电磁学ppt课件
麦克斯韦电磁理论电磁学.ppt
![麦克斯韦电磁理论电磁学.ppt](https://img.taocdn.com/s3/m/13c75c0cf11dc281e53a580216fc700abb68522a.png)
电位移通量和位移电流
引入电位移通量:通过任一曲面S的电位移通
量。
D D • d S
由此,麦克斯韦S 定义了位移电流ID和电流密度 jD(电位移矢量的时间变化率):
ID
d D dt
S
D •dS t
S
jD • d S
传导电流和位移电流合起来称为全电流。
I
S
j0
•
dS
S
D t
•
dS
S
(
j0
电磁波和光波是性质相同的波,因此v 麦1/ 克0斯0 韦 预言光就是电磁波。
§10.3.2定态波动方程
讨论在介质中的情况:一般介质的介电常数和磁导率 都是随电磁波的频率而变的,这种现象称为介质的色 散。
对于一般的电磁场,无法推导出电场和磁场的波动方 程,但在很多实际情况下,电磁场的激发源往往以大 致确定的频率作简谐振动,因而辐射的电磁波也以相 同频率作简谐振动,这种以一定频率作简谐振动的波, 称为定态电磁波或单色波。
代入自由空间的麦克斯韦方程组,并消去共同因子,
可得:
E j H
H j E
• E 0
• H 0
由此可得一定频率下电磁波的基本方程:
2 E k2 E 0
又称为Helmholtz方程,式中 k
总结起来,对在介质中传播的频率一定的单色 电磁波,麦克斯韦方程组可化为:
一般情况下,平面电磁波的表达式为:
E(x,t) E0e j(k•rt) 式中,k是沿电磁波传播方向的一个常矢量,
称为波矢,大小为:
k 2 /
电磁波的电场波动是横波:
由
• E E0 • e j(k•rt) jk • E 0
可得 k • E 0
大学物理《电磁学》PPT课件
![大学物理《电磁学》PPT课件](https://img.taocdn.com/s3/m/2d217d68dc36a32d7375a417866fb84ae45cc3b9.png)
电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势
大学物理《电磁学》PPT课件
![大学物理《电磁学》PPT课件](https://img.taocdn.com/s3/m/32ef74c7aa00b52acfc7ca24.png)
2 2 B Bx B y 0.1T
Bz tan 0.57 Bx
300
~1012T ~106T ~7×104T ~0.3T ~10-2T ~5×10-5T ~3×10-10T
资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
2.电场与磁场的相对性
S应线是闭 合的,因此它在任 意封闭曲面的一侧 穿入,必在另一侧 全部穿出。
↑载流螺线管的磁感应线 ←载流直导线的磁感应线 比较
1 e E dS
S
0
Q
dV
静电场中高斯定理反映静电场是有源场;
m B dS 0
安 培 演 示 电 流 相 互 作 用 的 装 置 ( 复 制 品 )
电流与电流之间的相互作用
I
F F
I
电流与电流之间的相互作用
I F
F
I
磁场对运动电荷的作用
电子束
+
磁场对运动电荷的作用
电子束
S N
+
我们得把问题引向一个更深的层次 思想深邃的科学家自问:磁铁究竟是什么?如 果磁场是由电荷运动激发的,那么来自一块磁铁的 磁场是否也可能是由于电流的的效果呢? 安培用通电螺线管很好地模拟了一个磁针:
①方向: 曲线上一点的切 线方向和该点的磁场 方向一致。 ②大小:
磁感应线的疏密反映磁场的强弱。
B
③性质: •磁感应线是无头无尾的闭合曲线,磁场中任 意两条磁感应线不相交。 •磁感应线与电流线铰链 通过无限小面元dS 的磁感应线数目dm与dS 的 比值称为磁感应线密度。我们规定磁场中某点的磁
2
电磁学PPT课件
![电磁学PPT课件](https://img.taocdn.com/s3/m/e53fa749bfd5b9f3f90f76c66137ee06eff94e3f.png)
目录
• 电磁学基本概念与原理 • 静电场分析与应用 • 恒定电流与稳恒磁场研究 • 电磁波传播与辐射特性探讨 • 电磁学在日常生活和工业生产中应用实例
01
电磁学基本概念与原理
Chapter
电场与磁场定义及性质
01
电场
