第一章 渗流的基本概念和基本规律
渗流的基本原理和规律
渗流的基本原理和规律
四、渗流力学课的特点
• 渗流力学是研究油、气、水在油层中的运动形态和运动规律的 科学。
• 由于油层深埋在地下几千米处,看不见,摸不着,形式多样, 结构复杂,故渗流力学的研究以实验为基础,数学为手段。
渗流的基本原理和规律
一、力学分析
• 油、气、水在岩石中流动,必须要有力的作用
1.流体的重力和重力势能
流体由地球吸引受重力,和其相对位置联系起来,则表现
为重力势能,用压力表示:
Pz—表示重力势能的压力,Pa;
Pz gz
ρ—流体密度,g/cm3; z—相对位置高差,m;
g—重力加速度,m/s2。
渗流的基本原理和规律
• 油气层的概念 • 油藏类型 • 多孔介质
渗流的基本原理和规律
一、油气层的概念
• 油气层是油气储集的场所和流动空间,在其中油气水构成 一个统一的水动力学系统,包括含油区、含水区、含气区 及它们的过渡带。
• 在一个地质构造中流体是相互制约、相互作用的,每一局 部地区的变化都会影响到整体。
渗流的基本原理和规律
三、驱动类型
驱动类型不同油藏的开采特征就不同,故鉴别油藏 的驱动类型对油气田开发有重要意义。几个重要的开发指 标:
地层压力:油藏地层孔隙中流体的压力,也称油藏 压力,记为Pe;
井底压力:油井正常生产时在生产井底测得的压力, 也称流压,记为Pwf;
渗流的基本原理和规律
五、本课层物理
渗流力学
油藏工程 采油工程 数值模拟 试井分析 提高采收率原理 油藏保护
渗流的基本原理和规律
六、主要参考书
1地下水渗流基本概念与基本定律
(4)实际平均流速(Mean actual velocity)是多孔介质中地下水通过空隙面积 的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断 面上的空隙面积,量纲为L/T。记为。它描述地下水锋面在单位时间内运移的距离
,是渗流场空间坐标的离散函数。表示为:
渗流速度 = n 实际平均流速
包括两大类,运动特点各不相同,分别满足于孔隙水和裂隙 岩溶水的特点。 (1) 第一类为地下水在多孔介质的孔隙或遍布于介质中的裂 隙运动,具有统一的流场,运动方向基本一致; (2) 另一类为地下水沿大裂隙和管道的运动,方向没有规律 ,分属不同的地下水流动系统。
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch1 地下水渗流基本概念与基本定律
(2) 连通性:封闭和畅通,有效和无效。
(3) 压缩性:固体颗粒和孔隙的骨架具有压缩性。 (4) 多相性:固、液、气三相可共存。其中固相的成为骨架,气相主要分
布在非饱和带中,地下水可以吸着水、薄膜水、毛管水和重力水等形式
存在。 固相—骨架 matrix
气相—空气,非饱和带中
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch1 地下水渗流基本概念与基本定律
2、水力坡度[水力梯度](hydraulic gradient):在渗流场中大小等于梯 度值,方向沿等水头面的法线并指向水头下降方向的矢量,用J表示。
式中 分别为:
——法线方向单位矢量。在空间直角坐标系中,其三个分量
2、层流与紊流 层流(laminar flow):水流流束彼此不相混杂、运动迹线呈近似 平行的流动。 紊流(turbulent flow):水流流束相互混杂、运动迹线呈不规则 的流动。
渗流力学要点整理
过程状况:是等温过程还是非等温过程;
系统状况:是单组分系统还是多组分系统,甚至是凝析系统;
相态状况:是单相还是多相甚至是混相;
流态状况:是服从线性渗流规律还是服从非线性渗流规律,是否物理化学渗流或非牛顿液体渗流。
3.确定未知数和其它物理量之间的关系
运动方程:速度和压力梯度的关系
岩石的状态方程
质量守恒方程(单相渗流的连续性方程、两相渗流的连续性方程)
单相渗流
=
div F=▽·F在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S所限定的区域直径趋近于0时,比值∮F·dS/ΔV的极限称为矢量场F在点M处的散度,并记作div F
两相渗流
油相
=
水相
油、气两相渗流
油相
=
油相
状态方程:物理参数和压力的关系
连续性方程:渗流速度v和坐标及时间的关系或饱和度与坐标和时间的关系:
确定伴随渗流过程发生的其它物理化学作用的函数关系(如能量转换方程、扩散方程等等)
4.写出数学模型所需的综合微分方程(组)
用连续性方程做为综合方程,把其它方程都代入连续性方程中,最后得到描述渗流过程全部物理现象的统一微分方程或微分方程组。
建立数学模型的步骤
1.确定建立模型的目的和要求
解决的问题:①压力P的分布②速度v的分布(包括求流量)③饱和度S的分布④分界面移动规律。
自变量:空间和时间,(x,y,z)或(r,θ,z)和时间t
因变量:压力P和速度v;两相或多相流S分布
其它参数:地层物性参数(如渗透率K、孔隙度ф、弹性压缩系数C、导压系数æ等)和流体的物理参数(如粘度μ、密度ρ、体积系数Bபைடு நூலகம்)
第一章 渗流的基本概念和基本规律
第一章渗流的基本概念和基本规律内容概要:油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;流体在地下渗流需要里的作用,故还要了解流体受到哪些力的作用、地层中有哪些能量;然后学习渗流的基本规律-达西定律;流体渗流不总是遵循达西定律,就有了非达西渗流或称非线性渗流;对于地层中有多相流体同时参与流动的情况就是两相或多相渗流了,在本章也做一简单介绍。
