人教版数学六年级下册鸽巢问题3——教学反思
人教版小学数学六年级下册《鸽巢问题》教学反思
人教版小学数学六年级下册《鸽巢问题》教学反思鸽巢问题又称抽屉原理,是人教版六年级下册组合数学中最简单也是最基本的原理之一。
教材通过展示几个具体的例子,借助实际操作,向学生介绍“鸽巢问题”,学生在理解这一数学方法的基础上,会对一些简单的实际问题建立鸽巢模型,促进学生逻辑能力的发展,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发现抽象能力、推理能力和应用能力。
本节课我试着融入现代教学理论,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用启发诱导式教学方法,以提出问题、操作演示、汇报交流、提出发现、总结归纳为主线,根据维果斯基的教育理论,始终在学生知识的“最近发展区”设置问题。
《课程标准》指出:“人人学有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”,在实施教学时,要以学生为主体,发挥好教师的主导作用。
问题的设计遵循“跳一跳,摘桃子”的原则,问题难度层层递进,要让大部分学生经过独立思考,都能找到问题的方向或答案。
比如问题“同学们能不能像老师表演魔术一样,用“至少”来总结你的发现?”“为什么要进行平均分,平均分的目的是什么?”“可以用算式揭示平均分吗?”等,每一个问题指向性明确,目的是为了突出本节课的主线,让学生明确本节课是为了解决什么,他们需要做些什么。
由于学生的认知、心理、年龄特征,小学阶段的学习与具体的实践活动分不开的,新课标要求教师教学以学生主动探索发现、获取知识为目的,以发挥师生互动作用为保证,强调学生主动探索新知,辅之以教师适时地引导和点拨。
本节课教学重点是让学生经历鸽巢原理的探究过程,理解“总有”和“至少”的意义,初步理解鸽巢原理,会用鸽巢原理解释生活中的简单问题。
但是为了让学生能够通过自主探究建立鸽巢原理模型,我大胆的改变了教材的呈现方式。
2023年《鸽巢问题》教学反思10篇
2023年《鸽巢问题》教学反思10篇《鸽巢问题》教学反思1“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现__知识,“鸽巢”问题教学反思。
例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。
本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。
兴趣是学习最好的老师。
所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。
借机引入本节课的重点“总有……至少……”。
这样设计使学生在生动、活泼的数学活动中主动参与。
《鸽巢问题》教学反思2《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,新教材把这一部分内容纳入了数学广角,《鸽巢问题》教学反思。
当第一次看到《鸽巢问题》成为必学内容时,老师们都很困惑:什么是鸽巢问题?这么难的内容学生能理解吗?我的印象里《抽屉原理》也是非常坚深难懂的。
为了上好这一内容,我搜集学习了很多资料,文中对“抽屉原理”作了深入浅出的分析,使我对“抽屉原理”有了新的认识,也终于理出了头绪。
抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。
兴趣是学习最好的老师。
所以在本节课我就设计了“抢凳子”游戏来导入新课,在上课伊始我就说:同学们,在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
“鸽巢”问题教学反思
“鸽巢”问题教学反思
•相关推荐
“鸽巢”问题教学反思
“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识。
例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的',是抽屉原理的一个逆向的应用。
本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。