由电荷产生的特殊物 理场,描述电荷间的 相互作用。
02
磁场
由运动电荷或电流产 生的特殊物理场,描 述磁极间的相互作用 。
3
方程组中各量的含义及相互关系
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
电磁波产生、传播和接收过程
电磁波的产生
变化的电场和磁场相互激发,形 成电磁波。
电磁波的传播
电磁波在真空或介质中传播,速度 取决于介质的性质。
电磁波的接收
通过天线等接收装置,将电磁波转 换为电信号进行处理。
描述稳恒磁场的方法
介绍描述稳恒磁场的物理量,如磁感应强度、磁通量等,并给出相 应的定义和计算公式。
稳恒磁场的性质
列举稳恒磁场的基本性质,如磁场的叠加性、磁场的无源性等。
洛伦兹力与霍尔效应原理
洛伦兹力的定义和公式
阐述洛伦兹力的概念,即运动电荷在磁场中所受到的力,并给出 相应的计算公式。
霍尔效应的原理
03
电场性质
对电荷有力的作用, 具有能量和动量。
04
磁场性质
对运动电荷或电流有 力的作用,也具有能 量和动量。
库仑定律与高斯定理
01
02
03
库仑定律
描述真空中两个静止点电 荷之间的相互作用力,与 电荷量的乘积成正比,与 距离的平方成反比。
电磁学全套ppt课件
![电磁学全套ppt课件](https://img.taocdn.com/s3/m/77214369dc36a32d7375a417866fb84ae45cc3b6.png)
由于磁场变化而产生的感应电动势。 其大小与磁通量变化的快慢有关,即 与磁通量对时间的导数成正比。
自感和互感现象在生活生产中应用
自感现象
当一个线圈中的电流发生变化时,它所产生的磁通量也会发生变化,从而在线圈自身中 产生感应电动势。自感现象在电子线路中有着广泛的应用,如振荡电路、延时电路等。
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
电流产生条件
导体两端存在电压差,形成电场 ,使自由电子定向移动形成电流
。
电流方向规定
正电荷定向移动的方向为电流方向 ,负电荷定向移动方向与电流方向 相反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
联系专业电工进行处理。
THANKS
感谢观看
特点介绍
正弦交流电具有周期性、连续性、可变性等 特点。其电压和电流的大小和方向都随时间 作周期性变化,且波形为正弦曲线。
三相交流电传输优势分析
传输效率高
三相交流电采用三根导线 同时传输电能,相比单相 交流电,其传输效率更高 ,线路损耗更小。
大学物理:电磁学PPT
![大学物理:电磁学PPT](https://img.taocdn.com/s3/m/6ba50b7248d7c1c708a145d0.png)
N F4
O
F2 B
en
M,N F1
O,P B
F2
en
l1 l1 M F1 sin F2 sin Il2 B l1 sin ISB sin 2 2 M IS B m B 线圈有N匝时 m NIS
2 电流元的磁场
dB
P *
I
Idl
0 Idl dB er 2 4 r
——毕奥-萨伐尔定律
r
3
磁场的叠加原理
B Bi
i
B dB
例 1: 判断下列各点磁感强度的方向和大小.
1 8 2Βιβλιοθήκη dB 0 1、 5 点 :
7
Idl
R
6 5 4
例 5:
一半径为R,均匀带电Q的薄球壳。 求球壳内外任意点的电场强 度。
0 r R 如图,过P点做球面S1 E dS E dS 0 E 0
S1 S1
r
P
+ + +
+
S +1
O
如图,过P点做球面S2 rR E dS E dS Q / 0
rB
(electric potential )
点电荷电场 中的电势:
V
Q 40 r
电势的叠加 原理:
V Vi
i
点电荷电场中常取 无穷远处为电势零点
点电荷的电场线和等势面:
两平行带电平板的电场线和等势面:
+ + + + + + + + + + + +
大学物理电磁学总结(精华)ppt课件(2024)
![大学物理电磁学总结(精华)ppt课件(2024)](https://img.taocdn.com/s3/m/beff8a153a3567ec102de2bd960590c69ec3d8af.png)
34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流
