMA模型进行诊断,以及掌握利用ARMA模型进行预测。
在统计研究中,有大量的数据是按照时间顺序排列的,用数学方法来表述就是使用一组随机序列表示随机事件的时间序列即为{Xt}通常的ARMR建模过程,B-J方法具体步骤如下:一、对时间序列进行特性分析。
从随机性、平稳性、季节性考虑。
对于一个非平稳时间序列,假设要建模首先将其平稳化,其方法有三种:1差分,一些序列可以通过差分使其平稳化。
2季节差分,如果序列具有周期波动特点,为了消除周期波动的影响,通常引用季节差分。
3函数变换与差分结合运用,某些序列如果具有某类函数趋势,我们可以先引入某种函数变换将序列转化为线性趋势,然后再进行差分以消除线性趋势。
二、模型识别与建立。
模型识别和模型定阶。
三、模型的评价,并利用模型进行评价。
下面从网上搜寻数据,1949-2014年城镇人口数(单位万人,其中有些年份缺失数据,数据来源于中国统计年鉴)。
进行处理分析绘制序列时序图有看来有明显增长趋势为非平稳序列,进行一阶差分y=d(r):由图得出序列y仍然非平稳1.对原序列进行二阶差分z=d(r,2) 相关图检验:序列z为平稳序列,进行单位根检验:拒绝有单位根的原假设,即为平稳序列。
有相关图看出为非白噪声序列。
可见均值非零;在原序列上生成0均值序列在输入x=z-28.59184得到序列x为0均值的平稳非白噪声序列由相关图看出自相关系数一阶截尾,考虑MA(1)模型Xt=εεt-1我们用拟合的有效模型进行短期预测,比方我们预预测未来5年的城镇人口,首先需要扩展样本期,在命令栏输入expand 1 56,回车则样本序列长度就变成56了,且最后面5个变量值为空。
时间序列 毕业论文
时间序列毕业论文时间序列是一种研究时间相关数据的统计方法,它在各个领域都有广泛的应用。
作为一种重要的数据分析工具,时间序列分析在经济学、金融学、气象学、环境科学等领域具有重要的研究价值和实际应用。
在经济学中,时间序列分析被广泛应用于经济预测、经济政策制定和经济波动研究等方面。
通过对历史数据进行分析和建模,可以预测未来的经济发展趋势,为政府和企业的决策提供科学的依据。
例如,通过对就业数据的时间序列分析,可以预测未来的就业趋势,为政府制定就业政策提供重要参考。
在金融学中,时间序列分析被广泛应用于股票价格预测、风险管理和投资组合优化等方面。
通过对历史股票价格数据的分析,可以发现价格的规律性和周期性,从而制定相应的投资策略。
例如,通过对股票价格的时间序列分析,可以发现股票价格存在一定的波动规律,从而在适当的时机进行买入和卖出,获取更好的投资回报。
在气象学中,时间序列分析被广泛应用于天气预测、气候变化研究和灾害预警等方面。
通过对历史气象数据的分析,可以预测未来的天气变化趋势,为农业生产、交通出行和防灾减灾提供重要参考。
例如,通过对气温、降水量等气象数据的时间序列分析,可以预测未来的气候变化趋势,为制定应对气候变化的政策提供科学依据。
在环境科学中,时间序列分析被广泛应用于环境监测、环境污染控制和自然资源管理等方面。
通过对历史环境数据的分析,可以发现环境变化的规律性和趋势,从而制定相应的环境保护和治理措施。
例如,通过对大气污染物浓度的时间序列分析,可以了解大气污染的季节性变化和长期趋势,为制定减排政策和改善空气质量提供科学依据。
总之,时间序列分析作为一种重要的数据分析方法,对于预测、决策和规划具有重要的意义。
它不仅可以帮助我们了解数据的变化规律和趋势,还可以为我们提供科学的决策依据。
在未来的研究中,我们可以进一步深化时间序列分析的方法和应用,为各个领域的发展和进步做出更大的贡献。
结课论文_时间序列分析在我国居民消费价格指数中的应用研究
结课论文_时间序列分析在我国居民消费价格指数中的应用研究时间序列分析结课论文学院:专业:姓名:学号:时间序列分析在我国居民消费价格指数中的应用研究摘要本文采用时间序列模型,对我国居民消费价格指数2007年1月至2014年6月的数据进行分析,建立了ARIMA(p,d,q) (P,D,Q) 模型,并利用2014年7月至2014年12月的预测值与实际值比较,显示该模型具有较好的预测效果。
关键词:消费价格指数;ARIMA(p,d,q) (P,D,Q)季节模型;预测一、引言居民消费价格指数是世界各国普遍编制的一种指数,它可以用于分析市场价格的基本动态,是政府制定物价政策和工资政策的重要依据。
为准确把握居民消费价格指数的变动趋势,可以利用时间序列分析方法对我国的居民消费价格指数数据进行建模预测。
时间序列分析是经济预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济数据。
然而经济数据由于受到市场和国家政策等因素的影响,会常常表现出随机性,此时传统的线性时间序列分析就不能够很好地反映经济数据中存在的内在特征。
近年来,非线性和非参数时间序列分析方法的出现恰恰弥补了这一缺点,因此被广泛地应用于经济领域,尤其是金融市场。
