飞行动力学习题课(二) ppt课件
合集下载
4、飞行力学第一章(2)
dχ φ = μ = 0, β = 0, =0 dt
动力学方程可简化为:
dV ⎫ = T cos(α + ϕ ) − D − mg sin γ m ⎪ 铅垂面内质 ⎪ dt ⎬ dγ − mV = −T sin(α + ϕ ) − L + mg cos γ ⎪ 心运动方程 ⎪ dt ⎭
飞行迎角不太大时,上述方程组可进一步简化:
重力 重力的方向沿地面坐标系方向给出,再用转换矩阵可 得到在航迹坐标系上的投影
所以
⎡ gx ⎤ ⎡ − g sin θ a ⎤ ⎡0⎤ ⎢ ⎥ ⎥ ⎢0⎥ = m⎢ m ⎢ g y ⎥ = Lkg m ⎢ ⎥ 0 ⎢ ⎥ ⎢ gz ⎥ ⎢ g cos θ a ⎥ ⎢ g⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦k
角速度分量
ω = ψ a + θa
⎡ω x ⎤ ⎡ 0 ⎤ ⎡ 0 ⎤ ⎡ − ψ a sin θ a ⎤ ⎡ − χ sin γ ⎤ ⎥ ⎢ ⎥ ⎢ 0 ⎥ + ⎢θ ⎥ = ⎢ ⎥= ⎢ γ θa ⎥ ⎢ω y ⎥ = Lkg ⎢ ⎥ ⎢ a ⎥ ⎢ ⎥ ⎢ ⎢ω z ⎥ ⎢ψ a ⎥ ⎢ 0 ⎥ ⎢ ψ a cos θ a ⎥ ⎢ χ cos γ ⎥ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎣ ⎦k
1.4.1 动坐标系中质心运动方程
速度和角速度在动坐标系的投影
V = V x i + V y j + Vz k
ω = ω xi + ω y j + ωzk
速度的微分
a
ω
Vi
V i = ω a = ω r sin( θ ) ⇒ Vi = ω × r
r
θ
O
单位矢量的微分
dV y dVz dV dV x i+ = j+ k dt dt dt dt dj dk di + Vx + V y + Vz dt dt dt
第一章飞行力学基础2
C L
e
CLt St M e SW
为升力系数对 e 的导数 ;
零升阻力:分为摩擦阻力、压差阻力和零升波阻 (激波引起)。 升致阻力:伴随升力的产生而出现的阻力。 诱导阻力: C Dt C L 升致波阻: C Dt C L sin
阻力: D CD QSW
0 M<0 升降舵偏角 e:平尾后缘下偏为正 e〉 0 L<0 副翼偏转角 a:右翼后缘下偏(右下左上)为正 a〉 0 N <0 方向舵偏转角 r:方向舵后缘向左偏为正 r〉 油门杆位置 : 0 加大油门、推力 T 向前推油门杆为正 T〉
T 288.15 0.0065 * High A 20.0648 * T g 9.80665 /(1 High / 6.356766e 6 ) 2
0 * (1 0.225577e 4 * High ) 4.25588
2、马赫数M
马赫数定义为气流速度(V)和当地音速 (a)之比, M=V/A。 马赫数M的大小表示空气受压缩的程度。
C mw C mw0 C Lw ( xcg xacw )
Cmw0
机翼零升力矩系数
Cmw C Lw ( xcg xacw ) xcg xacw 飞机纵向静稳定;
xcg xacw 飞机纵向静不稳定;
机翼——机体组合产生俯仰力矩:
Cmwb Cmw 0 CCmb 0 CLw [ xcg ( xacw xacb )] Cmwb 0 CLw ( xcg xacwb )
b2 展弦比: A SW
2 cA SW
0
b 2
e
CLt St M e SW
为升力系数对 e 的导数 ;
零升阻力:分为摩擦阻力、压差阻力和零升波阻 (激波引起)。 升致阻力:伴随升力的产生而出现的阻力。 诱导阻力: C Dt C L 升致波阻: C Dt C L sin
阻力: D CD QSW
0 M<0 升降舵偏角 e:平尾后缘下偏为正 e〉 0 L<0 副翼偏转角 a:右翼后缘下偏(右下左上)为正 a〉 0 N <0 方向舵偏转角 r:方向舵后缘向左偏为正 r〉 油门杆位置 : 0 加大油门、推力 T 向前推油门杆为正 T〉
T 288.15 0.0065 * High A 20.0648 * T g 9.80665 /(1 High / 6.356766e 6 ) 2
0 * (1 0.225577e 4 * High ) 4.25588
2、马赫数M
马赫数定义为气流速度(V)和当地音速 (a)之比, M=V/A。 马赫数M的大小表示空气受压缩的程度。
C mw C mw0 C Lw ( xcg xacw )
