第9章第6讲 双曲线
中学数学第九章 第6节 双曲线
第6节 双曲线最新考纲 了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).知 识 梳 理1.双曲线的定义平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0:(1)若a <c ,则集合P 为双曲线; (2)若a =c ,则集合P 为两条射线; (3)若a >c ,则集合P 为空集. 2.双曲线的标准方程和几何性质[微点提醒]1.过双曲线的一个焦点且与实轴垂直的弦的长为2b2 a.2.离心率e=ca=a2+b2a=1+b2a2.3.等轴双曲线的渐近线互相垂直,离心率等于 2.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.()(3)方程x2m-y2n=1(mn>0)表示焦点在x轴上的双曲线.()(4)双曲线x2m2-y2n2=λ(m>0,n>0,λ≠0)的渐近线方程是xm±yn=0.()(5)若双曲线x2a2-y2b2=1(a>0,b>0)与x2b2-y2a2=1(a>0,b>0)的离心率分别是e1,e2,则1e21+1e22=1(此条件中两条双曲线称为共轭双曲线).()解析(1)因为||MF1|-|MF2||=8=|F1F2|,表示的轨迹为两条射线.(2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.(3)当m>0,n>0时表示焦点在x轴上的双曲线,而m<0,n<0时则表示焦点在y轴上的双曲线.答案(1)×(2)×(3)×(4)√(5)√2.(选修2-1P62A6改编)经过点A(3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________________.解析设双曲线方程为:x2-y2=λ(λ≠0),把点A(3,-1)代入,得λ=8,故所求双曲线方程为x 28-y 28=1.答案 x 28-y 28=13.(选修2-1P61A1改编)已知双曲线x 2-y216=1上一点P 到它的一个焦点的距离等于4,那么点P 到另一个焦点的距离等于________.解析 设双曲线的焦点为F 1,F 2,|PF 1|=4,则||PF 1|-|PF 2||=2,故|PF 2|=6或2,又双曲线上的点到焦点的距离的最小值为c -a =17-1,故|PF 2|=6. 答案 64.(2018·浙江卷)双曲线x 23-y 2=1的焦点坐标是( ) A.(-2,0),(2,0) B.(-2,0),(2,0) C.(0,-2),(0,2)D.(0,-2),(0,2)解析 由题可知双曲线的焦点在x 轴上,又c 2=a 2+b 2=3+1=4,所以c =2,故焦点坐标为(-2,0),(2,0). 答案 B5.(2017·全国Ⅲ卷)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.解析 由题意可得3a =35,所以a =5. 答案 56.(2018·北京卷)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________. 解析 由题意可得,a 2+4a 2=⎝ ⎛⎭⎪⎫522,即a 2=16,又a >0,所以a =4.答案 4考点一 双曲线的定义及应用【例1】 (1)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.45(2)(2019·西安调研)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________. 解析 (1)由x 2-y 2=2,知a =b =2,c =2.由双曲线定义知,|PF 1|-|PF 2|=2a =22,又|PF 1|=2|PF 2|, ∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.(2)如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1,C 2的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).答案 (1)C (2)x 2-y 28=1(x ≤-1)规律方法 1.利用双曲线的定义判定平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;2.在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|,|PF 2|的联系.【训练1】 (1)(2018·赣南五校联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( ) A.215a 2 B.15a 2 C.30a 2D.15a 2(2)(2019·长春质检)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( ) A.8B.10C.4+37D.3+317解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =ca =2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a , ∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a , ∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a=14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×4a ×2a ×154=15a 2.(2)由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,当F ′,P ,A 三点共线时,|PF ′|+|P A |有最小值,为|AF ′|=3,故△P AF 的周长的最小值为10. 答案 (1)B (2)B考点二 双曲线的标准方程【例2】 (1)(2017·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1(2)(2018·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1D.x 29-y 23=1解析 (1)由题设知b a =52,①又由椭圆x 212+y 23=1与双曲线有公共焦点, 易知a 2+b 2=c 2=9,②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1.(2)由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线x 2a2-y 2b 2=1(a >0,b >0)的离心率为2,所以ca =2,所以a 2+b 2a 2=4,所以a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1. 答案 (1)B (2)C规律方法 1.利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a ,b ,c 的方程并求出a ,b ,c 的值. 2.与双曲线x 2a 2-y 2b 2=1有相同渐近线时可设所求双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).【训练2】 (1)(2018·海南二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是( ) A.x 212-y 2=1B.x 29-y 23=1C.x 2-y 23=1D.x 223-y 232=1 (2)已知双曲线的渐近线方程为2x ±3y =0,且双曲线经过点P (6,2),则双曲线的方程为________________.解析 (1)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,可得⎩⎪⎨⎪⎧2a 2-3b 2=1,b a =3,解得⎩⎨⎧a =1,b =3,∴双曲线C 的标准方程是x 2-y 23=1.(2)由双曲线的渐近线方程为y =±23x ,可设双曲线方程为x 29-y 24=λ(λ≠0).因为双曲线过点P (6,2),所以69-44=λ,λ=-13,故所求双曲线方程为y 243-x 23=1.答案 (1)C (2)y 243-x 23=1考点三 双曲线的性质多维探究角度1 求双曲线的渐近线【例3-1】 (一题多解)(2018·全国Ⅱ卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( ) A.y =±2x B.y =±3x C.y =±22xD.y =±32x解析 法一 由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,即ba =2,所以该双曲线的渐近线方程为y =±b a x =±2x . 法二 由e =ca =1+⎝ ⎛⎭⎪⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x . 答案 A角度2 求双曲线的离心率【例3-2】 (1)(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A. 5B.2C. 3D. 2(2)(2019·泰安联考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的取值范围是( ) A.⎝ ⎛⎭⎪⎫1,233 B.⎝ ⎛⎭⎪⎫233,+∞C.(1,2)D.(2,+∞)解析 (1)不妨设一条渐近线的方程为y =b a x ,则F 2到y =ba x 的距离d =|bc |a 2+b 2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-a c ,则3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca = 3.(2)由双曲线方程可得其渐近线方程为y =±b a x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2,圆心C 2的坐标为(a ,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab |a 2+b2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1的离心率的取值范围为⎝ ⎛⎭⎪⎫1,233. 答案 (1)C (2)A角度3 与双曲线有关的范围(最值)问题【例3-3】 已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36C.⎝⎛⎭⎪⎫-223,223 D.⎝⎛⎭⎪⎫-233,233 解析 因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 2-1<0,解得-33<y 0<33. 答案 A规律方法 1.求双曲线离心率或其取值范围的方法(1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a 2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.2.与双曲线有关的取值范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接变换转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决.【训练3】 (1)在平面直角坐标系xOy 中,双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与圆(x -2)2+(y -1)2=1相切,则C 的离心率为( ) A.43B.54C.169D.2516(2)(2019·安阳二模)已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是________.解析 (1)双曲线C 的渐近线方程为by ±ax =0,结合图形易知与圆相切的只可能是by -ax =0,又圆心坐标为(2,1), 则|b -2a |a 2+b2=1,得3a =4b ,所以9a 2=16b 2=16(c 2-a 2),则e 2=2516, 又e >1,故e =54.(2)对于焦点在x 轴上的双曲线x 2a 2-y 2b 2=1(a >0,b >0),它的一个焦点(c ,0)到渐近线bx -ay =0的距离为|bc |b 2+a 2=b .本题中,双曲线x 28-m +y 24-m =1即x 28-m -y 2m -4=1,其焦点在x 轴上,则⎩⎨⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2). 答案 (1)B (2)(0,2)[思维升华]已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两条渐近线方程. [易错防范]1.双曲线方程中c 2=a 2+b 2,说明双曲线方程中c 最大,解决双曲线问题时不要忽视了这个结论,不要与椭圆中的知识相混淆.2.求双曲线离心率及其范围时,不要忽略了双曲线的离心率的取值范围是(1,+∞)这个前提条件,否则很容易产生增解或扩大所求离心率的取值范围致错.3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b 2=1 (a >0,b >0)的渐近线方程是y =±ab x . 4.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.基础巩固题组 (建议用时:40分钟)一、选择题1.(2019·郑州模拟)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A.y =±12x B.y =±22x C.y =±2xD.y =±2x解析 因为2b =2,所以b =1,因为2c =23,所以c =3,所以a =c 2-b 2=2,所以双曲线的渐近线方程为y =±b a x =±22x . 答案 B2.(2019·重庆九校联考)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F ,过点F 作双曲线C 的一条渐近线的垂线,垂足为A ,且交y 轴于B ,若A 为BF 的中点,则双曲线的离心率为( ) A. 2B. 3C.2D.62解析 由题易知双曲线C 的一条渐近线与x 轴的夹角为π4,故双曲线C 的离心率e =⎝ ⎛⎭⎪⎫cos π4-1= 2. 答案 A3.(一题多解)(2018·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C 的渐近线的距离为( ) A. 2B.2C.322D.2 2解析 法一 由离心率e =ca =2,得c =2a ,又b 2=c 2-a 2,得b =a ,所以双曲线C 的渐近线方程为y =±x .由点到直线的距离公式,得点(4,0)到C 的渐近线的距离为41+1=2 2. 法二 离心率e =2的双曲线是等轴双曲线,其渐近线方程是y =±x ,∴点(4,0)到C 的渐近线的距离为41+1=2 2. 答案 D4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM 的面积为5,其中O 为坐标原点,则双曲线的方程为( ) A.x 2-4y 25=1 B.x 22-2y 25=1C.x 24-y 25=1D.x 216-y 220=1 解析 由题意可知e =c a =32,可得b a =52,取一条渐近线为y =ba x , 可得F 到渐近线y =ba x 的距离d =bca 2+b 2=b , 在Rt △FOM 中,由勾股定理可得|OM |=|OF |2-|MF |2=c 2-b 2=a ,由题意可得12ab =5,联立⎩⎪⎨⎪⎧b a =52,12ab =5,解得⎩⎨⎧a =2,b =5,所以双曲线的方程为x 24-y 25=1. 答案 C5.(2019·呼和浩特质检)已知F 2,F 1是双曲线y 2a 2-x 2b 2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( ) A.y =±2x B.y =±22x C.y =±6xD.y =±66x解析 根据双曲线的定义,可得|BF 1|-|BF 2|=2a ,∵△ABF 2为等边三角形,∴|BF 2|=|AB |,∴|BF 1|-|AB |=|AF 1|=2a ,又∵|AF 2|-|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 120°,即4c 2=4a 2+16a 2-2×2a ×4a ×⎝ ⎛⎭⎪⎫-12=28a 2,亦即c 2=7a 2,则b =c 2-a 2=6a 2=6a ,由此可得双曲线C 的渐近线方程为y =±66x .