关于非线性时间序列分析的详情可以参见文献Tong(1990)和Priestley (1988)在非线性时间序列分析的最新发展上也给出了优秀的总结。
本文对我国2007年1月至2014年6月的居民消费价格指数数据建立ARIMA(p,d,q) (P,D,Q)季节模型,并利用Eviews软件进行了拟合和预测。
最后,将模拟、预测得到的结果与部分实际值进行了比较,结果表明,该模型能较好地反映我国居民消费价格指数的变化特征。
二、数据处理与模型预测2.1 数据平稳化作时间序列分析时,要求数据是平稳的,这样才可以直接进行分析,但在实际操作中,特别是经济数据几乎都是有一定趋势的,不是平稳数据,这时就要首先对原始数据进行平稳化处理,剔出趋势的影响,用平稳化的数据进行时间序列分析。
时间序列分析方法及应用
民族大学毕业论文论文题目:时间序列分析方法及应用—以省GDP增长为例研究学生姓名:学号:指导教师:职称:院系:数学与统计学院专业班级:统计学二○一五年月日时间序列分析方法及应用——以省GDP增长为例研究摘要:人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。
时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。
时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。
时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的在数量关系及其变化规律性,达到认识客观世界的目的。
而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。
从统计学的容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。
本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。
在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。
主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。
大学四年在省上学,基于此,对省的GDP十分关注。
本论文关于对1978年到2014年以来的中国的省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的省GDP进行较为有效的预测。
希望对省的发展有所贡献。
关键词: 省GDP 时间序列白噪声预测Abstract:All activities of people,its fundamental purpose is to understand and transform the world,let your life more ideal.The time sequence is the same in different numerical statistical indicators refer to the same space,different time points of a certain phenomenon,according to a set of dynamic time series sequence formation.Time series analysis is through the time series of historical data,to reveal the rules of change over time,and based on this rule,extension and forecast for the future of this phenomenon is more effective.Development and changes of time series analysis can not only reveal a phenomenon from the quantity or describe the intrinsic relationship between a regular phenomenon and other phenomena from the dynamic point of view,to achieve the purpose of understanding the objective world.And the application of time series model can predict and control the future behavior of the phenomenon,the relationship between the time series data(historical data have a certain