兴趣是学习最好的老师。
所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。
借机引入本节课的重点“总有……至少……”。
这样设计使学生在生动、活泼的数学活动中主动参与。
人教版数学六年级下册鸽巢问题教案与反思(推荐3篇)
人教版数学六年级下册鸽巢问题教案与反思(推荐3篇) 人教版数学六年级下册鸽巢问题教案与反思【第1篇】鸽巢问题教学设计《鸽巢问题》教学设计【教学内容】(人教版)数学六年级下册第68页例1,69页例2。
【教学目标】1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
【教学难点】:通过操作发展学生的类推能力,形成比较抽象的数学思维。
【教学准备】:多媒体课件、铅笔、文具盒等。
【教学过程】一、创设情境,导入新知老师组织学生做“抢凳子的游戏”。
请3位同学上来,摆开2张凳子。
老师宣布游戏规则:3位同学听到老师说,“走时”围着椅子转圈,当老师说“请坐”的时候,三个人每个人都必须坐在椅子上。
教师背对着游戏的学生。
师:都坐下了吗老师不用看,也知道肯定有一张椅子上至少坐着2位同学。
老师说得对吗师:老师为什么说得这么肯定呢其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题(板书课题)。
二、自主操作,探究新知1、观察猜测多媒体出示例1:4枝铅笔,3个文具盒。
师:4个人坐3张凳子,不管怎么坐,总有一张凳子至少坐两个同学。
4枝铅笔放进3个文具盒中呢【不管怎么放,总有一个文具盒中至少放进2枝铅笔。
】师:真的是这样吗为什么会这样呢你能给大家解释这一现象吗2、自主思考(1)独立思考:怎样解释这一现象(2)小组合作,拿铅笔和文具盒实际摆一摆、放一放,看一共有几种情况3、交流讨论学生汇报是用什么办法来解释这一现象的。
【学情预设:第一种:用实物摆一摆,把所有的摆放结果都罗列出来。
学生展示把4枝铅笔放进3个盒子里的几种不同摆放情况。
课件再演示四种摆法。
请学生观察不同的放法,能发现什么引导学生发现:每一种摆放情况,都一定有一个文具盒中至少有2枝铅笔。
人教版六年级下册《鸽巢问题(3)》教学设计及反思
课题
鸽巢问题(3)
课型
新授课
设计说明
本节课教学是“鸽巢原理”的具体应用,即运用“鸽巢原理”进行逆向思维。教师呈现问题后,先让学生通过猜测、验证等方式找到答案,形成初步感悟;在得出答案后,教师引导学生把实际问题转化为“鸽巢问题”。教学中,教师努力让学生经历将具体问题“数学化”的过程,帮助学生从现实素材中找出最本质的数学模型,发展学生的思维能力,帮助他们积累数学活动的经验和方法。
(2)方法总结。
用鸽巢原理解题的步骤:
①分析题意:找好“抽屉”与分放的物品。
②设计鸽巢问题。(有时需要构造抽屉)
③运用原理,得出“抽屉”中分放物品的个数。
巩固练习
1.完成教材第70页“做一做”。
2.完成教材第71页第4、5题。(第4题教师注意适当引导)
课堂小结,拓展延伸。
1.说一说你本节课的收获。
2.布置作业。
教法
情景教学法,实验探究引导。
学法
实验备:每组准备红球、蓝球各4个、1个不透明的盒子。
课时安排
1课时
教学环节
教学过程
个性设计
谈话导入
上一节课,我们认识了“鸽巢原理”,学会了用“鸽巢原理”解决简单的实际问题。除此之外,我们还可以用它来解决哪些问题呢?今天,我们继续来探究“鸽巢原理”在生活中的应用。
教学板书
教学反思
本节课教学,教师应充分利用学具操作,为学生提供主动参与的机会,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学,为学生营造宽松自由的学习氛围和学习空间,让学生能自己动脑解决一些实际问题,从而更好地理解鸽巢问题。
教学目标
1.进一步理解“鸽巢原理”,运用“鸽巢原理”进行逆向思维,解决实际问题。
鸽巢问题教学反思
《鸽巢问题》教学反思《鸽巢问题》是人教版小学数学六年级下册的内容,是数与代数领域的重要知识点。
我教学的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决问题。
通过教学,感受颇深,下面就教学中的得失与大家分享。
可取之处:1、教学思路简洁清晰。