答案 D 二、填空题6.(2018·沈阳模拟)直线l :y =2x +10过双曲线x 2a 2-y 2b 2=1(a >0,b >0)一个焦点且与其一条渐近线平行,则双曲线方程为________________. 解析 由题意得一个焦点为F (-5,0),c =5,ba =2, 又a 2+b 2=c 2,所以a 2=5,b 2=20,所以双曲线方程为x 25-y 220=1.答案 x 25-y 220=17.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________. 解析 a 2=9,b 2=16,故c =5.∴A (3,0),F (5,0),不妨设直线BF 的方程为y =43(x -5),代入双曲线方程解得B ⎝ ⎛⎭⎪⎫175,-3215.∴S △AFB =12|AF |·|y B |=12·2·3215=3215.答案 32158.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点.P 是双曲线在第一象限上的点,直线PO ,PF 2分别交双曲线C 左、右支于M ,N .若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的离心率为________.解析 由题意,|PF 1|=2|PF 2|,由双曲线的定义可得,|PF 1|-|PF 2|=2a ,可得|PF 1|=4a ,|PF 2|=2a ,又|F 1O |=|F 2O |,|PO |=|MO |,得四边形PF 1MF 2为平行四边形,又∠MF 2N =60°,可得∠F 1PF 2=60°,在△PF 1F 2中,由余弦定理可得,4c 2=16a 2+4a 2-2·4a ·2a ·cos 60°,即4c 2=20a 2-8a 2,c 2=3a 2,可得c =3a ,所以e =c a =3. 答案3三、解答题9.(2019·安徽江南十校联考)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程;(2)(一题多解)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0. (1)解 ∵e =2,∴可设双曲线的方程为x 2-y 2=λ(λ≠0).∵双曲线过点(4,-10),∴16-10=λ,即λ=6. ∴双曲线的方程为x 2-y 2=6,即x 26-y 26=1.(2)证明 法一 由(1)可知,a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0), ∴k MF 1=m 3+23,k MF 2=m3-23,k MF 1·k MF 2=m 29-12=-m 23.∵点M (3,m )在双曲线上,∴9-m 2=6,m 2=3, 故k MF 1·k MF 2=-1,∴MF 1⊥MF 2.∴MF 1→·MF 2→=0. 法二 由(1)可知,a =b =6,∴c =23, ∴F 1(-23,0),F 2(23,0),MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ), ∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2, ∵点M (3,m )在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0.10.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3. (1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM→+ON →=tOD →,求t 的值及点D 的坐标.解 (1)由题意知a =23,∵一条渐近线为y =ba x ,即bx -ay =0. ∴由焦点到渐近线的距离为3,得|bc |b 2+a2= 3. 又∵c 2=a 2+b 2,∴b 2=3, ∴双曲线的方程为x 212-y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),其中x 0≥2 3. 又OM →+ON →=tOD →,即(x 1,y 1)+(x 2,y 2)=t (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得x 2-163x +84=0,其中Δ=(163)2-4×84>0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12. ∴⎩⎪⎨⎪⎧x 0y 0=433,x 2012-y 203=1.解得⎩⎨⎧x 0=43,y 0=3.∴t =4,点D 的坐标为(43,3).能力提升题组 (建议用时:20分钟)11.(2019·河南适应测试)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( ) A.y =±2xB.y =±12xC.y =±22xD.y =±2x解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎨⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x . 答案 D12.(2019·广东六校联考)已知点F 为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx (k >0)与E 交于不同象限内的M ,N 两点,若MF ⊥NF ,设∠MNF =β,且β∈⎣⎢⎡⎦⎥⎤π12,π6,则该双曲线的离心率的取值范围是( ) A.[2,2+6] B.[2,3+1] C.[2,2+6]D.[2,3+1]解析 如图,设左焦点为F ′,连接MF ′,NF ′,令|MF |=r 1,|MF ′|=r 2,则|NF |=|MF ′|=r 2,由双曲线定义可知r 2-r 1=2a ①,∵点M 与点N 关于原点对称,且MF ⊥NF ,∴|OM |=|ON |=|OF |=c ,∴r 21+r 22=4c 2②,由①②得r 1r 2=2(c 2-a 2),又知S △MNF =2S △MOF , ∴12r 1r 2=2·12c 2·sin 2β,∴c 2-a 2=c 2·sin 2β,∴e 2=11-sin 2β,又∵β∈⎣⎢⎡⎦⎥⎤π12,π6,∴sin 2β∈⎣⎢⎡⎦⎥⎤12,32,∴e 2=11-sin 2β∈[2,(3+1)2].又e >1,∴e ∈[2,3+1]. 答案 D13.(2018·北京卷)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.解析 设椭圆的右焦点为F (c ,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A ⎝ ⎛⎭⎪⎫c 2,3c 2,由点A 在椭圆M 上得,c 24a 2+3c 24b 2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∵b 2=a 2-c 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),∴4a 4-8a 2c 2+c 4=0,∴e 4椭-8e 2椭+4=0,∴e 2椭=4±23,∴e 椭=3+1(舍去)或 e 椭=3-1,∴椭圆M 的离心率为3-1.∵双曲线的渐近线过点A ⎝ ⎛⎭⎪⎫c 2,3c 2,∴渐近线方程为y =3x ,∴n m =3,故双曲线的离心率e 双=m 2+n 2m 2=2.答案3-1 214.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b 2=1(a >0,b >0), 则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.② 由①②得13<k 2<1,10、数学方法渗透并支配着一切自然科学的理论分支。
双曲线及其标准方程 课件
新知视界
1.双曲线的定义 把平面内与两个定点F1,F2的距离的差的绝对值 等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个 定点叫做双曲线的焦点,两焦点间的距离叫做双曲线 的焦距.
思考感悟
1.双曲线的定义中,常数为什么要小于|F1F2|? 提示:①如果定义中常数改为等于|F1F2|,此时 动点的轨迹是以 F1、F2 为端点的两条射线(包括端 点). ②如果定义中常数为 0,此时动点轨迹为线段 F1F2 的垂直平分线. ③如果定义中常数改为大于|F1F2|,此时动点轨 迹不存在.
解得ab22= =19, 6, ∴双曲线的方程为1y62 -x92=1.
(2)解法一:设双曲线方程为xa22-by22=1. 由题意易求得 c=2 5. 又双曲线过点(3 2,2),∴3a222-b42=1. 又∵a2+b2=(2 5)2,∴a2=12,b2=8. 故所求双曲线的方程为1x22 -y82=1.
2.平面内与两个定点F1、F2的距离的差等于常数 (小于
|F1F2|)的点的轨迹是不是双曲线? 提示:不是,是双曲线的某一支.
在双曲线的定义中,P为动点,F1,F2分别为双曲 线的左、右焦点,则①|PF1|-|PF2|=2a,曲线只表示 双曲线的右支.
② |PF1| - |PF2| = - 2a , 曲 线 只 表 示 双 曲 线 的 左 支.
类型三 双曲线中的焦点三角形 [例 3] 若 F1,F2 是双曲线x92-1y62 =1 的两个 焦点,P 是双曲线上的点,且|PF1|·|PF2|=32,试 求△F1PF2 的面积.
双曲线 [分析] 双曲线方程 的―定―→义 |PF1|-|PF2|=±2a ―平―方→ |PF1|2+|PF2|2的值 余―弦―定→理 ∠F1PF2=90° 面积公式 ――→ S△F1PF2
双曲线及其标准方程课件
(3)当 k<0 时,方程为y42--x24k=1,表示焦点在 y 轴上的双曲线;
(4)当 0<k<1 时,方程为x42+y42=1,表示焦点在 x 轴上的椭圆; k
(5)当 k>1 时,方程为x42+y42=1,表示焦点在 y 轴上的椭圆. k
[一点通] 解决这类题的基本方法是分类讨论,在分
类讨论的过程中应做到不重不漏,选择适当的分界点.在
(3)若|F1F2|<2a,动点的轨迹不存在.
2.通过双曲线方程xa22-by22=1(焦点在 x 轴上)和ay22-xb22 =1(焦点在 y 轴上)(a>0,b>0)可以看出:如果 x2 项的系 数是正的,那么焦点在 x 轴上;如果 y2 项的系数是正的, 那么焦点在 y 轴上.对于双曲线,a 不一定大于 b,但是无 论双曲线的焦点在哪个轴上,方程中的三个量都满足 c2 =a2+b2.
[例3] 已知方程kx2+y2=4,其中k为实数,对于不同 范围的k值分别指出方程所表示的曲线类型.
[思路点拨] 解答本题可依据所学的各种曲线的标准形 式的系数应满足的条件进行分类讨论.
[精解详析] (1)当 k=0 时,y=±2,表示两条与 x 轴平行 的直线;
(2)当 k=1 时,方程为 x2+y2=4,表示圆心在原点,半径 为 2 的圆;
72 b2 =1,
解得a12=19, b12=116,
即 a2=9,b2=16.
∴所求双曲线的标准方程为y92-1x62 =1.
法二:∵双曲线的焦点位置不确定,
∴设双曲线方程为 mx2+ny2=1(mn<0). ∵P1,P2 在双曲线上,所以
4m+445n=1, 196×7m+16n=1,
9-6-1双曲线的方程及性质
1 2
|PF1|·r,S△IPF2=
1 2
|PF2|·r,S△IF1F2=
1 2
·2c·r=cr,由S△IPF1=S△IPF2+λS△
IF1F2,得12|PF1|·r=12|PF2|·r+λcr,
故λ=|PF1|-2c|PF2|=ac=1+1
= 5
52-1.故选D.
2
4.[2020全国卷Ⅲ,理]设双曲线C:
其轨迹方程为x2-y32=1(x>0). 又P为函数y=3 4-x2图象上的点,
y=3 4-x2, 联立x2-y32=1,
得x2=143, y2=247,
则|OP|= x2+y2= 10,故选D.
解/题/感/悟(小提示,大智慧) 应用定义把双曲线上的点到一个焦点的距离,转化为到另一个焦点的距离,这 样有利于求相关距离的最值,如本例中的1小题.
解/题/感/悟(小提示,大智慧)
双曲线焦点三角形内切圆与x轴的切点落在顶点处.
5.[2020全国卷Ⅰ,文]设F1,F2
是双曲线C:x2-
y2 3
=1的两个焦点,O为坐标
原点,点P在C上且|OP|=2,则△PF1F2的面积为( B )
A.72
B.3
C.52
D.2
[解析] 解法一:由双曲线的方程知a=1,b= 3 ,c=2,不妨设F1(-2,0), F2(2,0).
程为( C ) A.x42-y52=1(x≤-2) B.x42-y52=1(x≥2) C.y42-x52=1(y≤-2) D.y42-x52=1(y≥2)
[解析] x2+y-32 的几何意义为点M(x,y)到点F1(0,3)的距离, x2+y+32 的几何意义为点M(x,y)到点F2(0,-3)的距离,则 x2+y-32- x2+y+32=4表 示点M(x,y)到点F1(0,3)的距离与到点F2(0,-3)的距离的差为4,且4<|F1F2|,所以 点M的轨迹是以F1,F2为焦点的双曲线的下支,且该双曲线的长半轴长a=2,半焦 距c=3,
双曲线-完整版PPT课件可编辑全文
∴x-32a2+y2=a22.
①
又 P 点在双曲线上,得ax22-by22=1.
②
由①,②消去 y,得
(a2+b2)x2-3a3x+2a4-a2b2=0,
即[(a2+b2)x-(2a3-ab2)](x-a)=0.
当 x=a 时,P 与 A 重合,不符合题意,舍去.
当 x=2aa32-+abb2 2时,满足题意的 P 点存在, 需 x=2aa32-+abb2 2>a, 化简得 a2>2b2, 即 3a2>2c2,ac< 26. 又 e>1,∴离心率 e=ac∈1, 26.
考向三 [149] 双曲线的几何性质
(1)(2014·天津高考)已知双曲线ax22-by22=1(a>0,
b>0)的一条渐近线平行于直线 l:y=2x+10,双曲线的一个
焦点在直线 l 上,则双曲线的方程为( )
A.x52-2y02 =1
B.2x02 -y52=1
C.32x52-130y02 =1
二、双曲线的标准方程和几何性质
标准方程 ax22-by22=1(a>0,b>0)
ay22-bx22=1(a>0, b>0)
图形
范围
x≥a或x≤-a
对称轴: 坐标轴
对称性
对称中心: 原点
y≤-a或y≥a 对称轴: 坐标轴 对称中心: 原点
性 顶点 顶点坐标:
顶点坐标:
质
A1 (-a,0),A2 (a,0) A1 (0,-a,) A2 (0,a)
————————— [1 个对点练] ——————— 过点2,12能作几条与双曲线x42-y2=1 有一个公共点的 直线.
【解】 (1)当斜率不存在时,直线方程为 x=2,显然符 合题意.
双曲线的定义及标准方程课件
F1,F2 -----焦点
|F1F2| -----焦距=2c
||MF1| - |MF2|| = 2a
.
F1
M
o
.
F2
1、|MF1 | - |MF2 | =2a
M
(2a< |F1F2| )
2、|MF2 | - | MF1| =2a
F1
F2
(2a< |F1F2| )
3、若常数2a = | F1F2 |
双曲线的定义及其标准方程
1、椭圆是如何定义的?
平面内与两定点F1、F2的距离的和等于常数
2a ( 2a>|F1F2|>0) 的点的轨迹
2a与2c的大小关 系
2a 2c时是椭圆 2a 2c时是线段 F1F 2 2a 2c时轨迹不存在
2.椭圆的标准方程?
b2 a2 c2
焦点在x轴上:
x2 y2 a2 b2 1
方程为 :
x2 32
y2 42
1或
y2 32
x2 42
1
双曲线及标准方程
课堂练习
(3)与双曲线
x2 y2 1 有相同焦距,双
13 3
曲线上一点P到F1、F2的距离之差的绝对
值为4。
x2 y2 1 或 y2 x2 1
4 12
4 12
(4)与双曲线 3y2 2x2 30
b=3.
y2 x2 42 32 1
解:8〈10,由定义,所求的轨迹是焦点在x 轴双曲线,设它的标准方程为:
x2 y2 a2 b2 1 (a 0, b 0)
C=5,a=4所,以所b求2=方c2-程a2=为5:2-42=3x22 42
y2 32
1
双曲线及其标准方程完整版课件
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=
第9章-第6节 双曲线
考点二 双曲线的几何性质——共研型
角度 1:双曲线的离心率 (1)(2017· 广西桂林中学月考)已知双曲线 kx2- y2=1(k>0)的一条渐近线与直线 2x+y-3=0 垂直,则双曲线 的离心率是( 5 A. 2 C.4 3 ) 3 B. 2 D. 5
x2 y2 (2)(2016· 山东卷)已知双曲线 E:a2-b2=1(a>0,b>0), 若矩形 AB的两 个焦点,且 2|AB|=3|BC|,则 E 的离心率是__________.