。
电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制
张三慧大学物理《电磁学》PPT课件
![张三慧大学物理《电磁学》PPT课件](https://img.taocdn.com/s3/m/8a3577f64693daef5ef73da1.png)
资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
15.2 磁通量 磁场中的高斯定理
1. 磁感应线 用磁感应线描述磁场的方法是:在磁场中画一 簇曲线,曲线上每一点的切线方向与该点的磁场方 向一致,这一簇曲线称为磁感应线。
①方向: 曲线上一点的切 线方向和该点的磁场 方向一致。 ②大小:
S
稳恒磁场的高斯定理反映稳恒磁场是无源场。
又称磁通密度 (magnetic flux density)
直线电流的磁感应线
I I
B
圆电流的磁感应线
B
I
I
通电螺线管的磁感应线
I
中子星的磁感应线
2. 磁通量(magnetic flux) 通过磁场中任一面积的磁感应线数称为通过 该面的磁通量,用m 表示。 ①均匀磁场,磁感应线垂直通过S
m B dS BdS cos
3.磁场中的高斯定理
高斯定理的微分形式
B 0
m B dS 0
S
─穿过任意闭合曲面的磁通量为零。 这是无磁单极的必然结果。
C 型、 U 型 永磁体的外部磁 感应线
m B dS 0
4、奥斯特实验
5、平行电流间的相互作用力
I F I F
二、磁力与电荷的运动的关系 在上述磁的基本现象中,平行电流的相互作用可 以说是运动电荷之间的相互作用,因为电流是电荷 的定向运动形成的,其他的都是永磁体。为什么说 他们也是运动电荷的相互作用呢?这是因为永磁体 也是由分子和原子组成的,在分子内部,电子和质 子等带电粒子的运动也形成微小的电流,叫做分子 电流。当成为磁体时,其内部的分子电流的方向按 一定的方式排列起来了。因此他们之间的相互作用 也是运动电荷之间的相互作用的表现。 结论:在所有情况下,磁力都是运动电荷之间 的相互作用的表现。
电磁学基本知识ppt课件
![电磁学基本知识ppt课件](https://img.taocdn.com/s3/m/a811b1c465ce0508763213de.png)
在匀强磁场中,若磁感应强度B与横截面S垂直, 上式可写为: Ф=BS
穿过任一闭合面的磁通为零,用公式表示为:
S B dS 0
(3) 磁场强度 把用来表达磁场强弱的物理量,称为磁场强度,
用H来表示,单位为安/米(A/m)。磁场强度只与产 生磁场的宏观传导电流大小及导体的形状有关,而与
④ 验证:列出的总方程数应该等于所设的支路电 流的个数。
【例1.7】图1.16所示电路中,已知电源电动势E1=18V, E2=6V;电阻R1=6Ω,R2=R3=3Ω。试用基尔霍夫电流和 电压定律求图中的电流I1、I2、I3 【解】根据基尔霍夫电流定律,对节点A
I1+I2-I3=0
图1.16
I1R1-I2R2=E1-E2 I2R2+I3R3=E2
一个元件或一段电路上既有电压的参考方向, 也有电流的参考方向,如果这两个参考方向一致, 称之为关联参考方向,反之,称为非关联参考方向。 如图1.5所示。
图1.4
图1.5
(3) 电动势 电动势就是反映电源内部电源力(即非电场力)
做功能力的物理量,它的大小反映电源力做功能力 的大小,用E
图1.3
E W Q
(1) 磁感应强度是反映磁场中某一点磁场性质的基本
物理量。用大写字母B表示,它是一个矢量,它的方 向就是置于磁场中该点的小磁针的N极指向,它的大 小等于单位正电荷垂直于磁场方向以单位速度运动时
数学表达式为: B F qv
(2) 穿过某一横截面S的磁感应强度B的通量称为磁通
量,简称磁通,用Φ表示,单位为韦伯(Wb),磁通
是:“在任一瞬间,对电路的任一节点,流入该节
点的电流之和等于流出该节点的电流之和。”其数
大学物理电磁学PPT课件
![大学物理电磁学PPT课件](https://img.taocdn.com/s3/m/13abb4a65ff7ba0d4a7302768e9951e79b8969d0.png)
磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍
大学物理《电磁学》PPT课件