全课紧紧围绕“鸽巢问题”是什么?为什么?怎么用?组织教学。
在游戏激趣导入后开门见山揭示课题,让学生明白学什么?接着通过合作学习、展示交流、点评讲解,让学生探究为什么“总有一个笔筒里至少有2支笔?”建立模型。
最后结合生活中的实例运用模型解决问题。
2、充分运用鸿合白板功能辅助教学,交互体验感强。
a、“翻翻卡”游戏在白板中制作快捷,触屏体验完美,学生兴趣浓厚,很快将学生带入课程学习中。
b、蒙层配合五指檫出功能出示图片、展示总结,使课堂生动有趣,学生注意力高度集中。
C、单指拖动“铅笔”、“鸽子”、“书”等操作,互动体验感爆棚,同学们都跃跃欲试。
d、一键开启、关闭展台,方便快捷。
3、注重对比优化教学中实时指导学生要运用“有序思考”进行枚举,同时对比枚举法与假设法、反正法的优劣,引导学生明白“至少有2支”就是≥2,也就是≠1,从而理解平均分配的优势,当余数大于1时还要继续进行“分散”,找到最不利的情况,建立模型。
遗憾之处:1、练习处理较粗糙。
处理练习时只是简单的运用建立的模型--除法计算求至少数,学生照抄照搬,没有要求学生对照模型指出谁相当于“鸽子”谁相当于“鸽笼”。
2、不敢大胆放手,教师带得太多。
3、合作学习不太规范,效果较差。
《鸽巢问题》教学反思(通用8篇)
《鸽巢问题》教学反思(通用8篇)《鸽巢问题》教学反思篇1鸽巢问题是我们数学中比较有意思且在生活中运用比较广泛的问题。
因此,在录制一师一优课时我想到了给同学讲这一节课,使同学更加清晰的认识到数学是源于生活,并运用于生活中的。
鸽巢问题又可以叫做抽屉原理,是一种在生活中常见的数学原理,很多游戏的设置都运用了该原理,例如抢凳子游戏,纸牌游戏等。
因此,在讲课开始我先用纸牌游戏中引出今日的鸽巢问题,让同学带着新奇心来学习本节课内容。
接着我出例如题,先找一位同学演示3支笔放进2个笔筒中应当怎么放,并记录下来,使同学明白小组应当怎样进行活动并记录。
接着出示课本例1的题目,同学小组内通过刚才的方法很轻易的就找出一共有几种方法,在找一位同学进行演示加强大家的认识。
我有介绍了刚才同学们试验的方法叫做枚举法。
并通过观测引出概念总有一个笔筒里至少有2支铅笔。
接着让同学们转换思想求实有没有更简约的方法得出结论,同学通过试验和争论得出可以用平均分的方法得到同样的结论。
并把其转化为算式。
接着增加铅笔和笔筒的个数仍能得到相同的结论,由此同学发觉当铅笔数比笔筒数多1时,总有一个笔筒至少有2支铅笔的结论。
把铅笔和笔筒换成其他物品同学还能相像的结论,说明同学已经可以学移致用了。
之后介绍鸽巢问题的发觉者,增加同学的知识面。
最末,我又引到游戏揭示答案,再通过几道层次递进的题目的练习,使同学能够敏捷运用鸽巢问题,从而达到本节课的教学目的。
《鸽巢问题》教学反思篇2本节课是通过几个直观例子,借助实际操作,引导同学探究“鸽巢原理”,初步经受“数学证明“的过程,并有意识的培育同学的“模型思想。
1、借助直观操作,经受探究过程。
老师着重让同学在操作中,经受探究过程,感知、理解抽屉原理。
2、老师着重培育同学的“模型”思想。
通过一系列的操作活动,同学对于枚举法和假设法有肯定的认识,加以比较,分析两种方法在解决抽屉原理的优超性和局限性,使同学逐步学会运用一般性的数学方法来思索问题。
人教版六年级数学鸽巣问题例3教学设计及教学反思
教学内容:“鸽巢问题”的具体应用(教材第70页例3)。
教学目标:1.会用“鸽巢问题”解决简单的实际问题。
2.培养学生有根据、有条理的逆向思维和推理的能力。
3.灵活运用“鸽巢问题”解决生活中的实际问题,感受数学的魅力。
教学重点:引导学生把具体问题转化为“鸽巢问题”。
教学难点:找出这里的“鸽巢”有几个,再利用“鸽巢问题”进行反向推理。
教学准备:课件,1个纸盒,红球、蓝球各4个。
一、复习引入新课。
上一节课,我们认识了“鸽巢原理”,学会了用“鸽巢原理”解决简单的实际问题。
下面叫同学来做一做。
1.把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
为什么?2.把22名“三好学生”的名额分配给4个班级,那么至少有一个班级分得的名额多于5名。
为什么?3.引入新课出示教学目标:(读一读)(1)会用此原理解决简单的实际问题。
(2)能进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维。