impact on the future development),modified or re design of the system to achievethe objective to use and transformation.From a statistical point of view,the statistical research and treatment is a group of"background"data,although the background and the data type of each are not identical,but from the data to form the point of view,it is the cross section data and cross section data of two.This paper mainly study on the longitudinal section data,which reflects the regularity of development and changes in the relationship between phenomenon and the.After obtaining a set of observed data,we must first determine the stability of it,through the stationary test,the time series into stationary and non-stationary series two categories.The main statistical methods is the time series analysis,mathematical software is mainly used for Eviews software.The University for four years in Qinghai province school in Qinghai Province,based on this,the GDP is very concerned about the.This thesis about since 2014in China's Qinghai Province on1978GDP(a total of37 data)for time series analysis and prediction is more effective in the future three years of Qinghai province of China GDP.I hope it can be helpful to the development of Qinghai province.Keywords:Qinghai province GDP,Time series analysis,White nose, Forecast目录一时间序列模型的建立 (4)1.1 含义 (4)1.2 主要分类 (5)1.3 分析工具 (5)1.4时间序列的基本样式 (5)1.5模型简介 (6)1.6格林函数 (7)1.7非平稳时间序列平稳化处理 (8)二时间序列模型的识别 (10)三时间序列的试题应用 (12)四时间序列的特性分析 (13)五模型识别与建立 (16)六模型的参数估计 (16)七模型检验 (17)八模型预测 (17)九建议与对策 (18)参考文献 (18)背景:在经济学中,常用GDP和GNI(国民生产总值,gross national income)共同来衡量该国或地区的经济发展综合水平通用的指标。
时间序列论文2
《应用时间序列》课程小论文:针对某地区1983—2005年各季度的实际国内生产总值数据的时间序列问题,用spss 软件曲线估计方法建立随机线性模型数学与信息科学学院08级统计学小组成员:易成栋 200812217胡斌 200812218赵仓仓 200812219郭照璞 200812222针对某地区1983—2005年各季度的实际国内生产总值数据的时间序列问题,用spss 软件曲线估计方法建立随机线性模型一般建立随机线性模型的标准手法时间序列分析在工程技术中有重要的作用,常用于做预报、控制等。
为建立其随机线性模型,首先,我们应明白什么是时间序列:时间序列是随机序列,即参数离散的随机过程。
由于工程中遇到的随机序列的参数经常为时间,故称随机序列为随机时间序列,简称时间序列。
可以说,时间序列是随时间改变而随机变化的序列。
平稳时间序列是平稳序列,它满足期望为零,且任意两个时刻的相关函数与时间t无关,仅与两个时刻的时间差相关。
本文主要介绍平稳时间序列的随机线性模型的建立。
为建立平稳时间序列的随机线性模型;我们应掌握以下基本知识:一.基本知识1)两个重要参数及其性质A:自相关函数ρk=r k/r0自相关函数刻划了任意两个时刻之间的关系。