Cmw0
机翼零升力矩系数
Cmw C Lw ( xcg xacw ) xcg xacw 飞机纵向静稳定;
xcg xacw 飞机纵向静不稳定;
机翼——机体组合产生俯仰力矩:
Cmwb Cmw 0 CCmb 0 CLw [ xcg ( xacw xacb )] Cmwb 0 CLw ( xcg xacwb )
b2 展弦比: A SW
2 cA SW
0
b 2
北京航空航天大学飞行器空气动力学经典课件——绪论
第0章 绪 论
0.1 先驱飞行器的贡献 0.2 战斗机和攻击机的发展 0.3 轰炸机的发展 0.4 运输机的发展 0.5 直升机的发展 0.6 特种飞行器的发展 0.7 空气动力学的分类与研究方法
0.1 先驱飞行器的贡献
最初人类向往飞行是从模仿鸟类飞行开始的。但是由于 鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。
要提高飞机的速度,需提高动力(发动机)、 减少阻力(飞机气动布局),解决拉力和阻力的矛 盾,除增大发动机的马力外,还需改善飞机的气动 布局以减少阻力。由于双翼机阻力大(立柱),对 提高速度不利。于是从上世纪二十年代后期,双翼 机逐渐被单翼机取代。
活塞发动机:双翼机最大飞行速度接近300km/h ;单翼机飞行速度范围300-750km/h(最大记录 755.1km/h)。
主要讲授翼型、机翼在低、亚声速、跨声速和 超声速绕流时的空气动力特性的分析和计算方 法以及所需的基本理论。
介绍飞行器空气动力学中的最主要的理论,阐述 飞行器中各主要气动部件相关参数对飞行器气 动特性的影响,并对目前广泛使用的一些空气 动力数值解法作简单的介绍。
基本要求
1、必须按时听课,上课认真听讲 2、坚持考勤制度,有事必须请假 3、按时独立完成作业 4、必须按时参加实验课、完成实验报告
重于空气的航空器
旋翼航空器 直升机 旋翼机
扑翼机
航天器
人造地球卫星(运载火箭发射) 无人航天器 空间探测器
载人飞船 载人航天器 航天站
航天飞机
0.2 战斗机和攻击机的发展
战斗机和攻击机是最重要的军用飞机之一。其主要 任务是歼灭空中和地面的敌机,夺取制空权,也称为歼 击机。其特点是,飞行速度快,机动性好。
0.1 先驱飞行器的贡献
飞行动力学习题课(二)2014讲解
2 1 2i 0.1826 0.3651i v2 0.9129 Flight Dynamics
(3)
由
1,2 n in 1 2
பைடு நூலகம்
得: 0.4461 (4)
0
n 2.2418
( )
-0.5 -1
-1.5 0
0.5
2、横航向三种典型模态及其物理成因 3、模态简化分析的依据及方法 4、横航向动操纵性和静操纵性的概念 5、飞机对方向舵和副翼操纵的响应特性
Flight Dynamics
10.1试说明横航向动稳定性和静稳定性的 区别与联系
动稳定性:飞机在受扰作用后,会偏离其平衡状 态的基准状态,扰动作用停止后,飞机能否恢复 到它基准状态的一种全过程特性。
Flight Dynamics
7.2 纵向定速静稳定性和定载静稳定性
定速静稳定性(迎角静稳定性):给定速度和升降
舵偏角,飞机在某一平衡状态,受瞬时扰动,Δα增加 ,能够产生小于0的恢复力矩ΔM,趋于减小Δα 。具 有恢复到原平衡状态的趋势。称飞机在原平衡状态是 定速静稳定的。
定载静稳定性:飞机受扰动后,会引起迎角和飞行
Flight Dynamics
7.1 何谓飞行器全机焦点?分析影响焦 点位置的主要因素。
全机焦点为迎角变化时全机升力增量的作用点,在 焦点处当迎角变化时,气动力对该点的力矩不变。 全机焦点取决于翼身组合体的焦点位置和平尾所引 起的焦点后移量,因此影响焦点位置的因素有飞机 的气动布局。另外 Ma 影响焦点的位置,亚音速时 Ma 增大,全机焦点变化不大;跨音速全机焦点迅 速后移;超音速机翼焦点变化不大,但是机翼引起 的下洗减小,使平尾引起的焦点后移显著增加。
航空飞行器飞行动力学部分课后习题答案单元PPT课件
代入迎角为4°和6°时的气动力矩系数:
CCmm00
Cm Cm
4 6
/ /
57.3 57.3
0.005 0.025
零迎角俯仰 力矩系数
可解得:
CCmm0
0.5730 0.0350
1 rad
纵向静不稳定
静稳定导数:Cm CL Cm CL 0.1632
第4页/共14页
7.4
②飞机质心移动时,升力特性并不会发生变化。
C Crr L sin 0 滚转力矩
L Laa Lrr L 0
N
Nr r
0
侧风配 平?
