逻辑音频电路的结构和原理

合集下载

单元电路的原理和应用

单元电路的原理和应用

单元电路的原理和应用概述单元电路是电子电路中的基本构建块,用于实现特定的功能。

本文将介绍单元电路的原理和应用,并通过列点的方式详细介绍各种常见的单元电路。

基本原理•单元电路是由电子器件组成的电路,可以独立地实现特定的功能。

•单元电路可以拓展到更复杂的电子电路中,实现更复杂的功能。

常见的单元电路及其应用1.放大器电路–基本原理:放大器电路用于放大电信号的幅度,常用于音频放大、视频放大以及通信系统中。

–应用场景:音响系统、电视系统、无线通信系统等。

2.滤波器电路–基本原理:滤波器电路用于滤除或选择特定频率的信号,常用于音频、射频等信号的处理。

–应用场景:音频滤波器、射频滤波器、通信系统等。

3.模拟信号处理电路–基本原理:模拟信号处理电路用于对模拟信号进行处理、转换和调整,常用于音频、视频处理等领域。

–应用场景:音频处理器、视频处理器、模拟信号转换器等。

4.数字信号处理电路–基本原理:数字信号处理电路用于对数字信号进行处理、转换和调整,常用于数字音频、数字视频处理等领域。

–应用场景:数字音频处理器、数字视频处理器、数字信号转换器等。

5.时钟电路–基本原理:时钟电路用于产生稳定的时钟脉冲信号,常用于数字电子系统中对时序进行控制。

–应用场景:计算机系统、通信系统、数码产品等。

6.驱动电路–基本原理:驱动电路用于将输入信号转换为足够的电流或电压来驱动负载,常用于激励各种传感器、执行器等。

–应用场景:电机驱动器、传感器驱动器、执行器驱动器等。

7.逻辑电路–基本原理:逻辑电路根据输入信号的逻辑关系产生相应的输出信号,常用于数字电子系统中进行逻辑运算和控制。

–应用场景:计算机系统、数字电视系统、控制系统等。

8.计数器电路–基本原理:计数器电路用于计数或记录输入脉冲的数量,常用于频率计、计时器等应用。

–应用场景:频率计、计时器、时序控制器等。

总结单元电路是电子电路中的基本构建块,可以独立地实现特定的功能。

本文介绍了常见的单元电路及其应用,包括放大器电路、滤波器电路、模拟信号处理电路、数字信号处理电路、时钟电路、驱动电路、逻辑电路和计数器电路。

音频分配器原理

音频分配器原理

音频分配器原理
音频分配器是一种将音频信号分配给多个输出通道的设备或电路。

它的原理是通过输入端接收音频信号,然后将其分配给多个输出通道,使每个通道都可以独立地接收和处理音频信号。

音频分配器通常由多个放大器和开关电路组成。

当音频信号进入分配器时,它会先经过放大器进行放大,以增强信号的强度。

然后,开关电路根据控制信号的指示,将放大后的音频信号分配给相应的输出通道。

为了实现音频信号的准确分配,音频分配器通常使用独立的放大器和开关电路,以确保输入信号不会被削弱或污染。

这样,每个输出通道都可以得到高质量的音频信号,从而避免信号衰减和失真。

音频分配器广泛应用于音频系统中,例如音频会议系统、音乐演出系统和录音室等。

它们能够将音频信号分配给多个扬声器或监听设备,使得多个人或设备可以同时接收和播放同一音频信号,从而实现多路音频输出的需求。

总的来说,音频分配器的原理是通过放大器和开关电路,将音频信号分配给多个输出通道,以实现多路音频输出的功能。

这种设备或电路在音频系统中起到了重要的作用,提供了方便和灵活的音频分配解决方案。

电路中的逻辑门电路及其应用

电路中的逻辑门电路及其应用