非线性渗流及两相渗流规律内容概要:在大多数情况下,渗流是服从达西线性渗流定律的,但当流动压差继续增大,Q与p 就会偏离直线关系,而出现曲线段,这就是非线性渗流,它是达西定律的上限,而在低速渗流的条件下,由于吸附等物理化学现象的作用,也会出现非线性渗流的情况,这是达西定律的下限。
本节将介绍这两种偏离线性渗流的线性分析其原因及其描述形式;在多孔介质中存在2相多相流体同时流动的情况就是两相渗流或多相渗流,本节还将简要介绍两相渗流规律。
课程讲解:讲解ppt教材自学:第四节非线性渗流规律本节导学流体渗流不总是遵循达西定律,就有了非达西渗流或称非线性渗流;本节简要介绍非线性渗流的基本规律。
本节重点1、非线性渗流的概念★★★★★2、判断标准★★★3、非达西渗流的表达形式★★★Q 一、非线性渗流的概念当压差不断增大时,Q 与△P 就会偏离线性关系,此时的渗流称为非线性渗流或非达西渗流。
渗流分为三个区域:层流区:低速,粘滞力占优势,达西定律适用。
过渡区:流速增加,粘滞力变小, 惯性力增加,非线性层流, 达西定律不适用。
湍流(紊流)区:高速,惯性力占优势, 达西定律不适用。
Q 与△P 的关系曲线二、判断标准常用渗流雷诺数来判断渗流是线性还是非线性渗流。
如前苏联的卡佳霍夫公式:NRe—雷诺数,其临界值为0.2~0.3;V —渗流速度,cm/s ; K —渗透率,μm 2;μ—粘度,mPa·s;ρ—流体密度,g/cm 3; ø——孔隙度,分数当N Re≤(0.2 ~0.3)时,渗流服从达西定律;当NRe>(0.2~0.3)时,渗流不服从达西定律,出现非线性渗流。
水力学-渗流可编辑全文
2.3lg
a0 H 2 a0
浸润曲线:
y
x
L L m2hk
H12 hk 2
hk 2
15.7 渗流场的基本微分方程式及 其解法简介
为了解渗流的区内各点的渗流流速和动 水压强,进行渗流场的求解
渗流场的连续性方程:
ux uy ux 0 x y z
运动方程:
ux
k
H x
uy
k
渗流的类型: 恒定渗流和非恒定渗流 均匀渗流及非均匀渗流 渐变渗流及急变渗流 有压渗流和无压渗流
15.2 渗流的基本定律—达西定律
达西定律:均质孔隙 介质中渗流流速与水 力坡度的一次方成比 例并与土的性质有关
v Q kJ A
或 v k dH
ds
适用条件:
适用于层流渗流,水利工程中绝大多 数 渗流属于层流范围
CH15 渗流
渗流常出现在:经过挡水建筑物中、水 工建筑物地基中、集水建筑物中、水库 及河道
本章研究渗流的流速、压强分布、渗流 的流量、渗流的水面线等
15.1 渗流的基本概念
渗流是水在土中的存在形式:汽态水、 吸着水、薄膜水、毛细水、重力水
假定:渗流是在均质各向同性土中的
渗流模型—认为渗流是充满了整个孔隙 介质区域的连续水流 模型取代真实渗流的原则: 1、流量相等 2、确定作用面动水压强相等 3、阻力相等即水头损失相等
渗流的临界雷诺数为:
Re
1
vd
0.75n 0.23
非层流渗流,其流动规律为:
v kJ 1m
渗透系数 k 的确定
主要取决于颗粒形状、大小、不均匀系 数及水温
经验法、室内测定法、野外测定法
15.3 地下河槽中恒定均匀渗流和 非均匀渐变渗流
【免费下载】渗流力学基本理论
目录第一章渗流理论基础 (1)1.1渗流的基本概念 (1)1.2渗流基本定律 (7)1.3岩层透水特征及水流折射定律 (11)1.4流网及其应用 (14)1.5渗流连续方程 (19)1.6渗流基本微分方程 (24)1.7数学模型的建立及求解 (32)第一章渗流理论基础1.1 渗流的基本概念1.1.1 多孔介质及其特性1.1.1.1多孔介质的概念多孔介质(Porous medium):地下水动力学中具有空隙的岩石。
广义上包括孔隙介质、裂隙介质和岩溶不十分发育的由石灰岩和白云岩组成的介质,统称为多孔介质。
孔隙介质:含有孔隙的岩层,砂层、疏松砂岩等;裂隙介质:含有裂隙的岩层,裂隙发育的花岗岩、石灰岩等。
1.1.1.2 多孔介质的性质(1) 孔隙性:有效孔隙和死端孔隙。
孔隙度(Porosity)是多孔介质中孔隙体积与多孔介质总体积之比(符号为n),可表示为小数或百分数,n=Vv/V。
有效孔隙(Effective pores)是多孔介质中相互连通的、不为结合水所占据的那一部分孔隙。
有效孔隙度(Effective Porosity)是多孔介质中有效孔隙体积与多孔介质总体积之比(符号为n e),可表示为小数或百分数,n e=V e/V。
死端孔隙(Dead-end pores )是多孔介质中一端与其它孔隙连通、另一端是封闭的孔隙。
(2) 连通性:封闭和畅通,有效和无效。
(3) 压缩性:固体颗粒和孔隙的压缩系数推导。
(4) 多相性:固、液、气三相可共存。
其中固相的成为骨架,气相主要分布在非饱和带中,液相的地下水可以吸着水、薄膜水、毛管水和重力水等形式存在。
固相—骨架matrix气相—空气,非饱和带中液相—水:吸着水Hygroscopic water薄膜水pellicular water毛管水capillary water重力水gravitational water1.1.1.3多孔介质中的地下水运动比较复杂,包括两大类,运动特点各不相同,分别满足于孔隙水和裂隙岩溶水的特点。
第1章 渗流的基本概念和基本规律
二、与油藏有关的压力概念
1、原始地层压力 Pi
藏在开发以前,整个油藏处于平衡状态,此时油层中流体 所承受的压力称为“原始地层压力”。
说明:当油层倾角较大时,各井油层中部深度各 不相同。矿场实践表明,在油藏开发前的原始状况下, 各井原始地层压力也是不相等的。
获取方法: 在开发初期,可以根据第一批探井获得。 思考:开发中后期,如何获得?