→ PF → 0 “PF1· 2= ”,则△F1PF2 的面积是多少?
1.已知圆 C:(x-3)2+y2=4,定点 A(-3,0),则过定点 A 且和圆 C 外切的动圆圆心 M 的轨迹方程为__________.
2.(2015· 新课标全国卷Ⅱ)已知双曲线过点(4, 3),且 1 渐近线方程为 y=± 则该双曲线的标准方程为__________. 2x,
1.(2015· 新课标全国卷Ⅱ)已知 A,B 为双曲线 E 的左, 右顶点, 点 M 在 E 上, △ABM 为等腰三角形, 且顶角为 120° , 则 E 的离心率为( A. 5 C. 3 ) B.2 D. 2
x2 2.(2016· 湖南五市十校教研教改共同体联考)设双曲线a2 y2 a2 -b2=1(a>0,b>0)的两条渐近线与直线 x= c 分别交于 A,B 两点,F 为该双曲线的右焦点.若 60° <∠AFB<90° ,则该双 曲线的离心率的取值范围是( A.(1, 2) C.(1,2) ) B.( 2,2) D.( 2,+∞)
x2 y2 6.(2015· 湖南卷)设 F 是双曲线 C:a2-b2=1 的一个焦 点.若 C 上存在点 P,使线段 PF 的中点恰为其虚轴的一个 端点,则 C 的离心率为__________.
双曲线及其标准方程ppt课件
C.(0,-5),(0,5)
D.(0,- 7),(0, 7)
双曲线的定义
2
1.设 F1,F2 分别是双曲线 x2-24=1 的左、右焦点,P 是双曲线上的一点,且 3|PF1|=4|PF2|, 则△PF1F2 的面积等于 ( )
A.4 2
B.8 3
C.24
D.48
2.已知动点 P(x,y)满足 ( + 2)2 + 2- ( -2)2 + 2=2,则动点 P 的轨迹是 ( )
这两个定点叫做双曲线的焦点. 两焦点的距离叫做双曲线的焦距.
y
M
F1 o F2 x
如何理解绝对值?若去掉绝对值则图像有何变化?
03 双曲线的标准方程
1. 建系:如图建立直角坐标系xOy,使x轴经 过点F1,F2,并且点O与线段F1F2中点重合.
y M
F1 O F2
x
2.设点:设M(x , y),双曲线的焦距为2c(c>0),F1(-c,0),F2(c,0) 常数=2a
利用定义求轨迹方程
P P127 习题3.2 第5题
如图,圆O的半径为定长 ,A是圆O外一定点,P是圆上任
意一点,线段AP的垂直平分线l和直线OP相交于点Q,当
O
点P在圆O上运动时,点Q的轨迹是什么?为什么?
A Q
P115 习题3.1 第6题 如图,圆O的半径为定长 ,A是圆O内一定点,P是圆上 任意一点,线段AP的垂直平分线l和半径OP相交于点 Q,当点P在圆O上运动时,点Q的轨迹是什么?为什么?
A.椭圆 C.双曲线的左支
B.双曲线 D.双曲线的右支
双曲线的定义
22
【变式练习】
已知
P
是双曲线
2020届高考理科数学一轮复习第9章 第6节 双曲线含答案
第六节双曲线1.双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于非零❶常数(小于|F 1F 2|)❷的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. 2.双曲线的标准方程和几何性质若将双曲线的定义中的“差的绝对值等于常数”中的“绝对值”去掉,则点的集合是双曲线的一支,具体是左支还是右支视情况而定.设双曲线上的点M 到两焦点F 1,F 2的距离之差的绝对值为2a ,则0<2a <|F 1F 2|,这一条件不能忽略.①若2a =|F 1F 2|,则点M 的轨迹是分别以F 1,F 2为端点的两条射线; ②若2a >|F 1F 2|,则点M 的轨迹不存在;③若2a =0,则点M 的轨迹是线段F 1F 2的垂直平分线.[熟记常用结论]1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min=c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a .4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.(2)性质:①a =b ;②e =2;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.(2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( ) (4)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e22=1.()答案:(1)×(2)×(3)√(4)√二、选填题1.双曲线2x2-y2=8的实轴长是()A.2B.2 2C.4 D.4 2解析:选C双曲线2x2-y2=8的标准方程为x24-y28=1,故实轴长为4.2.若双曲线方程为x2-2y2=1,则它的右焦点坐标为()A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D.(3,0)解析:选C∵原方程可化为x21-y212=1,∴a2=1,b2=12,∴c2=a2+b2=32,∴右焦点坐标为⎝⎛⎭⎫62,0.3.若方程x22+m-y2m+1=1表示双曲线,则m的取值范围是________.解析:因为方程x22+m-y2m+1=1表示双曲线,所以(2+m)(m+1)>0,即m>-1或m<-2.答案:(-∞,-2)∪(-1,+∞)4.若双曲线x2-y2m=1的离心率为3,则实数m=________.解析:由已知可得a=1,c=1+m,所以e=ca=1+m=3,解得m=2.答案:25.双曲线C的焦点分别为(-6,0),(6,0),且经过点(-5,2),则该双曲线的标准方程为____________________.解析:由题意得2a=|(-5+6)2+22-(-5-6)2+22|=45,所以a=25,又c=6,所以b2=c2-a2=36-20=16,所以双曲线的标准方程为x 220-y 216=1.答案:x 220-y 216=1考点一 双曲线的标准方程[基础自学过关][题组练透]1.(2019·绵阳联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±34x ,且其右焦点为(5,0),则双曲线C 的标准方程为( )A.x 29-y 216=1 B.x 216-y 29=1 C.x 23-y 24=1 D.x 24-y 23=1 解析:选B 由题意得b a =34,c 2=a 2+b 2=25,所以a =4,b =3,所以所求双曲线的标准方程为x 216-y 29=1.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线标准方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1解析:选B 法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0),因为双曲线过点P (2,1), 所以4a 2-1b2=1,又a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线标准方程是x 22-y 2=1.法二:设所求双曲线标准方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入可得44-λ+11-λ=1, 解得λ=2(λ=-2舍去),所以所求双曲线标准方程为x 22-y 2=1.3.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( )A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 解析:选A 因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1.4.经过点P (3,27),Q (-62,7)的双曲线的标准方程为____________.解析:设双曲线方程为mx 2+ny 2=1(mn <0),因为所求双曲线经过点P (3,27),Q (-62,7),所以⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125.故所求双曲线标准方程为y 225-x 275=1.答案:y 225-x 275=15.焦点在x 轴上,焦距为10,且与双曲线y 24-x 2=1有相同渐近线的双曲线的标准方程是________________.解析:设所求双曲线的标准方程为y 24-x 2=-λ(λ>0),即x 2λ-y 24λ=1,则有4λ+λ=25,解得λ=5,所以所求双曲线的标准方程为x 25-y 220=1.答案:x 25-y 220=1[名师微点]求双曲线标准方程的2种方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a ,b ,c 的方程并求出a ,b ,c 的值.与双曲线x 2a 2-y 2b 2=1有相同渐近线时,可设所求双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值. [提醒] 求双曲线的标准方程时,若焦点位置不确定,要注意分类讨论.也可以设双曲线方程为mx 2+ny 2=1(mn <0)求解.(如第4题)考点二 双曲线的定义及其应用 [师生共研过关][典例精析](1)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.(3)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的一动点,则|PF |+|PA |的最小值为________.[解析] (1)如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和点B ,根据两圆外切的充要条件,得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |. 因为|MA |=|MB |,所以|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2<6.这表明动点M 到两定点C 2,C 1的距离的差是常数2且小于|C 1C 2|.根据双曲线的定义知,动点M 的轨迹为双曲线的左支(点M 到C 2的距离大,到C 1的距离小),且a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),则其轨迹方程为x 2-y 28=1(x ≤-1).(2)∵由双曲线的定义有|PF 1|-|PF 2|=2a =22, |PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22, 则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.(3)因为F 是双曲线x 24-y 212=1的左焦点,所以F (-4,0),设其右焦点为H (4,0),则由双曲线的定义可得|PF |+|PA |=2a +|PH |+|PA |≥2a +|AH |=4+(4-1)2+(0-4)2=4+5=9.[答案] (1)x 2-y 28=1(x ≤-1) (2)34(3)9[解题技法]双曲线定义的应用策略(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题.(3)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a <|F 1F 2|;③焦点所在坐标轴的位置.[过关训练]1.(2019·唐山模拟)已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为( )A .1 B.52C .2D. 5解析:选A 不妨设|PF 1|=m ,|PF 2|=n ,则由双曲线的定义可知||PF 1|-|PF 2||=|m -n |=4.又因为∠F 1PF 2=90°,所以|PF 1|2+|PF 2|2=(2c )2=20,即m 2+n 2=20.又||PF 1|-|PF 2||2=|m -n |2=16,所以mn =2.所以△F 1PF 2的面积为S =12mn =1,故选A.2.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 内切圆的圆心在直线x =2上,则顶点C 的轨迹方程是( )A.x 24-y 221=1(x >2) B.y 24-x 221=1(y >2) C.x 221-y 24=1 D.y 24-x 22=1解析:选A 如图,△ABC 与内切圆的切点分别为G ,E ,F . |AG |=|AE |=7,|BF |=|BG |=3,|CE |=|CF |,所以|CA |-|CB |=7-3=4.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为4的双曲线的右支,方程为x 24-y 221=1(x >2).考点三 双曲线的几何性质[全析考法过关][考法全析]考法(一) 求双曲线的离心率(或范围)[例1] (1)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 作垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(2,1+2)D .(1,1+2)(2)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与双曲线C 在第二象限的交点为P ,O 为原点,|OP |=|OF |,则双曲线C 的离心率为( )A .5 B. 5 C.53D.54[解析] (1)若△ABE 是锐角三角形,只需∠AEF <45°,在Rt △AFE 中,|AF |=b 2a ,|FE |=a +c ,则b 2a <a +c ,即b 2<a 2+ac ,即2a 2-c 2+ac >0,则e 2-e -2<0,解得-1<e <2,又e >1,则1<e <2,故选B.(2)根据直线4x -3y +20=0与x 轴的交点F 为(-5,0),可知半焦距c =5,设双曲线C 的右焦点为F 2,连接PF 2,根据|OF 2|=|OF |且|OP |=|OF |可得,△PFF 2为直角三角形,如图,过点O 作OA 垂直于直线4x -3y +20=0,垂足为A ,则易知OA 为△PFF 2的中位线,又原点O 到直线4x -3y +20=0的距离d =4,所以|PF 2|=2d =8,|PF |=|FF 2|2-|PF 2|2=6,故结合双曲线的定义可知|PF 2|-|PF |=2a =2,所以a =1,故e =ca=5.[答案] (1)B (2)A考法(二) 求双曲线的渐近线[例2] (2019·武汉调研)已知双曲线C :x 2m 2-y 2n 2=1(m >0,n >0)的离心率与椭圆x 225+y 216=1的离心率互为倒数,则双曲线C 的渐近线方程为( )A .4x ±3y =0B .3x ±4y =0C .4x ±3y =0或3x ±4y =0D .4x ±5y =0或5x ±4y =0[解析] 由题意知,椭圆中a 2=25,b 2=16,∴椭圆的离心率e = 1-b 2a 2=35, ∴双曲线的离心率为 1+n 2m 2=53,∴n m =43,∴双曲线的渐近线方程为y =±n m x =±43x ,即4x ±3y =0.故选A.[答案] A考法(三) 求双曲线的方程[例3] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1 B.x 28-y 28=1C.x 24-y 28=1 D.x 28-y 24=1 [解析] 由离心率为2,可知a =b ,c =2a , 所以F (-2a ,0),由题意知k PF =4-00-(-2a )=42a =1,所以2a =4,解得a =22, 所以双曲线的方程为x 28-y 28=1.[答案] B[规律探求][过关训练]1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22xD .y =±32x解析:选A ∵e =ca =a 2+b 2a =3, ∴a 2+b 2=3a 2,∴b =2a . ∴渐近线方程为y =±2x .2.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5B.2C. 3D. 2解析:选C 不妨设一条渐近线的方程为y =ba x ,则F 2到y =ba x 的距离d =|bc |a 2+b 2=b . 在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中, 根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-ac ,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca= 3.3.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是双曲线C 的两个焦点.若MF 1―→·MF 2―→<0,则y 0的取值范围是( )A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223D.⎝⎛⎭⎫-233,233解析:选A 由题意知a =2,b =1,c =3, 设F 1(-3,0),F 2(3,0),则MF 1―→=(-3-x 0,-y 0), MF 2―→=(3-x 0,-y 0). ∵MF 1―→·MF 2―→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线C 上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33.。
双曲线的基本知识点PPT
按方程形式分类
双曲线方程的对称性 双曲线的标准方程是(x-a)²/b² - (y-b)²/a² = 1,其具有中心对称性,即点 (a, b)为中心。 双曲线的焦距与实轴长度的关系 在双曲线中,焦距c与实轴长度2a有固定的数学关系:c² = a² + b²,此 式被称为双曲线的基本性质之一。
T 双曲线关于其轴和中心点均具有对称性,这是由其定义决定的。 双曲线的渐近线性质 双曲线的渐近线是一条直线,该直线与双曲线交于两个无穷远点,这是双 曲线的重要特性之一。
05 双曲线的实际应用
双曲线的实际应用:物理中的应 用
双曲线的几何特性 双曲线是二次曲线的一种,其 双曲线的几何特性 双曲线是二次曲线的一种,其几何特性包括焦点在两个固定点,且所有到两 焦点距离之和为定长的点的集合。 双曲线的方程式 双曲线的标准方程是(x^2)/a^2 - (y^2)/b^2 = 1,其中a, b > 0, a^2 + b^2 = c^2 双曲线在物理中的应用 双曲线广泛应用于物理学中,如电磁场理论、光学、量子力学等,例如,双 曲线的焦散线就是光学中的一条重要概念。 双曲线与实际问题的联系 双曲线的许多性质,如离心率、焦点等,可以用于解决实际问题,如测量物 体的距离、角度等。
双曲线的图形特征:焦点和准线
双曲线定义 双曲线是平面内到两个定点的距离之差的绝对值等于常数的点的轨迹。 焦点性质 双曲线的两个焦点位于实轴两端,距离实轴相等。 准线特征 双曲线有两条互相垂直的准线,分别交坐标轴于原点和渐近线点。
04 双曲线的性质解析
双曲线的性质解析:主要性质
双曲线的焦点特性 双曲线有两焦点位于其对称轴上,距离中心等距。 双曲线的对称性 双曲线具有旋转对称性和平移对称性。 双曲线的渐近线 双曲线有两个渐近线,分别代表双曲线在x轴和y轴上的极限状态。 实数双曲线的面积 实数双曲线的面积是πab/4。
双曲线ppt课件
题型二 双曲线的标准方程
【例2】已知双曲线的渐近线方程为2x±3y=0.