电路中的逻辑门电路及其应用随着科技的不断发展,电子产品的应用越来越广泛,而其中使用最广泛的电子元件之一就是逻辑门电路。

逻辑门电路是由多个电子元件组成的电路,用来处理和转换电信号。

在这篇文章中,我们将探讨逻辑门电路的原理、分类以及应用。

逻辑门电路的原理是基于布尔逻辑运算。

布尔逻辑是一种用来处理逻辑关系的数学模型,由英国数学家乔治·布尔发明。

在电路中,逻辑门电路可以执行逻辑运算,如与门、或门、非门等。

根据输入信号的不同,逻辑门电路会产生不同的输出信号。

逻辑门电路分为几种主要类型:与门、或门、非门、异或门等。

与门是最简单的逻辑门之一,它只有当所有输入信号都为高电平时,输出信号才为高电平;或门是指只要有一个输入信号为高电平,输出信号即为高电平;非门则是将输入信号取反。

异或门是一种比较特殊的逻辑门,只有当输入信号中有一个为高电平时,输出信号才为高电平。

不同类型的逻辑门可以通过组合来实现更复杂的逻辑运算。

逻辑门电路在现代电子产品中应用广泛。

其中最常见的应用之一是计算机系统。

计算机系统中的处理器芯片由大量的逻辑门电路组成,用于执行各种复杂的运算和逻辑操作。

例如,与门用于判断两个二进制数的每一位是否都为1,从而决定是否执行某个操作;或门用于合并不同的条件,从而决定下一步的行动;非门常用于逻辑反转,用来执行条件的否定。

另外,逻辑门电路还被广泛应用于通信系统中。

例如,在数字通信中,逻辑门电路用于编码和解码数字信号,以及确定信号的传输路径。

此外,逻辑门电路也被应用于电子娱乐设备中,如电视、音响系统和游戏机。

通过不同类型的逻辑门电路,这些设备可以接收和处理各种复杂的信号,为用户提供更好的音视频体验。

尽管逻辑门电路的应用非常广泛,但它们并不是万能的。

逻辑门电路只能处理离散的输入和输出信号,无法处理连续的模拟信号。

此外,由于逻辑门电路中的电子元件有一定的开关速度,所以逻辑门电路的响应时间较慢,不适合用于一些对速度要求非常高的应用。

手机的构造及其工作原理

手机的构造及其工作原理

手机的构造及其工作原理手机包括四个系统:音频逻辑系统:完成音频数字信号的处理以及手机音频控制各部分的逻辑。

射频系统:完成信号的接收和传输,是手机与基站之间信息交换的桥梁。

人机接口系统:实现人机之间的沟通交流,供用户查看运行结果。

电源系统:手机及其所需的各种电压来源于由手机电池,手机内部的电池电压需转换为多种不同的电压,以供手机的不同部件使用。

1、音频逻辑系统逻辑控制可分为音频逻辑和音频信号处理两部分。

它是完整的数字信号处理和手机工作的管理和控制。

1.1逻辑电路部分手机逻辑电路主要由CPU和存储器组成。

在手机程序存储器中,存储主程序、主存储芯片手机机身码(俗称串号)和一些检测程序、如电池检测、电压显示检测程序等的主要工作是字体(版本)。

CPU与存储器组通过总线和控制线连接。

所谓总线,是由4到20根功能性质一样的数据传输线组成。

所谓控制线,是指获得各项操作指令的CPU存储器通道,例如芯片选择信号、复位信号、监视信号和读写信号等。

在存储器的支持下,CPU才能发挥其复杂多样的功能。

如果没有存储器或其中某些部分出错,手机就会出现软件故障。

CPU 对音频部分和射频部分的控制处理也是通过控制线完成的,这些控制信号一般包括静音(MUTE)、显示屏使能(LCDEN)、发光控制(LIGHT)、充电控制(CHARGE)、接收使能(RXON/RXEN)、发送使能(TXON/TXEN)、频率合成器使能(SYNEN)、频率合成器时钟(SYNCLK)等。

