整数规划典型问题实例

合集下载

目标规划整数规划第三、四、五章

目标规划整数规划第三、四、五章

销地 产地 A1 A2 4
B1
B2
B3 2
B4
B5
产量
3
11 3 6 4 3
12 7 5
5
3 2 5 1 4
6
4 2 9 2 5
4
0 8 0 5 0 9
A3
销量
当产大于销时,即
a b
i 1 i j 1 m
m
n
j
加入假想销地(假想仓库),销量为
a b
i 1 i j 1
n
(二)对偶变量法(位势法) 1.基本原理
检验数的计算: 一般问题:σj = C j- CBB-1 Pj = Cj - Y Pj 运输问题: σij = C ij- CBB-1 Pij = Cij - Y Pij = Cij - (u1,u2, …,um, v1, v2, …,vn) Pij = Cij - ( ui+ vj ) 当xij 为基变量时, σij = Cij - ( ui+ vj )=0 由此,任选一个对偶变量为0,可求出其余所有 的ui, vj 。 再根据σij = Cij - ( ui+ vj )求出所有非基变量的检验 数。
A 1 A2 A3
销量
B1 B2 B3 B4
4 12
产量
16 10 2 3 9 10 8 2 8 14 5 11 8 6 22 8 14 12 14 48
10
4
6
11
z 0 8 2 14 5 10 4 2 3 6 11 8 6 246 优点:就近供应,即优先供应运价小的业务。
4. 计划利润不少于48元。
- , P d + , P d -} Min{ P1 d16 maxZ= x1 +8 2 2x2 3 3 5x1 + 10x2 60 • 原材料使用不得超过限额 x1 - 2x2 +d1- -d1+ =0 • 产品II产量要求必须考虑 - -d + =36 4x + 4 x +d 1 2 2 2 • 设备工时问题其次考虑

整数规划实例课件

整数规划实例课件
00 1
x1 x2 x3 x4 s1 0 0 1/ 41/ 4 0 3 / 2
1 0 1/6 1/6 0 1 0 1 1/4 1 4 0 3/ 2
1 0 01 1
x2 0x3 0x4 s1 1
x1 x2 x3 x4 s1 0 0 1/ 41/ 4 0 3 / 2
1 0 1/6 1/6 0 1 0 1 1/4 1 4 0 3/ 2 0 0 1/ 4 1/ 4 1 1/ 2
n
xij 1; i 1,2,..., n j0
s.t. n xij 1; j 1,2,..., n i0 ui u j nxij n 1;1 i j n xij 1,0, i 1,2,..., n, j 1,2,..., n
背包问题
背景 案例 模型
整数规划
I
B1N B 1b 0
xr arj x j br jN
xr arj x j br jN
arj arj f rj arj arj
br br f r br br
xr arj x j br jN
整数可行解
最优基可行解
xr arj x j br jN
arn 0
1 amm1 amn 0
arm1 arn 1
cB B 1b b1
br
bm
br
x1 x2 xr 0 0 0
1 1 1
0
xm xm1 xn sr 0 m1 0 n 0 0
a1m1 a1n 0
a rm 1
arn 0
1 amm1 amn 0
1 arm1
a
a
rm1
rn
项目投资:财团或银行把资金投入到若干 项目中以获得中长期的收益最大。
整数规划

数学建模 -整数规划

数学建模 -整数规划
z1 3
松弛问题 L0: max z 30x1 20x 2 2 x1 3 x 2 14.5 s.t 4 x1 x 2 16.5 x1 0, x 2 0
z 2 130 剪枝 ( IP)的最优解:x 3,x 2 1 2
最优值:Z * 130
4x1+x2=16.5
3 L3:xx21 2 z 3 130 关闭
11 L4 x1 4 ,x2 3 28543;3x2=14.5
L5 x1 2,x2 7
剪枝 z 130 5
2
L6 剪枝
无可行解
· · · · · · · · · 1 2 3 4 5 6 7

19:01
分枝定界法

分枝定界法

(1)分枝:通常,把全部可行解空间反复地分割为越 来越小的子集,称为分枝; (2)定界:并且对每个子集内的解集计算一个目标下 界(对于最小值问题),这称为定界。 (3)剪枝:在每次分枝后,凡是界限超出已知可行解 集目标值的那些子集不再进一步分枝,这样,许多子 集可不予考虑,这称剪枝。 求解生产进度问题、旅行推销员问题、工厂选址问题、 背包问题及分配问题。
对( IP) max z 30x1 20x 2 2 x1 3x 2 14.5 4 x1 x 2 16.5 s.t x 0, x 2 0 1 x1 , x 2为整数
父问题
松弛问题 ( L0 ): max z 30x1 20x 2 2 x1 3 x 2 14.5 s.t 4 x1 x 2 16.5 最优解: x1 3.5, x1 0, x 2 0
x 2 2 .5
子问题
( L1 ) max z 30x1 20x 2 ( L ) max z 30x 20x 2 1 2 2 x1 3 x 2 14.5 2 x1 3x2 14.5 4 x1 x 2 16.5 4 x1 x2 16.5 s.t s.t x1 3 x1 4 x1 0, x 2 0 x1 0, x2 0