4、孔隙结构复杂性
储集层的五种特性
决定了渗流的特点:渗流阻力大;渗流速度慢
第二节 多孔介质及连续介质场
一、多孔介质的特点及分类
5、多孔介质分类
单纯介质
粒间孔隙 纯裂缝
三 种 介 质 七 种 结 构
纯溶洞 裂缝-孔隙
双重介质
溶洞-孔隙
裂缝-溶洞
三重介质
孔隙-裂缝-溶洞
第二节 多孔介质及连续介质场
一、多孔介质的特点及分类
且油藏具有明显的倾角时这种能量才起作用。
油藏具有明显的 倾角时这种驱动 方式 才起作用
第三节 渗流过程中的力学分析及驱动类型
6、驱动方式小结及三次采油介绍
在流体流向井底的过程中,往往是各种能量同时起作用, 区别在于每种能量发挥作用的大小不同,在某个时期,某 种能量会处于主导地位,其它能量处于从属地位,那么, 在某个时期内,什么能量处于主导地位,就叫做什么驱。
=9.435MPa prB>prA,所以油从B流向A。
A
z 10 m
B
第三节 渗流过程中的力学分析及驱动类型
三、油藏驱动类型及驱动能量
1、水压驱动
来源于与外界连通的边水或人工注入水。
注水井 边水压能
生产井
第三节 渗流过程中的力学分析及驱动类型
渗流力学 学习指南
《渗流力学》课程学习指南第一章渗流的基础知识和基本定律一、学习内容简介油气储集层;渗流的基本概念;渗流过程的力学分析及油藏驱动方式;线性渗流和非线性渗流。
二、学习目标全面掌握渗流力学的基本概念和基本定律,了解本课程的学习目的,为今后的学习打下基础。
三、学习基本要求1.了解油气储集层的理论及实际结构,渗流过程的力学分析及油藏驱动方式,非达西渗流的两种形式;2.掌握孔隙结构的概念和油气储集层的特点,渗流的基本几何形式,渗流速度和压力的概念,掌握达西定律的应用及其范围。
四、重点和难点重点:油气储集层的特点,渗流速度的概念,折算压力在计算中的应用,达西定律和单位制,达西定律的适用条件。
难点:油气储集层的特点,渗流速度和真实渗流速度的概念及关系,换算折算压力,达西定律的适用条件。
五、学习方法推荐结合油层物理,大学物理和课堂例题学习。
第二章单相液体的稳定渗流一、学习内容简介渗流数学模型的建立;单相液体稳定渗流数学模型的解;井的不完善性;稳定试井。
二、学习目标能够建立单相液体稳定渗流基本微分方程;能根据基本微分方程推导流量与产量公式;了解井的不完善性和稳定试井的知识。
三、学习基本要求1.了解渗流力学研究问题方法,井的不完善性的分类,稳定试井可解决的问题;2.掌握渗流力学模型要素及建立过程,平面单向流模型,平面平面单向流、径向流压力分布公式的推导,流量公式的推导和应用,加权法求地层平均压力,稳定试井的概念。
四、学习重点和难点重点:微分法导出渗流数学模型,平面单向流、径向流模型压力分布和流量公式,流场图的含义,面积加权法求地层平均压力,表皮系数、采油指数、指示曲线的概念。
难点:微分法导出渗流数学模型,平面径向流压力分布特点,流量公式的推导,表皮系数的意义。
(四)学习方法推荐联系高等数学的知识与结合例题学习。
第三章多井干扰理论一、学习内容简介多井干扰现象的物理过程;势的叠加原则;镜像反映法及边界效应;等值渗流阻力法;复变函数理论在渗流力学中的应用。
地下水动力学简介
第一章 渗流理论基础§1-1 渗流的基本概念一、渗流及连续介质假说1 多孔介质(porous medium)与连续介质(continuous medium)多孔介质很难给出其精确定义,在地下水动力学中,把具有孔隙的岩石称为多孔介质。
它包括孔隙介质和裂隙介质。
一般来说,具有以下特点的物质就称为多孔介质。
(1)该物体为多相体:固体相-骨架,流体相-空隙;(2)固体相的分布遍及整个多相体所占据的区域;(3)空隙空间具有连通性。
多孔介质由连续分布的多孔介质质点(图1-2)组成—多孔连续介质.此时孔隙度的表示公式为:--为数学点P 处多孔介质的表征体积元(简称为表征体元-REV ),将其所包含的所有流体质点与固体颗粒0v ∆的总体称为多孔介质质点.将其所包含的所有流体质点称为多孔介质流体质点。
图1-2 REV 的定义及孔隙度随体积的变化多孔介质的性质:1)孔隙性2) 压缩性2 渗透(seepage )渗透:地下水受重力作用在岩石空隙中的实际运动称为渗透。