这些从CPU部分、射频部分和电源部分发出的控制信号扩展到音频信号,以完成手机复杂的控制工作。

所有工作电路都需要设置时间,即前面所说的13MHz。

部分机型为26MHz或19.5MHz,使用前需在机内进行分频。

还有一块实时时钟晶体,其特殊频率为32.768kHz。

主要功能为,为显示屏提供正确的时间显示及让手机处于睡眠状态。

早期机型无该晶体,所以没有时间显示和睡眠功能。

1.2音频电路1.2.1接收音频处理电路接收机通过解调得到的接收机基带信号被送到逻辑音频电路进行处理。

pnp结构

pnp结构

pnp结构PNP结构是一种常见的电子元器件连接方式,由三个基本元件组成:正极(P),负极(N),以及位于两者之间的基极(P)。

这种结构在电子设备中被广泛应用,特别是在半导体和放大器电路中。

下面将详细介绍PNP结构的工作原理和应用。

PNP结构中的正极和负极分别代表了两个不同的材料。

正极材料通常是p型半导体,其中的杂质原子带有正电荷。

而负极材料则是n 型半导体,其中的杂质原子带有负电荷。

基极则是连接两者的区域,通常是p型半导体。

在PNP结构中,正极与负极之间形成了一个p-n结,从而形成了一个PNP晶体管。

PNP晶体管是PNP结构的一种应用,用于放大和开关电路。

它由三个不同掺杂的半导体层构成,即正极、负极和基极。

当在基极施加电压时,由于p-n结的存在,会形成一个电流流动的路径。

这个电流可以通过控制基极电流来调节,从而实现对输出电流的控制。

当基极电流为零时,PNP晶体管处于关闭状态,没有电流通过。

而当基极电流大于零时,PNP晶体管处于导通状态,有电流通过。

PNP结构的优点之一是它可以承受较高的电压。

由于正极和负极之间形成了一个反向偏置,因此PNP晶体管可以承受较高的电压而不会发生击穿。

此外,PNP结构还具有较高的电流放大倍数和较低的输入阻抗,使其在放大和开关电路中具有广泛的应用。

在实际应用中,PNP晶体管常被用作电流放大器和开关。

在电流放大器中,输入信号被施加到基极,通过控制基极电流的变化,可以放大输出信号的电流。

这种放大器常用于音频放大器和功率放大器等设备中。

在开关电路中,PNP晶体管可以用于控制电流的开关。

通过控制基极电流的开关状态,可以实现对电路的开关控制。

除了在电子设备中的应用,PNP结构还在其他领域有一定的应用。

例如,它可以用于光电器件中的电流控制和放大,以及传感器中的信号放大和处理。

此外,PNP结构还可以用于制造逻辑门和存储器等逻辑电路元件。

PNP结构是一种常见的电子元器件连接方式,由正极、负极和基极组成。

sar adc的控制逻辑电路

sar adc的控制逻辑电路

sar adc的控制逻辑电路(实用版)目录1.SAR ADC 的概述2.SAR ADC 的控制逻辑电路构成3.SAR ADC 的控制逻辑电路的工作原理4.SAR ADC 的控制逻辑电路的应用实例5.总结正文一、SAR ADC 的概述SAR(Successive Approximation Register)ADC 即连续近似寄存器ADC,是一种串行输出的模数转换器。

其主要特点是转换速度快、精度高、功耗低,因此在各种电子设备和系统中得到了广泛的应用。

二、SAR ADC 的控制逻辑电路构成SAR ADC 的控制逻辑电路主要由以下几个部分组成:1.控制单元:负责产生和控制整个 ADC 转换过程中的各种时钟信号、控制信号和状态信号。

2.寄存器单元:用于存储输入的模拟信号和转换过程中的各种中间结果。

3.比较器单元:负责对寄存器单元中的数字信号与基准电压进行比较,产生误差信号。

4.译码器单元:根据控制单元发出的控制信号,将寄存器单元中的数字信号转换为所需的编码形式。

5.输出单元:将转换后的数字信号输出给外部设备或系统。

三、SAR ADC 的控制逻辑电路的工作原理SAR ADC 的控制逻辑电路的工作原理可以分为以下几个步骤:1.开始转换:控制单元产生开始转换信号,使 ADC 进入转换状态。

