第4章-光电探测原理及器件
光电探测器原理及应用
光电探测器原理及应用
光电探测器是一种能够将光信号转化为电信号的装置,其基本原理是利用光的能量激发材料中的电子从而产生电流。
根据光电效应的不同机制,光电探测器通常可以分为光电二极管、光电导、光电二极管阵列等多种类型。
光电二极管是最基本的光电探测器之一,其工作原理是光照射到光敏材料表面时,材料中的电子会被光激活并跃迁至导带中,从而形成电流。
光电二极管具有响应速度快、灵敏度高等特点,广泛应用于光通信、光谱分析、光电测量等领域。
光电导是一种利用光照射后材料电阻发生变化的光电探测器,其工作原理是光激发后,光电导材料中的载流子浓度发生改变,从而引起电阻的变化。
光电导具有较高的灵敏度和较宽的光谱响应范围,可广泛应用于光谱分析、光学测量、遥感等领域。
光电二极管阵列是由多个光电二极管组成的阵列结构,可以同时检测多个光信号,具有高灵敏度和高分辨率的特点。
光电二极管阵列常被用于光通信、图像传感、光谱分析等领域,如CCD(电荷耦合器件)摄像头就是经典的光电二极管阵列应
用之一。
此外,光电探测器还广泛应用于激光测距仪、扫描仪、光电子显像、医学诊断、环境监测等领域。
例如,激光测距仪利用光电探测器检测激光脉冲的发射和接收时间差,实现对目标距离的测量;扫描仪利用光电探测器对扫描光线的反射或透射光进行检测,实现图像的数字化处理和存储。
总之,光电探测器通过将光信号转化为电信号,实现了光能量的检测和测量。
其应用领域广泛,并在科学研究、工业生产、医疗诊断等领域发挥着重要的作用。
第四章 热电探测器
自发极化:在一定温度范围内、单位晶胞内正
负电荷中心不重合,形成电偶极子,呈现偶极 矩。这种在无外电场作用下存在的极化现象称 为自发极化。
铁电晶体和热 释电晶体都具有 自发极化特性。
特性来探测变化的辐射。
30
1、检测原理:
热电晶体在温度变化时所显示的热电 效应示意图
31
1、检测原理:
温度恒定时,因晶体表面吸附有来自于 周围空气中的异性电荷,而观察不到它的自 发极化现象。当温度变化时,晶体表面的极 化电荷则随之变化,而它周围的吸附电荷因 跟不上它的变化,失去电的平衡,这时即显 现出晶体的自发极化现象。所以,所探测的 辐射必须是变化的。入射辐射不变化,则无 电信号输出。
缺点:晶体生长较为困难。
37
五、热释电器件的类型 3、钽酸锂(LT)热释电器件
优点:居里温度可达620度,能承受高能量辐 射,可用于激光的测量。机械强度高,物理化 学性能稳定,不需保护窗口;相应速度快,可 达到10-12s,适于探测高速脉冲,是一种极有前 途的探测激光脉冲的热释电监测器件。
m.o.s
Laboratories
第四章 热电检测器件
2019/4/25
1
一、热电探测器件概述
热电探测器件的工作原理:器件吸收入射辐射功 率产生温升,温升引起材料各种有赖于温度的 参量的变化,监测其中一种性能的变化,来探 知辐射的存在和强弱。
特点:
响应过程比较慢,一般的响应时间多为毫秒级。 光谱响应范围宽,从紫外到红外几乎都有相同
10
二、温 差 电 偶
半导体温差电偶的原理性结构图
光电检测器的工作原理
光电检测器的工作原理
光电检测器是一种利用光电效应原理来检测光信号的装置。
它由光电发射器和光电接收器两部分组成。
光电发射器是一个发射光源,常见的有发光二极管(LED)或激光器。
当电流通过发光二极管时,其内部的半导体材料会发出特定波长的光。
光电接收器是一个接收光信号并产生电信号的元件,常见的有光敏二极管(LDR)或光电二极管(photodiode)。
光敏二极管或光电二极管的外围电路会对接收到的光信号进行放大和处理。
光电检测器的工作原理是当光电发射器发出的光照射到光电接收器上时,光能被光电接收器吸收并转化为电能。
这个转化过程是通过光电效应实现的。
光电效应的基本原理是当光束照射到半导体材料上时,光子会激发半导体材料中的电子跃迁到导带上,形成电子空穴对。
而这些电子空穴对可以导致半导体中的电流流动。
当光电接收器中的光电二极管或光敏二极管吸收到光子后,其内部会产生电流。
这个电流大小与光强度成正比。
通过对光电接收器产生的电流进行测量,我们可以间接地获得光的强度或光的存在与否。
光电检测器广泛应用于多个领域,如光通信、光电传感、光电测量等。
在各个领域中,光电检测器都起到了至关重要的作用。
光电探测器
2、光电导(PC)探测器
其工作原理基于内光电效应。 光电导效应?