Cc Ccrr CL sin 0
假设滚转 角为零
写成无因次形式:Cl Claa Clrr ClL 0
Cn Cnr r 0
得: r
Cn Cnr
a
ClL Cla
在跨音速区域飞行时,飞机速度增加时,气动压力中 心迅速后移,产生大的低头力矩,而飞机此时为定载静 不稳定,低头后会产生使低头趋势进一步加剧的气动低 头力矩,因而会出现“自动俯冲”现象。
(
dCm dCL
)nn
1
Cm CL
Ma 2CL
Cm M a
跨音速区
Cm M a
为大的负值,( dCm
dCL
)nn 1
Cn Cn Cnr r Cnp p Cnr r Cna a
方向舵正偏 转产生的负
偏航力矩
Cn
Hale Waihona Puke 假设为零Cnr Cnr
r 0
第8页/共14页
8.2何谓飞行器的航向静稳定性和横向静稳 定性?影响横航向静稳定性的主要因素?
航向静稳定性:飞机在平衡状态下受到外界非 对称瞬时干扰,产生侧滑,在驾驶员不施加操纵 的条件下,干扰消失的瞬时,飞机将产生使侧滑 角减小的偏航力矩,则称飞机在原平衡状态具有 航向静稳定性。
飞机的飞行原理--空气动力学基本知识 ppt课件
PPT课件 24
PPT课件
25
国际标准大气的主要规定
1、以海平面的高度为零,在海平面上(H=0)空气 的标准状态是: 气压 Po=10.13牛顿/厘米2 气温to=15℃(59 ℉ 、288 º K)
பைடு நூலகம்
密度ρo =1.225千克/米3 音速 ao = 341米/秒(1227公里/小时) 2、在11公里以下,高度每升高1000米,空气温度降低 6.5 ℃,从11公里起到25公里高,气温保持在一56.5℃; 高度每升高250米,音速降低1米/秒。 3、气压、空气密度、气温和音速随高度的变化如上图 所示。
PPT课件 11
2、空气的压缩性
一定质量的空气,当压力或温度改变时, 引起空气密度变化的性质,叫做空气的压缩性。 影响空气压缩性的主要因素: 1)气流的流动速度(v)。气流的流动速 度越大,空气密度的变化显著增大(或密度减 小的越多),空气易压缩(或空气的压缩性增 大)。 2) 空气的温度(t)。空气的温度越高, 空气的密度变化越小(或密度减小的越少) , 空气不易压缩(或空气的压缩性减小)。
PPT课件 20
3、中间层
中间层是在平流层之上,其顶端离地面的高度 大约为80~100公里。 中间层的特点: 1)随着高度的增加,空气的温度先升后降 中间层的气温,当高度增加到45公里时,由35 公里时的-56.5℃增加到40℃左右,再随着高度的 增加,到80公里时,温度降低到-65.5℃以下。 2)有大量臭氧存在。 3)有水平方向的风,且风速相当大。 4)空气质量很少,只占整个大气的三千分之一。 这层空气不利于飞机飞行,只有探空气球飞行。
9ppt课件二空气的物理性质?1空气的粘性10ppt课件?空气粘性的物理实质是空气分子作无规则运动的结果当相邻两层空气具有不同流速时流得快的那层空气分子的动量大它作无规则运动而进入小速度层通过分子间的掺和碰撞会增加该层分子的能量从而牵动该层空气加速
PPT课件
25
国际标准大气的主要规定
1、以海平面的高度为零,在海平面上(H=0)空气 的标准状态是: 气压 Po=10.13牛顿/厘米2 气温to=15℃(59 ℉ 、288 º K)
பைடு நூலகம்
密度ρo =1.225千克/米3 音速 ao = 341米/秒(1227公里/小时) 2、在11公里以下,高度每升高1000米,空气温度降低 6.5 ℃,从11公里起到25公里高,气温保持在一56.5℃; 高度每升高250米,音速降低1米/秒。 3、气压、空气密度、气温和音速随高度的变化如上图 所示。
PPT课件 11
2、空气的压缩性
一定质量的空气,当压力或温度改变时, 引起空气密度变化的性质,叫做空气的压缩性。 影响空气压缩性的主要因素: 1)气流的流动速度(v)。气流的流动速 度越大,空气密度的变化显著增大(或密度减 小的越多),空气易压缩(或空气的压缩性增 大)。 2) 空气的温度(t)。空气的温度越高, 空气的密度变化越小(或密度减小的越少) , 空气不易压缩(或空气的压缩性减小)。
PPT课件 20
3、中间层
中间层是在平流层之上,其顶端离地面的高度 大约为80~100公里。 中间层的特点: 1)随着高度的增加,空气的温度先升后降 中间层的气温,当高度增加到45公里时,由35 公里时的-56.5℃增加到40℃左右,再随着高度的 增加,到80公里时,温度降低到-65.5℃以下。 2)有大量臭氧存在。 3)有水平方向的风,且风速相当大。 4)空气质量很少,只占整个大气的三千分之一。 这层空气不利于飞机飞行,只有探空气球飞行。
9ppt课件二空气的物理性质?1空气的粘性10ppt课件?空气粘性的物理实质是空气分子作无规则运动的结果当相邻两层空气具有不同流速时流得快的那层空气分子的动量大它作无规则运动而进入小速度层通过分子间的掺和碰撞会增加该层分子的能量从而牵动该层空气加速
飞行动力学习题课打印.