2.输入信号处理:将输入的模拟信号输入到寄存器单元,并进行初步处理。

3.逐步逼近:控制单元通过比较器单元和译码器单元,逐步逼近模拟信号的真实值,并将逼近的结果存储在寄存器单元中。

4.转换结束:当逼近的结果达到设定的精度要求时,控制单元产生转换结束信号,使 ADC 退出转换状态。

5.输出结果:将转换后的数字信号输出给外部设备或系统。

四、SAR ADC 的控制逻辑电路的应用实例SAR ADC 的控制逻辑电路广泛应用于各种电子设备和系统中,如音频处理系统、图像处理系统、通信系统等。

在这些应用中,SAR ADC 的控制逻辑电路起到了关键的作用,为各种设备和系统提供了高精度、高速度的模数转换功能。

手机电路原理

手机电路原理

第二部分原理篇第一章手机的功能电路ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。

一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。

数字手机从电路可分为,射频与逻辑音频电路两大部分。

其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。

见图1-1所示从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。

在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。

图1-1手机的结构框图注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。

第二章射频系统射频系统由射频接收和射频发射两部分组成。

射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。

手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。

手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。

对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。

当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。

而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。

第一节接收机的电路结构移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。

音响电路工作原理

音响电路工作原理

音响电路工作原理
音响电路是由多个组件和电子元件组成的,它们能够将电信号转换成声音。

电路工作原理主要分为两个部分:信号放大和音频输出。

第一部分是信号放大。

音响电路接收来自音源的微弱电信号,这些信号经过调节和放大。

首先,音源的电信号通过输入端口传入音响电路。

电容器用于消除电信号中的直流分量,保留交流信号。

接下来,信号进入放大器,放大器会将信号电压扩大,增加信号的强度。

为了保持音质的准确性,放大器必须具备较低的失真和噪声。

第二部分是音频输出。

放大后的信号将进入音频输出电路。

输出电路负责将电信号转化为声音,并将其传输到扬声器。

输出电路通常包括一个电流放大器和扬声器驱动器。

电流放大器能够通过控制电流的变化,将电信号转化成与音频信号频率相对应的电流。

而扬声器驱动器则将电流信号转换成扬声器所需的声音振动。

整个音响电路的工作过程就是将微弱的电信号经过放大并转化成声音。

这样,我们就能够享受到高质量的音乐和声音效果。

音响电路及工作原理

音响电路及工作原理

音响电路及工作原理音响电路是指用于放大、处理音频信号的电路,它是音响设备中至关重要的部分。

在音响系统中,音响电路起着放大、滤波、混音等功能,是保证音响设备正常工作的核心部分。

本文将介绍音响电路的工作原理及其在音响系统中的应用。

音响电路的基本组成包括电源部分、音频输入部分、信号处理部分和音频输出部分。

其中,电源部分主要负责为整个音响电路提供稳定的电源供电;音频输入部分负责接收外部音频信号,如来自CD播放器、MP3播放器、手机等的音频信号;信号处理部分负责对输入的音频信号进行放大、滤波、混音等处理;音频输出部分则将处理后的音频信号输出到音箱或耳机中。

音响电路的工作原理主要涉及到放大器、滤波器、混音器等电路的工作原理。

放大器是音响电路中最基本的部分,它的作用是将输入的音频信号放大到一定的幅度,以驱动音箱发出声音。

常见的放大器电路有功放电路、集成放大器电路等。

滤波器则是用于对音频信号进行滤波处理,以去除杂音、提高音质。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。

混音器则是用于将多路音频信号进行混合,以实现多路音频信号的混音输出。

在音响系统中,音响电路扮演着至关重要的角色。

它的性能直接影响到音响设备的音质、音量等方面。

因此,设计高性能的音响电路是音响设备制造商不断努力的方向。

随着科技的不断发展,音响电路的设计也在不断创新,例如采用数字信号处理技术、功率放大技术等,以提高音响设备的性能。

总之,音响电路是音响设备中不可或缺的一部分,它通过放大、滤波、混音等处理,将输入的音频信号转化为我们能听到的声音。

在音响系统中,音响电路的性能直接关系到整个音响设备的音质和性能。

因此,对音响电路的研究和设计具有重要的意义,它将不断推动音响设备的发展和进步。

【2017年整理】音频功率放大器电路图

【2017年整理】音频功率放大器电路图

音频功率放大器的组成.1 整体电路原理本立体声功率放大器所用的核心芯片是国际通用高保真音频功率放大集成电路TDA2030A。

本电路由三个部分组成,即电源电路、左右声道的功率放大器及输入信号处理电源(四运放)。

电源变压器将220V交流电降为双12V低压交流电,经桥式整流后变为±18V的直流电,作为功放及运放的供电电源,D5、R29组成电源指示电路,以指示电源是否正常,开关K为电源开关。

表一元件清单2.2 电源部分本设计是由TDA2030构成的双声道功率放大器,左右声道对称,TDA2030是一种单声道集成功率放大器,采用单电源或双电源供电方式,电路中主要构成框架如下:前置放大采用GL324四运放的两路运放的负反馈放大,放大倍数为10倍,后经过RC滤波电路组成的高低音调节,在经过平衡和电量调节输入功放芯片即TDA2030。