(1)若双曲线经过P( 6 ,2),求双曲线方程; (2)若双曲线的焦距是2 13 ,求双曲线方程; (3)若双曲线顶点间的距离是6,求双曲线方程.
思维启迪 用定义法或待定系数法求方程.
解
方法一
由双曲线的渐近线方程y=±
2 3
解得ba
23或ba
3 9. 2
故所求双曲线方程为 x2 y2 1或 y2 4x2 1.
94
9 81
探究提高 待定系数法是求曲线方程最常用的方
法之一.
(1)与双曲线
x2 a2
y2 b2
1有共同渐近线的双曲
线方程可表示为
x2 a2
y2 b2
t(t 0).
(2)若双曲线的渐近线方程是y=±
2
,2),∴
(3 2)2 a2
4 b2
1.
又∵a2+b2=(2 5)2,∴a2=12,b2=8.
故所求双曲线的方程为 x2 y2 1. 12 8
题型三 双曲线的性质 【例3】中心在原点,焦点在x轴上的一椭圆与一
双曲线有共同的焦点F1,F2,且|F1F2|=2 13 , 椭圆的长半轴与双曲线实半轴之差为4,离心率 之比为3∶7. (1)求这两曲线方程; (2)若P为这两曲线的一个交点,求cos∠F1PF2 的值.
5.若m>0,点
P
m,
5 2
在双曲线
x2 y2 1 上,则 45 13
点P到该双曲线左焦点的距离为 2 .
解析
P
m,
5 2
在双曲线 x2 y2 1上,且m>0, 45
代入双曲线方程解得m=3,双曲线左焦点F1(-3,0),
双曲线及其标准方程ppt课件
F1 O F2
3.限式 |MF1| - |MF2|=±2a
4.代换 即 (x c)2 y2 (x c)2 y2 2a
5.化简
6
代数式化简得:
y
M (c2 a2) x2 a2 y2 a2 (c2 a2)
F1 O F2
可令:c2-a2=b2
x
代入上式得:b2x2-a2y2=a2b2
不存在
(4)已知A(-5,0),B(5,0),M点到A,B两点的距离之差 的绝对值为0,则M点的轨迹是什么?
线段AB的垂5直平分线
(三)合作探究,构建方程
双曲线标准方程推导
1.建系
以F1,F2所在的直线为x轴,线段F1F2的中 y 点为原点建立直角坐标系
M
2.设点
x
设M(x , y),则F1(-c,0),F. 2(c,0)
15
16
2
(二)注重细节,理解概念
双曲线定义:
平面内与两个定点F1,F2的距离的差的绝对 值等于非零常数(小于︱F1F2︱)的点的轨迹
叫做双曲线.
M
① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距.
F1 o F2
3
(二)注重细节,理解概念
思考:为什么要求 0<2a<2c? 演示
当2a=2c时,动点的轨迹是什么? 以点F1、F2为端点,方向指向F1F2外侧的两条射 线. 当2a>2c时,动点的轨迹是什么? 不存在 当2a=0时,动点的轨迹是什么? 线段F1F2的垂直平分线
x2 b2
(1 a
0, b
0)
问题:如何判断双曲线的焦点在哪个轴上呢?
(二次项系数为正,焦点在相应的轴8上)
高中数学教案 第6讲 双曲线
第6讲双曲线1.了解双曲线的定义、几何图形和标准方程.2.掌握双曲线的几何性质(范围、对称性、顶点、离心率、渐近线).3.了解双曲线的简单应用.1.双曲线的定义平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a,(0<2a<|F1F2|)}.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈R□1y≤-a或y≥a,x∈R 对称性对称轴:□2坐标轴;对称中心:□3原点顶点A1□4(-a,0),A2□5(a,0)A1□6(0,-a),A2□7(0,a)渐近线□8y=±bax□9y=±abx 离心率e=□10ca,e∈(1,+∞)实虚轴实轴:线段A1A2,|A1A2|=□112a虚轴:线段B1B2,|B1B2|=□122ba ,b ,c 的关系c 2=□13a 2+b 23.等轴双曲线(1)定义:实轴与虚轴□14等长的双曲线叫做等轴双曲线,其方程写作:x 2-y 2=λ(λ≠0).(2)性质:①a =b ;②e =2;③两条渐近线y =±x 互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.e =ca=1+b 2a2∈(1,+∞);e 是表示双曲线开口大小的一个量,e 越大开口越大.常用结论1.过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a ,也叫通径.2.双曲线的焦点到其渐近线的距离为b .3.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min=a +c ,|PF 2|min =c -a .4.x 2a 2-y 2b 2=1(a >0,b >0)与y 2b 2-x 2a 2=1(a >0,b >0)互为共轭双曲线,它们有相同的渐近线、相等的焦距.5.焦点三角形的面积:P 为双曲线上的点,F 1,F2为双曲线的两个焦点,且∠F 1PF 2=θ,则△F 1PF 2的面积为b 2tan θ2.1.思考辨析(在括号内打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.()(2)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.()(4)双曲线方程x2m2-y2n2=λ(m>0,n>0,λ≠0)的渐近线方程是x2m2-y2n2=0,即xm±yn=0.()答案:(1)×(2)×(3)×(4)√2.回源教材(1)经过点A(3,-1),且对称轴都在坐标轴上的等轴双曲线方程为.解析:设双曲线方程为x2-y2=λ(λ≠0),把点A(3,-1)代入,得9-1=λ,λ=8,故所求双曲线方程为x28-y28=1.答案:x28-y28=1(2)已知方程x22+m-y2m+1=1表示双曲线,则实数m的取值范围是.解析:由题意可知(2+m)(m+1)>0,解得m<-2或m>-1.答案:(-∞,-2)∪(-1,+∞)(3)一动圆过定点A(-4,0),且与圆B:(x-4)2+y2=16相外切,则动圆圆心的轨迹方程为.解析:设动圆圆心为点P,连接PB,PA,则|PB|=|PA|+4,则|PB|-|P A|=4<|AB|=8,所以点P的轨迹是以A(-4,0),B(4,0)为焦点,且实轴长为4的双曲线的左支.设双曲线的实半轴长为a,虚半轴长为b,则a=2,b2=42-a2=12.所以动圆圆心的轨迹方程为x24-y212=1(x≤-2).答案:x24-y212=1(x≤-2)双曲线的定义及应用例1(1)已知圆C1:(x+3)2+y2=1,C2:(x-3)2+y2=9,动圆M同时与圆C1和圆C2相外切,则动圆圆心M的轨迹方程为()A.x2-y28=1B.x28-y2=1C.x2-y28=1(x≤-1)D.x2-y28=1(x≥1)解析:C设动圆M的半径为r,由动圆M同时与圆C1和圆C2相外切,得|MC1|=1+r,|MC2|=3+r,|MC2|-|MC1|=2<6,所以动圆圆心M的轨迹是以点C1(-3,0)和C2(3,0)为焦点的双曲线的左支,且2a=2,解得a=1,又c=3,则b2=c2-a2=8,所以动圆圆心M的轨迹方程为x2-y28=1(x≤-1).(2)(2024·十堰调研)已知P(x0,y0)是双曲线E:x24-y2=1上一点,F1,F2分别是双曲线E的左、右焦点,△PF1F2的周长为12+25,则cos∠F1PF2=,△PF1F2的面积为.解析:在双曲线E中,a=2,b=1,则c=a2+b2= 5.根据对称性,不妨设点P在双曲线E的右支上,则|PF1|-|PF2|=4.因为|F1F2|=2c=25,△PF1F2的周长为12+25,所以|PF1|+|PF2|=12,所以|PF1|=8,|PF2|=4.在△PF1F2中,cos∠F1PF2=|PF1|2+|PF2|2-|F1F2|22|PF1||PF2|=15 16,则sin∠F1PF2=1-cos2∠F1PF2=1-(1516)2=3116,所以△PF1F2的面积S=12|PF1|·|PF2|sin∠F1PF2=12×8×4×3116=31.答案:151631反思感悟1.“焦点三角形”中常用到的知识点及技巧(1)常用知识点:在“焦点三角形”中,正弦定理、余弦定理、双曲线的定义经常使用.(2)技巧:经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立它与|PF 1|·|PF 2|的联系.2.应用双曲线定义需注意的问题在双曲线的定义中一是不能漏掉“绝对值”,否则轨迹是双曲线的一支;二是“常数”小于|F 1F 2|,否则轨迹是两条射线或不存在.训练1(1)已知平面内两定点F 1(-3,0),F 2(3,0),下列条件中满足动点P的轨迹为双曲线的是()A.|PF 1|-|PF 2|=±7B.|PF 1|-|PF 2|=±6C.|PF 1|-|PF 2|=±4D.|PF 1|2-|PF 2|2=±6解析:C因为|F 1F 2|=6,所以由双曲线的定义知,当0<||PF 1|-|PF 2||<6时,动点P 的轨迹为双曲线,故选C.(2)过双曲线x 2-y 24=1的左焦点F 1作一条直线l 交双曲线左支于P ,Q 两点,若|PQ |=10,F 2是双曲线的右焦点,则△PF 2Q 的周长是.解析:由题意,得|PF 2|-|PF 1|=2,|QF 2|-|QF 1|=2.∵|PF 1|+|QF 1|=|PQ |=10,∴|PF 2|+|QF 2|-10=4,∴|PF 2|+|QF 2|=14,∴△PF 2Q 的周长是|PF 2|+|QF 2|+|PQ |=14+10=24.答案:24双曲线的标准方程例2(1)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)过点(2,3),且离心率为2,则该双曲线的标准方程为()A.x 2-y 23=1B.x 23-y 2=1C.x2-3y23=1 D.3x23-y2=1解析:A由e=ca=2,得c=2a,b=c2-a2=3a,则双曲线的方程为x2a2-y23a2=1,将点(2,3)的坐标代入双曲线的方程可得2a2-33a2=1a2=1,解得a=1,故b=3,因此双曲线的标准方程为x2-y23=1.(2)与椭圆x24+y2=1共焦点且过点P(2,1)的双曲线标准方程是.解析:法一:椭圆x24+y2=1的焦点坐标是(±3,0).设双曲线标准方程为x2a2-y2b2=1(a>0,b>0),因为双曲线过点P(2,1),所以4a2-1b2=1,又a2+b2=3,解得a2=2,b2=1,所以所求双曲线的标准方程是x22-y2=1.法二:设所求双曲线标准方程为x24-λ+y21-λ=1(1<λ<4),将点P(2,1)的坐标代入可得44-λ+11-λ=1,解得λ=2(λ=-2舍去),所以所求双曲线标准方程为x22-y2=1.答案:x22-y2=1反思感悟求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a,2b或2c,从而求出a2,b2.(2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x2m2-y2n2λ(λ≠0),再根据条件求λ的值.