B: 偏相关函数φkk偏相关函数刻划了平稳序列任意一个长k+1的片段在中间量固定的条件下,两端的线性密切程度。
与他们相关的性质有:拖尾性和截尾性。
拖尾性:指它们随k无限增长以负指数的速度趋向于0,其图像像拖一条尾巴。
截尾性:指它们在k>p或k>q后,其值变为零,其图像像截断了的尾巴一样。
2)平稳时间序列的线性随机模型的三种重要形式{ a t }为白噪声。
这三种形式可以描述如下:A:AR(p)自回归模型ωt-φ1ωt-1-φ2ωt-2-…-φpωt-p=a tAR(p)模型有p+2参数刻画;B: MA(q)滑动平均模型ωt = a t–θ1a t-1–θ2a t-2 -…-θq a t-qMA(q)模型有q +2参数刻画; C: ARMA(p,q)混和模型ωt -φ1ωt-1-φ2ωt-2-…-φp ωt-p = a t –θ1a t-1 –θ2a t-2 -…-θq a t-q ARMA(p,q)混和模型有p +q +3参数刻画;其实,我们可以把AR(p)和MA(q)模型看成APMA(p,q)的两种特例。
时间序列分析论文(一)
时间序列分析论文(一)
时间序列分析可以广泛运用于经济、金融、气象等领域,研究变量随时间变化的规律以及预测未来的趋势。
在这种情况下,编写一篇时间序列分析论文将具有重要的意义。
首先,论文需要建立一个完整的时间序列模型。
模型的构建应基于合适的时间序列理论,并考虑到相关变量之间的内在联系,充分利用样本数据进行拟合与检验,保证模型的准确性和可靠性。
其次,对模型进行预测和解释。
预测是时间序列分析最基本的应用,需要将模型中的参数进行估计,得出数据的预测值。
解释则是对模型所得结果的分析和理解,需要利用相关统计指标、图表来展现分析结果,并结合变量的实际背景进行解释。
另外,对论文内容的研究意义也需要进行分析。
时间序列分析可以用于预测经济、气象和金融等方面的变化趋势,对于政府和企业具有指导意义,也是学术界的热点研究领域。
因此,在分析中需要充分体现时效性和实用性。
最后,论文需要准确地撰写符合学术规范的引用和参考文献。
引用必须明确说明引用的文献来源、作者、出版年份等信息。
参考文献则要半角标点并依据规范格式列出相关内容,避免出现重复或错误。
综上所述,时间序列分析论文需要明确模型构建、预测解释、研究意义以及文献规范等要素,文章内容需清晰连贯、逻辑严密,以系统性的思维方式对问题进行探讨,具有广泛的实践应用价值。
应用时间序列分析期末论文
课程论文学生姓名曹天裕所在院系数理学院专业统计学学号************* 指导教师实证项目研究(课程论文)--------货币数量论的实证分析一问题的提出近几十年来,国内的房地产业发展迅速,开发的面积和规模也越来越大。
大多数国人对房地产这个话题的热情是经久不衰,房地产业内任何重大的政策和举措都对普通老百姓的生活产生深刻的影响。
2010年上半年,全国房地产开发投资19747亿元,同比增长38.1%,其中,商品住宅投资13692亿元,同比增长34.4%,占房地产开发投资的比重为69.3%。
6月当月,房地产开发完成投资5830亿元,比上月增加1845亿元,增长46.3%。
2010年上半年,全国房地产开发企业房屋施工面积30.84亿平方米,同比增长28.7%;房屋新开工面积8.05亿平方米,同比增长67.9%;房屋竣工面积2.44亿平方米,同比增长18.2%,其中,住宅竣工面积1.96亿平方米,增长15.5%。
2010年上半年,全国房地产开发企业完成土地购置面积18501万平方米,同比增长35.6%,土地购置费4221亿元,同比增长84.0%。
那么,房地产销售价格指数是否存在一定的内在规律呢,我们是否可以对其进行预测从而指导居民做出正确的选择呢?这便是本文所要探求和解决的问题。
理论综述时间序列分析就是对一组按时间顺序排列的随机变量进行统计分析,建立模型并对未来的趋势走向进行分析的统计方法。
本文运用时间序列分析软件SAS 进行分析。
数据的收集本文获取了我国1998-3-31到2009-12-31的房地产销售价格指数数据数据来源:8080productcommonmain.jsp模型的估计与调整首先,作出时序图,观察它的平稳性。
发现存在明显的长期趋势,做一阶差分。
从时序图可以认为序列基本平稳,再去观察它的自相关图。
自相关图显示序列平稳,考察差分后序列的随机性。
残差白噪声检验显示差分后序列蕴含着很强的相关信息,不能视为白噪声序列。
时间序列分析论文
浅谈时间序列分析摘要:时间序列是按时间顺序的一组数字序列,而时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。
时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。
应用过去数据,就能推测事物的发展趋势。
二是考虑到事物发展的随机性。