电路框图整流电路:桥式整流电路的作用是利用单向导电性的整流元件二极管,将正负交替的正弦交流电压整流成为单向脉动电压。

但是,这种单向电压往往包含着很大的脉动成分,距离理想的直流电压还差得很远。

稳压电路:稳压电路的作用是采取某些措施,使输出的直流电压在电网电压或负载电流发生变化时保持稳定。

设计中是利用变压器将电网上面220V的交流电降为双12V低压交流电,再经过桥式整流把12V的交流成分整流成±18V的直流电,经过滤波滤除直流成分中的交流部分,考虑到芯片电源电压要求比较宽泛本设计中没有采用稳压部分。

2.3 前置放大部分前置放大器是各种音源设备和功率放大器的连接设备,起到信号放大的作用。

音源信号在经过前置放大器的放大后,就可以直接送入功率放大器,使功率放大器能正常工作。

前置放大器还可以对信号的频率进行调节和控制。

本设计的前置放大部分是采用GL324四运算放大芯片的负反馈实行的。

优点在于其在分压偏置电路中利用负反馈的原理以稳定放大电路的工作,此外还可以增加增益的稳定性,减小非线性失真,展开频带及控制输入输出阻抗。

音频放大器工作原理

音频放大器工作原理

音频放大器工作原理音频放大器是一种用于放大音频信号的电子设备。

它通常用于音响系统、电视、无线电以及其他音频设备中,以增强音频信号的电压和功率,使其能够驱动扬声器产生更高的音量和更清晰的声音。

然而,为了更好地了解音频放大器的工作原理,我们需要深入研究其电路结构和基本原理。

一、音频放大器的电路结构音频放大器的电路结构通常由多个组件组成,包括输入级、放大级和输出级。

输入级用于接收音频信号源,放大级用于放大信号,输出级用于将放大后的信号输出到扬声器。

1. 输入级:输入级通常由音频信号源、耦合电容和放大电路组成。

音频信号源可以是从音乐播放器、电视机或无线电等设备中提取的音频信号。

耦合电容用于将音频信号传输到放大电路,以隔离直流偏置电压。

2. 放大级:放大级是音频放大器的核心部分,它通过使用晶体管、真空管或集成电路来放大音频信号。

这个阶段的主要目标是增加信号的电压和功率,从而使其能够推动扬声器产生声音。

放大级的设计通常涉及选择合适的放大倍数和电压增益,以确保输出信号的质量和稳定性。

3. 输出级:输出级负责将放大后的信号传递给扬声器。

它通常由输出变压器和输出管组成。

输出变压器能够将低阻抗的放大器电路与高阻抗的扬声器电路相匹配,从而实现信号传输和功率匹配。

输出管为信号提供足够的电流,以满足扬声器的驱动要求。

二、音频放大器的基本原理音频放大器的基本工作原理是通过不同的放大级将音频信号从较低的电压和功率放大到适合驱动扬声器的水平。

具体而言,它遵循以下几个步骤:1. 输入阶段:音频信号从音频源引入放大器的输入级。

输入级的任务是将音频信号传递到放大级,并将其隔离直流偏置电压。

2. 放大阶段:放大级接收输入信号并将其放大。

放大级通常使用晶体管、真空管或集成电路来增加信号的电压和功率。

在放大过程中,放大器根据设计要求增加输入信号的幅度,并保持信号的准确性和稳定性。

3. 输出阶段:放大后的信号通过输出级传递到扬声器。

输出级使用输出变压器将放大器电路的低阻抗匹配到高阻抗的扬声器电路上,以确保信号传输和功率传递的匹配性。

逻辑电路原理