训练2(1)(2024·泉州质检)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的焦距为25,点P(2,1)在C的一条渐近线上,则C的方程为()A.x2-y24=1 B.x24-y2=1C.3x2 20-3y25=1 D.x216-y24=1解析:B由题可知c=5,故a2+b2=5,因为P(2,1)在C的一条渐近线上,所以ba=12,解得a=2,b=1,故双曲线C的方程为x24-y2=1.(2)经过点P(3,27),Q(-62,7)的双曲线的标准方程为.解析:设双曲线方程为mx2+ny2=1(mn<0),因为所求双曲线经过点P(3,27),Q(-62,7),m+28n=1,m+49n=1,=-175,=125.故所求双曲线标准方程为y225-x275=1.答案:y225-x275=1双曲线的几何性质渐近线和离心率问题例3(1)(2024·邯郸部分学校开学考)若双曲线x2-m2y2=λ(λ≠0)的两条渐近线互相垂直,则m=()A.-1B.±1C.2D.±2解析:B当λ>0时,双曲线焦点在x 轴上,a 2=λ,b 2=λm2,故b 2a 2=1m 2y =±1mx .当λ<0时,双曲线焦点在y 轴上,b 2=-λ,a 2-λm2,故a 2b 2=1m 2y =±1mx .因为双曲线x 2-m 2y 2=λ(λ≠0)的两条渐近线互相垂直,所以-1m ×1m=-1,解得m =±1.故选B.(2)(2024·重庆第二次模拟)F 1,F 2是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,M 为双曲线E 右支上的一点,点N 在x 轴上,满足∠F 1MN =∠F 2MN =60°.若3MF 1→+5MF 2→=λMN →(λ∈R ),则双曲线E 的离心率为()A.87B.65C.53D.72解析:D设λMN →=MQ →,则3MF 1→+5MF 2→=MQ →,∴MQ 是邻边边长分别为3|MF 1|,5|MF 2|的平行四边形的一条对角线.又∵∠F 1MN =∠F 2MN =60°,∴MQ 为∠F 1MF 2的平分线,∴邻边边长分别为3|MF 1|,5|MF 2|的平行四边形为菱形,∴3|MF 1|=5|MF 2|.由双曲线定义知|MF 1|-|MF 2|=2a ,∴|MF 2|=3a ,|MF 1|=5a .在△F 1MF 2中,由余弦定理得4c 2=9a 2+25a 2-30a 2cos 120°=49a 2,∴双曲线E 的离心率e =ca =494=72.故选D.反思感悟1.求双曲线离心率或其取值范围的方法(1)直接求出a ,c 的值,利用离心率公式直接求解.(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,转化为含有e 的方程(或不等式)求解.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线可由x 2a 2-y 2b 2=0即得两渐近线方程xa ±yb=0.双曲线几何性质的综合应用例4(2022·上海春季高考)已知双曲线Γ:x 2a2-y 2=1(a >0),任取双曲线Γ右支上两个不相同的点P 1(x 1,y 1),P 2(x 2,y 2),都有x 1x 2-y 1y 2>0成立,则实数a 的取值范围是.解析:设O 是坐标原点,点P 3与点P 2关于x 轴对称,如图,则P 3(x 2,-y 2),OP 1→·OP 3→=x 1x 2-y 1y 2>0,即OP 1→·OP 3→>0恒成立,∴∠P 1OP 3恒为锐角,∴∠MON ≤90°,∴双曲线Γ的其中一条渐近线y =1a x 的斜率1a ≤1,又a >0,∴a ≥1,即a 的取值范围是[1,+∞).答案:[1,+∞)反思感悟与双曲线有关的取值范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接变换转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决.训练3(1)(2024·长沙适应性考试)若双曲线x 2a 2-y 2b2=1(a >0,b >0)与直线y =3x 有交点,则其离心率的取值范围是()A.(2,+∞)B.(1,2]C.(1,2)D.[2,+∞)解析:A 由题意可知,双曲线的焦点在x 轴,一条渐近线方程为y =ba x ,这条渐近线的斜率应大于直线y =3x 的斜率,即ba>3,则e =1+(ba)2>2.(2)(2024·梧州一模)过四点(-1,0),(2,1),(2,3),(2,-3)中的三点的双曲线为C ,则C 的渐近线方程为.解析:由双曲线的对称性可知,(2,3),(2,-3)必在双曲线C 上,所以双曲线C 过点(-1,0),(2,3),(2,-3),设双曲线C 的方程为mx 2+ny 2=1(mn <0),=1,m +3n =1,=1,=-1.所以双曲线C 的方程为x 2-y 2=1,所以双曲线C 的渐近线方程为y =±x .答案:y =±x限时规范训练(六十二)A 级基础落实练1.已知双曲线的渐近线方程为y =±22x ,实轴长为4,则该双曲线的标准方程为()A.x 24-y 22=1B.x 24-y 28=1或y 24-x 28=1C.x 24-y 28=1D.x 24-y 22=1或y 24-x 28=1解析:D 设双曲线方程为x 22m -y 2m =1(m ≠0),∵2a =4,∴a 2=4,当m >0时,2m =4,m =2;当m <0时,-m =4,m =-4.故所求双曲线的标准方程为x 24-y 22=1或y 24-x 28=1.2.(2024·惠州第三次调研)“m >2”是“方程x 22-m +y 2m +1=1表示双曲线”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:B 因为方程x 22-m +y 2m +1=1表示双曲线,所以(2-m )(m +1)<0,解得m <-1或m >2,即m ∈(-∞,-1)∪(2,+∞).因为(2,+∞)是(-∞,-1)∪(2,+∞)的真子集,所以“m >2”是“方程x 22-m +y 2m +1=1表示双曲线”的充分不必要条件.故选B.3.(2024·凉山一诊)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则双曲线C 的渐近线的斜率为()A.±1B.±33C.±2D.±3解析:D ∵双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴ca =2,即c 2=4a 2,∵c 2=a 2+b 2,∴b 2=3a 2,即ba= 3.∵双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,∴双曲线C 的渐近线的斜率为± 3.故选D.4.(2023·北京顺义区一模)若双曲线C :x 2a 2-y 2b2=1(a >b >0)的离心率为e ,则e的取值范围是()A.(1,2)B.(2,+∞)C.(1,2)D.(2,+∞)解析:C e =ca=c 2a2=a 2+b 2a2=1+(ba )2,由于a >b >0,所以0<b a <1,0<(b a )2<1,1<1+(ba)2<2,所以e =1+(ba)2∈(1,2),故选C.5.(2024·福建质检)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,左、右焦点分别为F 1,F 2,F 2关于C 的一条渐近线的对称点为P .若|PF 1|=2,则△PF 1F 2的面积为()A.2B.5C.3D.4解析:D 不妨设直线PF 2与渐近线y =ba x 垂直且交点为M ,O 为坐标原点,则tan ∠MOF 2=b a ,sin ∠MOF 2=bc,所以|F 2M |=|OF 2|·sin ∠MOF 2=b ,|OM |=|OF 2|2-|MF 2|2=a .由O ,M 分别是F 1F 2与PF 2的中点,知OM ∥PF 1,且|OM |=12|PF 1|=1,即a=1.由e =c a =5得c =5,b =2,所以S △PF 1F 2=4S △OMF 2=4×12×2×1=4.6.(2023·全国甲卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,C的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.455解析:D 由e =5,则c 2a 2=a 2+b 2a2=1+b 2a 2=5,解得ba=2,所以双曲线的一条渐近线方程不妨设为y =2x ,易知渐近线y=2x与圆相交.则圆心(2,3)到渐近线y=2x的距离d=|2×2-3|22+(-1)2=55,所以|AB|=21-d2=21-(55)2=455,故选D.7.(2024·南京调研)双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线分别为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为4,则a=.解析:双曲线的一条渐近线的斜率为ba=tan∠BOC=tan45°=1,所以a=b,因为正方形OABC的边长为4,点B为双曲线的焦点,所以双曲线的半焦距c=|OB|=42,则a2+b2=2a2=c2=32,解得a=4.答案:48.(2022·全国甲卷)记双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值.解析:双曲线C的渐近线方程为y=±ba x,若直线y=2x与双曲线C无公共点,则2≥ba,∴b2a2≤4,∴e2=c2a2=1+b2a2≤5,又e>1,∴e∈(1,5],∴填写(1,5]内的任意值均可.答案:2((1,5]内的任意值均可)9.(2024·芜湖期末)已知双曲线M:x2a2-y2b21(a>0,b>0)的左、右焦点为F1,F2,P为双曲线M的渐近线上的一点,满足PF1→·PF2→=0,且直线PF1,PF2的斜率之和为-233,则双曲线M的离心率为.解析:P为双曲线M的渐近线上的一点,即点P在渐近线y=±bax上,不妨设点P 在第一象限,因为PF 1→·PF 2→=0,所以PF 1⊥PF 2,则P 在以F 1F 2为直径,O (0,0)为圆心的圆上,所以|OP |=c ,则点P 的坐标为(a ,b ).因为直线PF 1,PF 2的斜率之和为-233,所以b a +c +b a -c =-233,得3ab =c 2-a 2=b 2,即ba =3,所以e =1+(ba)2=1+(3)2=2.答案:210.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2.(1)若点M 在双曲线上,且MF 1→·MF 2→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同的焦点,且过点(32,2),求双曲线C 的方程.解:(1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,∵MF 1→·MF 2→=0,∴MF 1⊥MF 2.