整数规划典型问题实例

整数规划典型问题实例
整数线性规划及0-1规划
例1 原料下料问题 生产中通过切割、剪裁、冲压等 手段,将原材料加工成所需大小
按照工艺要求,确定下料方案, 使所用材料最省,或利润最大
(钢管下料) 做100套钢架,用长为2.9m,2.1m,1.5m的元钢各一根,已知原料长 为7.4m,问如何下料,所用最省?
问题分析:每一种下料方式用了多少根钢材,合理的下料方式是剩余料头的
原料钢管总根数上界:13+10+8=31
2 6x1x2x331模式排列顺序可任定
x1 x2 x3
LINGO求解整数非线性规划模型
Local optimal solution found at
iteration: 12211
Objective value:
28.00000
Variable Value Reduced Cost
现有4种需求:4米50根,5米10根,6米20根,8米 15根,用枚举法确定合理切割模式,过于复杂。
对大规模问题,用模型的约束条件界定合理模式 决策变量
xi ~按第i 种模式切割的原料钢管根数(i=1,2,3) r1i, r2i, r3i, r4i ~ 第i 种切割模式下,每根原料钢管 生产4米、5米、6米和8米长的钢管的数量
钢管下料问题2
目标函数(总根数) Mix1 nx2x3
约束 条件 满足需求
模式合理:每根 余料不超过3米
r1x11r1x22r1x33501 6 4 r 1 15 r2 16 r3 18 r4 119
r2x 11r2x 22r2x 33101 6 4 r1 25 r2 26 r3 28 r4 219
模 4米 6米 8米 余 式 根数 根数 根数 料
14

整数规划例题

整数规划例题

〈运筹学〉补充例题例题 1.1 某工厂可以生产产品A和产品B两种产品。

生产单位产品A和B所需要的机时、人工工时的数量以及可利用资源总量由下表给出。

这两种产品在市场上是畅销产品。

该工厂经理要制订季度的生产计划,其目标是使工厂的销售额最大。

产品A 产品B 资源总量机器(时) 6 8 120人工(时) 10 5 100产品售价(元) 800 300MAX 800X1 +300X2ST6X1 +8X2 <= 12010X1 +5X2 <= 100X1, X2 >=0例题 1.2该工厂根据产品A和产品B的销售和竞争对手的策略,调整了两种产品的售价。

产品A和B的价格调整为600元和400元。

假设其它条件不变,请你帮助该工厂经理制订季度的生产计划,其目标仍然是使工厂的销售额最大。

X 600X1 +400X2ST6X1 +8X2 <= 12010X1 +5X2 <= 100X1, X2 >=0例题 1.3由于某些原因,该工厂面临产品原料供应的问题。

因此,工厂要全面考虑各种产品所需要的机时、人工工时、原材料的资源数量及可用资源的总量、产品的售价等因素。

有关信息在下表中给出。

产品A 产品B 资源总量机器(时) 6 8 120人工(时) 10 5 100原材料(公斤) 11 8 130产品售价(元) 600 400MAX 600X1 +400X2ST6X1 +8X2 <= 12010X1 +5X2 <= 10011X1 +8X2 <= 130X1, X2 >=0例题 1.4随着企业改革的不断深化,该企业的经理的管理思想产生了变化,由原来的追求销售额变为注重销售利润,因此,要考虑资源的成本。

工厂的各种产品所需要的机时、人工工时、原材料的资源数量及可用资源的总量、产品的售价和各种资源的价格等因素。

有关信息在下表中给出。

产品A 产品B 资源总量资源价格(元/单位)机器(时) 6 8 120 5人工(时) 10 5 100 20原材料(公斤) 11 8 130 1产品售价(元) 600 400设: J为所用机器资源数量(小时);R为所用人力资源数量(小时);L为所用原材料数量(公斤)MAX 600X1 +400X2 -CST6X1 +8X2 - J = 010X1 +5X2 - R = 011X1 +8X2 - L = 0J <= 120R <= 100L <= 1305J +20R +1L - C = 0x1, x2, J,R,L>=0例题 1.5 学习了管理课程后,该企业的经理明白了产品的成本包括变动成本和固定成本。

典型的整数线性规划问题

典型的整数线性规划问题

小型 中型 大型
现有量
钢材(吨)
1.5
3
5
600
劳动时间(小时) 280
250
400
60000
利润(万元)
2
3
4
• 制订月生产计划,使工厂的利润最大。
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变?
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
模型建立
令xj表示对第j个发展项目的投资数量
n
Max z cj x j j 1 n
s. t. a j xj b j 1
xj 0或1(j=1,2, ,n)
整数 线性 规划 0-1 模型
(IP)
整数线性规划及0-1规划
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
方法3:化为非线性规划
x1=0 或 80
x1(x1 80) 0
x2=0 或 80
x2 (x2 80) 0
x3=0 或 80
x3 (x3 80) 0
非线性规划(Non- Linear Programming,简记NLP)
NLP 虽 然 可 用 现 成 的 数 学 软 件 求 解 ( 如 LINGO, MATLAB),但是其结果常依赖于初值的选择。
丙 1’18” 1’07”8 1’24”6 59”4
丁 1’10” 1’14”2 1’09”6 57”2
戊 1’07”4 1’11” 1’23”8 1’02”4
讨论 丁蛙泳c43 =69.675.2,戊自由泳c54=62.4

运筹学整数规划例题

运筹学整数规划例题

练习 4.9 连续投资问题某公司现有资金10万元, 拟在今后五年考虑用于下列项目的投资: 项目A:从第一年到第四年每年年初需要投资, 并于次年收回本利115%,但要求第一年投资最低金额为4 万元, 第二. 三. 四年不限.项目B:第三年初需要投资, 到第五年末能收回本利128%,但规定最低投资金额为3万元,最高金额为 5 万元.项目C:第二年初需要投资, 到第五年末能收回本利140%,但规定其投资金额或为2万元,或为 4 万元, 或为 6 万元, 或为8 万元.项目D:五年每年年初都可购买公债,于当年末归还, 并获利6%,此项目投资金额不限. 试问该公司应图和确定这些项目的每年投资金额, 使到第五年末拥有最大的资金收益.(1)x 为项目各年月初投入向量。