![大学物理《电磁学》PPT课件](https://img.taocdn.com/s3/m/f13cdb48df80d4d8d15abe23482fb4daa58d1de7.png)
大学物理《电磁学》PPT课件•电磁学基本概念与原理•静电场中的导体和电介质•恒定电流及其应用•磁场性质与描述方法•电磁感应原理及技术应用•电磁波传播特性及技术应用目录CONTENTS01电磁学基本概念与原理电场强度描述电场强弱的物理量,其大小与试探电荷所受电场力成正比,与试探电荷的电荷量成反比。
静电场由静止电荷产生的电场,其电场线不随时间变化。
电势与电势差电势是描述电场中某点电势能的物理量,电势差则是两点间电势的差值,反映了电场在这两点间的做功能力。
欧姆定律描述导体中电流、电压和电阻之间关系的定律。
恒定电流电流大小和方向均不随时间变化的电流。
静电场与恒定电流磁场磁感应强度磁性材料磁路与磁路定律磁场与磁性材料由运动电荷或电流产生的场,其对放入其中的磁体或电流有力的作用。
能够被磁场磁化并保留磁性的材料,分为永磁材料和软磁材料。
描述磁场强弱的物理量,其大小与试探电流所受磁场力成正比,与试探电流的电流强度和长度成反比。
磁路是磁性材料构成的磁通路径,磁路定律描述了磁路中磁通、磁阻和磁动势之间的关系。
描述变化的磁场产生感应电动势的定律。
法拉第电磁感应定律描述感应电流方向与原磁场变化关系的定律。
楞次定律描述磁场与变化电场之间关系的定律。
麦克斯韦-安培环路定律由变化的电场和磁场相互激发而产生的在空间中传播的电磁振荡。
电磁波电磁感应与电磁波麦克斯韦方程组及物理意义麦克斯韦方程组由四个基本方程构成的描述电磁场基本规律的方程组,包括高斯定理、高斯磁定理、法拉第电磁感应定律和麦克斯韦-安培环路定律。
物理意义麦克斯韦方程组揭示了电磁现象的统一性,预测了电磁波的存在,为电磁学的发展奠定了基础。
同时,该方程组在物理学、工程学等领域具有广泛的应用价值。
02静电场中的导体和电介质导体在静电场中的性质静电感应当导体置于外电场中时,导体内的自由电子受到电场力的作用,将重新分布,使得导体内部电场为零。
静电平衡当导体内部和表面的电荷分布不再随时间变化时,称导体达到了静电平衡状态。
2024版电磁学电子教案ppt课件
![2024版电磁学电子教案ppt课件](https://img.taocdn.com/s3/m/c045ddcced3a87c24028915f804d2b160b4e86c3.png)
电子技术
电磁学在电子技术领域有 着广泛应用,如电子器件、 集成电路、电子计算机等。
能源技术
电磁感应原理在能源技术 领域有着重要应用,如发 电机、电动机、变压器等。
5
课程目标与学习方法
课程目标
掌握电磁学的基本概念和原理,理解 电磁现象的本质和规律,培养分析和 解决电磁问题的能力。
学习方法
2024/1/29
8
电场强度与叠加原理
2024/1/29
电场强度的定义和物理意义
01
描述电场的力的性质,电场强度的矢量性
点电荷的电场强度
02
点电荷周围电场强度的分布和计算
叠加原理
03
多个点电荷产生的电场强度的叠加,电场强度的叠加满足矢量
叠加原理
9
高斯定理及其应用
2024/1/29
高斯定理的内容和物理意义
2024/1/29
44
电磁感应实验:法拉第圆盘发电机
3. 调整磁场发生装置,使磁场 方向垂直于圆盘表面。
4. 手动旋转圆盘或利用电机驱 动圆盘旋转,观察电流表的变化
41
磁场实验:霍尔效应测量
3. 调整磁场发生装置,使磁场 方向垂直于霍尔元件表面。
2024/1/29
4. 记录电压表的读数,并计算 磁场的强度。
5. 改变磁场方向或电流方向, 重复实验,观察霍尔电势的变 化规律。
42
电磁感应实验:法拉第圆盘发电机
实验目的
了解电磁感应原理,掌握法拉第圆盘发电机的使用方法。
3
电磁学定义与发展历程
2024/1/29
定义
电磁学是研究电和磁的相互作用以 及电磁场性质的科学分支。
发展历程
《电磁学》PPT课件
![《电磁学》PPT课件](https://img.taocdn.com/s3/m/318cb4227f21af45b307e87101f69e314232fa47.png)
磁场
由运动电荷(电流)产生的特 殊物理场,描述磁极间的相互
作用。
电场性质
对放入其中的电荷有力的作用, 且力的方向与电荷的电性有关。
磁场性质
对放入其中的磁体或通电导线 有力的作用,且力的方向与电