设|MF 1|=m ,|MF 2|=n ,由双曲线的定义知m -n =2a =8.①在Rt △F 1MF 2中,由勾股定理得m 2+n 2=(2c )2=80,②由①②得m ·n =8.∵S △MF 1F 2=12mn =4=12×2ch ,∴h =255.即M 点到x 轴的距离为255.(2)设双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16).∵双曲线C 过点(32,2),∴1816-λ-44+λ=1,解得λ=4或λ=-14(舍去),∴双曲线C 的方程为x 212-y 28=1.11.已知双曲线C :x 2-y 2b2=1(b >0).(1)若双曲线C 的一条渐近线方程为y =2x ,求双曲线C 的标准方程;(2)设双曲线C 的左、右焦点分别为F 1,F 2,点P 在双曲线C 上,若PF 1⊥PF 2,且△PF 1F 2的面积为9,求b 的值.解:(1)因为双曲线C :x 2-y 2b2=1(b >0)的渐近线方程为y =±bx ,而它的一条渐近线方程为y =2x ,所以b =2,所以双曲线C 的标准方程为x 2-y 24=1.(2)因为PF 1⊥PF 2,所以S △PF 1F 2=12|PF 1|·|PF 2|,因为△PF 1F 2的面积为9,所以|PF 1|·|PF 2|=18,又因为||PF 1|-|PF 2||=2a =2,所以|PF 1|2-2|PF 1|·|PF 2|+|PF 2|2=4,所以|PF 1|2+|PF 2|2=40,又因为|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,所以c 2=10,由a 2+b 2=c 2,得1+b 2=10,所以b =3.B 级能力提升练12.(多选)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,C 上的点到其焦点的最短距离为1,则()A.C 的焦点坐标为(±3,0)B.C 的渐近线方程为y =±3xC.若点P 为双曲线C 上的动点,则点P 到两条渐近线的距离之积为定值D.直线mx -y -m =0(m ∈R )与C 恒有两个交点解析:BC由题意,双曲线C 的实半轴长为a ,虚半轴长为b ,设双曲线C的半焦距为c ,由题意知双曲线C 上的点到其焦点的最短距离为c -a =1,该双曲线的离心率e=ca=2,得c=2,a=1,则b=c2-a2=3,所以双曲线C的标准方程为x2-y23=1.对于A选项,双曲线C的焦点坐标为(±2,0),A选项错误;对于B选项,双曲线C的渐近线方程为y=±bax=±3x,B选项正确;对于C选项,设点P(x0,y0),则x20-y203=1,双曲线C的两条渐近线方程分别为3x-y=0,3x+y=0,则点P到两条渐近线的距离之积为|3x0-y0|3+1·|3x0+y0|3+1=|3x20-y20|4=34,C选项正确;对于D选项,当m=3时,直线方程为y=3(x-1),联立,得=3(x-1),x2-y2=3,得x=1,所以直线y=3(x-1)与双曲线C只有一个交点,D选项错误.故选BC.13.(2023·新课标Ⅰ卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点A在C上,点B在y轴上,F1A→⊥F1B→,F2A→=-23F2B→,则C的离心率为.解析:法一:由题意可知,F1(-c,0),F2(c,0),设A(x1,y1),B(0,y0),所以F2A→=(x1-c,y1),F2B→=(-c,y0).因为F2A→=-23F2B→,1-c=23c,1=-23y0,1=53c,1=-23y0,所以A(53c,-23y0).F1A→=(83c,-23y0),F1B→=(c,y0),因为F1A→⊥F1B→,所以F1A→·F1B→=0,即83c2-23y20=0,解得y20=4c2.因为点A(53c,-23y0)在双曲线C上,所以25c29a2-4y209b2=1,又y20=4c2,所以25c29a2-16c29b2=1,即25(a2+b2)9a2-16(a2+b2)9b2=1,化简得b2a2=45,所以e2=1+b2a2=95,所以e=355.法二:由法一得A(53c,-23y0),y20=4c2,所以|AF1|=(53c+c)2+(-23y0)2=64c29+4y209=64c29+16c29=45c3,|AF2|=(53c-c)2+(-23y0)2=4c29+4y209=4c29+16c29=25c3,由双曲线的定义可知|AF1|-|AF2|=2a,即45c3-25c3=2a,即53c=a,所以双曲线的离心率e=ca=35=355.法三:由F2A→=-23F2B→可得A,B,F2三点共线,且F2在线段AB上,不妨令点A在第一象限,则点B在y轴负半轴上,易得|F2A|=23|F2B|.设|F2B|=3m(m>0),则|F2A|=2m,所以|F 1B |=|F 2B |=3m ,|AB |=5m .由F 1A →⊥F 1B →可得∠AF 1B =90°,所以|AF 1|=|AB |2-|BF 1|2=4m ,所以2a =|AF 1|-|AF 2|=2m ,即a =m .过F 1作F 1D ⊥AB ,垂足为D ,则12|AB |·|F 1D |=12|F 1A |·|F 1B |,即12·5m ·|F 1D |=12·4m ·3m ,所以|F 1D |=125m ,所以|BD |=|BF 1|2-|F 1D |2=95m ,所以|F 2D |=65m ,则|F 1F 2|=|F 1D |2+|F 2D |2=655m =2c ,即c =355m ,所以e =c a =355.答案:35514.如图,已知双曲线的中心在原点,F 1,F 2为左、右焦点,焦距是实轴长的2倍,双曲线过点(4,-10).(1)求双曲线的标准方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上;(3)在(2)的条件下,若点M 在第一象限,且直线MF 2交双曲线于另一点N ,求△F1MN的面积.解:(1)设双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),双曲线焦距为2c,实轴长为2a,则2c=22a,即c=2a,∴b2=c2-a2=a2,∴双曲线方程为x2-y2=a2,将(4,-10)代入得,a2=16-10=6,∴双曲线的标准方程为x26-y26=1.(2)证明:由(1)知,F1(-23,0),F2(23,0),∵M(3,m)在双曲线上,∴9-m2=6,即m2=3,以F1F2为直径的圆为x2+y2=12,将M(3,m)代入得9+3=12,∴M在以F1F2为直径的圆上.(3)由(2)知,点M坐标为(3,3)或(3,-3),∵点M在第一象限,∴M的坐标为(3,3),直线MF2的方程为y-3=-323-3(x-3)=-(2+3)(x -3),即x=(3-2)y+23,代入双曲线方程整理可得(6-43)y2-43(2-3)y+6=0,∵M的纵坐标为3,∴N的纵坐标为6(6-43)×3=13-2=-(3+2),∴△F1MN的面积为S=12|F1F2|·(3+3+2)=23×(2+23)=12+4 3.。
高考数学一轮总复习第九章平面解析几何第六节双曲线课件
cm,则|AD|=(
A.12 10 cm
B.6 38 cm
C.38 cm
D.6 37 cm
)
答案 (1)B
(2)D
解析(1)由题可知 a2=3-m,b2=m,所以 c= 3.
1
因为|OP|=2|F1F2|,所以
PF1⊥PF2.
又∠PF1F2=30°,所以|PF1|=3,|PF2|= 3,
所以由双曲线的定义可知|PF1|-|PF2|=3- 3=2 3-,解得
3 3
m= 2 .故选
B.
(2)以双曲线的对称中心为坐标原点,建立平面直角坐标系xOy,如图所示.
因为双曲线的离心率为2,
2
所以可设双曲线的方程为 2
依题意可得 2a=30,则
−
2
=1(a>0).
2
3
2
a=15,即双曲线的方程为152
因为|AB|=36 cm,所以 A 的纵坐标为 18.
1 2
)
2.(多选)已知双曲线
2
C:12
−
A.实轴长是虚轴长的 2 倍
B.焦距为 8
C.离心率为 3
D.渐近线方程为 x± 3y=0
2
=1,下列对双曲线
4
C 的判断正确的是(
)
答案 BD
解析 由双曲线
2
C:12
−
2
=1,可得
4
a2=12,b2=4,则 c2=a2+b2=16,
所以 a=2 3,b=2,c=4.所以选项 A 不正确,选项 B 正确;
当2a>|F1F2|时,动点的轨迹不存在;
当2a=0时,动点的轨迹是线段F1F2的中垂线.
9.6双曲线
π
所以 PF1⊥PF2,所以∠F1PF2= ,
2
1
1
所以△1 2 = 2|PF1|·
|PF2|=32× 2=16.
(2)令双曲线的右焦点为 F2,设以线段 PF1,A1A2 为直径的两个圆
的半径分别为 r1,r2,两个圆的圆心分别为 O1,O2.若 P 在双曲线左支上,
√5
答案: 2
解析:由已知有双曲线渐近线的方程为 y=±,
∵双曲线的一条渐近线与直线 2x+y-3=0 垂直,
1
1
∴ = 2,∴a=2,∴c=√5,∴离心率 e= =
√5
2
.
.
-13-
关键能力·学案突破
考点1
考点2
考点3
考点4
双曲线的定义
2
例 1(1)(2018 浙江义乌质检,14)设 F1,F2 是双曲线 9
2
2
(2)关于 x,y 的方程 − =1(mn>0)表示焦点在 x 轴上的双曲线.
2
(3)与双曲线
2 2
为 − =λ(λ≠0).
(× )
2
− =1(其中 mn>0)共渐近线的双曲线方程可设
( √ )
(4)等轴双曲线的离心率等于√2,且渐近线互相垂直.
2
2
2
(5)若双曲线2 − 2 =1(a>0,b>0)与 2
a>0,c>0.
(1)当 2a<|F1F2|
时,点P的轨迹是双曲线;
(2)当 2a=|F1F2|
时,点P的轨迹是两条射线;
(3)当 2a>|F1F2|
第6讲双曲线
第6讲 双曲线
1.考查利用基本量求双曲线的标准方程,考查双曲线的定 义、几何图形. 2.考查求双曲线的几何性质及其应用. 【复习指导】 本讲复习时,应紧扣双曲线的定义,熟练掌握双曲线的标准 方程、几何图形以及简单的几何性质、近几年高考多以选择 题.填空题进行考查.
1.双曲线的概念 平面内与两个定点F1,F2(|F1F2|=2c>0)的距离的差的绝对 值为常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲 线.这两个定点叫双曲线的焦点,两焦点间的距离叫做焦 距. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为 常数且a>0,c>0; (1)当a<c时,P点的轨迹是双曲线; (2)当a=c时,P点的轨迹是两条射线; (3)当a>c时,P点不存在.
2.双曲线的标准方程和几何性质
一条规律
两种方法
三个防范
考向一
双曲线定义的应用
16 [审题视点] 利用双曲线的第一定义和第二定义解题.
【反思与悟】 由双曲线的第一定义可以判断点P的位置关系, 在利用第二定义解题时,要注意左焦点与左准线相对应,右 焦点与右准线相对应.
4
考向二
求双曲线满足的几何条件用定义法求方程.
