高一数学必修1第一章集合全章教案

合集下载

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.1.1.1集合的含义与表示(一)集合的有关概念:⒈定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3.集合相等:构成两个集合的元素完全一样。

4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸血压很高的人;7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

高一数学第一章“集合”教案

高一数学第一章“集合”教案

【导语】青春是⼀场远⾏,回不去了。

青春是⼀场相逢,忘不掉了。

但青春却留给我们最宝贵的友情。

友情其实很简单,只要那么⼀声简短的问候、⼀句轻轻的谅解、⼀份淡淡的惦记,就⾜矣。

当我们在毕业季痛哭流涕地说出再见之后,请不要让再见成了再也不见。

这篇《⾼⼀数学第⼀章“集合”教案》是⾼⼀频道为你整理的,希望你喜欢! 【篇⼀】 ⼀、⽬的要求 1.通过本章的引⾔,使学⽣初步了解本章所研究的问题是集合与简易逻辑的有关知识,并认识到⽤数学解决实际问题离不开集合与逻辑的知识。

2.在⼩学与初中的基础上,结合实例,初步理解集合的概念,并知道常⽤数集及其记法。

3.从集合及其元素的概念出发,初步了解属于关系的意义。

⼆、内容分析 1.集合是中学数学的⼀个重要的基本概念。

在⼩学数学中,就渗透了集合的初步概念,到了初中,更进⼀步应⽤集合的语⾔表述⼀些问题。

例如,在代数中⽤到的有数集、解集等;在⼏何中⽤到的有点集。

⾄于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运⽤,基本的逻辑知识在⽇常⽣活、学习、⼯作中,也是认识问题、研究问题不可缺少的⼯具。

这些可以帮助学⽣认识学习本章的意义,也是本章学习的基础。

把集合的初步知识与简易逻辑知识安排在⾼中数学的最开始,是因为在⾼中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使⽤数学语⾔的基础。

例如,下⼀章讲函数的概念与性质,就离不开集合与逻辑。

2.1.1节⾸先从初中代数与⼏何涉及的集合实例⼊⼿,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。

然后,介绍了集合的常⽤表⽰⽅法,包括列举法、描述法,还给出了画图表⽰集合的例⼦。

3.这节课主要学习全章的引⾔和集合的基本概念。

学习引⾔是引发学⽣的学习兴趣,使学⽣认识学习本章的意义。

本节课的教学重点是集合的基本概念。

4.在初中⼏何中,点、直线、平⾯等概念都是原始的、不定义的概念,类似地,集合则是集合论中的原始的、不定义的概念。

高一数学第一章《集合》教案

高一数学第一章《集合》教案

高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。

那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。

高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。

(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。

理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。

新人教版高中数学必修一全套教案

新人教版高中数学必修一全套教案

b. {(x,y) ∣ x+y=6 ,x、 y∈ N}用列举法表示为
.
c. 用列举法表示下列集合 , 并说明是有限集还是无限集 ?
(1){x ∣ x 为不大于 20 的质数 }; (2){100
以下的 ,9 与 12 的公倍数 };
(3){(x,y)
∣ x+y=5,xy=6};
d. 用描述法表示下列集合 , 并说明是有限集还是无限集 ?
1. 1. 2 集 合间的基 本关系 (1 课时 )
教学目标: 1. 理解子集、真子集概念;
2. 会判断和证明两个集合包含关系;
3. 理解“ ”、“ ”的含义; 4. 会判断简单集合的相等关系;
5. 渗透问题相对的观点。
教学重点: 子集的概念、真子集的概念
教学难点: 元素与子集、属于与包含间区别、描述法给定集合的运算
, 以提供某种规律 ,
例 1.用列举法表示下列集合: (1) 小于 5 的正奇数组成的集合; (2) 能被 3 整除而且大于 4 小于 15 的自然数组成的集合; (3) 从 51 到 100 的所有整数的集合; (4) 小于 10 的所有自然数组成的集合;
(5) 方程 x 2 x 的所有实数根组成的集合;
②若 a Ν ,b Ν , 则 a+b 的最小值是 2 ④ x 2+4=4x 的解集可表示为 {2,2}
其中正确命题的个数是 ( )
A .0
B
.1
C
.2
D
.3
( IV )课时小 结
1. 集 合的含 义;
2. 集合元素的三个特征中,确定性可用于判定某些对象是否是给定集合的元素,互异性可用于简化集
合的表示,无序性可用于判定集合的关系。