半导体吸收能量足够大的光子后,会把其 中的一些电子或空穴从原来不导电的束缚 态激活到能导电的自由态,从而使半导体 电导率增加。
(1)特点
光电导探测器的结构一般为金属一半导体 一金属(测
一、 光电探测器的定义 及工作原理
光电探测器接收光信号并进行光电转换, 是半导体电子学的重要器件,是光电系统中 的重要组成部分,被称为这类仪器的“心 脏”。
光电探测器是利用入射的光子流与探测 材料中的电子之间直接互相作用,从而改变 电子能量状态的光子效应来制作的一类器件。
二、光电探测器的分类
PE探测器
2001年,美国军方实验室的Liang等人利用 MOCVD方法以蓝宝石为衬底生长ZnO薄膜,制 备出MSM结构肖特基型紫外探测器。
2004年,浙江大学叶志镇等利用磁控溅射生 长的ZnO薄膜,采用Au电极形成肖特基接触, Al电极形成欧姆接触,在Si(100)衬底上制 备出肖特基型ZnO紫外探测器,Si3N4为绝缘 隔离层,器件性能较好。
光电探测器
PC探测器
PV探测器
1、光电子(PE)发射探测器
此探测器的工作原理是基于外光电效应。
当辐射照射在某些金属、金属氧
外
化物或半导体材料表面时,若光
光 电
子能量hv足够大,则足以使材料
效
内一些电子完全脱离材料从表面
应
逸出。
与外光电相对应的则为内光电效应,两 者的不同点在与内光电效应的入射光子并不 直接将光电子从光电材料内部轰击出来,而 只是将光电材料内部电子从低能态激发到高 能态,于是在低能态留下一个空位一空穴对, 而在高能态上产生一自由移动的电子,形成 光生电子一空穴对。通过检测这一性能的变 化,来探测光信号的变化。本节主要讨论的 利用内光电效应的光电探测器的制备及其性 能特点。
什么是光的光电探测器和光电导
什么是光的光电探测器和光电导?光的光电探测器和光电导是光电传感器的重要类型,用于检测和测量光信号。
本文将详细介绍光的光电探测器和光电导的原理、结构和应用。
1. 光电探测器(Photodetector)的原理和结构:光电探测器是一种能够将光信号转换为电信号的器件。
它基于光子的能量被半导体材料吸收,激发带载流子,从而形成电流的原理。
最常见的光电探测器类型是光电二极管(Photodiode)和光电倍增管(Photomultiplier Tube),前文已经详细介绍过。
除了这两种常见类型,还有其他一些光电探测器,如光电晶体管、光电场效应晶体管和光电导等。
光电探测器的结构和工作原理与具体的类型有关。
总体而言,光电探测器通常包括光敏元件、电极、引线和封装等部分。
光敏元件是用于吸收光信号并产生电荷载流子的材料,电极用于收集和测量电流,引线用于连接光电探测器与外部电路,封装则是保护和固定光电探测器的外壳。
2. 光电探测器的应用:光电探测器在许多领域有着广泛的应用,包括但不限于以下几个方面:-光通信:光电探测器用于接收光信号,将光信号转换为电信号,并通过电路进行处理和解码,实现光通信的接收端。
-光测量:光电探测器可以用于测量光的强度、波长、频率和相位等参数,用于光谱分析、光度计和光谱仪等。
-光电检测:光电探测器可以用于检测物体的存在、位置和运动等,用于光电开关、光电传感和光电探测等应用。
-光电能转换:光电探测器可以将光能转化为电能,用于太阳能电池板和光伏发电系统等。
3. 光电导(Photoconductor)的原理和结构:光电导是一种能够根据光信号的强度来改变电导率的材料。
光电导的原理是光照射到材料上时,光子的能量被吸收,激发带载流子,从而改变材料的导电性能。
光电导材料通常是半导体材料,如硒化铟(Indium Selenide)、硒化镉(Cadmium Selenide)和硒化铅(Lead Selenide)等。
半导体光电探测器的原理及其应用
半导体光电探测器之阳早格格创做纲要:本文介绍了光电与系统的组成、一些半导体光电探测器的处事本理及其个性,末尾叙述了光电导探测器与光伏探测器的辨别.闭键词汇:半导体光电探测器,光电系统,光电导探测器,光伏探测器弁止光电探测器是一种受光器件,具备光电变更功能.光敏器件的种类繁琐,有光敏电阻、光电二极管、光电三极管、光晶闸管、集成光敏器件等;有雪崩型的及非雪崩型的;有PN 结型、PIN结型及同量结型的等.由于光电探测器的赞同速度快,体积小,暗电流小,使之正在光纤通讯系统、光纤尝试系统、光纤传感器、光断绝器、彩电光纤传输、电视图象传输、赶快光源的光探测器、微小光旗号的探测、激光测距仪的接支器件、下压电路中的光电丈量及光电互感器、估计机数据传输、光电自动统造及光丈量等圆里得到了广大应用.半导体光电探测器是用半导体资料创造的能接支战探测光辐射的器件.光映照到器件的光敏区时,它便能将光旗号转形成电旗号,是一种光电变更功能的测光元件.它正在国防战工农业死产中有着要害战广大的应用.半导体光电探测器可分为光电导型战光伏型二种.光电导型是指百般半导体光电导管,即光敏电阻;光伏型包罗光电池、P-N结光电二极管、PIN光电二级管、雪崩光电二极管、光电三级管等.本文最先介绍了光电系统的组成,而后分别介绍其处事本理及其个性,末尾将那二类探测器举止比较.一、光电子系统的组成系统又称为收射天线,果为光波是一种电磁波,收射光教系统所起的效率战无线电收射天线所起的效率真足相共.收支进去的光旗号通过传输介量,如大气等,到达接支端.由接支光教系统或者接支天线将光散焦到光电探测器上,光电过少距离传输后会衰减,使接支到的旗号普遍很强,果此需要用前置搁大器将其搁大,而后举止解码,还本成收支端本初的待传递旗号,末尾由末端隐现器隐现出去.