逻辑电路原理

逻辑电路原理
逻辑电路原理是电子工程中的重要基础知识,它是现代电子设备和系统的核心。

逻辑电路原理主要研究数字信号的处理和传输,它能够实现各种逻辑运算和控制功能,广泛应用于计算机、通信、控制系统等领域。

逻辑电路原理的基本概念包括逻辑门、布尔代数、半导体器件等。

逻辑门是逻
辑电路的基本组成单元,它能够实现与、或、非等逻辑运算。

布尔代数是描述逻辑运算的数学工具,通过布尔代数的运算规则可以实现逻辑电路的设计和分析。

而半导体器件则是逻辑电路的实现基础,包括晶体管、集成电路等,它们能够实现逻辑门的功能。

逻辑电路原理的研究对于提高电子系统的性能和功能具有重要意义。

通过逻辑
电路原理的应用,可以实现高速、低功耗的数字电路,提高系统的稳定性和可靠性。

同时,逻辑电路原理也为计算机科学和工程技术的发展提供了重要支撑,它是计算机硬件设计和数字系统设计的基础。

在实际应用中,逻辑电路原理被广泛应用于数字电子设备和系统中。

例如,计
算机的中央处理器、存储器、输入输出设备等都是由逻辑电路构成的。

通信系统中的数字信号处理、调制解调、编解码等功能也离不开逻辑电路原理的支持。

此外,控制系统、自动化设备、数字电子仪器等领域也都离不开逻辑电路原理的应用。

总之,逻辑电路原理是现代电子工程中不可或缺的基础知识,它为数字电子设
备和系统的设计、实现和应用提供了重要支撑。

随着科学技术的不断发展,逻辑电路原理的研究和应用将会更加深入和广泛,为人类社会的发展和进步做出更大的贡献。

手机维修电路原理及维修案例精选

手机维修电路原理及维修案例精选

© 2007 Lenovo 24
2、案例分析(以S5为例)
▪ 案例2:部份整机故障
▪ 显示问题:首先应该用替换法确定是装配问题,屏问题不这是主板问题?
▪ 1、屏无显示分2种情况:
▪ A、有字无光;此种情况说明,从CPU来的数据是没有问题的,只是没有背光。 所以应该检查LED供电信号有无问题或连接器有无工艺问题。
技能培训教材
自由联想,快乐共享
© 2007 Lenovo 20
1、测试主板故障的类别
▪ A、下载软件

定义:软件下载就是将手机的软件写入到手机主板芯片(flash)的
过程。(类似给电脑安装WIN2000或XP等操作系统)。

方式:利用电脑、电源、接口板等硬件设备以及相应的程序,将软件
写入到手机芯片中。

注:软件有版本之分(如S010、S011),一般要使用与硬件代码对应
的最新版本软件。
▪ B、下载SN号
▪ 定义:下载SN号就是将SN贴纸上的SN号写入到手机主板芯片(flash) 的过程。
▪ 实现方式:利用电脑、电源、接口板、扫描枪等硬件设备以及相应的 程序,将软件写入到手机芯片中。
▪ 注:有些机型没有单独的下载SN号工位,而直接在软件下载工位写入 SN号。(依不同平台而定)
b、在开机状态电流为20MA的情况下,用示波器在主板C1114输 入点测量出有 26M波形,说明主时钟正常工作。
c、在上一点分析前提下,测量电源IC输出Vmem2.8V为正常。
d、在以上分析结果下,可怀疑此主板在下载时,CPU至IO口的下载通路有问题, 测量此主板IO口URXD1信号脚对地阻抗为正常、UTXD1信号脚对地阻抗不正常,测 UTXD1通路上元件,发现D1301贴反了。