(3)在解决问题的过程中,感受“抽屉原理”在日常生活中的应用。
二、自主探索,学会用逆向思维解决“鸽巢原理”问题。
1、学习例3。
出示题目:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?(1)学生猜一猜。
(2)学生验证自己的猜想:(学生小组内实验操作,教师巡视)(3)学生交流汇报:汇报时可以借助演示来帮助说明,师生共同梳理、比较各种想法,寻找能保证摸出2个同色球的最少次数,达成统一认识。
即:要想摸出的球一定有2个同色的,最少要摸出3个球。
2、引导学生把具体问题转化为“鸽巢问题”。
(1)生活中像这样的例子很多,我们不能总是猜测或动手实验,能把这道题与前面所讲的鸽巢问题联系起来思考呢?(2)提出问题:①“摸球问题”与“鸽巢问题”有怎样的联系?②应该把什么看成“鸽巢”?有几个“抽屉”?要分放的东西是什么?什么相当于鸽巢问题中的“总有一个抽屉至少有的物体数”?③从题目可知,问题相当于求鸽巢问题中的(),怎样求?(3)方法总结。
人教版六年级下册《鸽巢问题(3)》教学设计及反思
第3课时鸽巢问题(3)教学内容:教科书P70例3,完成教科书P71“练习十三”中第4、5题。
教学目标:1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思考,掌握“抽屉原理”的反向求法。
2.经历运用“抽屉原理”解决问题的过程,体验观察猜想、实践操作的学习方法。
3.培养学生自己动手操作、动脑思考的习惯,体会数学与日常生活的联系,了解数学的价值。
教学重点:引导学生把具体问题转化为“抽屉原理”,找出“抽屉”有几个,再利用“抽屉原理”进行逆向推理。
教学难点:理解“抽屉问题”中的一些基本原理,正确辨析“鸽巢问题”中被分的物品。
教学准备:课件教学过程:一、创设生活情境,导入新课课件出示有趣的生活情境。
学生有的猜2只,有的猜3只、5只、7只……师:同学们通过思考,都有了自己比较满意的答案,但正确的答案只有一个,只要认真学习今天的知识,相信你一定能找到正确的答案。
下面就让我们一起来继续研究“鸽巢问题”吧![板书课题:鸽巢问题(3)]【设计意图】有趣的教学情境不仅能营造愉悦的教学氛围,及时集中学生的注意力,而且在数学与生活实际之间架起了桥梁,使学生对新知的学习充满了期待。
二、合作探究,学习新知(一)呈现问题,引出探究。
课件出示教科书P70例3。
师:大家来猜测一下答案是什么?学生可能猜测出的答案有2个、3个、5个。
师:同学们对答案进行了猜测,你们有什么方法能验证自己的猜测是否正确?想一想,可以在小组内合作研究。
学生汇报交流,验证答案,课件配合出示。
生1:至少摸2个球就能保证是同色的。
验证:球的颜色共有2种,如果只摸出2个球,会出现以上三种情况,如果摸出的2个球正好是一红一蓝时就不满足条件。
生2:摸出5个球,肯定有2个是同色的。
验证:把红、蓝两种颜色看成2个“抽屉”,因为5÷2=2……1,所以摸出5个球时,至少有3个球是同色的,摸出5个球不是最少的。
生3:有两种颜色。
那摸3个球就能保证有2个同色的球。
验证:把红、蓝两种颜色看成2个“抽屉”,因为3÷2=1……1,所以摸出3个球时,至少有2个球是同色的。
人教版六年级数学下《数学广角──鸽巢问题》教学反思
《数学广角──鸽巢问题》教学反思一、教学目标达成情况通过本节课的教学,学生能够理解鸽巢问题的基本原理,掌握鸽巢问题的概念,并能够运用鸽巢问题解决实际问题。
同时,通过小组讨论和案例分析,学生的数学思维和解决问题的能力得到了提高。
二、教学内容和方法本节课的教学内容是鸽巢问题,这是一种与抽屉原理相关的数学问题。
通过实物鸽巢和鸽子模型,学生能够直观地理解鸽巢与鸽子的关系,从而引入鸽巢问题的概念。
在讲解过程中,我采用了讲解、示范、小组讨论和案例分析等多种教学方法,使学生能够深入理解鸽巢问题的基本原理和应用。
三、学生活动和表现在小组讨论环节,学生的参与度较高,能够积极发表自己的观点和看法。
通过案例分析,学生能够运用所学知识解决实际问题,提高了他们的思维能力和解题技巧。
同时,我也鼓励学生提出自己的问题和困惑,进行有针对性的指导和帮助。
四、教学亮点和不足本节课的教学亮点在于通过实物演示和小组讨论等多种教学方法,使学生能够深入理解鸽巢问题的基本原理和应用。