图1-1光电子系统图二、半导体探测器的本理1、光电导探测器光电导探测器主假如通过电阳值的变更去检测,以下尔将以光敏电阻为例介绍其处事本理.光敏电阻又称光导管, 它不极性, 杂粹是一个电阻器件, 使用时既可加曲流电压, 也不妨加接流电压.无光照时, 光敏电阻值(暗电阻)很大, 电路中电流(暗电流)很小. 当光敏电阻受到一定波少范畴的光照时, 它的阻值(明电阻)慢遽缩小, 电路中电流赶快删大. 普遍期视暗电阻越大越佳, 明电阻越小越佳,此时光敏电阻的敏捷度下. 本量光敏电阻的暗电阻值普遍正在兆欧级, 明电阻正在几千欧以下.它的处事本理图如2-1图当不光照时,Rd=10断路当有光照时,Rd= 导通2、光伏探测器光伏探测器鉴于光照爆收电势好,用测电势好的本理.它分为光电池与光电二极管二种典型,光电池主假如把光能变更为电能的器件,暂时有硒光电池、硅光电池、砷化镓及锗光电池等,但是暂时使用最广的是硅光电池.光电二级管分为P-N结光电二极管、PIN光电二级管、雪崩光电二极管、光电三级管等.以下尔将分别介绍其处事本理及其个性. 1)P-N结光电二级管2)PIN光电二级管PIN光电二极管又称赶快光电二极管,与普遍的光电二极管相比,它具备不的时间常量,并使光谱赞同范转背少波目标移动,其峰值波少可移至1.04~1.06um而与YAG激光器的收射波少相对于应.它具备敏捷度下的便宜,所以通时常使用于强光检测(线性).它的结构图如2-3所示,它是由P型半导体战N型半导体之间夹了一层本征半导体形成的.果为本征半导体近似于介量,那便相称于删大了P-N结结电容二个电极之间的距离,使结电容变得很小.其次,P型半导体战N型半导体中耗尽层的宽度是随反背电压减少而加宽的,随着反偏偏压的删大,结电容也要变得很小.由于I层的存留,而P区普遍干得很薄,进射光子只可正在I层内被吸支,而反背偏偏压主要集结正在I区,产死下电场区,I区的光死载流子正在强电场效率下加速疏通,所以载流子渡越时间常量()减小,进而革新了光电二极管的频次赞同.共时I层的引进加大了耗尽区,展宽了光电变更的灵验处事地区,进而使敏捷度得以普及.3)雪崩光电二级管雪崩光电二级管(APD)是得用光死载流子正在下电场区内的雪崩效力而赢得光电流删益,具备敏捷度下、赞同快等便宜,通时常使用于激光测距、激光雷达、强光检测(非线性).APD雪崩倍删的历程是:当光电二极管的p-n结加相称大的反背偏偏压时,正在耗尽层内将爆收一个很下的电场,它脚以使正在强电场区漂移的光死载流子赢得充分的动能,通过与晶格本子碰碰将爆收新的电子-空穴对于.新的电子-空穴对于正在强电场效率下,分别背好同的目标疏通,正在疏通历程中又大概与本子碰碰再一次爆收新的电子-空穴对于.如许反复,产死雪崩式的载流子倍减少.那个历程便是APD的处事前提.APD普遍正在略矮于反背北脱电压值的反偏偏压下处事.正在无光照时,p-n结不会爆收雪崩倍删效力.但是结区一朝有光映照,激励出的光死载流子便被临界强电场加速而引导雪崩倍删.若反背偏偏压大于反背打脱电压时,光电流的删益可达(十的六次圆)即爆收“自持雪崩倍删”.由于那时出现的集粒噪声可删大到搁大器的噪声火仄,以以致器件无法使用.4)光电三级管光电三级管与光电二极管比较,光电三级管输出电流较大,普遍正在毫安级,但是光照个性较好,多用于央供输出电流较大的场合.光电三极管有pnp战npn型二种结构,时常使用资料有硅战锗.比圆用硅资料创造的npn型结有3DU型,pnp型有3CU型.采与硅npn型光电三极管,其暗电流比锗光电三极管小,且受温度变更效率小,所以得到位广大应用.底下以3DU型光电三极管为例证明它的结构、处事本理与主要个性.3DU型光电三极管是以p型硅为基极的三极管,如图2-4(a)所示.由图可知,3DU管的结媾战一般晶体管类似,不过正在资料的掺杂情况、结里积的大小战基极引线的树立上战一般晶体管分歧.果为光电三极管要赞同光辐射,受光里即集电结(bc结)里积比普遍晶体管大.其余,它是利用光统造集电极电流的,所以正在基极上既可树立引线举止电统造,也不妨不设,真足共光一统造.它的处事本理是处事时各电极所加的电压与一般晶体管相共,即要包管集电结反偏偏置,收射正偏偏听偏偏置.由于集电结是反偏偏压,正在结区有很强的内修电场,对于3DU管去道,内修电场目标是由c到b的.战光电二极管处事本理相共,如果有光照到集电结上,激励电子-空穴对于,接着那些载流子被内修电场分散,电子流背集电极,空穴流背基极,相称于中界背基极注进一个统造电流Ib=Ip.果为收射打队结是正偏偏置的,空穴则留正在基区,使基极电位降下,收射极便有洪量电子经基极流背集电极,总的集电极电流为Ic=Ip+βIp=(1+β)Ip,式中β为电流删益系数.由此可睹,光电三极管的集电结是光电变更部分.共时集电极、基极、收射极形成一个有搁大效率的晶体管.所以正在本理上不妨把它瞅万里一个由光电二极管与一般晶体管分散而成的拉拢件,如图2-4(b)所示.光电三级管另一个个性是它的明暗电流比要比光电二极管、光电池、光电导探测器大,所以光电三极管是用去做光启闭的理念元件.3.光电导探测器与电伏探测器的辨别1)光电导探测器是均值的,而光伏探测器是结型的.2)光。
光电探测器工作原理与性能分析
光电探测器工作原理与性能分析光电探测器是一种能够将光电信号转换为电信号的器件,广泛应用于光电通讯、光学测量、光学成像等领域。
在本文中,将对光电探测器的工作原理与性能进行分析。
一、光电探测器的工作原理光电探测器工作的基本原理是利用光电效应将光能转换为电子能,再经过电子放大及处理,将光信号转换为电信号输出。
光电探测器主要包括光敏元件、前置放大电路、信号处理电路等部分。