逻辑电路 分类

逻辑电路 分类

逻辑电路分类逻辑电路是现代电子技术中的重要组成部分,它们用于在电子设备中处理和传输信息。

根据其功能和结构的不同,逻辑电路可以分为多个分类。

以下是对几种常见的逻辑电路分类的介绍。

第一类是组合逻辑电路。

组合逻辑电路是由逻辑门组成的电路,逻辑门根据输入信号的组合来产生输出信号。

组合逻辑电路的输出只与当前的输入信号有关,而不受过去输入信号的影响。

常见的组合逻辑电路包括与门、或门、非门等。

与门的输出只有在所有输入信号都为1时才为1,否则为0;或门的输出只有在任意一个输入信号为1时才为1,否则为0;非门的输出与输入信号相反。

第二类是时序逻辑电路。

时序逻辑电路是由存储器和触发器等组成的电路,它可以根据输入信号和内部状态的变化来产生输出信号。

时序逻辑电路具有内部记忆功能,可以实现存储和处理信息的功能。

触发器是时序逻辑电路的核心元件,它可以存储一个比特的信息,并根据时钟信号的变化来改变其输出状态。

常见的触发器包括D触发器、JK触发器等。

第三类是可编程逻辑器件。

可编程逻辑器件是一种集成电路,可以根据用户的需求进行编程,实现不同的逻辑功能。

它通常由逻辑门和可编程的连接结构组成,可以根据用户的输入信号和编程信息来产生输出信号。

常见的可编程逻辑器件有可编程门阵列(PGA)、可编程逻辑阵列(PLA)等。

第四类是数字信号处理器(DSP)。

数字信号处理器是一种专门用于处理数字信号的微处理器,它可以对输入的数字信号进行快速、准确的处理。

数字信号处理器通常具有高速、高精度和低功耗的特点,广泛应用于通信、音频、视频等领域。

以上是对几种常见的逻辑电路分类的简要介绍。

通过合理的组合和应用这些逻辑电路,可以实现各种复杂的电子系统和功能。

在现代科技发展的背景下,逻辑电路的应用前景十分广阔,将持续为人类生活和工作带来更多的便利和创新。

音箱电路图原理

音箱电路图原理

音箱电路图原理
以下是一个音箱电路图的原理图描述:
1. 输入:音频输入信号通过输入端子(IN)输入到电路中。

2. 输入阻抗匹配:输入信号经过阻抗匹配电路,使得输入信号的阻抗与电路的输入阻抗相匹配,以获得最大功率传输。

3. 音量控制:输入信号通过音量控制电路,在调节电阻的控制下,可以改变输入信号的幅度大小,从而调节音量大小。

4. 预调节:输入信号经过预调节电路,如音色调节电路和均衡器电路,可以调节信号的频率响应,改变音乐的音色。

5. 功放:调节后的信号经过功率放大器电路,以增加信号的功率,以驱动扬声器或喇叭发出声音。

6. 输出阻抗匹配:输出信号通过输出阻抗匹配电路,使得输出信号的阻抗与扬声器或喇叭的阻抗相匹配,以达到最大功率传输。

7. 扬声器或喇叭:输出信号通过扬声器或喇叭,将电路中信号转化为声音。

以上是一个简单的音箱电路原理图,描述了输入信号经过阻抗匹配、音量控制、预调节、功放和输出阻抗匹配后,最终通过扬声器或喇叭转化为声音。

MP3工作原理

MP3工作原理

MP3/MP4电源电路原理及维修开机原理过程给MP3/MP4加上电源以后,各电源电路得到电池电压BA TT,通过电源电路得到主控工作所需的电压,主控内部开关电路在开机触发端(PLAY播放键)会形成一个高电平当按下开机键足够长的时间,开机触发端的高电平会因为接地而变低,此信号传到主控内部,主控获悉此电平变低时,则会启动内部电压调节器工作,相应的输出几路稳定的电压。

首先我们要知道MP3开机有三个必备条件;供电、时钟、复位如供电已满足,接着会产生时钟信号,送往逻辑电路作为主时钟信号,主控得到时钟信号后,需要将以前的记忆清除,于是电源就会送来复位信号让其初始化,完成后就会输出控制指令到储存器FLASH,让存储器处于允许状态,然后通过地址线查找开机程序具体在什么地方,找到后通过数据线传送到主控内部的DSP电路,运行成功后,主控输出维持信号到电源,得到维持信号后,IC内部会保持输出的各路电压,完成开机。

目前MP3/MP4的电源电路分为1.2V供电、1.5V供电、3.6V供电三种,其中又分为带电池保护的和不带保护的,以下就逐一讲解给大家一矩力方案3.6V供电电源电路介绍电路工作就几个关键电压不论有没有Flash或LCD,这几个关键电压是不会变化的。

1、先是XC6206P332M或XC6206P302M输出的电压要求3.3V或3.0V,XC6206P152M输出的电压是1.5V。

2.VCC为3.3V ; VDD为2.0V左右,最低的可能為1.8V,VREF1為1.5V.3可移動磁盤正常工作所須的条件:BA T+的电压( 3.0~3.7V ) , USB的电压(5.0V ) 。

4、晶体电压如一pin為2.1v , 另一pin為0v時, 則晶體未起振.(说明:对地0.8-0。

9v 左右为正常)5、复位RESET电压。

电路流程由BA T+(电池+端)经过限流电阻R16进入U6(3.3V稳压器)3脚,经IC内部电路稳压,从2脚输出稳定的3.3V (VCC数字电源电压),U6的作用把在3脚VIN脚输入3-5V的不稳定电压,从2脚输出经稳压后的稳定电源3.3V,保证主控在电池电量低或用电脑USB+5V高电压电源供电时,都能正常工作。