由于岩石空隙结构极为复杂,空隙的大小、延伸方向、形状无一定规律。
渗透具有如下特征:(1)运动途径复杂多变;(2)状态函数非连续;(3)只有平均性质的渗透规律(图1-1),研究地下水质点的运动特征比较困难。
因此,在当前经济技术条件下研究单个孔隙中的水或单个水质点的运动是十分困难的,也没有必要。
vv p n v v v ∆∆=∆→∆0lim)(图1-2岩石中地下水的渗透针对这种极为复杂的地下水运功,在地下水动力学中一般可采用两种研究方法。
1) 研究微观情况下的运动,即研究地下水在以孔隙介质中的骨架为边界孔隙或裂隙中的运动。
由于空隙介质的结构具有随机性,所以用统计平均方法来确定地下水运动的宏观规律性;2) 从宏观角度出发,采用试验及数学分析方法,对大量微观运动进行宏观研究得出各种运动条件下地下水运动的基本规律。
3 渗流(seepage flow)前面已经提到,要研究实际的渗透十分困难,因此,我们用一种假想水流来代替真实水流,这种假想水流是在连续介质的基础上通过概化得出的:(1)假定水流充满整个含水层空间(既包括空隙所占据的空间,也包括颗粒/骨架所占据的空间);(2)只考虑水流运动的总体方向,不考虑水流实际运动途径的复杂变化.将通过上述概化后所得到的假想水流—渗流。
渗流的基本概念和基本规律.
力学分析及驱动类型
岩石的压缩性常用压缩系数表示:
1 Cf V f P
液体的压缩系数:
V f
ΔVf——孔隙体积的变化量; Vf——岩石的外表体积; Cf——岩石的压缩系数,单位为 (1/10-1MPa),它表示油层压力每降 低10-1M Pa时,单位体积岩石中孔隙体 积的缩小值。 VL—液体的绝对体积; ΔVL— 压力改变 ΔP 时,流体体积相应的 变化量; CL—液体的弹性压缩系数,表示压力改 变10-1MPa时,单位液体体积的改变量, 单位为(1/10-1MPa)。式中负号表示液体 体积变化方向与压力变化方向相反。
油气储集层
定压边界油藏
1-供给边缘;2-含油边缘;3-含气边缘
封闭式油藏
1-封闭边缘;2-含油边缘;3-含气边缘
特点:边界压力保持不变。
特点:边界无流体通过边界
油气储集层
2、块状油藏
主要为灰岩和白云岩类储集层
特点:面积小、厚度大、为三维流动。
纵向分区:纯油区(有滞留水)、过渡区及纯水区
二、多孔介质
多孔介质是渗流的基本条件之一,多孔介质具有 以下特点:
1、孔隙性
储层岩石具有孔隙性,并被流体所充满,孔隙性大小用孔隙度表示:
Vt a V V0 V
Φa—绝对孔隙度;Φ—有效孔隙度;
V—岩石视体积;Vt—岩石总孔隙体积; V0—岩石有效孔隙体积。
2、渗透性
多孔介质让流体通过的性质,叫渗透性。渗透性的大小 用渗透率表示。
VL 1 CL VL P
力学分析及驱动类型
5.毛管力
油气层由无数个微小的毛细管连接组成,在毛细管内两相液体 界面间会产生压力跃变 ,这个压力的跳跃就称为毛管压力,它的 大小取决于分界面的弯曲率(曲度)。
渗流力学
e
Vep Vf
C 流动孔隙度 • 指岩石中可以流动的孔隙体积与岩石外观体 积的比值. V
m
mp
Vf
• 很显然:
a e m
二、 油藏岩石的渗透率
1.油藏岩石渗透率的定义
油藏岩石允许流体通过的能力称为油藏岩石的渗透率。 单位:µm2 2.达西公式
QL K = AP
3.达西公式应用条件 1.岩石100%饱和并流动着单一流体; 2.流动状态为层流; 3.流体与岩石不发生物理、化学和物理化学反应。
渗流速度(假想速度):设想流体通过整个岩层横截面积 (实际上流体只通过孔隙横截面积),此时的流体流动速 度称为渗流速度υ。
Q A
渗流速度和实际平均速度
由
Vp V
Vp Ap L
Ap A
V AL
Q Q u A Ap
得到:
上式反映了流体渗流速度与实际平均速度间的关系。在 渗流力学中经常应用的是渗流速度,用它来研究油井产量 等问题,只有在研究流体质点运动规律时,才用实际平均 速度 。
积的岩石中所排出的液量,单位: 1/MPa
1 VL Ct Vf P
(2)表示方法: 综合反映了油藏弹性能量的大小.Ct越 大,表明油藏的弹性能量越充足.