常见的光敏元件主要包括光电二极管、光电倍增管、光电导、光电导二极管、PIN光电二极管等。
其中,光电二极管是最常用的一种,它基于外光在PN结上产生电压的原理,将光能转换为电能。
PIN光电二极管又是一种与之类似的器件,但它的灵敏度更高,特别适用于高速、低噪音、低光水平的应用。
前置放大电路则是提高探测器灵敏度的重要部分。
它通常包括高阻抗输入级、宽带放大电路、低噪声电路等。
这些器件通常采用集成电路技术实现,具有高增益、高带宽、低噪声等优点。
信号处理电路主要包括滤波电路、放大电路、比较器、微处理器等部分。
滤波电路可以去除噪声干扰,放大电路可以放大信号的幅度,比较器可以将信号转换为数字信号,微处理器则可以对数字信号进行处理及控制。
二、光电探测器的性能分析光电探测器的性能参数包括灵敏度、响应时间、线性度、噪声等。
下面将对这些性能进行分析。
1. 灵敏度灵敏度是指探测器对光的灵敏程度,它通常通过量子效率来评估。
量子效率是指进入探测器的光子转化为电的比例。
由于光电探测器的灵敏度会受到光强度、工作温度、探测器结构等多种因素的影响,因此在实际应用中需要合理设计光路及保持探测器稳定性。
2. 响应时间响应时间是指光电探测器从接收光信号到输出电信号的时间。
响应时间由前置放大电路和光敏元件上升时间之和决定,因此我们可以通过优化这些器件来提高响应时间。
在高速应用中,响应时间非常关键,因此需要选用响应时间较短的光学元件及前置放大电路。
3. 线性度线性度是指光电探测器输出与输入之间的线性关系。
光电传感器应用技术第4章 第2节
如图4-22(a)所示的“CIEl931-RGB系统标准色度观 察 者三刺激值曲线σrgb”。从曲线中看到、、光谱三刺激值有 一部分为负值,计算很不方便,又难以理解。因此1931年
CIE
新的国际通用色度系统,称为“CIEl931-XYZ系 统”。它是在CIE1931-RGB系统的基础上改用三个假想 的原色x、y、z所建立的一个新的色度系统。
1.双色硅色敏器件的工作原理
双色硅色敏光传感器的结构和等效电路如图4-19所示。 它是在同一硅片上制作两个深浅不同PN结的光电二极管 PD1和PD2组成的。
浅PN结的PD1 的光谱响应峰值 在蓝光范围,深 结PD2的光谱响应 峰值在红光范围。
双结光电二极管只能通过测量单色光的光谱辐射功率与黑体
辐射相接近的光源色温来确定颜色。用双结光电二极管测量颜色 时,通常测量两个光电二极管的短路电流比(ISC2/ ISC1)与入射波 长的关系(如图4-21所示),从关系曲线中不难看出,每一种波长 的光都对应于一个短路电流比值,根据短路电流比值判别入射光 的波长,达到识别颜色的目的。
x y
(Ix' Iy ) (Ix Iy')
Ix Ix' Iy Iy' (Ix' Iy') (Ix Iy )
Ix Ix' Iy Iy'
斑在边缘的测量误差被大大地减少。
4.3 光生伏特器件的偏置电路
• 4.3.1 反向偏置电路
图4-40所示为光生伏特器件的反向偏置电路。其中图(a)为反 向偏置电路的原理电路图,图(b)为反向偏置电路图。光生伏特 器件在反向偏置状态,PN结势垒区加宽,有利于光生载流子的漂移 运动,使光生伏特器件的线性范围和光电变换的动态范围加宽。
光电探测器原理
光电探测器功能及应用表征光电探测器性能参数主要有:量子效率、响应度、频率响应、噪声和探测度等。
其中量子效率和响应度表征了光电探测器将入射光转换成光电流本领的大小,频率响应表征了光电探测器工作速度的快慢,噪声和探测度表征了光电探测器所能探测到最小的入射光能量。
一、有关响应方面的性能参数1. 响应率(Responsivity)RV或RI表征探测器将入射光信号转换成电信号的能力电流的响应率RI:探测器将入射光信号转换成电流信号Ie的能力。
电压响应率RV:探测器将入射光信号转换成电压信号Ve的能力。
2.单色灵敏度Rλ --- 波长为l的单色辐射源单色灵敏度:输出的光电流iλ与波长为λ的入射到探测器的单色辐射光通量Pλ(或照度)之比3.积分灵敏度--- 复色辐射源表示探测器对连续入射光辐射的反应灵敏程度4. 响应时间描述光电器件对入射辐射响应快慢的参数5. 频率响应度二、有关噪声方面的参数1、信噪比信噪比是判定噪声大小通常使用的参数。
它是在负载电阻RL上产生的信号功率与噪声功率之比,(S――Signal N――Noise)2. 噪声等效功率(NEP)3. 探测率与比探测率三、其它参数1. 量子效率描述光电转换器件光电转换能力的一个重要参数2.线性度线性度是描述光电探测器输出信号与输入信号保持线性关系的程度。
工作参数为了提高传输效率并且无畸变地变换光电信号,就要使相互连接的各器件都处于最佳的工作状态,所以光电探测器要与被测信号、光学系统以及后续的电子线路在特性和工作参数上相匹配。
1、灵敏度(或称响应度)灵敏度RV (或RI )的定义为:探测器输出电压VS(或输出电流IS)与输入光功率P之比。
由于灵敏度与入射光波长关系密切。
入射波长不同,探测器的灵敏度也不同,所以一般还须给出灵敏度的光谱响应特性。
在光谱响应特性曲线中,探测器的光谱响应范围是峰值灵敏度下降一半时的波长范围。
但对具体器件的光谱响应范围的定义可能不同,例如对光电倍增管的定义为下降到峰值灵敏度的1% 或0.1%的波长范围。
《光电探测技术》课程标准
《光电探测技术》课程标准课程代码:学时:36 学分:2一、课程的地位与任务《光电探测技术》课程是光电制造与应用技术专业(五年一贯制)开设的一门2学分的专业拓展课程,针对光机电一体化设备中涉及的光检测和控制技术,讲述光的度量、光电检测器件工作原理及特性、光电导探测器、结型光电探测器、光电成像器件、光纤传感检测、光电信号检测电路。