1.1 研究飞行器性能和飞行轨迹特性时,将飞行器视作可 控质点来处理的基本前提是什么?
作用在飞行器上的力矩始终保持平衡。
1.2 飞行器的最大允许升力系数主要受哪些因素的限制?
1、失速的限制,即最大允许升力系数CL.a, 比失速升力系数 CL.s 小一些。此方面限制最大 允许升力系数的主要因素有:高度、马赫数、 飞行器的气动外形。 2 、操纵的限制,保持俯仰平衡所需的舵面 极限偏角的限制。
Flight Dynamics 2
2.5 某 轻 型 喷 气 飞 机 重 量 W=30000N, 翼 载 荷 W/S=1000N/m2 在某高度上的可用推力 Ta =4000N。假设 CD=0.015+0.024CL2 和 CLmax=1.4。试确定最大和最小平飞 速度。(任取一高度求解)
K CL L W 30000 7.5 CD D Ta 4000
Flight பைடு நூலகம்ynamics 3
2.6 某歼击机重量W=50000N,以升阻比K=6飞行,当发动 机可用推力Ta =21500N时,试问在此种情况下,飞机能否 L W 50000 N D T a 21500 N 做定直平飞?若不能,可以以多大的上升角做定直爬升飞 K K 6 行。(保持油门不动) 需用推力
T D 16000 N
小时耗油量
cf T cf. R 2.327 kg km V cf T cf. t 1861.224 kg h
Flight Dynamics 5
补充题:解释飞行包线的形状。
Vmax 最大平飞速度: 2Ta CD S
T a , , C D 都会随高度变化
对于跨音速飞机:可用推力随高度的增加而降低, 起主导作用,这样组合参数 Ta/CDρ 随高度的增加而 降低,因而Vmax随高度的增加一直减小。
作用在飞行器上的力矩始终保持平衡。
1.2 飞行器的最大允许升力系数主要受哪些因素的限制?
1、失速的限制,即最大允许升力系数CL.a, 比失速升力系数 CL.s 小一些。此方面限制最大 允许升力系数的主要因素有:高度、马赫数、 飞行器的气动外形。 2 、操纵的限制,保持俯仰平衡所需的舵面 极限偏角的限制。
Flight Dynamics 2
2.5 某 轻 型 喷 气 飞 机 重 量 W=30000N, 翼 载 荷 W/S=1000N/m2 在某高度上的可用推力 Ta =4000N。假设 CD=0.015+0.024CL2 和 CLmax=1.4。试确定最大和最小平飞 速度。(任取一高度求解)
K CL L W 30000 7.5 CD D Ta 4000
Flight பைடு நூலகம்ynamics 3
2.6 某歼击机重量W=50000N,以升阻比K=6飞行,当发动 机可用推力Ta =21500N时,试问在此种情况下,飞机能否 L W 50000 N D T a 21500 N 做定直平飞?若不能,可以以多大的上升角做定直爬升飞 K K 6 行。(保持油门不动) 需用推力
T D 16000 N
小时耗油量
cf T cf. R 2.327 kg km V cf T cf. t 1861.224 kg h
Flight Dynamics 5
补充题:解释飞行包线的形状。
Vmax 最大平飞速度: 2Ta CD S
T a , , C D 都会随高度变化
对于跨音速飞机:可用推力随高度的增加而降低, 起主导作用,这样组合参数 Ta/CDρ 随高度的增加而 降低,因而Vmax随高度的增加一直减小。
第二章-2 飞行动力学-飞机的纵向运动课件
五、纵向运动的传递函数
扰动运动—齐次微分方程,无输入,起始条件响应 传递函数—输入输出关系,操纵响应 (一)纵向运动的传递函数(仅考虑e输入)
纵向方程中,令油门杆输入T=0,各变量初始条件为0,
以e为输入,V为输出的传递函数: 各系数定义: p,p,Tp—长周期参数 阻尼比、振荡频率 时间常数 s,s,Ts—短周期参数 阻尼比、振荡频率 时间常数
三、纵向扰动运动的两种典型模态 以飞机纵向扰动运动的过渡过程为例。 设某飞机高度h=11OOOm,M=0.9(V0=266m/s)作定常直线平飞,受到 扰动后,飞机偏离基准运动状态。计算扰动因素消除后,飞机 恢复到基准运动的过渡过程。 完全靠飞机自身的稳定性,驾驶员没有进行操纵:
主要的结构参数及纵向气动参数:
六、短周期运动的近似传递函数
纵向运动的初始阶段,短周期运动占主导地位,其过渡过程时间很短,飞 行速度变化不大,可以认为速度增量V=0。 纵向运动方程式中第一式(切向力方程)可以删去,其他两式当V=0时, 得 经拉氏变换,得: 简化后为二阶系统.