同时,我也注重学生的个体差异和需求,采用更加灵活多样的教学方法和手段,激发学生的学习兴趣和积极性。
然而,在教学过程中也存在一些不足之处。
例如,部分学生在理解鸽巢问题的基本原理时还存在一些困惑,需要进一步加强讲解和练习。
同时,在小组讨论环节,部分学生的参与度不够高,需要加强对学生的引导和激励。
五、改进措施和展望为了改进教学效果,我将进一步加强学生的讲解和练习,特别是对于存在困惑的学生要给予更多的指导和帮助。
同时,我也将注重学生的个体差异和需求,采用更加灵活多样的教学方法和手段,激发学生的学习兴趣和积极性。
展望未来,我希望能够继续探索更多与数学广角相关的数学问题,并将其应用于实际生活中,解决实际问题。
同时,我也希望能够在数学教学中提高学生的思维能力和解决问题的能力,为他们的未来学习和生活打下坚实的基础。
人教版六年级数学下册鸽巢原理教学反思
人教版六年级数学下册数学广角《鸽巢问题》教学反思《鸽巢问题》是人教版六年级下册数学广角中的内容,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。
数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。
本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“鸽巢原理”,会用“鸽巢原理”解决实际问题。
通过课堂实践,感受颇深,反思我的教学过程,有几下几点:一、游戏导入激发学习兴趣本课开始利用“三人坐两凳”的游戏导入,让学生在玩中发现问题,发现无论怎么坐都有一张凳子上坐两人,引导学生去思考,充分调动他们思维的翅膀,给学生造成了“疑而不解又欲解之”的强烈欲望,激发他们积极思维,快速进入学习情境。
二、注重自主探究,培养问题意识在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。
1、采用列举法,让学生把4枝笔放入3个盒子中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“铅笔数比盒子数多1时,总有一个盒子里至少有2枝笔”。
2、在教学中让学生借助直观操作发现,把铅笔尽量多的“平均分”给各个盒子,看每个盒子能分到多少枝铅笔,剩下的笔不管放到哪个盒子里,总有一个盒子比平均分得的枝数多1枝,可以用有余数的除法这一数学规律来表示(在课堂中这点没有讲解,没有让学生进行算式表述,想的是下节课在重点讲解)。
3、大量例举之后,再引导学生总结归纳这一类“鸽巢问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识抽屉原理。
三、注重“说理”活动,培养学生逻辑能力在这节课中,由于我提供的数据比较小,为学生自主探究和自主发现“抽屉原理”提供了很大的空间。
但这也耗费了许多的时间,由于全班的同学程度不同,所以不同小组完成的进度不一。
“金无足金,人无完人”,我们的课堂教学永远是一门遗憾的艺术,在这堂课的难点突破处,也就是让学生借助直观操作发现,学生很难分清谁是物体谁是抽屉。
2024年人教版数学六年级下册鸽巢问题教案与反思(精推3篇)
人教版数学六年级下册鸽巢问题教案与反思(精推3篇)〖人教版数学六年级下册鸽巢问题教案与反思第【1】篇〗一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。
请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。
2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。
再提问:这句话对吗?组织小组活动,进行验证。
总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。
两种方法都能验证这句话是正确的。
在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。
活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
提问:这句话对吗?为什么?组织小组活动,进行探究。