通过本课程的学习,使学生掌握光机电一体化设备的测量与自动化技术及其应用等知识,开拓学生思维。
二、课程的主要内容和学时分配1.课程的主要内容光的度量、光电检测器件工作原理及特性、光电导探测器、结型光电探测器、光电成像器件、光纤传感检测、光电信号检测电路,基本光电元器件检测、识别、焊接、装配。
第1章光的度量1.1辐射度量1.2光度的基本物理量1.3光度量基本定律1.4照度计与亮度计第2章光电检测器件工作原理及特性2.1光电检测器件的物理基础2.2光电检测器件的特性参数2.3光电导探测器及应用3.1光电导探测器的工作原理3.2光敏电阻的结构及分类3.3光敏电阻的特性3.4光敏电阻的应用习题3.5结型光电探测器及应用1.1结型半导体光伏效应1.2光电池1.3光电二极管1.4光电三极管1.5光电开关与光电耦合器1.6光电位置探测器第5章光电成像器件及应用5.1ccd图像传感器5.2CmOS图像传感器第6章光纤传感检测技术及应用6.1光纤传感器的基础6.2光纤的光波调制技术6.3光纤传感器实例第7章光电信号检测电路6.1光电检测电路的设计要求6.2光电信号输入电路的静态计算6.3光电信号检测电路的动态计算6.4前置放大器7.5滤波器7.6光电信号主放大器8.学时分配1.本课程注重学生对光电检测器件的应用能力培养;2.采取理论教学和实验相结合的方式以增强课程学习的理实性;四、课程的实践环节安排实验一光敏电阻的应用实验二光电二极管的应用实验三光电位置探测器的应用实验四光纤传感器的应用实验五光电检测电路的单元电路设计五、推荐教材和主要参考书《光电探测技术与应用》作者:黄焰、肖彬、孙冬丽,华中科技大学出版社,出版时间:2016年六、考核方式及标准平时考核成绩占60%(出勤+作业+其它),期末考试(开卷)占40%。
半导体光电探测器原理及优化方法
半导体光电探测器原理及优化方法半导体光电探测器是一种能够将光信号转化为电信号的器件,广泛应用于光通信、光电子学、光学传感等领域。
本文将介绍半导体光电探测器的工作原理,并探讨其优化方法。
一、原理半导体光电探测器是通过光生或热生成电荷载流子来实现光电转换的。
其工作原理主要涉及以下几个关键过程:1. 光吸收:当光照射到半导体材料上时,光子与原子之间发生相互作用,导致电子能级的跃迁。
这种跃迁可以通过直接带隙吸收或间接带隙吸收来实现。
2. 电荷生成:吸收能量的光子会激发半导体材料内的电子从价带跃迁到导带,形成自由电子和空穴。
这种电子空穴对的形成可以通过光电效应或热激励来实现。
3. 电荷传输:生成的电子和空穴会在半导体内发生迁移,并在外加电场的作用下分别向电极移动。
这种电荷迁移过程可以通过扩散、漂移和电场效应来实现。
4. 电荷收集:最后,电子和空穴会在电极上被收集形成电流信号。
这个过程需要有效的电荷收集区域和电荷收集结构来实现高效的电流转换。
二、优化方法为了提高半导体光电探测器的性能,可以采取以下一些优化方法:1. 材料选择:不同的半导体材料具有不同的带隙结构和光吸收特性。
根据实际需求,选择能够匹配光源波长、具有较高吸收系数和较小吸收损耗的材料,可以提高光电转换效率。
2. 结构设计:优化器件的结构设计能够有效提高电子和空穴的收集效率。
例如,在光电探测器的表面引入光栅结构,可以增加光电子的吸收深度和电子在电极上的收集效率。
3. 探测区域增大:增大探测区域可以提高器件接收光信号的能力。
通过工艺优化,增大活动面积,可以有效提高器件的灵敏度和响应速度。
4. 降低噪声:降低器件的噪声水平对于提高探测器的信噪比非常重要。
采取合适的工艺控制和电路设计,降低暗电流和暗电流噪声,可以有效提高器件的信号检测精度。
5. 温度控制:温度对半导体光电探测器的工作性能影响较大。
保持器件在适宜的温度范围内工作,可以提高器件的稳定性和可靠性。
光电技术 第4-2节 光电导探测器
所谓短态前历效应是指被测光敏电阻在 无光照条件下放置一段短时间(如三分钟) 后,再在1lx光照下测量它在不同时刻的阻值 (如1秒后的阻值)R1 ,求出此阻值与稳态 时阻值R0的百分比R1/R0,这就是短态前历效 应或暗态前历效应。所谓中态前历效应是将 光敏电阻在无光照条件下存放24小时,在 100lx光照度下放置15分钟,再放在100lx下 测阻值 R2 ,则中态前历效应为(又称亮态前 历效应)。 R2 R1
R1 100%
附:光敏电阻暗态前历效应:
时间s 阻值k
时间s 阻值k
1 6.5 20 5.2
R1/R2
2 6 30 5.2
77 ﹪
5 5.5 60 5.1
10 5.2 90 5.0
15 5.2 120 5.1
Cd S 亮态前历效应:
元件编号 1 2 3 4 5 6 7 8 R1( k) R2( k) 2.74 2.89 5.06 5.24 2.25 2.39 2.42 2.60 1.45 1.48 2.23 2.31 3.58 3.69 5.40 5.62
在弱光下, 1 称直线性光电导。在强光照时 =0.5,在其它光照时,0.5≤ ≤1。 一般,光电流和照度关系曲线如右。在 实际应用范围(0.1~104lux),有可能制造 出 接近于1的光敏电阻,这时应有
I p S gVE g p E
式中 g p S gV 称为光电导 在器件中流过的电流是光电流 I p与暗电流 I d 之 和。