(2)x ij 为i 种项目j 年的月初的投入(3)向量c中的元素cij为i 年末j种项目收回本例的百分比(4)矩阵A中元素aij为约束条件中每个变量xij的系数。

(5)Z为第5年末能拥有的资金本利最大总额。

因此目标函数为max Z 1.15 x4 A 1.28 x3B 1.40x2C 1.06 x5 D束条件应是每年年初的投资额应等于该投资者年初所拥有的资金第 1 年年初该投资者拥有10 万元资金, 故有x1A x1D 100000 .第 2 年年初该投资者手中拥有资金只有 1 6% x1D , 故有x2A x2C x2D 1.06 x1D .第3 年年初该投资者拥有资金为从D 项目收回的本金: 1.06x2D , 及从项目 A 中第1 年投资收回的本金: 1.15x1A , 故有max=1.15*x4a+1.28*x3b+1.4*x2c+1.06*x5d; x1a+x1d=100000;-1.06*x1d+x2a+x2c+x2d=0;-1.15*x1a-1.06*x2d+x3a+x3b+x3d=0; -1.15*x2a-1.06*x3d+x4a+x4d=0; -1.15*x3a-1.06*x4d+x5d=0; x2c=40000 ; x2c=60000; x2c=80000; x2c=20000; x3b>=30000; x3b<=50000;x1a>=0;x2a>=0;x3a>=0;x4a>=0;x5a>=0; x1b>=0;x2b>=0;x3b>=0;x4b>=0;x5b>=0; x1c>=0;x2c>=0;x3c>=0;x4c>=0;x5c>=0; x1d>=0;x2d>=0;x3d>=0;x4d>=0;x5d>=0;x 3A x 3B x 3D 1.15 x 1A 1.06 x 2 D同理第 4年、第 5 年有约束为 x 4A x 4D 1.15 x 2 A 1.06 x 3 D ,x5D1.15 x 3 A 1.06x 4DVariable Value Reduced Cost X4A 22900.00 0.000000X3B 50000.00 0.000000X2C 40000.00 0.000000X5D 0.000000 0.000000X1A 62264.15 0.000000X1D 37735.85 0.000000X2A 0.000000 0.000000X2D 0.000000 0.3036000E-01 X3A 0.000000 0.000000X3D 21603.77 0.000000X4D 0.000000 0.2640000E-01 X5A 0.000000 0.000000X1B 0.000000 0.000000X2B 0.000000 0.000000X4B 0.000000 0.000000X5B 0.000000 0.000000X1C 0.000000 0.000000X3C 0.000000 0.000000X4C 0.000000 0.000000X5C 0.000000 0.000000Row Slack or Surplus Dual Price1 80000.00 1.0000002 0.000000 1.4018503 0.000000 1.3225004 0.000000 1.2190005 0.000000 1.1500006 0.000000 1.0600007 0.000000 -0.8388608E+188 -20000.00 -0.1280000E+109 -40000.00 -0.1280000E+1010 -20000.00 0.1280000E+1011 20000.00 0.00000012 0.000000 0.6100000E-0113 62264.15 0.00000014 0.000000 0.00000015 0.000000 0.00000016 22900.00 0.00000017 0.000000 0.00000018 0.000000 0.00000019 0.000000 0.00000020 50000.00 0.00000021 0.000000 0.00000022 0.000000 0.00000023 0.000000 0.00000024 40000.00 0.00000025 0.000000 0.00000026 0.000000 0.00000027 0.000000 0.00000028 37735.85 0.00000029 0.000000 0.00000030 21603.77 0.00000031 0.000000 0.00000032 0.000000 0.0000004.10 某城市的消防总站将全市划分为11个防火区,现有4个消防站,图4-11 给出的是该城市各防火区域和防火站的示意图,其中1,2,3,4 ,表示消防站1,2,⋯11 表示防火区域,根据历史资料证实,各消防站可在事先规定允许的时间对所负责的区域的火灾予以扑灭,图中没有虚线连接的就表示不负责,现在总部提出:能否减少消防站的数目,仍能保证负责各地区的防火任务?如果可以的话,应该关闭哪个?练习 4.10某城市的消防站总部将全市划分为11 个防火区,现有四的。

6.1整数规划问题

6.1整数规划问题
最优解为 x1 = 3 .25, x 2 = 2 .5
二、整数规划解的理论
对整数规划问题: max z = CX AX = b s (IP).t X ≥ 0 x 为整数 j
max z = CX AX = b s.t X ≥0
(IP)问题的松弛问题
对( IP )问题: max z = CX AX = b s .t X ≥ 0 x j 为整数
( )若松弛问题的最优解 X * 为整数解 4 则 X * 也是 IP 的最优解
其松弛问题为: max z = CX AX = b s .t X ≥ 0
() IP 的可行解域 1
(2 IP 的最优值 )

松弛问题的可行解域
松弛问题的最优值
若松弛问题无可行解,则IP 无可行解
松弛问题的最优值是原整数规划 的目标函数值的上界
(3)若松弛问题可以找到一 个整数解 X,
则X 的目标函数值是 IP 最优值的下界
1 解: 设 x i = 0
带第 i 件物品 不带第 i 件物品
m
数学模型:
Z表示所带物品的总价值
m Z = ∑ci xi ax
m b x ≤b s.t ∑ i i i= 1 xi = 0,1 , i = 1 2,Lm ,
i =1
m
Z =
∑c
带第 i 件
i
=∑c xi =来自 i m i =1x1 , x 2 L , x n ≥ 0 x1 , x2 L, xn = 0,1

max z = 30 x 1 + 20 x 2 2 x 1 + 3 x 2 ≤ 14 × 2x + x ≤ 9 1 2 s .t x1 ≥ 0, x 2 ≥ 0 x 1 , x 2 为整数