考向三
双曲线的几何性质的应用
答案
C
答案
D
高考中椭圆与双曲线的离心率的求解问题
离心率是圆锥曲线的重要几何性质,是高考重点考查的一 个知识点.这类问题一般有两类:一类是根据一定的条件 求椭圆或双曲线的离心率;另一类是根据一定的条件求离 心率的取值范围.无论是哪类问题,其难点都是建立关于a, b,c的关系式(等式或不等式),并且最后要把其中的b用a, c表达,转化为关于离心率e的关系式,这是化解有关椭圆 和双曲线的离心率问题难点的根本方法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲双曲线基础知识整合1.双曲线的概念平面内与两个定点F1,F2(|F1F2|=2c>0)的距离的差的绝对值为常数(小于|F1F2|且不等于零)的点的轨迹叫做01双曲线.这两个定点叫做双曲线的02焦点,两焦点间的距离叫做双曲线的03焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)当04a<c时,M点的轨迹是双曲线;(2)当05a=c时,M点的轨迹是两条06射线;(3)当07a>c时,M点不存在.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0) y2a2-x2b2=1(a>0,b>0) 图形性质范围x≥08a或x≤09-a,y∈R x∈R,y≤10-a或y≥11a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)渐近线12y=±ba x13y=±ab x离心率e=ca,e∈14(1,+∞),其中c=a2+b2实虚轴线段A1A2叫做双曲线的15实轴,它的长|A1A2|=162a;线段B 1B 2叫做双曲线的17虚轴,它的长|B 1B 2|=182b ;a 叫做双曲线的半实轴长,b 叫做双曲线的半虚轴长a ,b ,c 的关系 19c 2=a 2+b 2(c >a >0,c >b >0)1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a .4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线.(2)性质:①a =b ;②e =2;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.1.(2019·浙江高考)渐近线方程为x ±y =0的双曲线的离心率是( ) A .22 B .1 C . 2 D .2答案 C解析 由题意可得ba =1,∴e =1+b 2a 2=1+12= 2.故选C .2.(2019·北京高考)已知双曲线x 2a 2-y 2=1(a >0)的离心率是5,则a =( ) A . 6 B .4 C .2 D .12答案 D解析 由双曲线方程x 2a 2-y 2=1,得b 2=1,∴c 2=a 2+1.∴5=e 2=c 2a 2=a 2+1a 2=1+1a 2.结合a >0,解得a =12.故选D .3.(2019·宁夏模拟)设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17D .以上均不对答案 B解析 根据双曲线的定义得||PF 1|-|PF 2||=8⇒|PF 2|=1或17.又|PF 2|≥c -a =2,故|PF 2|=17,故选B .4.(2019·湖北荆州模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A .73B .54 C .43D .53答案 D解析 由已知可得双曲线的渐近线方程为y =±ba x ,点(3,-4)在渐近线上,∴b a =43,又a 2+b 2=c 2,∴c 2=a 2+169a 2=259a 2,∴e =c a =53.故选D .5.(2019·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是________.答案 y =±2x解析 因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b 2=1(b >0),解得b=2,即双曲线方程为x 2-y 22=1,其渐近线方程为y =±2x .6.已知曲线方程x 2λ+2-y 2λ+1=1,若方程表示双曲线,则λ的取值范围是________.答案 λ<-2或λ>-1解析 ∵方程x 2λ+2-y 2λ+1=1表示双曲线,∴(λ+2)(λ+1)>0,解得λ<-2或λ>-1.核心考向突破考向一 双曲线的定义例1 (1)(2019·山西太原模拟)已知双曲线C :x 2a 2-y 24=1(a >0)的一条渐近线方程为2x +3y =0,F 1,F 2分别是双曲线C 的左、右焦点,点P 在双曲线C 上,且|PF 1|=2,则|PF 2|=( )A .4B .6C .8D .10答案 C解析 由题意得2a =23,解得a =3.因为|PF 1|=2,所以点P 在双曲线的左支上.所以|PF 2|-|PF 1|=2a ,解得|PF 2|=8.故选C .(2)(2019·河南濮阳模拟)已知双曲线x 2-y 2=4,F 1是左焦点,P 1,P 2是右支上的两个动点,则|F 1P 1|+|F 1P 2|-|P 1P 2|的最小值是( )A .4B .6C .8D .16 答案 C解析设双曲线的右焦点为F2,∵|F1P1|=2a+|F2P1|,|F1P2|=2a+|F2P2|,∴|F1P1|+|F1P2|-|P1P2|=2a+|F2P1|+2a+|F2P2|-|P1P2|=8+(|F2P1|+|F2P2|-|P1P2|)≥8(当且仅当P1,P2,F2三点共线时,取等号),∴|F1P1|+|F1P2|-|P1P2|的最小值是8.故选C.(1)①抓住“焦点三角形PF1F2”中的数量关系是求解本题的关键;②利用定义求动点的轨迹方程,要分清是差的绝对值为常数,还是差为常数,即是双曲线还是双曲线的一支.(2)利用双曲线定义求方程,要注意三点:①距离之差的绝对值;②2a<|F1F2|;③焦点所在坐标轴的位置.[即时训练] 1.已知动点M(x,y)满足(x+2)2+y2-(x-2)2+y2=4,则动点M的轨迹是()A.射线B.直线C.椭圆D.双曲线的一支答案 A解析设F1(-2,0),F2(2,0),由题意知动点M满足|MF1|-|MF2|=4=|F1F2|,故动点M的轨迹是射线,故选A.2.已知F是双曲线x24-y212=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.答案9解析设双曲线的右焦点为F1,则由双曲线的定义,可知|PF|=4+|PF1|,所以当|PF1|+|P A|最小时满足|PF|+|P A|最小.由双曲线的图象,可知当点A,P,F1共线时,满足|PF1|+|P A|最小,|AF1|即|PF1|+|PA|的最小值.又|AF1|=5,故所求的最小值为9.考向二双曲线的标准方程例2(1)已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1)B .y 2-x 248=1C .y 2-x 248=-1D .x 2-y 248=1答案 A解析 由题意,得|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线下支.∵在双曲线中,c =7,a =1,∴b 2=48,∴轨迹方程为y 2-x 248=1(y ≤-1).(2)(2020·河北石家庄毕业班摸底)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( )A .7x 216-y 212=1 B .y 23-x 22=1 C .x 2-y 23=1D .3y 223-x 223=1答案 C解析 因为双曲线的渐近线方程为y =±3x ,所以可设双曲线的方程为x 2-y23=λ(λ≠0),将点(2,3)代入其中,得λ=1,所以该双曲线的标准方程为x 2-y 23=1,故选C .求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点的轨迹是双曲线,由双曲线定义,确定2a,2b 或2c ,从而求出a 2,b 2,写出双曲线方程.(2)待定系数法:先确定焦点是在x 轴还是在y 轴,设出标准方程,再由条件确定a 2,b 2的值,即“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y 2n 2=λ(λ≠0),再根据条件求λ的值.注意:①双曲线与椭圆标准方程均可设为mx 2+ny 2=1(mn ≠0),其中m >0且n >0,且m ≠n 时表示椭圆;mn <0时表示双曲线,合理使用这种形式可避免讨论.②常见双曲线设法:(ⅰ)已知a =b 的双曲线,可设为x 2-y 2=λ(λ≠0); (ⅱ)已知过两点的双曲线,可设为Ax 2-By 2=1(AB >0); (ⅲ)已知渐近线为x m ±y n =0的双曲线,可设为x 2m 2-y 2n 2=λ(λ≠0).③双曲线的焦点位置仅靠渐近线是确定不了的,必须结合其他已知条件综合判断.④判断清楚所求轨迹是双曲线,还是双曲线的一支.若是双曲线的一支,则需确定是哪一支.[即时训练] 3.(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1 B .x 212-y 24=1 C .x 23-y 29=1 D .x 29-y 23=1答案 C解析 ∵双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2, ∴e 2=1+b 2a 2=4,∴b 2a 2=3,即b 2=3a 2,∴c 2=a 2+b 2=4a 2,由题意可设A (2a,3a ),B (2a ,-3a ), ∵b 2a 2=3,∴渐近线方程为y =±3x ,则点A 与点B 到直线3x -y =0的距离分别为d 1=|23a -3a |2=23-32a ,d 2=|23a +3a |2=23+32a ,又d 1+d 2=6,∴23-32a +23+32a =6,解得a =3,∴b 2=9.∴双曲线的方程为x 23-y 29=1,故选C .4.已知圆C :(x -3)2+y 2=4,定点A (-3,0),则过定点A 且和圆C 外切的动圆圆心M 的轨迹方程为__________.答案 x 2-y 28=1(x ≤-1)解析 设动圆M 的半径为R ,则|MC |=2+R ,|MA |=R ,所以|MC |-|MA |=2,由双曲线的定义知,M 点的轨迹是以A ,C 为焦点的双曲线的左支,且a =1,c =3,所以b 2=8,则动圆圆心M 的轨迹方程为x 2-y 28=1(x ≤-1).角度1 例3 (1)(2019·全国卷Ⅲ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A . 2B . 3C .2D . 5答案 A解析 令双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 的坐标为(c,0),则c =a 2+b 2.如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c2,由|OM |2+|MP |2=|OP |2,得⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫c 22=a 2,∴c a =2,即离心率e = 2.故选A .(2)若斜率为2的直线与双曲线x 2a 2-y 2b 2=1恒有两个公共点,则双曲线离心率的取值范围是( )A .(1,2)B .(2,+∞)C .(1,3)D .(3,+∞)答案 D解析 因为斜率为2的直线与双曲线x 2a 2-y 2b 2=1恒有两个公共点,所以ba >2,则e =c a =1+b 2a 2>1+2=3,所以双曲线离心率的取值范围是(3,+∞),故选D .求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用b 2=c 2-a 2和e =ca 转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.[即时训练] 5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,过F 1作倾斜角为30°的直线交双曲线右支于M 点,若MF 2⊥x 轴,则双曲线的离心率为( )A . 6B . 3C . 2D .33答案 B解析 如图所示,在Rt △MF 1F 2中,∠MF 1F 2=30°,|F 1F 2|=2c ,∴|MF 1|=2c cos30°=433c ,|MF 2|=2c ·tan30°=233c ,∴2a =|MF 1|-|MF 2|=433c -233c =233c ⇒e =ca = 3.6.已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)答案 D解析 依题意,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e<2,e 2-2e -1<0,(e -1)2<2,所以1<e <1+2,故选D . 角度2 双曲线的渐近线问题例4 (1)(2020·贵州综合测试一)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与圆(x -2)2+y 2=1相切,则双曲线C 的渐近线方程为( )A .y =±13x B .y =±33x C .y =±3x D .y =±3x 答案 B解析 由题可知双曲线C 的渐近线方程为y =±b a x ,圆心为(2,0),半径为1,易知圆心到渐近线的距离d =2b a 2+b2=1,故4b 2=a 2+b 2,即3b 2=a 2,则b a =33,故双曲线C 的渐近线方程为y =±33x ,选B .(2)(2019·全国卷Ⅰ)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin40°B .2cos40°C .1sin50°D .1cos50°答案 D解析 由题意可得-ba =tan130°,所以e = 1+b 2a 2=1+tan 2130°=1+sin 2130°cos 2130°=1|cos130°|=1cos50°.故选D .(1)渐近线的求法:求双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的方法是令x 2a 2-y 2b 2=0,即得两渐近线方程x a ±y b =0⎝ ⎛⎭⎪⎫y =±b a x . (2)双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.[即时训练] 7.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22xD .y =±32x答案 A解析 ∵e =c a =3,∴b 2a 2=c 2-a 2a 2=e 2-1=3-1=2,∴ba = 2.因为该双曲线的渐近线方程为y =±ba x ,所以该双曲线的渐近线方程为y =±2x ,故选A .8.(2019·全国卷Ⅲ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A .324B .322C .2 2D .3 2答案 A解析 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A .考向四 直线与双曲线的位置关系例5 已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)经过点P (2,1),且其中一焦点F 到一条渐近线的距离为1.(1)求双曲线Γ的方程;(2)过点P 作两条相互垂直的直线P A ,PB 分别交双曲线Γ于A ,B 两点,求点P 到直线AB 距离的最大值.解 (1)∵双曲线x 2a 2-y 2b 2=1过点(2,1),∴4a 2-1b 2=1.不妨设F 为右焦点,则F (c,0)到渐近线bx -ay =0的距离d =|bc |a 2+b2=b ,∴b =1,a 2=2,∴所求双曲线的方程为x 22-y 2=1.(2)当直线AB 的斜率不存在时,设A (x 0,y 0)(y 0>0),则B (x 0,-y 0),P A →=(x 0-2,y 0-1),PB →=(x 0-2,-y 0-1),∵P A →·PB →=0,∴(x 0-2)2-(y 0-1)(y 0+1)=0,由⎩⎪⎨⎪⎧x 20-4x 0-y 20+5=0,x 202-y 20=1,得⎩⎨⎧x 0=6,y 0=17或⎩⎨⎧x 0=2,y 0=1(舍去),即A (6,17),B (6,-17),此时点P 到AB 的距离为6-2=4.当直线AB 的斜率存在时,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +m .将y =kx +m 代入x 2-2y 2=2中,整理得(2k 2-1)x 2+4kmx +2m 2+2=0. ∴x 1+x 2=-4km2k 2-1,①x 1x 2=2m 2+22k 2-1.②∵P A →·PB→=0, ∴(x 1-2,y 1-1)·(x 2-2,y 2-1)=0,∴(x 1-2)(x 2-2)+(kx 1+m -1)(kx 2+m -1)=0, ∴(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+m 2-2m +5=0.③ 将①②代入③,得m 2+8km +12k 2+2m -3=0, ∴(m +2k -1)(m +6k +3)=0. 而P ∉AB ,∴m =-6k -3,从而直线AB 的方程为y =kx -6k -3.