由光电导效应可知,光敏电阻在受到光照或停 止光照时,光生载流子的产生或消失都要经过一段 时间,这就是光敏电阻的响应时间或驰豫时间。它 t 反映了光敏电阻的惰性。 p (t ) p0 exp( ) 此处 是光敏电阻的下降时间。在突然加光照时,
光电探测器原理
光电探测器原理一、概述光电探测器是一种能够将光信号转化为电信号的器件,广泛应用于光通信、光电子学、环境监测等领域。
其工作原理基于光电效应,即当光子与物质相互作用时,能量被转化为电子能量,从而引起电流的流动。
二、光电效应1. 光电效应的定义光电效应是指当金属或半导体表面受到足够高频率的光照射时,会有大量的自由电子从金属或半导体表面逸出,并形成一个与金属或半导体表面带正电荷的空间区域。
这种现象被称为外部光致发射。
2. 光电效应的机理在经典物理学中,当一束光照射到金属表面时,其能量会被吸收并转化为热能。
然而,在1905年,爱因斯坦提出了一种新的解释:当一束具有足够高频率(即能量)的单色光照射到金属表面时,每个光子都会将其全部能量传递给一个自由电子,并使其逸出金属表面。
这个机理可以用以下公式来表示:E = hν - Φ其中,E是逸出电子的能量,h是普朗克常数,ν是光子的频率,Φ是金属的逸出功。
3. 光电效应的特点光电效应具有以下特点:(1)只有当光子的频率大于某一阈值频率时才会发生光电效应;(2)逸出电子的动能与光子的能量成正比;(3)逸出电子的数量与照射光强成正比。
三、光电探测器原理1. 光电探测器的分类根据其工作原理和结构特点,光电探测器可以分为以下几类:(1)光电二极管:利用半导体PN结和内部反射机制实现对入射光信号的转换;(2)PIN型光电二极管:在普通PN结上加一层无掺杂区,提高了灵敏度和响应速度;(3)APD型光电二极管:在PIN型基础上加入增益机制,提高了信号噪声比和灵敏度;(4)SPAD型单光子探测器:利用单个PN结或APD结构实现单光子探测。
2. 光电探测器的工作原理以光电二极管为例,其工作原理如下:(1)入射光子被PN结吸收,并激发出一些载流子;(2)由于PN结的内部反射机制,载流子被聚集在PN结表面,形成一个电荷区域;(3)当电荷区域中的载流子达到一定数量时,就会形成一个漏电流,即光电流;(4)通过对光电流进行放大和处理,就可以得到与入射光信号相关的电信号。
第4节光电效应光电探测器的噪声和特性ppt课件
• 一个光电探测系统的极限探测能力往往受探测 系统的噪声所限制。
• 所以在精密测量、通信、自动控制等领域,减
小和消除噪声是十分重要的问题。
第一章
(2)光电探测器常见的噪声
• 热噪声 • 散粒噪声 • 产生-复合噪声 • 1/f噪声
光电检测应用基础
第一章
(1)热噪声
光电检测应用基础
• 光电检测器件是利用物质的光电效应把光信号转换成 电信号的器件.
• 光电检测器件分为两大类: –光子(光电子)检测器件 –热电检测器件
第一章
光电检测器件
光电检测应用基础
光子器件
热电器件
真空器件
光电管 光电倍增管 真空摄像管 变像管 像增强管
固体器件
光敏电阻 光电池 光电二极管 光电三极管 光纤传感器 电荷耦合器件
光电检测应用基础
3. 界面p区侧留下固定离化受主负 电荷, n区侧留下固定的离化施 主正电荷;该正负电荷称为空间电荷,存在正负 空间电荷的区域称 为空间电荷区。
4.正--负电荷间产生电场,该电场称为空间电荷区自建电场;
5.自建电场使空间电荷区内的电子和空穴产生与其扩散运动方向相
反的漂移运动;
6. 随扩散运动的进行,空间电荷区正、负电荷量逐渐增加,空间 电荷区逐渐变宽,自建电场也随之逐渐增强,同时电子和空穴的 漂移运动也不断加强;
光电检测应用基础
(7)线性
·线性度:它是描述光电探测器输出信号与输入信 号保持线性关系的程度.
·在某一范围内探测器的响应度若为常数,称这个 范围为线性区
非线性误差:
δ = Δmax / ( I2 – I1) Δmax:实际响应曲线与拟合曲线之间的最大偏; I2 和 I1:分别为线性区中最小和最大响应值。
光电探测技术与应用第4章课后习题与答案
最大输出功率 Pm U m I m 340.8 56 10 3 19.08mW 转换效率 m
Pm Pm 19.08 9.54% E S 200 1
7 已知光电三极管变换电路及其伏安特性曲线如图 3-45 所示。若光敏面上的照 度变化 e 120 80sin wt (lx) ,为使光电三极管的集电极输出电压为不小于 4V 的 正弦信号, 求所需要的负载电阻 RL 、 电源电压 U bb 及该电路的电流、 电压灵敏度, 并画出三极管输出电压的波形。
2
ቤተ መጻሕፍቲ ባይዱ
而 ID
I e
qU oc kT
1 e
6 10 3
1.61019 550103 1.3810 23300
3.529 10 12 A 3.529 10 9 mA 1
则 I D 相对于 I 非常小,
U oc1 U oc
I 1 I D KT ln q I I D
解:由题意,当 T=300K, E e U oc 550mV , I SC 28mA ,则由
U oc
100mW / cm 2 时,
q kT I 以及 I sc I (1 e d ) e , ln 1 hv q ID
E e1 200 I sc 28 56mA Ee 100
,
E e1 50mW / cm 2时
U oc1 U oc
I sc1 I 1
Ee1 50 I sc 6 3mA Ee 100
KT1 I1 KT I 1 1 In I q I 又 T1 T q I D D
第四章 光电成像器件
电荷耦合器件(CCD)