流方向及磁场方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相 互作用力,与电荷量的乘积成正比, 与距离的平方成反比。
超导材料在电磁领域应用前景
01
超导材料的基本特 性
零电阻、完全抗磁性Fra bibliotek02超导材料在电磁领 域的应用
超导磁体、超导电缆、超导电机 等
03
超导材料应用前景 展望
高温超导材料、超导电子学器件 等
太赫兹技术发展现状和挑战
太赫兹技术的概念和特点
介于微波和红外之间的电磁波
太赫兹技术发展现状
太赫兹源、太赫兹探测器、太赫兹波谱仪等
05
电磁波传播与辐射理论
麦克斯韦方程组内容解读
麦克斯韦方程组的四个基本方程
01
高斯定律、高斯磁定律、麦克斯韦-安培定律、法拉第感应定律。
方程组的物理意义
02
揭示了电荷、电流与电场、磁场之间的内在联系,描述了电磁
场的产生、传播和变化规律。
方程组在电磁学中的地位
03
是电磁学的基石,为电磁波理论、电磁辐射和天线设计等领域
实例分析
通过具体磁路实例,如电磁铁、变压器等,分析磁路的结构、工作原理和性能特点。
铁磁材料特性及应用领域
铁磁材料特性
具有高磁导率、低矫顽力、高饱和磁感应 强度等特点,易于实现磁化和退磁。
VS
应用领域
广泛应用于电机、变压器、继电器、扬声 器等电气设备中,以及磁记录、磁放大等 领域。
2024版年电磁学全套课件完整版x
![2024版年电磁学全套课件完整版x](https://img.taocdn.com/s3/m/35b4af58cd7931b765ce0508763231126fdb7747.png)
静电屏蔽
利用导体静电平衡的特性实现静电屏蔽的原理及 应用。
2024/1/27
10
介质中静电场传播规律
电介质的极化
电介质在静电场中的极化现象及 极化机制,包括电子极化、原子 极化和取向极化等。
介质中的电场强度
电介质中的电场强度与自由电荷 和极化电荷的关系,以及介质中 的高斯定理。
介质中的电位移矢量
电位移矢量的定义及物理意义, 以及介质中的电位移矢量与电场 强度的关系。
2024/1/27
电磁环境与健康关系研究
关注电磁辐射对人类健康的影响,开展相关 研究和评估工作。
32
感谢您的观看
THANKS
2024/1/27
33
2024/1/27
普朗克公式
为了解释黑体辐射的实验结果,德国物理学 家普朗克在1900年提出了一个公式,即普朗 克公式。该公式描述了黑体辐射的能量分布 与频率、温度之间的关系,并引入了量子化
的概念,为量子力学的建立奠定了基础。
24
康普顿散射实验和汤姆逊模型
要点一
康普顿散射实验
要点二
汤姆逊模型
康普顿散射是指X射线或伽马射线与物质相互作用时,光子将 部分能量转移给电子,使电子获得动能并从原子中逸出的现 象。康普顿散射实验证实了光具有粒子性,即光子的存在。
2024/1/27
14
磁感应强度计算方法
磁感应强度的定义
磁感应强度是描述磁场强弱和方向的物理量,用B表示,单位为特斯拉(T)。
磁感应强度的计算方法
根据毕奥-萨伐尔定律和安培环路定理,可以计算载流导线或电流回路在空间任一点产生的磁感应强度。
2024/1/27
15
霍尔元件工作原理及应用
【2024版】大学物理电磁学课件PPT
![【2024版】大学物理电磁学课件PPT](https://img.taocdn.com/s3/m/2f03e0c5f424ccbff121dd36a32d7375a417c62e.png)
N•
俯视图
力偶矩
df
dM= —0—4I1—I2 cot(—2 )d
2Rsin(
)
=
—0—I1—I2
cos2—2
d
df
M
0I1I2R cos2 d
0
2
= —0—I21—I2R—
+ =/2 I S= pm
d•
l1 I
B
M=B pmsin 矢量式: M pm B (6-42)
fab
f
pm
BI l sin
(2) N 匝矩形线圈
pm
pm
f cd
INI fNf 但合力矩增为N倍
合Байду номын сангаас仍为0,
稳定 平衡
l1
I
非稳定平• 衡
适用于任意M形=MN状(B的IpS平msin面B线) =圈B在pm匀si强n磁场中的情况。fab
3
由对称性分析可知: f2=f3
I1
d l2
f1
I2 I2dl2 I2 dl1
l1
b
a
f3
c
f2
y
x
O
fy= f3y f2y =0