总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。
追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。
学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。
引出鸽巢问题又叫抽屉问题。
3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。
5.布置作业课后习题1、2题,将今天学到的整理成数学日记〖人教版数学六年级下册鸽巢问题教案与反思第【2】篇〗一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
2024年人教版数学六年级下册鸽巢问题教案与反思3篇
人教版数学六年级下册鸽巢问题教案与反思3篇〖人教版数学六年级下册鸽巢问题教案与反思第【1】篇〗第1课时教学内容教科书P68例1,完成教科书P71“练习十三”中第1题。
教学目标1.理解“抽屉原理”(“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。
2.通过操作、观察、比较、说理等数学活动,经历对“抽屉原理”的初步认识,体会和掌握逻辑推理思想和模型思想。
3.体会数学知识在日常生活中的广泛应用,培养学生的学习兴趣和探究意识。
教学重点经历“抽屉原理”的探究过程,理解“总有”和“至少”的含义,初步了解“抽屉原理”,会用“抽屉原理”解释生活中的简单问题。
教学难点理解“抽屉原理”,建立基本的模型。
教学准备课件。
教学过程一、创设身边的问题情境,揭示课题师:同学们,一年有几个季节?【学情预设】一年有4个季节。
师:我们班每个小组有6名同学,老师有一个大胆的猜测:一个小组中总有一个季节里至少有2人过生日,你知道这句话的意思吗?“总有”和“至少”表示什么意思?【学情预设】预设1:一定有一个季节里至少有2人出生。
(教师追问:至少2人是什么意思呢?)预设2:最少2人,可能有3人、4人、5人、6人。
师:那老师的猜测对不对呢?请各小组现场统计一下。
【学情预设】学生现场统计后,得到的结论都是每个小组中总有一个季节(春、夏、秋、冬)里至少有2人过生日。
师:老师为什么猜得这么准呢?这里面藏着我们今天要学习的数学知识,下面就让我们到课堂上来揭晓这个秘密吧!二、经历过程,初步感知“鸽巢原理”模型1.呈现问题,引出探究。
【教学提示】调动学生学习的积极性,引发学生的思考,突破“总有”“至少”这两个关键词的理解。
课件出示教科书P68例1。
师:谁来解释“总有”和“至少”这两个词的意思?【学情预设】预设1:就是一定有1个笔筒里最少放2支铅笔。
预设2:至少放2支铅笔就是2支或2支以上。
师:这几个同学解释得对吗?有什么办法来证明呢?请你用自己喜欢的方式来表达想法。
鸽巢问题教学反思(通用5篇)
鸽巢问题教学反思(通用5篇)鸽巢问题教学反思1“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现__知识,“鸽巢”问题教学反思。
例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。
本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。
兴趣是学习最好的老师。
所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。
借机引入本节课的重点“总有……至少……”。
这样设计使学生在生动、活泼的数学活动中主动参与。
鸽巢问题教学反思2鸽巢问题是我们数学中比较有意思且在生活中运用比较广泛的问题。
因此,在录制一师一优课时我想到了给学生讲这一节课,使学生更加清楚的认识到数学是源于生活,并运用于生活中的。
鸽巢问题又可以叫做抽屉原理,是一种在生活中常见的数学原理,许多游戏的设置都运用了该原理,例如抢凳子游戏,纸牌游戏等。
因此,在讲课开始我先用纸牌游戏中引出今天的鸽巢问题,让学生带着好奇心来学习本节课内容。
接着我出示例题,先找一位同学演示3支笔放进2个笔筒中应该怎么放,并记录下来,使学生明白小组应该怎样进行活动并记录。