四、岩石的比面 1、定义:单位体积的岩石内岩石骨架的总表
面积或单位体积岩石内孔隙总面积。 单位:1cm2/cm3 = 10dm2/dm3 = 100m2/m3
第四节 渗流的基本规律
渗流的基本规律—达西定律 多孔介质组成复杂,流体渗流规律复 杂。人们最初研究渗流规律是以实验为基 础的宏观研究方法。
1 达西定律
装置中的①是横截面积为 A 的直立圆筒, 其上端开口,在圆筒侧壁装有两支相距 为 l 的侧压管。筒底以上一定距离处装 一滤板②,滤板上填放颗粒均匀的砂土。 水由上端注入圆筒,多余的水从溢水管 ③溢出,使筒内的水位维持一个恒定值。 渗透过砂层的水从短水管④流入量杯⑤ 中,并以此来计算渗流量 q。
渗流力学-第一章
式中:Q—流量;Ap—孔隙截面面积。 流量; 孔隙截面面积。 式中: 渗流速度(假想速度):设想流体通过整个岩层横截面积(实 渗流速度(假想速度) 设想流体通过整个岩层横截面积( 际上流体只通过孔隙横截面积),此时的流体流动速度称为渗 际上流体只通过孔隙横截面积),此时的流体流动速度称为渗 ), 流速度υ 流速度υ。
使一口油井停止生产, 周围的油井继续生产, 使一口油井停止生产,而周围的油井继续生产,则关 停止生产 的油井继续生产 闭井的压力逐渐升高 经过一段较长的时间后,压力值不 闭井的压力逐渐升高,经过一段较长的时间后,压力值不 压力逐渐升高, 再上升,趋于稳定,此时测得的该井的油层中部深度 再上升,趋于稳定,此时测得的该井的油层中部深度实测 中部深度实测 压力值即为该井的目前地层压力 压力值即为该井的目前地层压力,习惯上也称作为该井的 目前地层压力, “静压”。 静压”
Q υ = A
第一章 渗流基本规律及渗流模型
渗流速度和实际平均速度
由
φ=
Vp V
V p = Ap L
V = AL
Q φQ υ= = = φu A Ap
φ=
Ap A
得到: 得到:
上式反映了流体渗流速度与实际平均速度间的关系。 上式反映了流体渗流速度与实际平均速度间的关系。在渗流 力学中经常应用的是渗流速度,用它来研究油井产量等问题, 力学中经常应用的是渗流速度,用它来研究油井产量等问题,只 有在研究流体质点运动规律时, 有在研究流体质点运动规律时,才用实际平均速度 。
pபைடு நூலகம்r = γ H = p + γZ
式中pr称为折算压力,它表示油层中各点流体 称为折算压力 折算压力, 所具有的总能量,而p仅表示该点处压能的大小。 仅表示该点处压能的大小。 所具有的总能量,
渗流力学
渗流力学绪论多孔介质:由固体骨架和相互连通的孔隙,裂缝,溶洞或各种类型的毛细管体系所组成的材料。
渗流力学与其他力学的区别:介质的不同。
第一章渗流的基本概念和基本规律油气藏:油气储集的场所和流动的空间。
油气藏按圈闭形成的类型:构造油气藏,地层油气藏,岩性油气藏。
构造油气藏的分类:背斜油气藏,断层油气藏,刺穿接触油气藏。
油气藏根据流体流动空间的特点:层状隐藏,块状油藏。
层状油藏的特点:1:油层平缓,分布面积大。
2:多油层,多旋回。
3:只考虑在水平方向上流动的流体。
块状油气藏得特点:有限的圈闭面积内相当厚的油藏,考虑纵向上流体的流动和交换;考虑毛管力和重力的作用。
纵向上分为三个区:纯油区,过渡区,纯水区。
过渡区:含束缚水过渡带,油水同生过渡带,残余油过渡带。
多孔介质的特点:孔隙性,渗透性,比表面积大及孔隙结构复杂。
渗透性:多孔介质允许流体通过的能力。
K= ;渗流:流体在多孔介质中的流动。
绝对渗透率:当岩石中的孔隙流体为一项时,岩石允许流体通过的能力。
有效渗透率:当岩石中有两种以上流体存在时,岩石桂其中一相的通过的能力。
相对渗透率:岩石的有效渗透率与绝对渗透率的比值。
比表面积:单位体积岩石所有岩石颗粒的总表面积或孔隙内表面积。
孔隙类型:粒间孔隙,裂缝,溶洞。
多孔介质巨大的比面和复杂的孔隙结构,使得渗流具有阻力大,流动速度慢的特点。
油气层孔隙结构分为:单纯介质(粒间孔隙结构和纯裂缝结构),双重介质(裂缝-孔隙结构和溶洞-孔隙结构),三重介质(大洞或大裂缝和微裂缝、微孔隙共生)。
理想结构模型:将岩石的孔隙空间看成是由一束等直径的微毛细管组成。
修正理想结构模型:变截面弯曲毛细管模型。
重力(动力或阻力),惯性力(阻力),粘滞力(阻力),弹性力(动力),毛管力(动阻力)原始地层压力:油藏开发前流体所受的压力。
供给压力:油藏中存在液源供给区时,在供给边缘上的压力。
井底压力:油井正常工作时,在生产井井底所测得的压力。
第1章 渗流的基础知识和基本定律
纯溶洞结构简化模型
16
第一节 油气储集层
二、外部几何形状及其简化
以背斜构造为例,对其外部几何形状进行简化。对实际油藏进行水平投影,如 下图所示。 油水分界面(油水接触面)->油水边界(内含油边界、外含油边界) 油气分界面(油气接触面)->油气边界 如果有露头->供给边界(有水源供应) 封闭边界(边界是封闭的)
油藏外部形状及其简化示意图
17
第一节 油气储集层
三、油气储集层的特点