整数规划典型问题实例

整数规划典型问题实例

2. 所用原料钢管总根数最少
决策 变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7) 目标1(总余量) Min Z 1 3 x 1 x 2 3 x 3 3 x 4 x 5 x 6 3 x 7
模 式 1 2 3 4 5 6 7 需 求 4米 根数 4 3 2 1 1 0 0 50 6米 根数 0 1 0 2 1 3 0 20 8米 根数 0 0 1 0 1 0 2 15 余 料 3 1 3 3 1 1 3
m in f 0 .1 x1 0 .3 x 2 0 .9 x 3 0 x 4 1 .1 x 5 0 .2 x 6 0 .8 x 7 0 .4 x 8
x8
2 x1 x 2 x 3 x 4 1 0 0 2 x 2 3 x3 3 x5 2 x6 x7 1 0 0 s .t . x1 x 3 3 x 4 2 x 6 3 x 7 4 x 8 1 0 0 x 0, i 1, 2, 3, 4, 5, 6, 7 , 8, x 取 整 i i
8米1根
8米1根
合理切割模式的余料应小于客户需要钢管的最小尺寸
钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
合理切割模式
6米钢管根数 0 1 0 2 1 3 0 8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省? 两种 标准 1. 原料钢管剩余总余量最小
建立模型:
m ax
f
cx
i i 1
7
i
7 bi x i b i 1 x1 x 2 x 3 2 s .t . x 4 x 5 1 x x 1 7 6 x i 0 或 1, i 1, 2, . . . , 7

整数规划案例

整数规划案例

整数规划案例目录例1固定费用问题 (1)例2选择性约束条件 (1)例3可行域描述问题 (2)例4 最优分配问题 (2)例5 选址问题 (2)例6 排序问题 (3)例7利润分段线性问题 (5)例8可靠性问题 (5)例9装配线平衡问题 (6)例10货物列车编组计划问题 (7)例1固定费用问题工厂准备生产Al、A2、A3三种产品。

若Aj产品投产,无论产量大与小,都需要一笔固定费用dj(例如装夹具的设计制作费用)。

而每生产一件产品,其利润为cj,试问固定费用这个因素如何体现在模型中而使总利润最大?(其它约束条件暂不列入)解设产品Aj的产量为xj,又设0—1变量yi=l (当xj>0), 0 (否则)于是,目标函数为max 仁clxl+c2x2+c3x3・dlyl-d2y2・d3y3例2选择性约束条件某工厂生产第j种产品的数量为Xj,j=l, 2, 3。

其使用的材料在材料甲及乙中选择一种。

材料消耗的约束条件分别为2x1+5x24-6x3 W180 及4x1+3x2+7x3^240(其它资源约束未列出),试问这类选择性约束条件如何体现在模型中?解引进0—1变量y: y=0 (选择材料甲),0 (否则)。

这样,“或此或彼”相互排斥的约束条件就可化成下列两个约束条件:2xl+5x2+6x3W180+My,4x1+3 x2+7x3 W240+M( 1-y),其中M是充分大的正数。

可以看出,当y=0时,第二个约束变成4xl+3x2+7x3W240+M,由于M是充分大的正数,所以这个约束条件自动满足而不起作用,而第一个约束为2xl+5x2+6x3 W180,这意味着选择材料甲;反之,当y=l时,第二个约束起作用,第一个约束变为2xl+5x2+6x3W180+M不起作用,这意味着选择材料乙。

因此,借助0—1变量,材料选择的两种可能性就同时包括在一个模型中了。

一般地,假定在某种情况下要在P个约束条件中至少要选择q个约束条件得到满足,那么,我们引进P个0-1变量yi,则选择性的约束条件问题就化为.……例3可行域描述问题如何把图中的阴影部分所表示的可行域用联立的线性约束条件来描述?例4最优分配问题现有四部车床Ai(I=l,…,4)和四个零件Bj(j=l,…,4),车床Ai加工零件Bj 所需时间tij(小时)由下表给出。

运筹学之整数规划

运筹学之整数规划
* X 2 (6,3.75)T 解为:
f 130
* 1
f 2* 135
B1 的解 X1* (5,4)T 是整数最优解,它当然也是问题 A0 问题
* * 的整数可行解,故 A0 的整数最优解 Z f1 130.
即此时可将 Z 修改为:
Z f1* 130
同时问题 B1 也被查清, 成为“树叶”。
题 A0 的最优目标函数值决不会比它小,故可令 Z =0.
3. 增加约束条件将原问题分枝 当问题 A0 的最优解 X 0* 不满足整数条件时,在 X 0* 中任选一个
不符合整数条件的变量.如本例选 x1 5.6,
显然问题 A0 的
整数最优解只能是 x1 5 或 x1 6 ,而绝不会在5与6之间.
规划.
问题 A1
max Z 20x1 10x2
问题 A2
max Z 20x1 10x2
5 x1 8 x2 60 x1 8 s.t x2 4 x1 5 x1 , x2 0, 取整数
5 x1 8 x2 60 x1 8 s.t x2 4 x1 6 x1 , x2 0, 取整数
用 图 解法求出最优解 x1=3/2, x2 = 10/3 且有Z = 29/6
x2
3