将y =kx -6k -3代入x 2-2y 2-2=0中,得(1-2k 2)x 2+(24k 2+12k )x -72k 2-72k -20=0,判别式Δ=16(17k 2+18k +5)>0恒成立, ∴y =kx -6k -3即为所求直线. ∴P 到AB 的距离d =|2k -6k -3-1|1+k2=4|k +1|k 2+1.∵⎝ ⎛⎭⎪⎫d 42=k 2+1+2kk 2+1=1+2k k 2+1≤2. ∴d ≤42,即此时点P 到直线AB 距离的最大值为4 2.∵42>4,故点P 到直线AB 距离的最大值为4 2.求解双曲线综合问题的主要方法双曲线的综合问题主要为直线与双曲线的位置关系.解决这类问题的常用方法是:(1)设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x (或y )的一元二次方程,利用根与系数的关系及整体代入的思想解题.(2)利用点差法.[即时训练] 9.设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同点A ,B .(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,取P A →=512PB →,求a 的值.解 (1)将y =-x +1代入双曲线x 2a 2-y 2=1(a >0)中,得(1-a 2)x 2+2a 2x -2a 2=0.所以⎩⎨⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1. 又双曲线的离心率e =1+a 2a =1a 2+1,所以e >62且e ≠2,即e ∈⎝ ⎛⎭⎪⎫62,2∪(2,+∞).(2)设A (x 1,y 1),B (x 2,y 2),P (0,1),因为P A →=512PB →,所以(x 1,y 1-1)=512(x 2,y 2-1), 由此得x 1=512x 2.由于x 1,x 2是方程(1-a 2)x 2+2a 2x -2a 2=0的两根,且1-a 2≠0,所以x 1+x 2=1712x 2=-2a 21-a 2,x 1x 2=512x 22=-2a 21-a 2,消去x 2得-2a 21-a 2=28960,由a >0,解得a =1713. 课时作业1.双曲线x 236-m 2-y 2m 2=1(0<m <3)的焦距为( )A .6B .12C .36D .236-2m 2答案 B解析 c 2=36-m 2+m 2=36,∴c =6.双曲线的焦距为12. 2.双曲线8kx 2-ky 2=8的一个焦点是(0,3),则k 的值是( ) A .1 B .-1 C .653 D .-63答案 B解析 ∵双曲线8kx 2-ky 2=8,焦点在y 轴上,∴双曲线的标准方程为y 2-8k-x 2-1k=1,又c =3,∴-8k -1k =9,解得k =-1. 3.(2019·湖南永州模拟)焦点是(0,±2),且与双曲线x 23-y 23=1有相同的渐近线的双曲线的方程是( )A .x 2-y 23=1B .y 2-x 23=1C .x 2-y 2=2D .y 2-x 2=2答案 D解析 由已知,双曲线焦点在y 轴上,且为等轴双曲线,故选D . 4.(2019·辽宁凌源联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的顶点(a,0)到渐近线y =b a x 的距离为b2,则双曲线C 的离心率是( )A .2B .3C .4D .5答案 A解析 因为顶点(a,0)到渐近线y =b a x 的距离d =ab a 2+b 2=b 2,所以a c =12,所以e =ca =2.故选A .5.(2019·山东滕州月考)已知双曲线x 225-y 29=1的左、右焦点分别为F 1,F 2,若双曲线的左支上有一点M 到右焦点F 2的距离为18,N 是MF 2的中点,O 为坐标原点,则|NO |等于( )A .23B .1C .2D .4 答案 D解析 由双曲线x 225-y 29=1,知a =5,由双曲线定义,得|MF 2|-|MF 1|=2a =10,得|MF 1|=8,所以|NO |=12|MF 1|=4.6.虚轴长为2,离心率e =3的双曲线的两焦点为F 1,F 2,过F 1作直线交双曲线的一支于A ,B 两点,且|AB |=8,则△ABF 2的周长为( )A .3B .16+ 2C .12+ 2D .24 答案 B解析 由于2b =2,e =ca =3,∴b =1,c =3a ,∴9a 2=a 2+1,∴a =24.由双曲线的定义知,|AF 2|-|AF 1|=2a =22,① |BF 2|-|BF 1|=22,②由①+②,得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=2, 又|AF 1|+|BF 1|=|AB |=8, ∴|AF 2|+|BF 2|=8+2,则△ABF 2的周长为16+2,故选B .7.(2019·全国卷Ⅲ)已知F 是双曲线C :x 24-y 25=1的一个焦点,点P 在C 上,O 为坐标原点.若|OP |=|OF |,则△OPF 的面积为( )A .32B .52C .72D .92答案 B解析 由F 是双曲线x 24-y 25=1的一个焦点,知|OF |=3,所以|OP |=|OF |=3.不妨设点P在第一象限,P (x 0,y 0),x 0>0,y 0>0,则⎩⎨⎧x 20+y 20=3,x 204-y 205=1,解得⎩⎪⎨⎪⎧x 20=569,y 20=259,所以P ⎝ ⎛⎭⎪⎫2143,53,所以S △OPF =12|OF |·y 0=12×3×53=52.故选B . 8.过双曲线x 2a 2-y 23=1(a >0)的右焦点F 作直线l 与双曲线交于A ,B 两点,使得|AB |=6,若这样的直线有且只有两条,则a 的取值范围是( )A .(0,1]∪(3,+∞)B .(0,1)∪(3,+∞)C .(0,1)D .(3,+∞)答案 B解析 若A ,B 在同一支上,则有|AB |min =2b 2a =6a ; 若A ,B 不在同一支上,则|AB |min =2a .依题意, 得6a 与2a 不可能同时等于6,所以⎩⎪⎨⎪⎧2a >6,6a <6或⎩⎪⎨⎪⎧2a <6,6a>6,解得a >3或0<a <1,故选B .9.已知点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是( )A .6B .8C .10D .12答案 C解析 由题意可知点C 3,C 2分别是双曲线C 1:x 216-y 29=1的左、右焦点,点P 在双曲线的左支上,则|PC 2|-|PC 3|=8.|PQ |max =|PC 2|+1,|PR |min =|PC 3|-1,所以|PQ |-|PR |的最大值为(|PC 2|+1)-(|PC 3|-1)=|PC 2|-|PC 3|+2=8+2=10.故选C .10.(2019·河南豫南、豫北联考)已知直线y =x +1与双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,且线段AB 的中点M 的横坐标为1,则该双曲线的离心率为( )A . 2B . 3C .2D . 5答案 B解析 由题意得M (1,2).设A (x 1,y 1),B (x 2,y 2),分别代入双曲线方程,两式相减并整理得y 21-y 22x 21-x 22=b 2a 2=k AB ·k OM =2.∴b 2=2a 2,即c 2-a 2=2a 2,∴e = 3.故选B .11.(2020·安徽淮南联考)已知双曲线x 24-y 22=1的右焦点F ,P 为双曲线左支上一点,点A (0,2),则△APF 的周长的最小值为( )A .4+ 2B .4(1+2)C .2(2+6)D .6+3 2答案 B解析 双曲线x 24-y 22=1的右焦点为F (6,0),设其左焦点为F ′.△APF 的周长l =|AF |+|AP |+|PF |=|AF |+|AP |+2a +|PF ′|,要使△APF 周长最小,只需|AP |+|PF ′|最小.如图,当A ,P ,F ′三点共线时l 取到最小值,且l min =2|AF |+2a =4(1+2).故选B .12.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A . 5B .2C . 3D . 2答案 C解析 由题可知|PF 2|=b ,|OF 2|=c ,∴|PO |=a . 在Rt △POF 2中,cos ∠PF 2O =|PF 2||OF 2|=b c ,∵在△PF 1F 2中,cos ∠PF 2O =|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2-(6a )22b ·2c =b c⇒c 2=3a 2,∴e = 3.故选C .13.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.答案 x 24-y 2=1解析 根据渐近线方程为x ±2y =0,可设双曲线方程为x 2-4y 2=λ(λ≠0).因为双曲线过点(4,3),所以42-4×(3)2=λ,即λ=4.故双曲线的标准方程为x 24-y 2=1.14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2作与x 轴垂直的直线与双曲线一个交点为P ,且∠PF 1F 2=π6,则双曲线的渐近线方程为________.答案 y =±2x解析 根据已知可得,|PF 2|=b 2a 且|PF 1|=2b 2a ,故2b 2a -b 2a =2a ,所以b 2a 2=2,ba =2,双曲线的渐近线方程为y =±2x .15.(2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________.答案 2解析 解法一:由F 1A →=AB →,得 A 为F 1B 的中点.又O 为F 1F 2的中点,∴OA ∥BF 2. 又F 1B →·F 2B →=0,∴∠F 1BF 2=90°. ∴|OF 2|=|OB |,∴∠OBF 2=∠OF 2B . 又∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B , ∴∠BOF 2=∠OF 2B =∠OBF 2, ∴△OBF 2为等边三角形.如图1所示,∵点B 在直线y =-ba x 上,∴-b a =-3,∴离心率e =c a =1+⎝ ⎛⎭⎪⎫b a 2=2. 解法二:∵F 1B →·F 2B →=0, ∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c . 如图2,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=ba ,且|BH |2+|OH |2=|OB |2=c 2, ∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c,0). 又F 1A →=AB →,∴A 为F 1B 的中点. ∴OA ∥F 2B ,∴b a =bc -a ,∴c =2a ,∴离心率e =ca=2.16.(2020·泉州摸底)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b 2a ,P 为双曲线C 右支上一点,I 为△PF 1F 2的内心,若S △IPF 1=S △IPF 2+λS △IF 1F 2成立,则双曲线的离心率为________,λ的值为________.答案5+12 5-12解析 由F 1,F 2分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b 2a ,可得2c =2b 2a =2c 2-2a 2a ,化简得e 2-e -1=0.∴e >1,∴e =1+52.设△PF 1F 2的内切圆半径为r ,由双曲线的定义得|PF 1|-|PF 2|=2a ,|F 1F 2|=2c ,S △IPF 1=12|PF 1|·r ,S △IPF 2=12|PF 2|·r ,S △IF 1F 2=12·2c ·r =cr ,由S △IPF 1=S △IPF 2+λS △IF 1F 2得,12|PF 1|·r =12·|PF 2|·r +λcr ,故λ=|PF 1|-|PF 2|2c =a c =11+52=5-12.17.平面内一动点P 与两定点(-1,0),(1,0)的斜率之积为2. (1)求动点P 的轨迹曲线C 的方程;(2)过点M (1,1)能否作一条直线l 与曲线C 交于A ,B 两点,且M 为线段AB 的中点,若能,求出l 的方程,若不能,请说明理由.解 (1)设P (x ,y ),则y x +1·y x -1=2,化简得x 2-y 22=1(x ≠±1).(2)假设能,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21-y 212=1,x 22-y 212=1,两式相减得(x 1+x 2)(x 1-x 2)-12(y 1+y 2)(y 1-y 2)=0,又x 1+x 2=2,y 1+y 2=2,所以直线l 的斜率k =y 1-y 2x 1-x 2=2,所以直线l 的方程为y =2x -1.将y =2x -1代入x 2-y 22=1,得2x 2-4x +3=0,此方程无解,与假设矛盾,所以不存在直线l .18.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.解 (1)∵双曲线的渐近线为y =±ba x ,∴a =b , ∴c 2=a 2+b 2=2a 2=4,∴a 2=b 2=2, ∴双曲线方程为x 22-y 22=1. (2)设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1,∴x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程,得3y 20+y 20=c 2,即y 0=12c , ∴x 0=32c ,∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,c 2,将其代入双曲线方程,得34c 2a 2-14c 2b 2=1,即34b 2c 2-14a 2c 2=a 2b 2.②又a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式, 整理得34c 4-2a 2c 2+a 4=0,∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0,∴(3e 2-2)(e 2-2)=0.∵e >1,∴e =2,∴双曲线的离心率为 2.19.(2019·承德模拟)已知点M (-2,0),N (2,0),动点P 满足条件|PM |-|PN |=22,记动点P 的轨迹为W .(1)求W 的方程;(2)若A 和B 是W 上的不同两点,O 是坐标原点,求OA →·OB →的最小值. 解 (1)由|PM |-|PN |=22知动点P 的轨迹是以M ,N 为焦点的双曲线的右支,半实轴长a = 2.又焦距2c =4,所以半虚轴长b =c 2-a 2= 2. 所以W 的方程为x 22-y 22=1(x ≥2). (2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 当AB ⊥x 轴时,x 1=x 2,y 1=-y 2, 从而OA →·OB →=x 1x 2+y 1y 2=x 21-y 21=2. 当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m (k ≠±1),与W 的方程联立,消去y 得(1-k 2)x 2-2kmx -m 2-2=0,则x 1+x 2=2km 1-k 2,x 1x 2=m 2+2k 2-1,所以OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m ) =(1+k 2)x 1x 2+km (x 1+x 2)+m 2 =(1+k 2)(m 2+2)k 2-1+2k 2m 21-k 2+m 2=2k 2+2k 2-1=2+4k 2-1. 又因为x 1x 2>0,所以k 2-1>0.所以OA →·OB →>2. 综上所述,当AB ⊥x 轴时,OA →·OB→取得最小值2. 20.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),求实数m 的取值范围.解 (1)设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知,得a =3,c =2.由a 2+b 2=c 2,得b 2=1. 故双曲线C 的方程为x 23-y 2=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 23-y 2=1,得(1-3k 2)x 2-6kmx -3m 2-3=0.∵直线与双曲线有两个不同的交点, ∴⎩⎨⎧1-3k 2≠0,Δ=12(m 2+1-3k 2)>0, 可得m 2>3k 2-1且k 2≠13.①设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为B (x 0,y 0). 则x 1+x 2=6km 1-3k 2,x 0=x 1+x 22=3km1-3k 2, y 0=kx 0+m =m 1-3k 2. 由题意,知AB ⊥MN ,∴k AB =m1-3k 2+13km 1-3k 2=-1k (k ≠0,m ≠0),整理得3k 2=4m +1.②将②代入①,得m 2-4m >0,∴m <0或m >4. 又3k 2=4m +1>0(k ≠0),∴m >-14, 又k 2≠13,∴m ≠0,∴m 的取值范围是⎝ ⎛⎭⎪⎫-14,0∪(4,+∞).。