CCD类型: 表面沟道CCD(SCCD):电荷包存储在半导体与 绝缘体之间的界面,并沿界面传输; 体沟道CCD(BCCD):电荷包存储在离半导体表 面一定深度的体内,并在半导体体内沿一定方向传 输——用离子注入方法改变转移沟道的结构,从而 使势能极小值脱离界面而进入衬底内部,形成体内 的转移沟道,避免了表面态的影响,使得该种器件 的转移效率高达99.999%以上,工作频率可高达 100MHz,且能做成大规模器件。 下面以表面沟道CCD为例介绍CCD基本原理
电荷耦合器件(Charge Coupled Device,即CCD) 互补金属氧化物半导体图像传感器(即CMOS) 电荷注入器件(Charge Injection Device,即CID)
4.3 电荷耦合器件
CCD(Charge Coupled Devices)
CCD图像传感器主要特点:
双列两相线阵CCD结构
光敏区:光敏二极管阵列,每个光敏元是一个像素。
转移栅:MOS电容构成,蔽光;控制光生电荷向移位寄存器转移。
移位寄存器:MOS电容构成,蔽光;控制光生电荷扫描移向输出端。
输出端:将光生电荷包转换为视频信号输出。
在Al电极上加驱动信号,MOS阵列使光生电荷包 自扫描输出。
输出端:输出栅OG;
进一步说明:
栅电极G
氧化层
P型半导体
耗尽区 浅势阱
反型层 深势阱
uG=0
uG<uth(MOS晶体管的开启电压)
uG>uth
电荷耦合器件工作在瞬态和深度耗尽状态
光电信号检测 光电探测器概述
6. 光学视场
7. 背景温度(红外)
二、有关响应方面的性能参数
1.响应率(响应度)Rv或RI
• 响应率是描述探测器灵敏度的参量。它表征探测 器输出信号与输入辐射之间关系的参数。
• 定义为光电探测器的输出均方根电压VS或电流IS 与入射到光电探测器上的平均光功率之比,并分 别用RV 和RI 表示,即
hc w (逸出功)
hc/ w
低于阴极材料逸出功则不能产生光电子发射。阳极接收光电 阴极发射的光电子所产生的光电流正比于入射辐射的功率。 • 主要有真空光电管、充气光电管和光电倍增管。应用最广的 是光电倍增管,它的内部有电子倍增系统,因而有很高的电 流增益,能检测极微弱的光辐射信号。 • 波段:可见光和近红外(<1.25μm) • 特点:响应快、灵敏度高
热探测器的特点: 无光谱选择性、不需制冷、响应慢、噪声限制
§2-2 光电探测器的性能参数
一、 光电探测器工作条件
• 光电探测器的性能参数与其工作条件密切相 关,所以在给出性能参数时,要注明有关的 工作条件。只有这样,光电探测器才能互换 使用。
1.辐射源的光谱分布
• 很多光电探测器,特别是光子探测器,其响应是辐射波长的 函数,仅对一定的波长范围内的辐射有信号输出。 • 所以在说明探测器的性能时,一般都需要给出测定性能时所 用辐射源的光谱分布。
随着激光与红外技术的发展,在许多情况下单个 光探测器已个能满足探测系统的需要,从而推动 了阵列(线阵和面阵)光辐射探测器的发展。 目前,光电探测器的另一个发展方向是集成化, 即把光电探测器、场效应管等元件置于同一基片 上。这可大大缩小体积、改善性能、降低成本、 提高稳定性并便于装配到系统中去。 电荷耦合器件(CCD)也是近年来研究的一个重要 方面,其性能达到相当高的水平、将光辐射探测 器阵列与CCD器件结合起来,可实现信息的传输。
通工专业-光纤通信技术-第四章-光探测器与光接收机
光纤通信系统对光探测器的要求
(1)灵敏度高:灵敏度高表示探测器把 光功率转变为电流的效率高。在实际的光接 收机中,光纤传来的信号极其微弱,有时只 有1nw左右。为了得到较大的信号电流,人 们希望灵敏度尽可能的高。
(2)响应速度快:指射入光信号后,马上就有 电信号输出;光信号一停,电信号也停止输出, 不要延迟。这样才能重现入射信号。实际上电信 号完全不延迟是不可能的,但是应该限制在一个 范围之内。随着光纤通信系统的传输速率的不断 提高,超高速的传输对光电检测器的响应速度的 要求越来越高,对其制造技术提出了更高的要求。
RC 2.2RT CT (4.6)
式中,CT为电路的总电容,RT为电路的总电阻。
考虑上述三个因素的影响,总的上升时间为
(
2 RC
2 d
2 i
)1/ 2
PIN-PD特性参数(3)噪声
•噪声
噪声直接影响光接收机的灵敏度。
散粒噪声(信号电流和暗电流产生)
暗电流是器件在反偏压0.9UB条件下,没有入射光时 产生的反向电流,与光电二极管的材料和结构有关
I层较厚,几乎占据了整个耗 尽区。绝大部分的入射光在I层 内被吸收并产生大量的电子-空 穴对。在I层两侧是掺杂浓度很 高的P型和N型半导体,P层和 N层很薄,吸收入射光的比例 很小。因而光产生电流中漂移 分量占了主导地位,这就大大 加快了响应速度。另外,可通 过控制耗尽层的宽度w,来改 变器件的响应速度。
4.1 光探测器
4.1.1光电检测原理——PN结的光电效应
光电二极管(PD)把光信号转换为电信号的功能, 是由半导 体PN结的光电效应实现的。
当光照射到光电二极管的光敏面 上时,能量大于或等于带隙能量 Eg的光子将激励价带上的电子吸 收光子的能量而跃迁到导带上 (受激吸收),可以产生自由电 子-空穴对(称为光生载流子)。 在耗尽层,由于内部电场的作用, 电子向N区运动,空穴向P区运动, 形成漂移电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了实现能级的跃迁,入射光的 能量必须大于光电导材料的禁带 hc 1.24 宽度Eg,即 hv ≥E
g
1)光电导效应
材料的光导性能决定于禁带宽度Eg;