高中数学第一章集合教案1

高中数学第一章集合教案1

高中数学第一章集合教案1
教学目标:使学生掌握集合的基本概念和表示方法,了解集合的运算及其性质。

一、集合的定义和表示方法
1. 集合的基本概念
- 了解集合的概念和元素的概念
- 掌握集合的表示方法:列举法、描述法
2. 集合的符号表示
- 学习如何用符号表示集合:A={1,2,3,4,5}
二、集合的运算及其性质
1. 集合的运算
- 了解集合的交集、并集、差集等运算
- 学习集合的运算规则和性质:交换律、结合律、分配律
2. 集合的运算应用
- 能够解决实际问题中的集合运算
三、集合的性质和定理
1. 集合的性质
- 了解集合的基本性质:互斥、重复、子集等
- 学习如何判断两个集合是否相等
2. 集合的定理
- 掌握集合的代数定理和逻辑定理
教学步骤:
1. 引入新知识,通过生动有趣的例子引出集合的概念和表示方法
2. 介绍集合的运算及其性质,让学生掌握集合的基本运算规则
3. 练习集合的运算和性质,加深学生的理解和掌握程度
4. 引导学生应用集合运算解决实际问题,培养学生的应用能力
5. 总结本节课的内容,强调重点,帮助学生做好知识的复习和巩固
教学反馈:通过课堂练习、作业布置等方式对学生的学习情况进行及时反馈,发现问题及时纠正,提高学生的学习效果。

教学资源:教科书、课件、练习题等
教学评价方法:通过课堂练习、小测验、作业等不同方式对学生的学习情况进行评价,及时发现问题,实施个性化教学。

2024年高一数学教案高一数学教案必修一

2024年高一数学教案高一数学教案必修一

2024年高一数学教案必修一第一章集合与函数概念第一课时集合的含义与表示方法一、教学目标1.理解集合的含义,掌握集合的表示方法。

2.能够运用集合的语言描述生活中的现象。

3.培养学生的抽象思维能力和语言表达能力。

二、教学重难点1.重点:集合的含义与表示方法。

2.难点:集合语言的应用。

三、教学过程(一)导入新课同学们,你们听说过集合吗?其实,在我们的生活中,集合无处不在。

今天我们就来学习一下集合的含义与表示方法。

(二)新课讲解1.集合的含义(1)集合的定义:集合是一些明确且不同的对象的全体。

(2)集合的元素:构成集合的对象叫做集合的元素。

(3)集合的性质:确定性、互异性、无序性。

2.集合的表示方法(1)列举法:将集合中的元素一一列举出来,用大括号表示。

(2)描述法:用文字或符号描述集合中元素的特征。

(3)图示法:用Venn图或树状图表示集合。

(三)案例分析1.例题1:下列各式中,哪些是集合?A.{1,2,3,4,5}B.{x|x是小于10的正整数}C.{a,b,c,a}D.{x|x是方程x²3x+2=0的解}解析:A、B是集合,C不是集合(元素不互异),D不是集合(方程解不明确)。