接着出示课本例1的题目,学生小组内通过刚才的方法很轻易的就找出一共有几种方法,在找一位学生进行演示加强大家的认识。
人教版数学六年级下册鸽巢问题教案与反思推荐(3)篇2024年
人教版数学六年级下册鸽巢问题教案与反思推荐(3)篇2024年〖人教版数学六年级下册鸽巢问题教案与反思第【1】篇〗《鸽巢问题》教学设计教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学过程:一、创设情境、导入新课1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。
今天我们就一起来研究它。
二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。
请看大屏幕。
(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。
(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。
(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的'摆法?探究之前,老师有几个要求。
(一生读要求)(3)汇报展示方法,证明结论。
(展示两张作品,其中一张是重复摆的。
)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。
六下鸽巢问题教学反思模板
---《鸽巢问题》教学反思一、教学背景1. 教材内容:本节课内容选自六年级下册数学教材,涉及《鸽巢问题》这一章节。
2. 教学目标:- 让学生理解并掌握鸽巢原理(狄里克雷原理)的基本概念。
- 培养学生运用鸽巢原理解决实际问题的能力。
- 提高学生的逻辑思维和数学应用能力。
二、教学过程1. 导入环节:- 方法:通过游戏(如扑克牌游戏)或生活实例引入,激发学生学习兴趣。
- 效果:观察学生参与情况,评估导入是否成功吸引学生的注意力。
2. 讲解环节:- 方法:详细讲解鸽巢原理的基本概念、应用场景及解决方法。
- 效果:检查学生对原理的理解程度,通过提问或练习来验证。
3. 实践环节:- 方法:设计相关练习题,让学生分组讨论、动手操作,应用鸽巢原理解决问题。
- 效果:观察学生解决问题的能力,评估学生的参与度和合作效果。
4. 总结环节:- 方法:回顾本节课的重点内容,强调鸽巢原理的实际应用。
- 效果:了解学生对本节课内容的掌握情况,收集学生对教学内容的反馈。
三、教学效果分析1. 学生对知识的掌握:评估学生对鸽巢原理的理解和应用能力。
2. 学生的参与度:观察学生在课堂上的积极性、参与度和互动情况。
3. 学生的思维发展:分析学生在解决问题过程中的逻辑思维和创新能力。
四、教学反思1. 教学方法的优点:- 如:通过游戏导入,激发了学生的学习兴趣。
- 如:小组合作学习,提高了学生的合作能力和问题解决能力。
2. 教学方法的不足:- 如:部分学生参与度不高,需要更多互动环节。
- 如:对个别学生关注不够,需要更多针对性的指导。
3. 改进措施:- 如:增加互动环节,提高学生的参与度。
- 如:针对不同学生的特点,进行个性化指导。
- 如:改进教学设计,使教学内容更加贴近学生实际。
五、教学评价1. 自我评价:根据教学目标,对自己的教学效果进行评价。
2. 学生评价:收集学生对本节课的反馈,了解教学效果。
3. 同行评价:向同行请教,听取意见和建议。
人教版数学六年级下册鸽巢问题教案与反思推荐3篇
人教版数学六年级下册鸽巢问题教案与反思推荐3篇〖人教版数学六年级下册鸽巢问题教案与反思第【1】篇〗教材分析:“鸽巢问题”是人教版小学数学六年级下册第五单元数学广角的内容。
“鸽巢问题”是一类较为抽象的数学问题,难度较大。
“鸽巢问题”实际上是解决生活中某一类数学问题的模型,本课的目的是让学生经历数学化的过程,初步建立“鸽巢问题”的一般模型思想。
教材以学生熟悉的和感兴趣的材料作为学习素材,提高学生学习的积极性,缓解学习难度带来的压力,例题的编排关注细节,循序渐进,培养学生的思维能力和模型思想。
学生分析:经过六年的学习,学生具备了基本的推理能力和语言表达能力,敢于积极的思考和大胆的表达,学生自学能力和小组合作能力较强。