任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。
本文就时间序列分析发展背景、组成要素、分类、模型、建模及用途对时间序列分析进行简要概述。
关键词:时间序列分析;数理统计1.时间序列分析发展背景早期的时间序列分析通常都是通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。
古埃及人发现尼罗河泛滥的规律就是依靠这种分析方法。
但随着研究领域的不断拓广,在很多研究领域中随机变量的发展通常会呈现出非常强的随机性,人们发现依靠单纯的描述性时序分析已不能准确地寻找出随机变量发展变化的规律,为了更准确地估计随机序列发展变化的规律,从20世纪20年代开始,学术界利用数理统计学原理分析时间序列,研究的重心从表面现象的总结转移到分析序列值内在的相关关系上,由此开辟了一门应用统计学科——时间序列分析。
时间序列分析方法最早起源于1927 年数学家Yule 提出建立自回归模型( AR 模型) 来预测市场变化的规律。
1931 年, 另一位数学家在AR 模型的启发下, 建立了移动平均模型( MA 模型) , 初步奠定了时间序列分析方法的基础。
20 世纪60 年代后, 时间序列分析方法迈上了一个新的台阶, 在工程领域方面的应用非常广泛。
近几年, 随着计算机技术和信号处理技术的迅速发展, 时间序列分析理论和方法更趋完善。
2.时间序列的组成要素一个时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。
趋势:是时间序列在长时期内呈现出来的持续向上或持续向下的变动。
季节变动:是时间序列在一年内重复出现的周期性波动。
论文写作中如何合理运用时间序列分析的数据分析方法
论文写作中如何合理运用时间序列分析的数据分析方法时间序列分析是一种统计学方法,用于分析时间上连续观测到的数据,并从中提取出有用的信息。
在论文写作中,合理运用时间序列分析的数据分析方法可以帮助研究人员深入挖掘数据背后的规律和趋势,提供科学依据来支撑研究结论。
本文将从定义时间序列、时间序列分析的步骤、常用的时间序列模型以及如何合理运用时间序列分析的数据分析方法等方面进行阐述,旨在帮助读者更好地应用时间序列分析于论文写作中。
一、时间序列的定义时间序列是指按一定时间间隔连续测量到的一组数据的有序序列。
在时间序列中,数据是按照时间顺序排列的,可以是固定间隔的,比如每小时、每天、每月等,也可以是不规律间隔的。
时间序列可以包含趋势、季节性、周期性和随机性等成分。
二、时间序列分析的步骤进行时间序列分析的一般步骤如下:1. 数据获取:在论文写作中,数据获取可能包括实地观测、调查问卷、实验测定和网络爬虫等多种方式。
2. 数据预处理:对获取到的数据进行处理,包括数据清洗、缺失值处理、异常值处理等。
3. 模型建立:根据时间序列的性质和研究目的,选择适当的时间序列模型,如平稳性ARMA模型、非平稳性ARIMA模型、季节性ARIMA模型等。
4. 参数估计:通过最大似然估计、最小二乘估计等方法,估计模型中的参数。
5. 模型诊断:对估计的模型进行诊断检验,包括检验模型的残差序列是否符合模型假设、模型是否存在误差自相关等。
6. 模型预测和应用:利用已建立的时间序列模型对未来数据进行预测,并分析模型的稳定性、准确性和实用性等。
三、常用的时间序列模型论文写作中,常用的时间序列模型包括以下几种:1. 平稳性ARMA模型:ARMA模型是一种线性模型,由自回归模型(AR)和移动平均模型(MA)组成。
运用这种模型时,需要先确定时间序列数据是否平稳,若不平稳则需进行差分处理。
2. 非平稳性ARIMA模型:ARIMA模型是在ARMA模型的基础上引入差分运算,可以对非平稳时间序列进行建模和预测。
时间序列分析课程论文——时间序列分析在我国财政预算支出预测中的应用
时间序列分析在我国财政预算支出预测中的应用时间序列分析是经济领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济变量值。
财政支出是一个地区或国家经济指标体系中的一个核心指标,它能综合反映经济活动总量和衡量个地区或国家的工业经济发展水平。
对财政支出进行定量分析并对其作出较为准确的预测则可以为相关部门或者企业制定发展规划、实施相关措施提供可靠的理论预测参考。
本文系统阐述了时间序列分析方法在社会消费品零售总额预测中的应用,运用ARMA模型对我国财政支出进行短期预测,利用2007年到2012年我国财政预算支出数据进行预处理和分析,发现该时间序列既包含趋势性又包含季节性,然后对其进行ARMA建模分析。
一、时间序列的特性分析在建立时间序列模型之前,必须对时间序列数据进行预处理,以便剔除那些不符合统计规律的异常样本,同时还要对这些数据的基本统计特征进行检验,以确保建立的时间序列模型的可靠性和置信度,并满足一定的精度要求。
对时间序列数据进行的预处理包括平稳性检验、纯随机性检验和季节性检验。