2.例题2:用列举法表示下列集合。

A.所有小于5的正整数B.所有大于0且小于10的偶数解析:A.{1,2,3,4}B.{2,4,6,8}(四)课堂练习1.判断下列各式是否为集合,并说明理由。

A.{1,2,3,4,5}B.{x|x是大于5的正整数}C.{a,b,c,a}D.{x|x是方程x²4x+3=0的解}2.用列举法表示下列集合。

A.所有大于3且小于10的奇数B.所有小于0的整数1.本节课我们学习了集合的含义与表示方法,掌握了集合的性质。

2.能够运用集合语言描述生活中的现象,提高抽象思维能力和语言表达能力。

四、作业布置1.抄写并背诵集合的定义、性质及表示方法。

2.完成课后练习题。

第二章函数及其性质第一课时函数的概念一、教学目标1.理解函数的概念,掌握函数的表示方法。

高一数学必修1第一章教案

高一数学必修1第一章教案

第一章 第一课时 集合的含义 总序1【学习导航】学习目标1.初步理解集合的含义,常用数集及其记法;2.集合中的元素的特性;3.理解属于关系和相等的意义;集合的分类;4.集合的分类.自学评价1.集合的含义: 构成一个集合(set).注意:(1)集合是数学中原始的、不定义的概念,只作描述.(2)集合是一个“整体.(3)构成集合的对象必须是“确定的”且“不同”的2.集合中的元素:集合中的每一个对象称为该集合的元素(element ).简称元.集合一般用大写拉丁字母表示,如集合A, 元素一般用小写拉丁字母表示.如a,b,c ……等.思考:构成集合的元素是不是只能是数或点?【答】3.集合中元素的特性:(1)确定性.设A 是一个给定的集合,x 是某一元素,则x 是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立.(2)互异性.对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性.集合与其中元素的排列次序无关.4.常用数集及其记法:一般地,自然数集记作_______正整数集记作______或_____整数集记作___有理数记作____实数集记作________5.元素与集合的关系:如果a 是集合A 的元素,就记作__________ 读作“___________________”;如果a 不是集合A 的元素,就记作______或______读作“_______________”;6.集合的分类:按它的元素个数多少来分:(i ) _________________叫做有限集;(ii )________________________叫做无限集;(iii ) _______________叫做空集,记为_____________【精典范例】一、运用集合中元素的特性来解决问题例1.下列研究的对象能否构成集合(1)世界上最高的山峰 (2)高一数学课本中的难题 (3)中国国旗的颜色(4)充分小的负数的全体 (5)book 中的字母 (6)立方等于本身的实数(7)不等式2x-8<13的正整数解【同步练习】:下列研究的对象能否构成集合:① 某校个子较高的同学; ② 倒数等于本身的实数③ 所有的无理数④中国的直辖市 ⑤中国的大城市 ⑥不等式320x +>的解;⑦直线21y x =-上所有的点;⑧不大于10且不小于1的奇数。

人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计

人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计

人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计一、教材内容分析教学内容为人教版高中数学必修1第一章第一节集合的含义与表示的第一课时。

集合的含义与表示是高中数学生活的开始。

通过学习能够提高同学们对高中数学的学习兴趣。

二、学情分析在初中的时候有基本的数学功底,对知识有一定的积累。

但本节课是高中数学的第一课,这节课同学们要掌握许多新的名词,以及之前没后见过的数学符号,本节课要提高同学们对高中数学生活的兴趣。

三、教学目标1.能够初步掌握集合的概念,感知元素和集合的关系。

2.能够清楚的知道集合中常用的表示符号。

3.了解集合元素的特征:确定性、互异性、无序性。

四、教学重、难点1.教学重点:集合的含义与表示2.教学难点:能够选择准确的表示方法。

五、学法指导以学生的自主学习为主,教师引导为辅。

六、教学用具多媒体七、教学过程的设计(一)创设情境,揭示所学教师引入问题:初中的时候,我们已经接碰到过一些集合,大家能够说一说吗?接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。

(设计意图:温故而知新。

)(二)引入新知同学们,我们班所有同学站起来。

同学们做动作。

老师提问:老师口令的对象是谁,是全班的同学还是某些同学?老师总结:这些是一个集合,他们是一个整体而不是个体。

所以,今天我们要学习新的一个概念:集合。

多媒体出示课件:1)20以内的所有的偶数;2)我国都有哪些省份;3)所有的三角形;同学们讨论,这些例子有什么共同的特征?概括这些例子的共同特征:一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.老师强调全体我们称为集合,整体中的部分就是集合的元素。

老师指出:集合常用大写字母A,B,C,D,。

表示,元素常用小写字母a,b,c,d。

表示.(设计意图:通过自己的发现,让同学们对集合的概念有明确的认识。

知道正确的区分集合和元素两个概念。

)(三)根据资料,探索集合中元素的特点(1)阅读教材中的相关内容,集合中元素有什么特点?注意个别同学的指导,解答学生疑难.让学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.(2)判断以下元素的全体是否组成集合,并说明理由:(1)大于5小于18的偶数;(2)我国的直辖市。