教学目标:1.使学生理解“鸽巢问题”的基本形式,并能初步运用“鸽巢问题”解决相关的实际问题或解释相关的现象。
2.通过操作,观察,比较,说理等数学活动,使学生经历“鸽巢问题”的形成过程,体会和掌握逻辑推理思想和模型思想,提高数学学习的兴趣和信心。
教学重点:在操作中理解“鸽巢问题”的模型。
教学难点:理解并建立“鸽巢问题”的模型。
课前准备:扑克牌,课件。
教学过程一、精彩导入出示刘谦的照片师:同学们,你们见过他吗?做什么的?喜欢看他玩魔术吗?老师也会玩魔术,你信吗?这是一幅扑克牌,取出大王和小王以及花牌,还剩下52张牌。
我请5位同学上来给我当助手,每人随意抽一张,不要把你的牌给我看。
你们抽的牌中,至少有两张牌是同花色的?信吗?这到底是巧合呢?还是隐藏了什么数学奥秘呢?我们今天就一起来研究研究。
我们先从比较小的同类问题开始研究。
【设计意图】通过玩“扑克牌”游戏,让学生体验不管怎么抽,总有同一花色的牌至少有2张,激起学生认识上的兴趣,趁机抓住他们的求知欲,作为新课的切入点,激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。
二、用列举和假设法,初步感知模型结构1.理解“总有”和“至少”两个词的含义(1)师:把3支笔放到2个铅笔盒里,有哪些放法?师:“不管怎么放,总有一个铅笔盒里至少有2支笔”。
人教版六年级数学下册《鸽巢问题》教学设计与反思
人教版六年级数学下册《鸽巢问题》教学设计与反思教学设计思考和提出的问题:思考1:如何帮助学生理解抽屉原理,构建抽屉原理的数学模型?思考2:如何培养学生的抽象能力、推理能力和模型思想?磨课要点:起点:鸽巢问题是组合数学中的一个重要而基本的数学原理,也是研究与“存在性”有关的数学问题,在现实社会中具有广泛的应用价值。
部分学生对鸽巢问题有所了解,但是对原理的内涵不知所以然,不理解为什么要尽量平均分才能找到“至少数”。
大部分学生没有接触该内容,所以会以为4支铅笔放进3个笔筒至少数是1。
终点:理解抽屉原理的最简单情况,初步形成抽屉原理的数学模型,运用抽屉原理解决简单的实际问题,体会抽屉原理在学习、生活中的广泛应用,发展抽象能力、推理能力和应用能力。
过程与方法:一、借助具体情境操作,化抽象规律为直观现象。
抽屉原理的结论对于学生来说是抽象的难以理解的,如何才能让学生理解抽象的规律?本课设计了学生把铅笔放进笔筒的具体操作情境,让学生在充分的操作中理解“总有”和“至少”的含义,同时直观呈现了“总有一个笔筒中至少放进2支笔”的现象。
二、通过自主探究活动,变数学证明为数学发现。
学生是学习的主体,充分发挥学生的主观能动性,学生在观察比较中探索发现规律,归纳规律,让学生初步经历“数学发现”的过程,培养学生的逻辑推理能力。
教学内容:人教版《义务教育教科书·数学》六年级下册第68页例1教学目标:1.在具体情境中理解抽屉原理(鸽巢原理)的基本形式,并会运用抽屉原理解决一些简单的实际问题。
2.通过操作、观察、比较、归纳等数学活动,经历抽屉原理模型建立的过程,体会推理思想、模型思想,发展逻辑推理能力和抽象能力。
3.经历抽屉原理的探究过程,感受数学文化的魅力。
灵活应用抽屉原理解决问题,提高解决问题的能力和应用意识。
教学重点:理解简单情形下的抽屉原理。
教学难点:理解“总有”和“至少”的含义,运用抽屉原理解决简单问题。
教学准备:课件、学习单、铅笔、笔筒等。
2024年人教版数学六年级下册鸽巢问题教案与反思3篇
人教版数学六年级下册鸽巢问题教案与反思3篇〖人教版数学六年级下册鸽巢问题教案与反思第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸽巢问题3——教学反思
本节课教学,我充分利用学具操作(摸球),为学生提供主动参与的机会,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学,为学生营造宽松自由的学习氛围和学习空间,让学生能自己动脑解决一些实际问题,从而更好地理解鸽巢问题。
本节课也有很多的不足,比如学生主动参与度不高,有少数学生基本上没有参与小组讨论和交流,因此在以后的教学中多加强小组建设,关注到每一个学生的学习活动情况。
从学生完成的达标检测来看,还有少部分学生思考不到位,理解不到题目的根本意思而做错,因此在课后加强辅导,让他们不掉队。