(3/2,10/3)
现求整数解(最优解): 如用“舍入取整法”可得 到4个点即(1,3) (2, 3)(1,4)(2,4)。显然, 它们都不可能是整数规划 的最优解。
3
x1
按整数规划约束条件,其可行解肯定在线性规划问题 的可行域内且为整数点。故整数规划问题的可行解集 是一个有限集,如图所示。

数学建模-整数规划

数学建模-整数规划
数学建模
整数规划
Integer Programming
数信学院 任俊峰
2012-4-15
数学建模之整数规划
整数规划模型(IP)
如果一个数学规划的某些决策变量或全部决策 变量要求必须取整数,则称这样的问题为整数规 划问题,其模型称为整数规划模型。 如果整数规划的目标函数和约束条件都是线性 的,则称此问题为整数线性规划问题.
松弛问题最优解满足整数要求,则该最优解为整数 规划最优解;
数学建模之整数规划
整数线性规划的求解方法
从数学模型上看整数规划似乎是线性规划的 一种特殊形式,求解只需在线性规划的基础上,通 过舍入取整,寻求满足整数要求的解即可。 但实际上两者却有很大的不同,通过舍入得到
的解(整数)也不一定就是最优解,有时甚至不能
1 xj 0
选中第j个项目投资 不 选中第j个项目投资
max Z 160 x 1 210 x 2 60 x 3 80 x 4 180 x 5 210 x 1 300 x 2 150 x 3 130 x 4 260 x 5 600 x x2 x3 1 1 x3 x4 1 x x 1 5 x1 , x 2 , x 3 , x 4 , x 5 0 或 1
1 2
14 x1 9 x 2 51 6 x1 3 x 2 1 x1 , x 2 0
数学建模之整数规划
用图解法求出最优解 x1=3/2, x2 = 10/3 且有 z = 29/6 现求整数解(最优解): 如用“舍入取整法”可得到4 个点即(1,3) (2,3) (1,4) (2,4)。显然,它们都不可能 是整数规划的最优解。
数学建模之整数规划
例5 固定费用问题

2.运筹学_整数规划案例

2.运筹学_整数规划案例
1. 投资问题 现有总额为b的资金可用于投资,共有n个项目可 供投资者选择,已知项目j所需投资额为aj,投资后可 得利润cj(j = 1,2,…,n),不妨设b,aj,cj 均是 整数,试问为使所得利润最大,应选取那些项目进行 投资? 1…对项目j投资 先引入0-1变量xj,令 xj= 0…否则 n
设每个月从仓库i运往地区j的产品的货物数量为xij,引入0- 1变量yi= 1表示在Ai设立仓库,否则不设。 设每个月的总花费为z,则上述问题的数学模型为 Min z=200x11+400x12+500x13+300x21+250x22+450x23 +600x31+400x32+250x33+300x41+150x42+350x43+45000y1+5000 0y2+70000y3+40000y4 s.t. x11+x12+x13≤1000y1 x21+x22+x23≤1000y2 x31+x32+x33≤1000y3 x41+x42+x43≤1000y4 x11+x21+x31+x41≥600 x12+x22+x32+x42≥700 x13+x23+x33+x43≥800 y2-y4≤0 y1+y2+y3+y4≤3
y3+y4 ≤ 1
工厂选址运输问题
设有n个需求点,有m个可供选择的厂址, 每个厂址只能建一个工厂,在i处建厂,生产 能力为Di,单位时间的固定成本为ai,需求点 j的需求量为bj,从厂址i到需求点j的单位运费 为Cij,问应如何选择厂址才能获得经济上的总 花费最小的方案。

第六章---运筹学-整数规划案例

第六章---运筹学-整数规划案例

第六章---运筹学-整数规划案例第六章整数规划用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。

1、 max z=3x1+2x2. 2x1+3x2≤122x1+x2≤9x1、x2≥0解:2、 min f=10x1+9x2. 5x1+3x2≥45x1≥8x2≤10x1、x2≥0求解下列整数规划问题1、 min f=4x1+3x2+2x3. 2x1-5x2+3x3≤44x1+x2+3x3≥3x2+x3≥1x1、x2、x3=0或1解:最优解(0,0,1),最优值:22、 min f=2x1+5x2+3x3+4x3. -4x1+x2+x3+x4≥2-2x1+4x2+2x2+4x2≥4x1+x2-x2+x2≥3x1、x2、x3、x3=0或1解:此模型没有可行解。

3、max Z=2x1+3x2+5x3+6x4. 5x1+3x2+3x3+x4≤302x1+5x2-x2+3x2≤20-x1+3x2+5x2+3x2≤403x1-x2+3x2+5x2≤25x1、x2、x3、x3=正整数解:最优解(0,3,4,3),最优值:474、 min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19约束条件x1 + x2+x3≤30x4+ x5+ x6-10 x16≤0x7+ x8+ x9-20 x17≤0x10+ x11+ x12-30 x18≤0x13+ x14+ x15-40 x19≤0x1 + x4+ x7+x10+ x13=30x2 + x5+ x8+x11+ x14=20x3 + x6+ x9+x12+ x15=20x i为非负数(i=1,2…..8)x i为非负整数(i=9,10…..15)x i为为0-1变量(i=16,17…..19)解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:860一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:公司办公会决定选择原则如下:(1)B5、B3和B7只能选择一个。