手机音频原理 完整版

手机音频原理 完整版
摘要
本论文先分别论述了手机用麦克、耳机、蓝牙送话、受话、录音的原理,还论述了播放 MP3、MIDI 音、录音的原理,先从大体上分析了手机的音频原理。
接着以 MOTO 的经典机型 E680 为例,详细分析了手机的音频电路原理。
最后是关于手机音频的维修分析。
通过这次论文,在分析原理的基础上指导维修。
关键字:语音总线 PCAP 集成芯片 龙珠(主 CPU) NEP(从 CPU)
1
example, gave a detailed account of the phone audio circuit. Finally, with regard to the maintenance of cell phone audio analysis.
Keywords : Speech PCAP IC Bus
4
第一章 绪论
随着社会的不断发展,我们工作、生活越来越离不开通讯工具。手机作为其中便捷的一 种通讯工具,手机的功能也越来越丰富,从最初基本的移动电话功能,到后来的短信收发、 拍照、摄像、录音、游戏下载、听音乐、接收 FM 信号等等功能,我们对手机的运用越来越 普遍。
手机要正常的工作,它的射频和音频部分是至关重要的,所以,对音频电路原理的分析 有它的重要作用。
2பைடு நூலகம்
2.5 耳机送话原理................................................................................................................................................... 11 2.6 耳机受话原理.................................................................................................................................................. 12 2.7 蓝牙打电话原理.............................................................................................................................................. 13 2.8 蓝牙接电话原理............................................................................................................................................ 14 2.9 播放 MP3 原理.................................................................................................................................................15 2.10 免提接电话原理............................................................................................................................................ 15 2.11 播放 MIDI 音原理......................................................................................................................................... 16 2.12 收音机使用原理............................................................................................................................................... 9 2.13 E680 音频原理总结.....................................................................................................................................17 第三章 音频电路原理的详细分析.......................................................................................................................... 19 3.1 YAMAHA 电路原理分析..............................................................................................................................19 3.2 收音机电路原理分析....................................................................................................................................... 21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逻辑音频电路的结构和原理:
逻辑电路包括逻辑控制电路和音频电路,逻辑控制电路前面已分析;这节主要分析音频电路。

一、 电路结构:
音频电路主要由受话电路(免提受话)、送话电路、耳机通话电路(有线耳机、蓝牙耳机)组成;其中包括模拟音频的模拟/数字(A/D )转换、数字/模拟(D/A )转换、数字语音信号处理、模拟音频放大电路等。

目前手机音频电路有两种:
1)、音频集成块与电源集成块集成;统称电源管理器(诺基亚系列)。

2)、音频集成块与CPU 集成;统称CPU (三星系列)。

RXI-P
RXI-N
RXQ-P
RXQ-N
TXI-P
TXI-N
TXQ-P
TXQ-N 无论采用何种结构模式,其音频信号处理过程都一样的。

音频(CPU/电源)
数 字 调 制 数 字 解 调 数 字 处 理 受 话 放 大 送 话 放 大 D/A A/D 转 换
二、电路分析:
1)、受话电路(免提受话):
射频电路解调出67.707KHZ的接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到音频(CPU、电源管理器)内部进行数字窄带解调(GMSK),分离出控制信号和语音信号;把语音信号送入数字处理器中进行解密、去交织、重组等一系列处理后,再送CPU进行信道解码、语音解码;得到纯正数字语音信号,再送回多模转换器进行数字/模拟(D/A)转换,还原成模拟音频信号后,经过音频功率放大后推动听筒(EAR)发声。

若选择免提受话,CPU则关闭听筒受话放大器,启动免提受话放大管(振铃放大管)工作,把音频信号功率放大后推动喇叭(SPK)发声。

2)、送话电路:
a)、送话器供电:
发射时由音频(CPU、电源管理器)送来1-2V工作电压令咪头(MIC)工作;此电压越高,咪头灵敏度越高。

b)、送话流程:
讲话时,咪头把声音转化为模拟音频电流信号,通过电容耦合送入音频内部进行放大,经内部的多模转换器进行模拟/数字(A/D)转换,得到数字语音信号后,送入数字处理器中进行加密、交织、突发脉冲串成形等一系列处理后,再送CPU进行信道编码、语音编码、数字窄带制调(GMSK),形成四路发射基带信号(TXI-P;TXI-N;TXQ-P;
TXQ-N)送入中频内发射调制器调制成发射中频。

3)、耳机通话电路:(略)
当不用耳机通话通话时,有一路音频电源通过耳塞插孔的触点送CPU检测脚,CPU检测到该脚为高电平时确认为机内通话。

当插入耳塞时,耳塞插头作用力把耳塞插孔的触点顶开,CPU检测脚失去检测电压,此时CPU确认为耳机通话,于是,关闭机内通话的放大电路,开启耳机放大电路。

相关文档
最新文档