1.储容性 油气储集层具有储存和容纳流体的能力,即储容性。 绝对孔隙度:岩石内总的孔隙体积占岩石体积的百分数。 公式:φt=Vt/V×100% 用途:计算油气藏的绝对储量。 有效孔隙度:岩石中有效孔隙体积占岩石体积的百分数。 公式:φ=Ve/V×100% 用途:计算油气藏的可采储量。
20
第一章 渗流的基础知识和基本定律
第一节 油气储集层 第二节 渗流的基本概念 第三节 力学分析及油藏驱动方式 第四节 线性渗流与非线性渗流
21
第二节 渗流的基本概念
一、渗流的三种基本几何形式 1.平面单向流 流体质点沿同一方向运动。 特点:流线相互平行,垂直于流动方向的截面上各点 的渗流速度相等;如果流动是稳定渗流,那么流动方 向上任一点的压力只是沿程位移x的线性函数。
折算压力计算示意图
30
第一章 渗流的基础知识和基本定律
第一节 油气储集层 第二节 渗流的基本概念 第三节 力学分析及油藏驱动方式 第四节 线性渗流与非线性渗流
31
第三节 渗流过程中的力学分析及油藏的驱动方 式
一、力学分析
油气水在岩石孔道中流动,受到各种力的作用。 1.流体的重力 地球对流体的吸引力称为流体的重力。 重力有时是动力,有时是阻力。
第一章 渗流的基本概念和基本规律.渗流力学.中国石油大学(华东)
层状油藏
储层厚度<含油高度(边水油藏)
块状油藏
储层厚度>含油高度(底水油藏)
5
第一节 油气藏及其简化
层状油藏
分布 -常存在于海相和内陆盆地沉积中,厚度较小,分布面积大 几何特征 - 具有多油层、多旋回的特点
- 纵向上按韵律可分为多个层组
- 层组内可分为几个油层 - 油层内可划分成若干小层 - 小层间有泥岩类隔夹层存在 渗流特征 - 只考虑层内平面流动,可忽略垂向层间交换 6
油气储集层是以岩石颗粒为骨架并含有大量微毛细
管孔隙的介质,所以,多孔介质也定义为:由大量毛细 管或微毛细管结构组成的固体介质
8
第二节 多孔介质及连续介质场
一、多孔介质的储容性
多孔介质的孔隙具有储集和容纳流体的能力
(1)孔隙(pore) 介质中未被固体物质占据的部分 骨架颗粒之间的空间 孔隙是多孔介质的储集空间 有效孔隙,死孔隙 孔径 ~ m
油气藏是一个孔隙连通体!
特征 高温、高压
2
第一节 油气藏及其简化 二、油气藏的分类
根据圈闭形成条件不同可分为三类:
• 构造油气藏
• 地层油气藏
• 岩性油气藏
3
第一节 油气藏及其简化 三、油气藏的“边界”
如果油藏外围有天然露头并与天然水源相通,称为“定压边界 油藏” ,如果外围封闭(断层遮挡或尖灭作用),无水源,则称为 “封闭边界油藏”。
32
第三节
渗流过程中的力学分析及驱动类型
2、驱动类型
驱动类型:依靠何种能量 把原油驱入井底。驱动类 型不同,采收率大小不同 气顶中压缩气体的弹性能 原油中溶解气的弹性能 原油本身的重力 水压驱动 弹性驱动
1、天然驱动能量
渗流的基本概念和基本规律
第一章渗流的基本概念和基本规律内容概要:油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;流体在地下渗流需要里的作用,故还要了解流体受到哪些力的作用、地层中有哪些能量;然后学习渗流的基本规律-达西定律;流体渗流不总是遵循达西定律,就有了非达西渗流或称非线性渗流;对于地层中有多相流体同时参与流动的情况就是两相或多相渗流了,在本章也做一简单介绍。
第一节油气储集层及渗流过程中的力学分析内容概要:油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;掌握他们的特点。
流体在地下渗流需要力的作用,本节应掌握流体受到哪些力的作用,其中哪些是动力、哪些是阻力;地层中有哪些能量为地层流体流入井底提供动力,理解油藏的驱动方式,了解各种驱动方式下油藏的生产特点。
课程讲解:讲解ppt教材自学:油气储集层本节导学油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;掌握他们的特点。
本节重点1、油气层的概念★★★★★2、油气层的分类和特点★★★3、多孔介质的概念★★★4、多孔介质的表征参数★★★一、油气层的概念油气层是油气储集的场所和流动空间,在其中油气水构成一个统一的水动力学系统,包括含油区、含水区、含气区及它们的过渡带。
在一个地质构造中流体是相互制约、相互作用的,每一局部地区的变化都会影响到整体。
可分为:层状和块状 1.层状油藏往往存在于海相沉积和内陆盆地沉积中,厚度较小,分布面积大、多油层、多旋回。
水动力特点:流动只在平面进行,忽略垂向上流体的运动和物质交换。
按边界类型可分为:封闭边界油藏: 边界为断层或尖灭,没有边水供给定压边界油藏:层体延伸到地表,有边水供给区,在边界上保持一个恒定的压头。
定压边界油藏 封闭式油藏1-供给边缘;2-含油边缘;3-含气边缘 1-封闭边缘;2-含油边缘;3-含气边缘特点:边界压力保持不变。
渗流力学油工
旳运动规律,计算流体质点旳排出时间。
2024/10/1
Vp Ap
VA
HX-CHEuNG
v
或
v u
30
§1.3 渗流旳基本规律 和渗流方式
(2)渗流阻力
Q K A P P L P
L
KA R
(3)达西定律旳微分形式