分母上有一个积分环节, 用q较为合适
展开行列式,得:
由第三个代数方程式,可得 代入速度V对舵面的传递函数,代入给定数据,得:
右面的V/e, /e, /e表明,二阶简化系 统与未简化(三阶)系统 的频率特性在低频段(低 于1rad/s)几乎完全一致, 高频段差别增大
基准运动为定直平飞,小扰动假设:空气密度=常值,可忽略 力与力矩:
各函数对基准运动(V0,0,e0,T0)展开泰勒级数并保留一 阶项,得
令
得力与力矩的线性化描述:
(一)切向动力学方程的线性化
dV 1 (T D G sin ) dt m
飞行动力学习题课二详解演示文稿
主 要 影 ➢ 机翼后掠作用:产生横向和航向静稳定作用 响 ➢ 机翼上反作用:机翼上反产生横向和航向静稳定作用 因 ➢ 翼身干扰:翼身干扰对横航向静稳定性有影响;上单翼 素 飞机一般不采用上反角。
8.4试推导因非对称装载在飞行器上作用有不
对称滚转力矩L 时,为保持定直飞行所需要
的副翼、方向舵偏角的表达式(设 Cna可忽略)。
速后移;超音速机翼焦点变化不大,但是机翼引起 的下洗减小,使平尾引起的焦点后移显著增加。
7.2 纵向定速静稳定性和定载静稳定性
定速静稳定性(迎角静稳定性):给定速度和升降
舵偏角,飞机在某一平衡状态,受瞬时扰动,Δα增加 ,能够产生小于0的恢复力矩ΔM,趋于减小Δα 。具 有恢复到原平衡状态的趋势。称飞机在原平衡状态是 定速静稳定的。
定载静稳定性:飞机受扰动后,会引起迎角和飞行
速度均发生变化,但二者的变化满足 nn 1 的约束。 即研究飞机作定直水平飞行时,受到瞬态扰动,飞机 有无恢复原平衡状态的趋势,称之为定载静稳定性。
7.3 说明飞行器在跨声速区飞行时出现 “自动俯冲”现象的物理原因。
在跨音速区,出现自动俯冲现象主要原因是由于 空气压缩性使全机焦点迅速后移,产生低头力矩, 使得飞机失去了定载静稳定性。
Cm
Cm CL
焦点位置、升力曲线
Cm
Cm0
Cm CL
CL
Cm0
CL (xcg
xac )
Cm CL xcg
CL
xcg
xc' g
xcg
➢ 定义:
CL CL0 CL
CL CL
Cm0
xac
来流与机体X轴的夹角 来流与零升力线的夹角
第八章知识要点
横航向静稳定性定义 飞机构形和飞行状态对飞机横航向静稳定性的
8.4试推导因非对称装载在飞行器上作用有不
对称滚转力矩L 时,为保持定直飞行所需要
的副翼、方向舵偏角的表达式(设 Cna可忽略)。
速后移;超音速机翼焦点变化不大,但是机翼引起 的下洗减小,使平尾引起的焦点后移显著增加。
7.2 纵向定速静稳定性和定载静稳定性
定速静稳定性(迎角静稳定性):给定速度和升降
舵偏角,飞机在某一平衡状态,受瞬时扰动,Δα增加 ,能够产生小于0的恢复力矩ΔM,趋于减小Δα 。具 有恢复到原平衡状态的趋势。称飞机在原平衡状态是 定速静稳定的。
定载静稳定性:飞机受扰动后,会引起迎角和飞行
速度均发生变化,但二者的变化满足 nn 1 的约束。 即研究飞机作定直水平飞行时,受到瞬态扰动,飞机 有无恢复原平衡状态的趋势,称之为定载静稳定性。
7.3 说明飞行器在跨声速区飞行时出现 “自动俯冲”现象的物理原因。
在跨音速区,出现自动俯冲现象主要原因是由于 空气压缩性使全机焦点迅速后移,产生低头力矩, 使得飞机失去了定载静稳定性。
Cm
Cm CL
焦点位置、升力曲线
Cm
Cm0
Cm CL
CL
Cm0
CL (xcg
xac )
Cm CL xcg
CL
xcg
xc' g
xcg
➢ 定义:
CL CL0 CL
CL CL
Cm0
xac
来流与机体X轴的夹角 来流与零升力线的夹角