管理运筹学 第五章 整数规划

管理运筹学 第五章 整数规划
整数规划问题的松弛问题
j 1
整数规划的类型

纯整数规划:变量全部是整数 混合整数规划:变量部分整数,部分非整数 0-1型整数规划:变量= 0或1
x2
3 2
2x1+3x2 =14.66
1
x1
2x1+3x2 =14
1
2
3 2x1+3x2 =6
4
整数规划对应松弛问题最优解为:
x1=2.44, x2=3.26,目标函数值为14.66。
如果A2和A3两地必 须有且只有一个建 厂,怎么办?
1、整数规划数学模型的一般形式
n
max(min) z c jx j n a ijx j ( , )b i (i 1,2, , m ) j 1 st. x j 0( j 1,2, , n ) xj部分或全部取整数


负数所在列加上一个常数,继续循环。

直到系数矩阵中没有负数,而且整个消耗系数矩阵的所有元素总和已经变小;此 时调整结束,重新回到step2。
步骤1:行减、列减
15 19 C 26 19
21 24 23 22 18 17 16 19 21 23 17 17

例5.6 有三种资源被用于生产三种产品,资源量、产品单件可变费用 及售价、资源单耗量及组织三种产品生产的固定费用见下表。要求制 定一个生产计划,使总收益最大。
5.3.2 0-1ILP的隐枚举法
解 为提高搜索效率,减少运算量,先按照目标函数中各变量系数的大小顺 序重新排列各变量。 对于求极大值问题,按照从小到大排为x3,x2,x1。(注意: 对于求极小值问题,应从大到小排序)

动态规划例1-求解下列整数规划的最优解

动态规划例1-求解下列整数规划的最优解

例1 求解下列整数规划得最优解:()123123max 45634510..01,2,3,j j Z x x x x x x s t x j x =++++⎧⎪⎨=⎪⎩≤≥为整数.解 (1)建立动态规划模型:阶段变量: 将给每一个变量 赋值瞧成一个阶段, 划分为3个阶段, 且阶段变量k=1,2,3. 设状态变量 表示从第 阶段到第3阶段约束右端最大值, 则 设决策变量k x 表示第k 阶段赋给变量k x 得值(1,2,3)k =、 状态转移方程: 阶段指标: 基本方程;()(){}()3113,2,1044()max ,()0.s k k k k k k k k k k x a f s u s x f s f s ++⎡⎤=⎢⎥⎢⎥⎣⎦⎧=+⎪⎨⎪=⎩≤≤ 其中1233,4, 5.a a a === 用逆序法求解: 当3k =时,()(){}{}33333443330055max 6max 6,ssx x f s x f s x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=+=≤≤≤而 表示不超过 得最大整数。

因此, 当 时, ;当 时, 可取0或1;当 时, 可取0, 1, 2,由此确定 现将有关数据列入表4.1中当 时, 有()(){}(){}22222332322220044max 5max 54,ssx x f s xf s xf s x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=+=+-≤≤≤≤而 。

所以当 时, ;当 时, ;当 时 。

由此确定 。

现将有关数据列入表4.2中、当时,有()(){}(){}11111221211110033max 4max 43,ssx x f s x f s x f s x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=+=+-≤≤≤≤例5 用动态规划方法解下列非线性规划问题⎩⎨⎧=≥≤++⋅⋅=3,2,1 0 max 3213221i x c x x x x x x z i 解: 解决这一类静态规划问题, 需要人为地赋予时间概念, 从而将该问题转化为多阶段决策过程。

3.4整数规划应用案例分析

3.4整数规划应用案例分析

四、分布系统设计
例5.(P73练习4.8)某企业在 A1 地已有一个工厂,其产品的生产 能力为 30 千箱,为了扩大生产,打算在 A2,A3,A4,A5地中 再选择几个地方建厂。已知在 A2 , A3,A4,A5地建厂的固定 成本分别为175千元、300千元、375千元、500千元,另外, A1 产量及A2,A3,A4,A5建成厂的产量,那时销地的销量以及产 地到销地的单位运价(每千箱运费)如下表所示。
三、指派问题(分配问题)(Assignment Problem) 有 n 项不同的任务,恰好 n 个人可分别承担这些任务,但由 于每人特长不同,完成各项任务的效率等情况也不同。现假设必须 指派每个人去完成一项任务,怎样把 n 项任务指派给 n 个人,使 得完成 n 项任务的总的效率最高,这就是指派问题。 例3(P65例4.6)某游泳队拟选用A、B、C、D四名运动员组成一个 4×100混合游泳接力队,参加运动会,他们的100m自由泳,蛙泳,蝶 泳,仰泳的成绩如下表,如何安排游泳才能最大可能得取得好成绩?
二、固定成本问题 例2.高压容器公司制造小、中、大三种尺寸的金属容器, 所用资源为金属板、劳动力和机器设备,制造一个容器所需 的各种资源的数量如表所示。不考虑固定费用,每种容器 售出一只所得的利润分别为 4万元、5万元、6万元,可使用的 金属板有500吨,劳动力有300人/月,机器有100台/月,此外 不管每种容器制造的数量是多少,都要支付一笔固定的费用: 小号是l00万元,中号为 150 万元,大号为200万元。现在要制 定一个生产计划,使获得的利润为最大。
1.06x1.06x4D,于是 x5D = 1.15x3A+ 1.06x4D。 关于项目A的投资额规定: x1A ≥ 40000y1A ,x1A ≤ 200000y1A , 200000是足够大的数;保证当 y1A = 0时, x1A = 0 ;当y1A = 1时,