高一数学必修一集合——函数的应用 第一章全部(所有)教案大全 教案

高一数学必修一集合——函数的应用 第一章全部(所有)教案大全  教案

必修一第一章集合与函数概念1.1集合1.1.1集合的含义与表示集合的含义阅读教材P2~P3“思考”以上部分,完成下列问题.1.元素与集合的概念(1)元素:.(2)集合:.2.集合中元素的特性集合中元素具有三个特性:.3.集合的相等.【练习】判断正误(正确的打“√”,错误的打“×”)(1)漂亮的花可以组成集合.()(2)分别由元素1,2,3和3,1,2组成的两个集合是相等的.()(3)在一个集合中可以找到两个(或两个以上)相同的元素.()元素与集合的关系及常用数集记法阅读教材P3“思考”以下至“列举法”以上的内容,完成下列问题.1.元素与集合的表示(1)元素的表示:.(2)集合的表示:.2.元素与集合的关系(1)属于:a是集合A的元素,记作a∈A;(2)不属于:a不是集合A的元素,记作a∉A.3.常用数集及表示符号3.5________N;-4________Z;0.5________R;2________N*;1 3________Q.列举法阅读教材P3“列举法”至P4“思考”以上部分,回答下列问题.列举法:.【练习】由0,1,2,3,4组成的集合可用列举法表示为____________.描述法阅读教材P4“思考”至P5“思考”之间的部分,回答下列问题.1.描述法:.2.具体方法:在花括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.【练习】用描述法表示下列集合:(1)使不等式x>2成立的所有实数x组成的集合可表示为___ _____.(2)所有偶数组成的集合为__ ______.用适当的方法表示下列集合:(1)“BRICS”中所有字母组成的集合;(2)绝对值等于6的数组成的集合;(3)所有三角形组成的集合;(4)直线y=x上去掉原点的点组成的集合.1.集合表示法的选择对于有限集或元素间存在明显规律的无限集,可采用列举法;对于无明显规律的无限集,可采用描述法.2.用描述法表示集合时应注意以下两点(1)清楚该集合中的代表元素是什么,是数,还是有序实数对(点),还是其他类型.(2)准确说明集合中元素的共同特征.[变式训练]1.试分别用列举法和描述法表示下列集合:(1)方程x2-x-2=0的解集;(2)大于-1且小于7的所有整数组成的集合.若集合A={a-3,2a-1,a2-4}且-3∈A,求实数a的值.1.本题以-3是否等于a-3或2a-1或a2-4为标准分类,从而做到“不重不漏”;在解含字母的问题中,常常采用分类讨论思想,注意分类标准的明确.2.本题在求解过程中,常因忽视检验集合中元素的互异性,导致产生增解-1.[变式训练]2.已知x2∈{1,0,x},求实数x的值.已知x=m+n2,m,n∈Z,由x值的全体构成集合A.(1)设x1=13-42,x2=(1-32)2,试判断x1,x2与集合A之间的关系;(2)任取x1,x2∈A,试判断x1+x2与集合A之间的关系.1.对于任何a与A,a∈A或a∉A这两种情况必有一种且只有一种成立.2.判断一个元素是否属于某一集合,就是判断这个元素是否满足该集合元素的共同特征.若满足,就是“属于”关系;若不满足,就是“不属于”关系.[变式训练]3.已知集合A={x|x=3k+2,k∈Z},B={x|x=6m-1,m∈Z},则有:17________A;-5________A;17________B.1.本节课主要学习了元素、集合的概念及其之间的关系,知道了集合的两种重要表示方法——列举法和描述法.2.集合的两种表示方法:列举法和描述法有时可以相互转化.3.解决集合中元素的性质问题时,要注意利用互异性进行检验,并注意分类讨论思想的应用.1.下列各对象可以组成集合的是()A.与1非常接近的全体实数B.某校全体高一学生C.高一年级视力比较好的同学D.与无理数π相差很小的全体实数【答案】 B2.下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*A.1B.2 C.3 D.4【答案】 B3.若集合A={3,m+1},且4∈A,则实数m=________.【答案】 34.用适当的方法表示下列对象构成的集合.(1)绝对值不大于2的所有整数;(2)方程组⎩⎨⎧ x +y =1 x -y =-1的解.作业: 课后反思:本节课较好的完成了教学任务,实现了教学目标。

高一必修一数学集合教案3篇

高一必修一数学集合教案3篇

高一必修一数学集合教案3篇高一必修一数学集合教案篇1一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。

本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

2、教学目标及确立的依据:教学目标:(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。

加强函数教学可帮助学好其他的内容。

而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。

而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:将映射的定义及类比手法的运用作为本课突破难点的关键。