第八章知识要点
横航向静稳定性定义 飞机构形和飞行状态对飞机横航向静稳定性的
《飞行原理空气动力》PPT课件
航程
飞机在无风和不加油的条件下,连续飞行耗尽 可用燃油时飞行的水平距离
航时
飞机耗尽可用燃油时能持续飞行的时间。
28
起飞
起飞定义:从起飞线开始,经过滑跑-离地爬升到安全高度(飞机高于起飞表面10.7 米—CCAR-25)为止的全过程。
主要性能指标:地面滑跑距离、离地速度和 起飞距离。
影响起飞性能的主要因素:起飞重量、大气 条件(密度、风向等)、离地时的迎角、增 升装置的使用、发动机的推力及爬升阶段爬 升角的选择等。
18
3.4 巡航飞行
飞机巡航飞行应满足的平衡条件:升力等 于重力、推力等于阻力。
平飞所需速度:飞机在某高度上保持平飞 所需的升力(等于重量)对应的飞行速度。
平飞速度
1
平飞 (2W / CL S)2
19
影响平飞所需速度的因素: 飞机重量:重量愈大所需速度愈高。 升力系数:取决于飞机的迎角,迎角减小
如果着陆重量过大或机场温度较高或在海拔较高 的机场着陆,都会造成接地速度过大,使飞机接 地时受到较大的地面撞击力,损坏起落架和机体 受力结构;也会使着陆滑跑距离过长,导致飞机 冲出跑道的事故发生。
着陆时的重量不能超过规定的着陆重量。 在不超过临界迎角和护尾迎角的条件下,接地迎
角应取最大值,增升增阻的后缘襟翼在着陆时要 放下最大的角度,以最大限度的增加升力系数减 小接地速度
最大正过载表示飞机承受的气动升力指向 机体立轴的正向并达到最大;
最大最负过载表示飞机承受的气动升力指 向机体立轴的反向并达到最大;
最大速度表示此时飞机的载荷或升力不一 定最大,但机翼表面的局部气动载荷很大, 压力中心靠后,考验机翼结构局部强度的 严重受载情况。
27
巡航飞行
巡航速度
飞机在无风和不加油的条件下,连续飞行耗尽 可用燃油时飞行的水平距离
航时
飞机耗尽可用燃油时能持续飞行的时间。
28
起飞
起飞定义:从起飞线开始,经过滑跑-离地爬升到安全高度(飞机高于起飞表面10.7 米—CCAR-25)为止的全过程。
主要性能指标:地面滑跑距离、离地速度和 起飞距离。
影响起飞性能的主要因素:起飞重量、大气 条件(密度、风向等)、离地时的迎角、增 升装置的使用、发动机的推力及爬升阶段爬 升角的选择等。
18
3.4 巡航飞行
飞机巡航飞行应满足的平衡条件:升力等 于重力、推力等于阻力。
平飞所需速度:飞机在某高度上保持平飞 所需的升力(等于重量)对应的飞行速度。
平飞速度
1
平飞 (2W / CL S)2
19
影响平飞所需速度的因素: 飞机重量:重量愈大所需速度愈高。 升力系数:取决于飞机的迎角,迎角减小
如果着陆重量过大或机场温度较高或在海拔较高 的机场着陆,都会造成接地速度过大,使飞机接 地时受到较大的地面撞击力,损坏起落架和机体 受力结构;也会使着陆滑跑距离过长,导致飞机 冲出跑道的事故发生。
着陆时的重量不能超过规定的着陆重量。 在不超过临界迎角和护尾迎角的条件下,接地迎
角应取最大值,增升增阻的后缘襟翼在着陆时要 放下最大的角度,以最大限度的增加升力系数减 小接地速度
最大正过载表示飞机承受的气动升力指向 机体立轴的正向并达到最大;
最大最负过载表示飞机承受的气动升力指 向机体立轴的反向并达到最大;
最大速度表示此时飞机的载荷或升力不一 定最大,但机翼表面的局部气动载荷很大, 压力中心靠后,考验机翼结构局部强度的 严重受载情况。
27
巡航飞行
巡航速度
《飞行原理空气动力》课件
04
飞行器阻力来源与减小方法
飞行器阻力来源
01
压差阻力
由于飞行器表面压
力分布不均匀所产