对于一种光电导材料,同样存在一个照射光波
长限 c ,只有波长小于的光照射在光电导体
上,才能产生电子能级间的跃迁,从而使光电
导体的电导率增加。
A0
c 为产生光电子发射的 式中:c为真空中的光速, c 为产生光电子发射的入 入射光波的截止频率, 射光波的截止波长。
讨论
若入射光线频率低于红限频率(截止频率), 光子能量不足以使物体内的电子逸出,即使光 强再大也不会产生光电子发射;反之,入射光 频率高于红限频率,即使光线微弱,也会有光 电子射出。 当入射光的频谱成分不变时,产生的光电流与 光强成正比,即光强愈大,意味着入射光子数 目越多,逸出的电子数也就越多。
1 2 h mv0 A0 2
式中:hv为单个光子的能量;m为电子质量; v0为电子逸出速度;A0为物体表面电子逸出功。 可知,光电子能否产生,取决于光子的能量是 否大于该物体的表面电子逸出功A0。
外光电效应
不同的物质具有不同的逸出功,即每一种物质都 有一个对应的光频阈值,称为红限频率(或截止 频率。 A0 c 光电子发射的红限频率为 h 对应的波长限为 hc c
T 称为器件的热时间常数。
2)温差电效应
当两种不同的配偶材料(可以是 金属或半导体)两端并联熔接时, 如果两个接头的温度不同,并联 回路中就产生电动势,称为温差 电动势。 如果将热电偶的冷端分开,并与 一个电表相连接,则当光照射电 偶接头时,电偶接头吸收光能, 温度升高,电表就有一个相应的 电流读数,其数值的大小间接反 应光照的能量大小。这就是利用 热电偶来探测光能的基本原理。
•基于光生伏特效应的光电器件有 光电池、光电二极管和光敏晶体管 等。
4.1. 3
光热效应的一般规律
光热效应指材料受光照射后,光子能量与晶格 相互作用,振动加剧,温度升高,由于温度的 变化而造成物质的电学特性变化。 利用光热效应的探测器有热敏电阻、热电偶、 热电堆和热释电探测器等。
1)温度变化方程
4.1.1 外光电效应
在光线的作用下,物体内的电子逸出物体 表面向外发射的现象称为外光电效应,也 称为光电发射效应。 光电发射效应多发生于金属和金属氧化物, 向外发射的电子称为光电子。 基于光电发射效应的光电器件有光电管、 光电倍增管等。 最重要的公式是爱因斯坦光电效应方程。
外光电效应
爱因斯坦光电效应方程
d T dt
C 称为热容,是表明内能的增量为温度变化的函数。 式中,
热传导方程为
Φ0e Φ0e jt T t G jC G jC
G t C
当时间 t T 时,第一项衰减到可以忽略的程度,温度的变化为正 弦变化的函数。可见,热敏器件吸收交变辐射能所引起的温升与吸收 系数成正比。 减小热导是增高温升、提高灵敏度的好方法,但是热导与热时间常数 成反比,提高温升将使器件的惯性增大,时间响应变坏。
4.1.2 ρ 发生变化,或产生光生电动势的现象称 为内光电效应,它多发生于半导体内。
根据工作原理的不同,内光电效应分为 光电导效应和光生伏特效应两类。
1)光电导效应
在光线作用下,电子吸收光子能量从键合状态过渡 到自由状态,从而引起材料电导率的变化,这种现 象被称为光电导效应。 基于这种效应的光电器件有光敏电阻。 当光照射到半导体材料上 时,价带中的电子受到能 量大于或等于禁带宽度的 光子轰击,使其由价带越 过禁带跃入导带,材料中 导带内的电子和价带内的 空穴浓度增加,从而使电 导率变大。
3)热电导效应
某些半导体材料吸收光辐射后温度升高,随着温度的 升高电导率增大,即电阻下降。而有些金属材料,随 着温度升高电阻升高,即电导率减小。把这些现象称 为热电导效应。 半导体材料具能带结构,吸收光后引起晶格振动加剧, 即温度升高,使更多的电子被激发到导带,电导率增 大。 利用热电导效应的探测器有热敏电阻等。
1 2 3 4
熟悉光电探测的基本物理效应 掌握光电探测器及其性能参数 熟悉各种光电探测器件结构及特性 掌握直接探测系统和光频外差探测系统的性能
4.1 光电探测的基本物理效应
光电探测器的基本物理效应通常分为两类:光子效 应和光热效应。
光子效应是指单个光子的性质对产生的光电子起直 接作用的一类光电效应,光电探测器吸收光子后, 直接引起原子或分子的内部电子状态的改变。 光热效应指材料受光照射后,光子能量与晶格相互 作用,振动加剧,温度升高,由于温度的变化而造 成物质的电学特性变化。 光子效应又可以细分为外光电效应和内光电效应; 光热效应又可以细分为温差电效应和热释电效应。
光电子技术基础
第4章 光电探测原理及器件
厚德博学
求实创新
学习目标
通过本章学习,掌握光电探测的基本物理效应、 光电探测器及其性能参数、各种光电探测器件
的基本结构、特性参数的相关知识,掌握直接
探测系统和光频外差探测系统的性能,了解各 种光电探测器件的实际应用,为光电探测器的 选用和设计打下基础。
学习要求
热电器件在没有受到辐射作用的情况下,器件与环境温度处 于平衡状态,其温度为 T0。当辐射功率为 Φe的热辐射入射 到器件表面时,令表面的吸收系数为 ,则器件吸收的热 辐射功率为 Φe ;其中一部分使器件的温度升高,另一部 分补偿器件与环境的热交换所损失的能量。 设单位时间器件的内能增量为 Φi,则有 Φi C
2)光生伏特效应
•在入射光照射下,当光子能量hv大 于光电导材料的禁带宽度Eg时,会 在材料中激发出光生电子-空穴对, 破坏结的平衡状态。在结区的光生 电子和空穴以及新扩散进结区的电 子和空穴,在结电场的作用下,电 子向N区移动,空穴向P区移动,从 而形成光生电流。
•在热平衡下,多数载流子的扩散 作用与少数载流子的 漂移作用相 抵消,没有净电流通过pn结。