整数线性规划及0-1规划

整数线性规划及0-1规划

x1(x1 80) 0 x2 (x2 80) 0
x1, x2 , x3为非负整数
IP 结果输出
280x1+250x2+400x3< 60000 end
OBJECTIVE FUNCTION VALUE
1)
632.0000
VARIABLE VALUE REDUCED COST
X1
64.000000
-
2.000000
X2
168.000000
-
“gignin3 3”表示“前3个变 量为整数”,等价于: gin x1 gin x2 gin x3
模型求解 整数规划(Integer Programming,简记
Max z 2x1 3x2 4x3
IPIP可) 用LINDO直接求解
s. t. 1.5x1 3x2 5x3 600 280 x1 250 x2 400 x3 60000
max 2x1+3x2+4x3 st 1.5x1+3x2+5x3<600
模型建立
令xj表示对第j个发展项目的投资数量
n
Max z cj x j j 1 n
s. t. a j xj b j 1
xj 0或1(j=1,2, ,n)
整数 线性 规划 0- 1模 型 (IP)
整数线性规划及0-1规划
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
x1,x2,, x3=0 或 80 方法1:分解为8个LP子模型
其中3个子模型应去掉,然后 逐一求解,比较目标函数值, 再加上整数约束,得最优解:

第六讲 整数线性规划的其他典型应用(一)

第六讲 整数线性规划的其他典型应用(一)

第六讲 整数线性规划的其他典型应用(一)一、人员分配问题公交公司司机人数的优化配置问题(每位司机连续工作两个班次)解:设第i 个班次开始上班的司机人数为)6,,2,1( =i x i 。

654321min x x x x x x z +++++=⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=≥≥+≥+≥+≥+≥+≥+6,,2,1,0302050607060655443322116 j x x x x x x x x x x x x x x j j 为整数,二、套材下料问题例5 制造某种机床,需要A ,B ,C 三种轴件,其规格与数量如下表所示。

各类轴件都用5.5米长的同一种圆钢下料。

若计划生产100台机床,问:① 如何下料,所用圆钢根数最少?② 如何下料,可使余料最少?试分别建立线性规划模型。

解:(1)一次性拿整根的截出各自的长度100+50+88=238(贪婪解)将所有可能的下料方法列表(字典排法,将一根原料截成不同长度)设按第j 种方法下料的圆钢根数为x j ,则上述问题可用如下的线性规划方法求解。

54321min x x x x x z ++++=⎪⎪⎩⎪⎪⎨⎧=≥≥+++≥++≥+5,,2,1,04004222002100543243121 j x x x x x x x x x x j(2)设按第j 种方法下料的圆钢根数为x j ,问题(2)可用如下的线性规划方法求解。

4002.12001.21001.35.5min 51⨯-⨯-⨯-⨯=∑=j j x z⎪⎪⎩⎪⎪⎨⎧=≥≥+++≥++≥+5,,2,1,04004222002100543243121 j x x x x x x x x x x j问题:什么时候用料最省?问题(1)和问题(2)在实际生活中是不是一个问题?三、生产与存贮问题(零库存就最好吗?)某公司与用户签订了4个月的交货合同如下:1月份1百台,2月份2百台,3月份5百台,4月份3百台。