(一)时间序列定义所谓时间序列就是按照时间的顺序记录的一列有序数据。
对时间序列进行观察、研究,找寻它的变化发展规律,预测它将来的走势就是时间序列分析。
在统计研究中,常用按时间顺序排列的一组随机变量…,…来表示一个随机事件的时间序列,简记为{)或{)。
用或{}表示该随机序列的n个有序观察值,称之为序列长度为n的观察值序列。
(二)平稳性1、平稳时间序列的定义随机时间序列的平稳性分为严平稳和宽平稳。
严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计性质都不会随着时间的推移而发生变化时,该序列才能被认为平稳。
设{)为一时间序列,对任意正整数m,任取,对任意整数,有则称时间序列为严平稳时间序列。
宽平稳是使用序列的特征统计量来定义的一种平稳性。
它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。
时间序列论文
时间序列论文《应用时间序列》课程小论文:针对某地区1983—2005年各季度的实际国内生产总值数据的时间序列问题,用spss软件曲线估计方法建立随机线性模型数学与信息科学学院08级统计学小组成员:易成栋 200812217胡斌 200812218赵仓仓 200812219郭照璞 200812222针对某地区1983—2005年各季度的实际国内生产总值数据的时间序列问题,用spss软件曲线估计方法建立随机线性模型一般建立随机线性模型的标准手法时间序列分析在工程技术中有重要的作用,常用于做预报、控制等。
为建立其随机线性模型,首先,我们应明白什么是时间序列:时间序列是随机序列,即参数离散的随机过程。
由于工程中遇到的随机序列的参数经常为时间,故称随机序列为随机时间序列,简称时间序列。
可以说,时间序列是随时间改变而随机变化的序列。
平稳时间序列是平稳序列,它满足期望为零,且任意两个时刻的相关函数与时间t无关,仅与两个时刻的时间差相关。
本文主要介绍平稳时间序列的随机线性模型的建立。
为建立平稳时间序列的随机线性模型;我们应掌握以下基本知识:一(基本知识1)两个重要参数及其性质A:自相关函数ρ=r/r kk0自相关函数刻划了任意两个时刻之间的关系。
B: 偏相关函数φ kk偏相关函数刻划了平稳序列任意一个长k,1的片段在中间量固定的条件下,两端的线性密切程度。
与他们相关的性质有:拖尾性和截尾性。
拖尾性:指它们随k无限增长以负指数的速度趋向于0,其图像像拖一条尾巴。
截尾性:指它们在k>n或k>m后,其值变为零,其图像像截断了的尾巴一样。
2)平稳时间序列的线性随机模型的三种重要形式{ a }为白噪声。
这三种形式可以描述如下: tA:AR(m)自回归模型ω-φω-φω-…-φω=a t1t-12t-2pt-ntAR(n)模型有p,2参数刻画;B: MA(m)滑动平均模型ω = a –θa –θa -…-θa tt1t-12t-2qt-mMA(m)模型有m,2参数刻画;C: ARMA(n,m)混和模型ω-φω-φω-…-φω= a –θa –θa -…-θa t1t-12t-2pt-pt1t-12t-2qt-m ARMA(n,m)混和模型有p,q,3参数刻画;)模型看成APMA(n,m)的两种特例。
时间序列分析在吉林省GDP预测中的应用论文
时间序列分析在吉林省GDP预测中的应用论文摘要:本论文旨在探讨时间序列分析在吉林省GDP预测中的应用。
首先,通过对吉林省GDP数据进行收集和整理,建立起时间序列数据集。
然后,使用经典的时间序列分析方法,包括平稳性检验、自相关函数(ACF)和偏自相关函数(PACF)的计算以及ARIMA模型的建立和参数估计。
最后,通过对历史数据的预测和预测结果的评估,验证了时间序列分析在吉林省GDP预测中的有效性和可行性。
1. 引言吉林省是中国东北地区的一个重要经济热点,其GDP表现对整个区域和国家的发展至关重要。
准确预测吉林省的GDP对政府决策和企业战略制定具有重要意义。
时间序列分析作为一种基于历史数据的预测方法,具有广泛应用的潜力。
2. 数据收集和整理本文通过吉林省统计年鉴和国家统计局的数据平台,收集了历年吉林省的GDP数据。
通过数据清洗和整理,得到了一个完整的时间序列数据集。
3. 时间序列分析方法3.1 平稳性检验为了应用时间序列分析方法,首先需要确保序列具有平稳性。
本文使用单位根检验(ADF检验)和KPSS检验来检验吉林省GDP序列的平稳性。
3.2 自相关函数和偏自相关函数的计算自相关函数(ACF)和偏自相关函数(PACF)是用来分析时间序列中的自相关性和偏自相关性的常用工具。
通过计算ACF和PACF,可以确定ARIMA模型的阶数。
3.3 ARIMA模型的建立和参数估计ARIMA模型是一种常用的时间序列分析模型,可以有效地描述时间序列的动态特征。
本文使用ARIMA模型对吉林省GDP进行建模和预测。
首先,根据ACF和PACF的结果,选择合适的ARIMA模型阶数。
然后,使用最小二乘估计法对模型参数进行估计。