函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。

为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

人教版高中数学必修一第一章 集合与函数概念全章教案

人教版高中数学必修一第一章 集合与函数概念全章教案

课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

高一必修一集合教案设计完整版(精心整理)

高一必修一集合教案设计完整版(精心整理)

必修一第一章预习教案(第1次)1.1集合 1.1.1 集合的含义及其表示教学目标:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义;教学重点:集合的含义与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

教学过程: 一、问题引入:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明” (造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性; 而“比较大的数”,“平面点P 周围的点”一般不构成集合,因为组成它的元素是不确定的.二、建构数学:1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。

集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素,集合的元素常用小写的拉丁字母来表示。

如a 、b 、c 、p 、q …… 指出下列对象是否构成集合,如果是,指出该集合的元素。

(1)我国的直辖市; (2)二中高一(1)班全体学生;(3)较大的数 (4)young 中的字母; (5)大于100的整数; (6)小于0的正数。

2.关于集合的元素的特征(1)确定性:(2)互异性:(3)无序性:3.集合元素与集合的关系用“属于”和“不属于”表示; (1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (“∈”的开口方向,不能把a ∈A 颠倒过来写)4.有限集、无限集和空集的概念:5.常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N +。

高中数学必修1集合教案精选全文

高中数学必修1集合教案精选全文

可编辑修改精选全文完整版高中数学必修1集合教案第一篇:高中数学必修1 集合教案学习周报专业辅导学习集合(第1课时)一、知识目标:①内容:初步理解集合的基本概念,常用数集,集合元素的特征等集合的基础知识。

②重点:集合的基本概念及集合元素的特征③难点:元素与集合的关系④注意点:注意元素与集合的关系的理解与判断;注意集合中元素的基本属性的理解与把握。

二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;②由集合的学习感受数学的简洁美与和谐统一美。

三、教学过程:Ⅰ)情景设置:军训期间,我们经常会听到教官在高喊:(x)的全体同学集合!听到口令,咱们班的全体同学便会从四面八方聚集到教官的身边,而那些不是咱们班的学生便会自动走开。

这样一来教官的一声“集合”(动词)就把“某些指定的对象集在一起”了。

数学中的“集合”这一概念并不是教官所用的动词意义下的概念,而是一个名词性质的概念,同学们在教官的集合号令下形成的整体即是数学中的集合的涵义。

Ⅱ)探求与研究:① 一般地,某些指定的对象集在一起就成为一个集合,也简称集。

问题:同学们能不能举出一些集合的例子呢?(板书学生们所举出的一些例子)② 为了明确地告诉大家,是哪些“指定的对象”被集在了一起并作为一个整体来看待,就用大括号{ }将这些指定的对象括起来,以示它作为一个整体是一个集合,同时为了讨论起来更方便,又常用大写的拉丁字母A、B、C……来表示不同的集合,如同学们刚才所举的各例就可分别记为……(板书)另外,我们将集合中的“每个对象”叫做这个集合的元素,并用小写字母a、b、c……(或x1、x2、x3……)表示同学口答课本P5练习中的第1大题③ 分析刚才同学们所举出的集合例子,引出:对某具体对象a与集合A,如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作a∉A④ 再次分析同学们刚才所举出的一些集合的例子,师生共同讨论得出结论:集合中的元素具有确定性、互异性和无序性。

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3. 集合相等:构成两个集合的元素完全一样。

4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。

高中数学 第一章《集合》全部教案 北师大版必修1

高中数学 第一章《集合》全部教案 北师大版必修1

高一数学第一章《集合》全部教案北师大版必修(Ⅰ)第一课时高中入学第一课(学法指导)一、课题:高中入学第一课(学法指导)二、教学目标:了解高中阶段数学学习目标和基本能力要求,了解新课程标准的基本思路,了解高考意向,掌握高中数学学习基本方法,激发学生学习数学兴趣,强调布置有关数学学习要求和安排。

三、教学过程:(一)、欢迎词:1、祝贺同学们通过自己的努力,进入高一级学校深造。

希望同学们能够以新的行动,圆满完成高中三年的学习任务,并祝愿同学们取得优异成绩,实现宏伟目标。

2、同学们军训辛苦了,收获应是:吃苦耐劳、严肃认真、严格要求。

3、我将和同学们共同学习高中数学,暂定一年, (4)本节课和同学们谈谈几个问题:为什么要学数学?如何学数学?高中数学知识结构?新课程标准的基本思路?本期数学教学、活动安排?作业要求?(二)、几个问题:1.为什么要学数学:数学是各科之研究工具,渗透到各个领域;活脑,训练思维;计算机等高科技应用的需要;生活实践应用的需要。