该公司的最大生产能力为每月4百台。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s . t . 1 . 5 x1 3 x 2 5 x 3 600
280 x1 250 x 2 400 x 3 60000
x1,x2,, x3=0 或 80 方法1:分解为8个LP子模型 其中3个子模型应去掉,然后 逐一求解,比较目标函数值, 再加上整数约束,得最优解:
模型求解
Max
整数规划(Integer Programming,简记IP)
IP可用LINDO直接求解
max 2x1+3x2+4x3 st 1.5x1+3x2+5x3<600 280x1+250x2+400x3<60000 end gin 3 “gin 3”表示“前3个变量为 整数”,等价于: gin x1 gin x2 gin x3
汽车厂生产计划
模型建立
钢材
小型
1.5
中型
3 250
大型
5 400
现有量
600 60000
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
Max z 2 x1 3 x 2 4 x 3
时间 280
利润
2
3
4
s . t . 1 . 5 x1 3 x 2 5 x 3 600
钢管下料问题1 目标2(总根数) Min Z 2 x 1 x 2 x 3 x 4 x 5 x 6 x 7 约束条 件不变
4 x 1 3 x 2 2 x 3 x 4 x 5 50
x 2 2 x 4 x 5 3 x 6 20
x 3 x 5 2 x 7 15
1)舍去小数:取x1=64,x2=167,算出目标函数值z=629,与 LP最优值632.2581相差不大。 2)试探:如取x1=65,x2=167;x1=64,x2=168等,计算函数 值z,通过比较可能得到更优的解。
• 但必须检验它们是否满足约束条件。为什么?
3) 模型中增加条件:x1, x2, x3 均为整数,重新求解。
z 2 x1 3 x 2 4 x 3
s . t . 1 . 5 x1 3 x 2 5 x 3 600
280 x1 250 x 2 400 x 3 60000
x1 , x 2 , x 3为非负整数
IP 结果输出
OBJECTIVE FUNCTION VALUE 1) 632.0000 VARIABLE VALUE REDUCED COST X1 64.000000 -2.000000 X2 168.000000 -3.000000 X3 0.000000 -4.000000
2. 所用原料钢管总根数最少
决策 变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7) 目标1(总余量) Min Z 1 3 x 1 x 2 3 x 3 3 x 4 x 5 x 6 3 x 7
模 式 1 2 3 4 5 6 7 需 求 4米 根数 4 3 2 1 1 0 0 50 6米 根数 0 1 0 2 1 3 0 20 8米 根数 0 0 1 0 1 0 2 15 余 料 3 1 3 3 1 1 3
建立模型:
m ax
f
cx
i i 1
7
i
7 bi x i b i 1 x1 x 2 x 3 2 s .t . x 4 x 5 1 x x 1 7 6 x i 0 或 1, i 1, 2, . . . , 7
6米20根
问题1. 如何下料最节省 ? 问题2. 客户增加需求:
由于采用不同切割模式太多,会增加生产和管理成本, 规定切割模式不能超过3种。如何下料最节省?
钢管下料
切割模式
按照客户需要在一根原料钢管上安排切割的一种组合。 余料1米 余料3米 余料3米
4米1根 4米1根
6米1根 6米1根
8米1根 6米1根
8米1根
8米1根
合理切割模式的余料应小于客户需要钢管的最小尺寸
钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
合理切割模式
6米钢管根数 0 1 0 2 1 3 0 8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省? 两种 标准 1. 原料钢管剩余总余量最小
m in f 0 .1 x1 0 .3 x 2 0 .9 x 3 0 x 4 1 .1 x 5 0 .2 x 6 0 .8 x 7 0 .4 x 8
x8
2 x1 x 2 x 3 x 4 1 0 0 2 x 2 3 x3 3 x5 2 x6 x7 1 0 0 s .t . x1 x 3 3 x 4 2 x 6 3 x 7 4 x 8 1 0 0 x 0, i 1, 2, 3, 4, 5, 6, 7 , 8, x 取 整 i i
例3 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
小型 钢材(吨) 劳动时间(小时) 利润(万元) 1.5 280 2 中型 3 250 3 大型 5 400 4 现有量 600 60000
• 制订月生产计划,使工厂的利润最大。 • 如果生产某一类型汽车,则至少要生产80辆, 那么最优的生产计划应作何改变?
IP 的最优解x1=64,x2=168,x3=0,最优值z=632
汽车厂生产计划
• 若生产某类汽车,则至少生产80辆,求生产计划。
Max z 2 x1 3 x 2 4 x 3
x 1 0 , x 2 0 , x 3 80
x 1 0 , x 2 80 , x 3 0
约束
满足需求
4 x 1 3 x 2 2 x 3 x 4 x 5 50
x 2 2 x 4 x 5 3 x 6 20 x 3 x 5 2 x 7 15
整数约束: xi 为整数
最优解:x2=12, x5=15, 其余为0; 最优值:27。
按模式2切割12根,按模式5切割15根,余料27米
整数线性规划及0-1规划
例1 原料下料问题 生产中通过切割、剪裁、冲压等 手段,将原材料加工成所需大小 按照工艺要求,确定下料方案, 使所用材料最省,或利润最大
(钢管下料) 做100套钢架,用长为2.9m,2.1m,1.5m的元钢各一根,已知原料长 为7.4m,问如何下料,所用最省? 问题分析:每一种下料方式用了多少根钢材,合理的下料方式是剩余料头的 长度不能超过最短原料需求(1.5m),可首先利用lingo搜索出全部的下料方式, 然后从中筛选出符合条件的方式: 模型建立:设xi为按第i种方式下料的根数,i=1,…,8, 建立如下模型:
xi 为整数
按模式2切割15根, 按模式5切割5根, 按模式7切割5根, 共25根,余料35米
最优解:x2=15, x5=5, x7=5, 其余为0; 最优值:25。
与目标1的结果“共切割 27根,余料27米” 相比 虽余料增加8米,但减少了2根
当余料没有用处时,通常以总根数最少为目标
钢管下料问题2
26 x 1 x 2 x 3 31
模式排列顺序可任定 x1 x 2 x 3
LINGO求解整数非线性规划模型
Local optimal solution found at iteration: 12211 Objective value: 28.00000 Variable Value Reduced Cost X1 10.00000 0.000000 X2 10.00000 2.000000 X3 8.000000 1.000000 R11 3.000000 0.000000 R12 2.000000 0.000000 R13 0.000000 0.000000 R21 0.000000 0.000000 R22 1.000000 0.000000 R23 0.000000 0.000000 R31 1.000000 0.000000 R32 1.000000 0.000000 R33 0.000000 0.000000 R41 0.000000 0.000000 R42 0.000000 0.000000 R43 2.000000 0.000000
整数非线性规划模型
钢管下料问题2
增加约束,缩小可行域,便于求解
每根原料钢管长19米
4 50 5 10 6 20 8 15 26 19
需求:4米50根,5米10 根,6米20根,8米15根 原料钢管总根数下界:
特殊生产计划:对每根原料钢管 模式1:切割成4根4米钢管,需13根; 模式2:切割成1根5米和2根6米钢管,需10根; 模式3:切割成2根8米钢管,需8根。 原料钢管总根数上界:13+10+8=31
模式1:每根原料钢管切割成3 根4米和1根6米钢管,共10根; 模式2:每根原料钢管切割成2 根4米、1根5米和1根6米钢管, 共10根; 模式3:每根原料钢管切割成2 根8米钢管,共8根。 原料钢管总根数为28根。
例2(选址问题)
A,B,C三个区,7个位置M1,…,M7,约束: (1)在A区从M1,M2,M3中选择至多两个; (2)在B区从M4,M5中选择至少一个; (3)在C区,从M6,M7中选择至少一个。 已知,M1..M7分别投资为200,300,350,250,350,200,400,预计每年 获利50,80,12-,70,100,60,120,总资金1200,问如何建立? 模型分析:典型的0-1规划问题,设选择M1,…,M7的投资分别为bi万元,每年 获利ci万元,总资金b万元,设0-1变量xi(i=1,…,7)为:1(选择)或0(不选择)
相关文档
最新文档