02
生的阻力。
摩擦阻力
由于空气与飞行器 表面之间的摩擦力 所产生的阻力。
04
干扰阻力
由于飞行器各部件
03
之间的相互干扰所
产生的阻力。
诱导阻力
由于升力产生时所 伴随的阻力。
减小飞行器阻力的方法
优化飞行器外形设计
1 2
3
密度和压力
空气的密度和压力随高度和温度的变化而变化,对飞行器的 性能和稳定性产生影响。
粘性和摩擦力
空气的粘性对飞行器表面的气流产生摩擦力,影响飞行器的 升力和阻力。
压缩性和膨胀性
空气在压缩和膨胀时会产生温度变化,对飞行器的推进系统 和发动机性能产生影响。
流体静力学基础
流体静压力
流体静压力与重力方向相反,对飞行器产生下压力,保持飞行器的稳定。
横向稳定性
保持飞行器偏航平衡的能力,通过调 节方向舵来实现。
纵向稳定性
保持飞行器俯仰平衡的能力,通过调 节升降舵来实现。
方向稳定性
保持飞行器滚转平衡的能力,通过调 节副翼来实现。
飞行器控制原理
飞行器控制系统组成
执行机构
包括传感器、控制器和执行 机构等部分。
01
02
接收控制指令并驱动飞行器 的操纵面,以改变飞行器的
优化螺旋桨的设计和制造工艺、提高转速 、合理选择桨叶角度等都是提高螺旋桨效 率的有效途径。
火箭升力的产生
火箭推进原理
火箭升力的特点
火箭与飞机升力的比较
火箭升力的局限性
火箭通过燃烧燃料产生高速气 体,高速气体从尾部喷出产生 反作用力,推动火箭向前运动 。同时,喷出的气体也产生一 定的升力使火箭离地升空。
飞行动力学-飞机飞行性能计算49页PPT
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
飞行动力学-飞机飞行性能计算
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主 ➢ 机身作用:航向静不稳定部件 要 影 响 因 素
Flight Dynamics
横向静稳定性:飞机在平衡状态下受到外界非对 称瞬时扰动,产生小的左倾斜Δϕ<0,升力和重力 的合力作用使飞机向左侧滑,Δβ<0,飞机产生右 滚力矩,具有减小Δϕ,使飞机保持机翼水平的趋
势,称飞机在原平衡状态具有横向静稳定性。否 则,为横向静不稳定。
飞行动力学习题课(二)
Flight Dynamics
第七章知识要点
1、几个特征点:质心、压心、焦点(中性点)、 握杆机动点的定义及其位置关系;
2、静稳定性定义:定速静稳定性、速度静稳定性、 定载静稳定性
3、零升力矩的含义及飞机配平飞行的二个条件; 4、静操纵性的概念、正操纵与反操纵; 5、配平对飞机升力特性的影响;
Flight Dynamics
第八章知识要点
横航向静稳定性定义 飞机构形和飞行状态对飞机横航向静稳定性的
影响规律 方向舵和副翼的操纵定义 定直侧滑飞行的平衡 侧风着陆的平衡 不对称推力的平衡
Flight Dynamics
8.1方向舵固定在中立位置时,Cn ~ 曲线为 什么常通过原点,呈反对称变化?偏转方向 舵时,如在气动力线形变化范围,则曲线如 何变化?
CLα=3.5 1/rad,试确定该机的静稳定导数Cm CL 。又如只
改变飞机的质心位置,测得α3=4°时,Cm3=0.025。试求质 心的相对移动量。
(1)
Cm
Cm1
1
Cm2
2
0.005 0.025 (4 6) / 57.3
0.573(1/ rad )
静不稳定!
(2)
Cm Cm 0.573 0.16325 CL CL 3.51
Cn
r 0
Flight Dynamics
8.2何谓飞行器的航向静稳定性和横向静稳 定性?影响横航向静稳定性的主要因素是什 么?