2.如何学数学:请几个同学发表自己的看法→共同完善归纳为四点:抓好自学和预习;带着问题认真听课;独立完成作业;及时复习。

注重自学能力的培养,在学习中有的放矢,形成学习能力。

高中数学由于高考要求,学习时与初中有所不同,精通书本知识外,还要适当加大难度,即能够思考完成一些课后练习册,教材上每章复习参考题一定要题题会做。

适当阅读一些课外资料,如订阅一份数学报刊,购买一本同步辅导资料.3.高中数学知识结构:书本:高一上期(必修①、②),高一下期(必修③、④),高二上期(必修⑤、选修系列),高二下期(选修系列),高三年级:复习资料。

知识:密切联系,必修(五个模块)+选修系列(4个系列,分别有2、3、6、10个模块)能力:运算能力、逻辑思维能力、空间想像能力、分析和解决实际问题的能力、应用能力。

4.新课程标准的基本理念:①构建共同基础,提供发展平台;②提供多样课程,适应个性选择;③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力;⑤发展学生的数学应用意识;⑥与时俱进地认识“双基”;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3. 集合相等:构成两个集合的元素完全一样。

4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。

练:A={2 , 4, 8, 16},贝U 4A, 8A, 32 -一A.8. 空集:是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

空集不是无;它是内部没有元素的集合。

可以将集合想象成一个装有元素的袋子,而空集的袋子是空的, 但袋子本身确实是存在的。

用符号?或者{}表示。

注意:{?}是有一个?元素的集合,而不是空集。

举例当两圆相离时,它们的公共点所组成的集合就是空集;当一元二次方程的根的判别式值出0时,它的实数根所组成的集合也是空集。

8.集合的分类观察下列三个集合的元素个数1. {4.8, 7.3, 3.1, -9};2. {x R 0<x<3};3. {x 二RX2 + 1=0}由此可以得到、、有限集:含有有限个元素的集合集合的分类无限集:含有无限个元素的集合空集:不含有任何元素的集合..(empty -set)(二)例题讲解:例1•用“ € ”或”符号填空:⑴ 8 _N ; ⑵0 _____ N; ⑶-3 ____ Z; ⑷ 2 Q;2 例2.已知集合P的元素为1,m, m -m-3,若2€P且-v' P,求实数m的值。

练:⑴给出下面四个关系:.^ R,0.7-QO {0},0・N,其中正确的个数是:()A . 4个B . 3个C . 2个D. 1个(2) 求集合{2a,a2+a}中元素应满足的条件?1 -t(3 )若{t},求t的值.1 +t1.1.2一、集合的表示方法1•列举法:把集合中的元素一一列举出来,并用花括号丫括起来表示集合的方法叫列举法。

如:{1, 2,3,4,5},{x2, 3x+2,5y3-x,x2+y2},…;说明:⑴书写时,元素与元素之间用逗号分开;⑵一般不必考虑元素之间的顺序;⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;⑷集合中的元素可以为数,点,代数式等;⑸列举法可表示有限集,也可以表示无限集。

当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示。

⑹对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为",2,3,4,5,……/例1 .用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;(3) 从51到100的所有整数的集合;(4) 小于10的所有自然数组成的集合;2(5) 方程x =x的所有实数根组成的集合;2•描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。

方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

一般格式:{x^Ap(x) }如:{x|x-3>2} , {(x,y)|y=x 2+1}说明:描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。

写法{实数集}, {R}也是错误的。

例2 •用描述法表示下列集合:(1) 由适合x2-x-2>0的所有解组成的集合;(2) 到定点距离等于定长的点的集合;2(3) 方程x -2=0的所有实数根组成的集合(4) 由大于10小于20的所有整数组成的集合。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

练:1 •用适当的方法表示集合:大于0的所有奇数42 .集合A = {x| &, x N,则它的元素是。

x -33.判断下列两组集合是否相等?(1)A={x|y=x+1}与B={y|y=x+1}; (2)A={自然数}与B={正整数}课后作业:§1.2.1集合间的基本关系教学目的:(1 )理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集;1.2.1集合间的基本关系1•子集:对于两个集合A, B,如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含记作:A^B(或B=A)读作:A包含于B,或B包含A 关系,称集合A是集合B的子集(subset )。