最后,通过残差分析对模型进行诊断和改进。
4. 预测和评估本文将训练得到的ARIMA模型用于预测吉林省未来一定时间段内的GDP。
通过与实际观测值进行比较,评估模型的准确性和预测能力。
同时,使用误差分析方法,包括均方根误差(RMSE)和平均绝对误差(MAE),来评估模型的预测性能。
应用时间序列分析课程论文
应用时间序列分析课程论文一 时间序列模型简介总结时间序列模型可以大致分为自回归过程模型和移动平均过程模型两大类。
前者以其滞后变量为依据,推算其未来值,后者是以过去的误差项为依据,推算其未来值。
有时需两者并用,便产生自回归移动平均模型。
自回归模型(AR )Mt m t m tm x a x e -==+∑在AR 模型中,序列{}t x 的当前值由序列{}t e 的当前值和序列{}t x 的前一个长度为M 的窗口内序列值决定。
自回归过程是一个变量在时间的某一点的变化,相对于前期的变化是线性的。
一般来说相关性随着时间呈指数下降,且在比较短的周期内消失。
移动平均模型(MA )0110Nt n t n t t n t n n x b e b e b e b e ---===++⋅⋅⋅+∑这个式子说明序列{}t x 的当前值由序列{}t e 从当前值前推长度为N 的窗口内序列值决定。
在平均移动模型(MA )中,时间序列是一种未观测到的时间序列的平均移动的结果,如下:1n n n C c e e -=⨯+e 为一个独立同分布的随即变量,c 为常数,且 c ≤1。
在平均移动参数c 上的限制保证了过程是可以转换的。
表明未来事件不太可能影响现在的事件,而且此过程是稳定的;对于e 的限制,如同 AR 过程中的e ,是一个具有零均值和方差为r 的独立同分布随机变量。
已观测到的时间序列 C 是未来观测到随机时间序列平均移动的结果。
由于平均移动过程,所有过去和短期记忆的结果存在一个线性的依赖。
自回归-移动平均模型(ARMA )ARMA 由AR 和MA 两个部分组成,形式如下:1MNt m t mt t t n m n x axe b e --===++∑∑在ARMA 模型中,序列{}t x 的当前值由序列{}t e 的当前值从当前值前推长度为N 的窗口内序列值以及序列{}t x 的前一个长度为M 的窗口内序列值一起决定。
在自回归-移动平均模型中,既存在自回归项,又有平均移动项:11n n l l C a C e b e --=⨯+-⨯此模型属于混合模型,称为 ARMA( p ,q)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用时间序列分析课程论文
班级:13应用统计1班学号:20133695 姓名:彭鹏
学习了本学期的应用时间序列分析课程内容,学习了使用EVIEWS软件对平稳时间序列的平稳性进行分析,学习平稳时间序列模型的建立、学会根据自相关系数和偏自相关系数判断ARMA模型的阶数p 和q,学会利用信息准则对估计的ARMA模型进行诊断,以及掌握利用ARMA模型进行预测。
在统计研究中,有大量的数据是按照时间顺序排列的,用数学方法来表述就是使用一组随机序列表示随机事件的时间序列即为{Xt}
通常的ARMR建模过程,B-J方法具体步骤如下:
一、对时间序列进行特性分析。
从随机性、平稳性、季节性考虑。
对于一个非平稳时间序列,若要建模首先将其平稳化,其方法
有三种:
1差分,一些序列可以通过差分使其平稳化。
2季节差分,如果序列具有周期波动特点,为了消除周期波动
的影响,通常引用季节差分。
3函数变换与差分结合运用,某些序列如果具有某类函数趋势,我们可以先引入某种函数变换将序列转化为线性趋势,然后再
进行差分以消除线性趋势。
二、模型识别与建立。
模型识别和模型定阶。
三、模型的评价,并利用模型进行评价。
下面从网上搜寻数据,1949-2014年城镇人口数(单位万人,其中有些年份缺失数据,数据来源于中国统计年鉴)。
进行处理分析
绘制序列时序图有看来有明显增长趋势为非平稳序列,进行一阶差分y=d(r):
由图得出序列y仍然非平稳
1.对原序列进行二阶差分z=d(r,2) 相关图检
验:序列z为平稳序列,进行单位根检验:
拒绝有单位根的原假设,即为平稳序列。
有相关图看出为非白噪声序列。
可见均值非零;在原序列上生成0均值序列在输入x=z-28.59184
得到序列x为0均值的平稳非白噪声序列
由相关图看出自相关系数一阶截尾,考虑MA(1)模型
Xt=εt-0.0844111εt-1
我们用拟合的有效模型进行短期预测,比如我们预预测未来5年的城镇人口,首先需要扩展样本期,在命令栏输入expand 1 56,回车则样本序列长度就变成56了,且最后面5个变量值为空。
用动态预测如上下图,
预测值存放在XF序列中,此时我们可以观察原序列x和xf之间的动态关系,
动态预测值几乎是一条直线。
输入d(x,2) c ma(1) 对原序列进行动态预测,
打开xf得到5个预测值52到56如下图。