航向静稳定性:飞机在平衡状态下受到外界非对称 瞬时扰动,产生小的侧滑Δβ>0,则飞机产生右偏航 力矩,使飞机机头向右偏,以减小Δβ的趋势,称飞 机在原平衡状态具有航向静稳定性。否则,则为航 向静不稳定。
的气动布局。另外Ma 影响焦点的位置,亚音速时 Ma 增大,全机焦点变化不大;跨音速全机焦点迅
速后移;超音速机翼焦点变化不大,但是机翼引起 的下洗减小,使平尾引起的焦点后移显著增加。
Flight Dynamics
7.2 纵向定速静稳定性和定载静稳定性
定速静稳定性(迎角静稳定性):给定速度和升降
舵偏角,飞机在某一平衡状态,受瞬时扰动,Δα增加 ,能够产生小于0的恢复力矩ΔM,趋于减小Δα 。具 有恢复到原平衡状态的趋势。称飞机在原平衡状态是 定速静稳定的。
(
dCm dCL
)
nn
1
Cm CL
Ma 2CL
Cm M a
跨音速区全机焦点迅速后移
Cm M a
为大的负值,使
(
dCm dCL
)nn
1
0
Flight Dynamics
7.4 在风洞中测得某机纵向力矩参数与迎角成线性关系, 且测得α1=4°时,Cm1=0.005; α2=6°时,Cm2=0.025。已知
方向舵固定在中立位置时,通常情况飞机左右完
全对称, 0 时不产生偏航力矩,因此 Cn ~ 曲
线常通过原点。
飞机航向静稳定时, 0 时产生正的偏航力矩;
0 时产生负的偏航力矩,因飞机左右完全对称, 因此有 Cn ( ) Cn ( ) ,即呈反对称变化。
Flight Dynamics
偏转方向舵时,若 r 0
主
要
影 ➢ 机翼后掠作用:产生横向和航向静稳定作用
响 ➢ 机翼上反作用:机翼上反产生横向和航向静稳定作用
因 ➢ 翼身干扰:翼身干扰对横航向静稳定性有影响;上单翼
素 飞机一般不采用上反角。
Flight Dynamics
8.4试推导因非对称装载在飞行器上作用有不
对称滚转力矩L 时,为保持定直飞行所需要
重心移动后 ➢ 变化的量: ➢ 不变的量:
Cm
Cm CL
焦点位置、升力曲线 Flight Dynamics
Cm
Cm0
Cm CLCL来自Cm0CL (xcg
xac )
Cm CL xcg
CL
xcg
xc' g
xcg
➢ 定义:
CL CL0 CL
CL CL
Cm0
xac
来流与机体X轴的夹角 来流与零升力线的夹角
定载静稳定性:飞机受扰动后,会引起迎角和飞行
速度均发生变化,但二者的变化满足 nn 1 的约束。 即研究飞机作定直水平飞行时,受到瞬态扰动,飞机 有无恢复原平衡状态的趋势,称之为定载静稳定性。
Flight Dynamics
7.3 说明飞行器在跨声速区飞行时出现 “自动俯冲”现象的物理原因。
在跨音速区,出现自动俯冲现象主要原因是由于 空气压缩性使全机焦点迅速后移,产生低头力矩, 使得飞机失去了定载静稳定性。
Flight Dynamics
9.1试说明纵向动稳定性和静稳定性的区别 与联系
动稳定性:飞机在受扰作用后,会偏离其平衡状 态的基准状态,扰动作用停止后,飞机能否恢复 到它基准状态的一种全过程特性。
Clr Cn Cl Cnr C C la nr
Flight Dynamics
第九章知识要点
1、纵向动稳定性和静稳定性的区别与联系 2、飞机扰动运动模态的概念和主要特征参数 3、纵向两种典型模态及其物理成因 4、短、长周期模态简化分析的依据及方法 5、纵向动操纵性和静操纵性的概念 6、飞机对升降舵和油门操纵的响应特性
的副翼、方向舵偏角的表达式(设 Cna可忽略)。
C Crr L sin 0
L Laa Lrr L 0
N
Nr r
0
Cc Ccrr CL sin 0
写成无因次形式: Cl Claa Clrr ClL 0
Cn Cnrr 0
得:
r
Cn Cnr
a
ClL Cla
平衡升降舵偏角随升力系数(迎角) 飞行速度的变化规律; 6、定常拉升时飞机的平衡特性及平衡舵偏角的变化规律。
Flight Dynamics
7.1 何谓飞行器全机焦点?分析影响焦 点位置的主要因素。
全机焦点为迎角变化时全机升力增量的作用点,在 焦点处当迎角变化时,气动力对该点的力矩不变。
全机焦点取决于翼身组合体的焦点位置和平尾所引 起的焦点后移量,因此影响焦点位置的因素有飞机