当集合A不包含于集合B时,记作A? B(或B? AA ■表示:A B用Venn图表示两个集合间的“包含”关系:2•真子集定义:若集合A B,但存在元素x. B,且XFA,则称集合A是集合B的真子集。

记作:A J B (或B二A)读作:A真包含于B (或B真包含A)3. 集合相等定义:如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B中的元素是一样的,因此集合A与集合B相等,即若A二B且B二A,贝U A = B。

女口:A={x|x=2m+1 , m Z}, B={x|x=2n-1 , n Z},此时有A=B。

4. 空集定义:不含有任何元素的集合称为空集。

记作:宅用适当的符号填空:*______ {。

};0 _____ * ;*________ 0};{o} _________ {©}5. 几个重要的结论:⑴空集是任何集合的子集;对于任意一个集合A都有•• A。

⑵空集是任何非空集合的真子集;⑶任何一个集合是它本身的子集;⑷对于集合A, B, C,如果A5B,且B M C,那么A5C。

练习⑴ 2 _N ; {2} _N ; _____ A;2⑵已知集合A = {x|x -3x + 2 = 0}, B = {1,2}, C= {x|x<8,x €N},则A ____B ; A _________ C; {2} ____C ; 2 ____ C说明:⑴注意集合与元素是“属于”不属于”的关系,集合与集合是“包含于”不包含于”的关系;⑵在分析有关集合问题时,要注意空集的地位。

⑶结论:一般地,一个集合元素若为n个,则其子集数为2n个,其真子集数为2n-1个,1.2.2集合间的基本运算考察下列集合,说出集合C与集合A, B之间的关系:(1) A ={1,3,5} , B 二{2,4,6}, C=「1,2,3,4,5,6 /;;1•并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B的并集,即A与B的所有部分,记作A LB , 读作:A并B 即A LB={x|x 3 或x田}。

Venn图表示:2.交集定义:一般地,由属于集合A且属于集合B的所有兀素组成的集合,叫作集合A、B的交集(intersection set),记作:A CB 读作:A交B 即:A CB = {x|x 3,且x 田}(阴影部分即为A与B的交集)Venn图表示:常见的五种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3.全集、补集概念及性质:全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U,是相对于所研究问题而言的一个相对概念。

补集的定义:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集合A相对于全集U的补集,记作:C U A ,读作:A在U中的补集,即C u A={xx^U,且x更A}Venn图表示:(阴影部分即为A在全集U中的补集)说明:补集的概念必须要有全集的限制课后作业:§. 2函数及其表示教学目标:1、掌握函数的三种表示方法:列表法、图像法、解析法,体会三种表示方法的特点。

2、掌握函数图像的画法及解析式的求法。

了解区间的概念。

3、理解函数的概念,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用教学重点:通过实例领悟构成函数的三要素,会求一些简单函数的定义域、值域。

教学难点:了解映射概念及含义,会判断给定的对应关系是否是映射。

理解映射与函数的关系。

知识点一、函数的定义1•函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A 为从集合A到集合B的一个函数.记作:y=f(x) , x - A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x -A}叫做函数的值域.2 .构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域•由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关•3 .区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:■- - - - :「" °{x|a 令命}=[a , b];{x\a<i<S) = [a,i];空』).= (-co p i]; (i\a<x\=爲阀规律方法指导i•函数定义域的求法(1)当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合•具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幕的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.(2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义,注意定义域是一个集合,其结果必须用集合或区间来表示2•函数值域的求法观察法:通过对函数解析式的简单变形,禾U用熟知的基本函数的值域,或利用函数的图象的”最高点”和"最低点”,观察求得函数的值域;配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些”分式"函数等;此外,使用此方法要特别注意自变量的取值范围;换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域•求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等•总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约经典例题类型一、函数概念O l.下列各组函数是否表示同一个函数?⑴;二二〕一一巳丄二I: 加二•与g(归十⑵ 二/W=|兀-1|与曲)=⑶思路点拨:对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成总结:函数概念含有三个要素,只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的.(3) 即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则【变式1】判断下列命题的真假。

相关文档
最新文档