f= fx= 2f2xf1 =2f2cos60 f1 = < 0 方向指向I1 。
三.磁场对载流线圈 的作用
1.匀强磁场中的载流线圈 (1) 单匝矩形线圈
fad d B
df
Idl
d f 的大小:d f BI dlsin
方向: 由 I d l B 决定
B
一.安培定律
矢量式
d f Idl B
df
Idl
d f 的大小: d f BI dl sin
大学物理电磁学ppt完整版
![大学物理电磁学ppt完整版](https://img.taocdn.com/s3/m/4144db9a27fff705cc1755270722192e453658e0.png)
05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。
电磁学PPT
![电磁学PPT](https://img.taocdn.com/s3/m/81790badb8f67c1cfad6b8d2.png)
§16.1 法拉第电磁感应定律 §16.2 动生电动势 §16.3 感生电动势 §16.4 自感和互感 §16.5 磁场的能量 §16.6 位移电流 §16.7 麦克斯韦方程组 §16.8 电磁波
1
§1 法拉第电磁感应定律
NS
1. 电磁感应现象
B
b
Fm v
G
a
当穿过一个闭合导体回路所包围的面积内的磁通量发 生变化时(不论这种变化是由什么原因引起的),在导体 回路中就有电流产生。这种现象称为电磁感应现象。
求:任意时刻 t,线框中感应电动势的表达式
解:
t时刻B: 20xI
I
b
×
B
a
c
x
l v
mdm
xa
x
0I ldx 2x
a dx d
0Il lnxa 2 x
14
dm
dt
0 Il 2
x
x
a
x
x x2
a
dx dt
0Il a v 2 x(x a)
方向:楞次定律
m20Illnxxa
15
例3. 若上题中 v = 0,I = I0sin t,则结果如何?
1851年,曾被一致推选为英国皇家学会会长,但被他 坚决推辞掉了。1867年8月25日,他坐在书房的椅子上安 祥地离开了人世。遵照他的遗言,在他的墓碑上只刻了名 字和生死年月。
5
二 、 楞次定律
表述:闭合回路感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化
N
S
N
S
6
楞次(1804~1865)俄国物理学家。
L
Er
d
l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回路中所产生的电流称为感应电流。 相应的电动势则称为感应电动势。
.
2
一线圈,如果要有感应电流产生,通过它的磁场 要满足什么条件?
那就是:通过线圈的磁通要发生变化 其途径有三:1.部分导体作切割磁力线运动
2.改变磁场 3.导体不动,磁场不变,改变磁介质
.
3
法拉第于1791年出生在英国伦敦附近 的一个小村里,父亲是铁匠,自幼家境 贫寒,无钱上学读书。13岁时到一家书 店里当报童,次年转为装订学徒工。
d 1 d 2
dt dt
磁通链数(或全磁通): Ψ 1 2 3
d d(1 2 3 )
dt
dt
若每匝磁通量相同 d N d
dt
dt
设闭合导体回路中的总电阻为R,由全电路欧姆定律
得回路中的感应电流为:
Ii
i
R
1 R
dΦ dt
.
11
例1 空间上均匀的磁场 B= kt (k > 0),方向如图。 导a线 以 bv 匀速右平动。
.
4
1821年法拉第读到了奥斯特的描述他发现电流磁效应 的论文《关于磁针上的电碰撞的实验》。该文给了他很大 的启发,使他开始研究电磁现象。经过十年的实验研究, 在1831年,他终于发现了电磁感应现象。
1833年,法拉第发现了电解定律,1837年发现了电解 质对电容的影响,引入了电容率概念。1845年发现了磁 光效应,后又发现物质可分为顺磁质和抗磁质等。
.
9
3.法拉第电磁感应定律
叙述:导体回路中的感应电动势 的大小与穿过导体回路的
磁通量的变化率成正比。
dm
dt
负号是楞次定律的要求。
所以也可这样做:
(1)直接用 dm 算大小
dt
(2)楞次定律定方向
利用法拉第电磁感应定律
求的关键:求m
.
10
若有N 匝线圈,彼此串联,总电动势等于各匝线圈所产生 的电动势之和。令每匝的磁通量为 1、 2 、 3
求:t 时刻回路中的感应电动势 。
n
B
a
60
l
v
b
.