一维:v K dP dx
vx
K
P x
三维:v K gradP
vy
HX-CHENG
16
§1.2 渗流过程中旳力学分析 及驱动类型
一、渗流过程中旳力学分析
1.流体旳重力和重力势能
A
B
动 力
M
液源水头
阻
压力
力
N
重力作用示意图
g 表达重力势能旳压力:
2024/10/1
Pz
gz HX-CHENG
重率:
17
§1.2 渗流过程中旳力学分析 及驱动类型
2.流体旳质量和惯性力
流线:在某一时刻t,经过流动空间旳许多点连接起来
旳一条光滑曲线,该曲线上各点旳流速矢量与曲线相切。
单向流 平面径向流
z
v1
v2
v4
v5
v3
渗流方式
球面径向流
x
y
2024/10/1
HX-CHENG
Ao
P
nf
8 Ao
ALv
§1.3 渗流旳基本规律 和渗流方式
二、渗流力学中常用物理量旳单位(单位制)
油气层渗流力学中常用旳单位制有:国际原则单位制
(SI制)和达西混合单位制。如表所示。
达西单位旳物理意义:当液体粘度为1厘泊,压降为1大
气压下,流体流过截面积为1平方厘米,长度为1厘米旳岩样,
渗流力学第一章笔记
1. 渗流:流体在多孔介质中流动叫做渗流。
渗透率为床力梯度为1时,动力黏滞系数为I的液体在介质中的渗透速度。
是表征土或岩石本身传导液体能力的参数。
其大小与孔隙度、液体渗透方向上空隙的几何形状、颗粒大小以及排列方向等因素有关,而与在介质中运动的液体性质无关。
渗透率(k)用来表示渗透性的大小。
在一定床差下,岩石允许流体通过的性质称为渗透性;在一定压差下, 岩石允许流体通过的能力叫渗透率。
2•开敞式油藏:如果油气藏外币与天然水源相连通,可向汕气藏供液就是开敞式油气藏。
如果外伟1封闭且边缘高程与油水界而高程一致则称为封闭式油藏。
3. 原始地层压力:油气藏开发以前,一般处F平衡状态,此时油层的流体所承受的压力叫原始地层压力。
4. 供给压力:汕气藏中存在液源供给区时,在供给边缘上的压力称为供给压力。
5. 驱动方式可分为:水床驱动,弹性驱动,溶解气驱动和重力驱动。
6. 在渗流过程中,如果运动的备主要元素只随位置变化而与时间没有关系,则称为稳定流,反之,若各主要元素之一与吋间有关,则称为非定常渗流或者不稳定渗流,7•渗流的基本方式:半面一维渗流,平面径向渗流,和球面渗流。
时规定这样的原则:任何相邻两条等床线Z间的床差必须相等,同8.绘制渗流时,任何两条流线之间的流量必须相等。
9•井底结构和井底附近地区油层性质发生变化的井称为渗流不完善井。
不完善井可以分为打开程度不完善,打开性质不完善,双重不完善井。
10.试井:直接从实测的产量圧力数据反求地层参数,然后用求得的地层参数來预测新的工作制度下的产量。
11•井间干扰:油水井工作制度的变化以及新井的投产会使原來的圧力分布状态遭受到破坏引起整个渗流场发生变化,白然会影响到邻井的产量,这种井间柑互影响的现象称为井间干扰。
12•压降叠加原理:多井同时工作时,地层中任一点外的压降等于各井以各〔I不变的产量单•独工作时在该点处造成的压降代数和。
13•势的叠加原理:如果均质等厚不可床缩无限大底层上有许多点源,点汇同时匸作,我们自然会想到地层上任一点的势应该等于每个点源点汇单独工作时在该点所引起的势的代数和,这就是势的叠加原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章渗流的基本概念和基本规律
内容概要:
油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;流体在地下渗流需要里的作用,故还要了解流体受到哪些力的作用、地层中有哪些能量;然后学习渗流的基本规律-达西定律;流体渗流不总是遵循达西定律,就有了非达西渗流或称非线性渗流;对于地层中有多相流体同时参与流动的情况就是两相或多相渗流了,在本章也做一简单介绍。
渗流的基本规律和渗流方式
内容概要:
地层流体渗流规律复杂,但一般情况下符合渗流的基本规律,即达西定律;渗流的方式也是多种多样的,我们可以对各种渗流方式进行归类、化简,变成三种基本的渗流方式,复杂渗流再由这三种方式进行组合。
本节应牢固掌握达西定律,真实流速与渗流速度的概念及其关系,掌握三种基本渗流的方式。
课程讲解:
讲解ppt
教材自学:
第三节渗流的基本规律和渗流方式
本节导学
地层流体渗流规律复杂,但一般情况下符合渗流的基本规律,即达西定律;渗流的方式也是多种多样的,我们可以对各种渗流方式进行归类、化简,变成三种基本的渗流方式,复杂渗流再由这三种方式进行组合。
本节重点
1、达西定律★★★★★
2、真实流速与渗流速度的关系★★★★★
3、单向流★★★
4、平面径向流★★★
5、球面向心流★★★
一、渗流的基本规律—达西定律
多孔介质组成复杂,流体渗流规律复杂。
人们最初研究渗流规律是以实验为基础的宏观研究方法。
1.达西定律 实验步骤: (1)、调节入水阀,保持一定的进水水位 (2)、调节出水阀门,得一流量Q ; (3)、流动稳定后测流量和压差。
a:出水口(稳定水位) b:滤网
E:阀门,控制流量和水头压差 D:量杯,测流量