12
解:
msBco6s0 ds 0xBco6s0ldx
1 Blx 1 Blvt 1 klvt 2
2
2
2
n
B
a
60
l
v
b
dm klvt
dt
B= kt (k > 0)
楞次定律定方向:a b.
.
13
例2. 一长直电流 I,与之共面的 abcd 线框以 v 向右匀速平动。
1831年法拉第发现了电磁感应现象
后,当时已有许多便于记忆的“左
手定则”、“右手定则”、“右手
楞次
螺旋法则”等经验性规则,但是并
没有给出确定感生电流方向的一般
法则。1833年楞次在总结了安培的
电动力学与法拉第的电磁感应现象
后,发现了确定感生电流方向的定
律─楞次定律。
楞次定律说明电磁现象也遵循能量守恒定律。
例3. 若上题中 v = 0,I = I0sin t,则结果如何?
解:
b ac
m
0Illnxa
2
x
dm
dt
I x a
l v
d
2 0lln x xaI0cots
方向:楞次定律
.
16
§2 动生电动势
dm
dt
m
s
B
ds
.
17
一、动生电动势
D
+
洛仑兹力提供非静电力
f e (v B )
-
f
v
E非fevB
C
E非 dl
D
C
(v
B)
dl
.
18
D
+
(v
B)
-
dl
v
C
D(vB )dl C
C(vB )dl D
C
vBD cosdl
vBl
负号方 表向 示 C : D
.
19
二、动生电动势的计算
1. 磁场均匀
例
vB
A
dl
v
R
B
C D (v B )d l
在学徒工期间,法拉第除工作外,利用书店的条件, 在业余时间贪婪地阅读了许多科学著作,例如《化学对 话》、《大英百科全书》的《电学》条目等,这些著作 开拓了他的视野,激发了他对科学的浓厚兴趣。
1812年,学徒期满,法拉第打算专门从事科学研究。 次年,经著名化学家戴维推荐,法拉第到皇家研究院实 验室当助理研究员。在戴维的支持和指导下作了许多化 学方面的研究工作。
求:任意时刻 t,线框中感应电动势的表达式
解:
t时刻B: 20xI
I
b
×
B
a
c
x
l v
mdm
xa
x
0I ldx 2x
a dx d
0Il lnxa 2 x
.
14
dm
dt
0 Il 2
x
x
a
x
x x2
a
dx dt
0Il a v 2 x(x a)
方向:楞次定律
m20Illnxxa
.
15
A BvB co2s()Rd
2vBR
.
20
例
v
vB
a
dl
b
b(vB )dl a bvBcosdl a 0LlBcosdl 1 Bl2
2
.
21
2. 磁场不均匀
C D (v B )d l
例 求当金属棒转到与水平方向成角时, 棒内感应
电动势的大小和方向.
解:选 首先确d定 l 方 定 v向 B的。 方向, I
×B
x
L
(v
B)
dl
r0
dl
A
o
(v
B)
1851年,曾被一致推选为英国皇家学会会长,但被他 坚决推辞掉了。1867年8月25日,他坐在书房的椅子上安 祥地离开了人世。遵照他的遗言,在他的墓碑上只刻了名 字和生死年月。
.
5
二 、 楞次定律
表述:闭合回路感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化
N
S
N
S.6楞次( Nhomakorabea804~1865)俄国物理学家。
.
7
1. 电动势
I
εI
非静电力
静电力
––– 将单位正电荷从电源负极经由电源内部
移到正极,非静电力所作的功
电场中
E
F
q
E非
F非 q
A非 q
F非 dl q
E非 dl
.
8
I
A非 q
F非 dl q
E非 dl
εI
内部
方向: 负极
正极
即使导体回路不闭合,甚至仅是一假想回路,只要 回路中磁通变化,就一定有感应电动势;但回路要 闭合,才有感应电流
第16章 电磁场
§16.1 法拉第电磁感应定律 §16.2 动生电动势 §16.3 感生电动势 §16.4 自感和互感 §16.5 磁场的能量 §16.6 位移电流 §16.7 麦克斯韦方程组 §16.8 电磁波
.
1
§1 法拉第电磁感应定律
NS
1. 电磁感应现象
B
b
Fm v
G
a
当穿过一个闭合导体回路所包围的面积内的磁通量发 生变化时(不论这种变化是由什么原因引起的),在导体 回路中就有电流产生。这种现象称为电磁感应现象。