达西实验装置图
做多组实验:不同砂层横截面积、L 、流量、砂粒大小、液体、压差。
1-1截面总水头高度
2-2截面总水头 两截面水头差
其折算压差为
大量实验研究表明,流量Q 与折算压力差△Pr 、岩心截面积A 成正比,与液体粘度μ、测压管两截面距离△L 成反比,其比例常数与填砂粒径有关,砂粒粒径越大,流量越大,反之流量越小。
用公式表示(达西公式)
Q ——通过砂岩的流量,cm 3/s ;
K ——砂岩的渗透率,μm 2(=1D=1000mD); A ——渗流截面积,cm 2; △L ——两渗流截面间的距离,cm ; μ——液体粘度,mPa·S;
△Pr ——两渗流截面间的折算压力差,10-1
MPa ,即大气压。
上式可写成
a
b
111P
H z g
ρ=+2
22
P H z g
ρ=+1212
P P H z z g g ρρ⎛⎫⎛⎫∆=+-+ ⎪ ⎪⎝⎭⎝⎭
r P g H ρ∆=∆
()
()r P Q L
KA
μ∆=
∆动力阻力
若为水平地层,则△Pr = △P :
△P 实测压力,在油层倾角不大时,可用上式计算。
在一定范围内△P 与Q 成直线关系,当流量不断增大,直线关系就会被破坏。
原因是当流体处于层流时,水头损失与流量成正比,而紊流时水头损失与流量不再是直线关系。
大量实验和油田实际资料表明,由于流体在孔隙通道中的速度非常小,因而在砂岩油藏中,流量Q 和△P 成直线关系,仅在裂缝性地层或井底附近地区可能破坏线性关系。
气藏中由于气体粘度小,流速大也可能破坏直线关系。
2.真实流速与渗流速度的关系
渗流速度v :渗流量与整个流体通过的岩石截面之比。
真实渗流速度u: 实际流体只在岩石孔道内流动,流量与流体通过的岩石截面上孔隙面积之比。
根据孔隙度的定义
则:
在渗流力学中经常应用的是渗流速度,用它来研究油井的产量等问题,只在研究质点运动规律时才用平均真实速度。
达西定律也可以用速度的形式来表达
为了理论分析方便起见,用微分形式表示上式
上式也称运动方程,式中负号是因为沿流动方向压力降低。
二、渗流的基本方式
1.单向流
流体质点沿同一方向运动 如三面封闭的栅状油藏
K P Q A
L
μ∆=∆Q
v A =p Q u A =p p p
V A L A V AL A φ===
p Q Q v u A A φφ===K P
v L
μ∆=∆K dP v dL μ=
-
(a)
(b)
(c)
P e
P w
特点:流线是彼此平行的直线,在 垂直于流线的任一截面上速度相等。
单向流 2.平面径向流
流体从平面上向井点汇集 特点:二维流动 达西定律表达式
直角坐标 极坐标
平面径向流
因压力降落方向与r 减小方向一致,故在极坐标表达式中无负号
3.球面向心流
流线都是直线,呈辐射状向中心点汇集。
特点:三维流动。
达西定律表达式: 球面向心流 直角坐标 球坐标
例题分析:
1、实验测定岩心渗透率,岩心半径为1cm ,长度为5cm ,用粘度为1s mP a ⋅的流体通过岩心,2min 内测得通过液量为15cm 3,岩心两端压差为157mmHg ,计算岩心的渗透率为多少? 解:本题为达西定律的应用题,据达西定律可求解产量、压力、渗透率等参数。
由K
P
Q A
L
μ
∆=
∆ Q L
K A P
μ∆=
∆
另3
5
-113.6109.80.157100.209(10MPa)P gh ρ-∆==⨯⨯⨯⨯= 可得岩心的渗透率为
K dP
v dx
μ=-x y K P v x K P v y μμ∂⎧=-⎪∂⎪⎨∂⎪=-
⎪∂⎩
r K dP v dr μ=
P e P e P w (a)
(b)
(c)
x
y
z
K P
v x K P v y K P v z μμμ⎧∂=-⎪∂⎪⎪∂=-⎨∂⎪
⎪∂=-⎪∂⎩
r K dP
v dr μ=
22
15/12015
0.952m 3.1410.209
K μ⨯=
=⨯
2、管状地层模型中通过的流量为12cm 3/min ,模型直径为2cm ,实验液体粘度为9s mP a ⋅,密度为0.85,模型孔隙度0.2,渗透率12m μ。
求液体的渗流速度、真实速度为多少? 解:渗流速度2
12/60
0.0637cm/s 1Q v A π===⨯ 真实速度212/600.3183cm/s 10.2
Q u A φπ=
==⨯⨯ 内容小结:
虽然不同油田的实际情况和油气水的渗流状况不同,但是在不同条件下渗流的动力和阻力的基本关系又有共同之处,这就是油气水渗流的基本规律—达西定律。
达西定律表明流量Q 与折算压力差△Pr 、岩心截面积A 成正比,与液体粘度μ、测压管两截面距离△L 成反比,其比例常数与填砂粒径有关,砂粒粒径越大,流量越大,反之流量越小。
注意达西定律各参数的意义和单位。
注意区别渗流速度、流体真实速度的概念,并掌握它们之间的关系;掌握三种基本渗流方式形成的条件、渗流速度的表述形式。
自测题:
1、根据达西定律渗流量与_______成反比。
A.渗流截面积
B. 岩石的渗透率
C. 液体粘度
D.压力差 2、渗流速度v 与流体真实速度u 的关系是u =φv 。
( ) 3、渗流的基本方式有哪些?。