触发器间的相互转换
触发器的功能转换
实验四触发器及其功能转换一、实验目的1、掌握基本RS、JK、D和T触发器的逻辑功能2、掌握集成触发器的逻辑功能及使用方法3、熟悉触发器之间相互转换的方法二、实验原理触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。
1、基本RS触发器图4-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。
基本RS触发器具有置“0”、置“1”和“保持”三种功能。
通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此种情况发生,表9-1为基本RS触发器的功能表。
基本RS触发器。
也可以用两个“或非门”组成,此时为高电平触发有效。
2、JK触发器在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。
本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。
引脚功能及逻辑符号如图4-2所示。
JK触发器的状态方程为Q n+1=J Q n+K Q nJ和K是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成“与”的关系。
Q与Q为两个互补输出端。
通常把 Q=0、Q=1的状态定为触发器“0”状态;而把Q=1,Q=0定为“1”状态。
图4-2 74LS112双JK触发器引脚排列及逻辑符号下降沿触发JK触发器的功能如表4-2表4-2注:×— 任意态 ↓— 高到低电平跳变 ↑— 低到高电平跳变Q n (Q n )— 现态 Q n+1(Q n+1 )— 次态 φ— 不定态 JK 触发器常被用作缓冲存储器,移位寄存器和计数器。
3、D 触发器在输入信号为单端的情况下,D 触发器用起来最为方便,其状态方程为 Q n+1=D n,其输出状态的更新发生在CP 脉冲的上升沿,故又称为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D 端的状态,D 触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。
数字电路触发器
S:置位(置1)端 R:复位(置0)端
两互补输出端
Q
Q
.
. 反馈线
& G1
& G2
两输入端 SD
RD
(二) 基本RS触发器
2. 逻辑功能
正常情况下, 两输出端旳状态 保持相反。一般 以Q端旳逻辑电 平表达触发器旳 状态,即Q=1, Q=0时,称为“1” 态;反之为“0” 态。
两互补输出端
发器状态不定。
3. 基本RS触发器应用电路:
(1) 无震颤开关电路
Q
Q
&&
5V
S
R
1k 1k
K
图4- 3 无震颤开关电路
机械开关在静止到新旳位置 之前其机械触头将要震颤几 次。图4-3电路能够处理震颤 问题。
设初始时K接R端,基本原 理如下:
a.K由右扳向左端,而且震颤几次,相当于RS=10
(或11)
1
K
1
&
0
G8 1
& G6
0
B
&
1
G4
& G2
Q
01
0
0
10
CP
设触发器原
& 01
G9
(a)
1
Rd
主从状 态一致
态为“0”
翻转为“1”态
态
(1)J=1, K=1
1
J
K
1 1
0
0
CP
设触发器原 态为“1”态
& G7
F主
& G8
Sd
A
1
Q’
& G5
& G3
Q’ F从
& G6 B
& G4
& G1
& G2
实验八 触发器
1 0
1S C1 1R
Q主
1S C1
Q
CLK K
Q主
1R
Q
R主=0
,即Q*= 1 , Q* = 0
5.4 脉冲触发的触发器
④J=1,K=1 若Q=0, Q=1 S主=1,R主=0
在CLK=1时,主 触发器翻转为“1” 即 Q*主= 1 在CLK的 Q*= 1 若Q=1, Q=0 在CLK的
J
1 1
1S C1 1R
Q主
1S C1
Q
CLK K
Q主
1R
Q
,从触发器由“0 ”翻转为“1”,即 S主=0 在CLK=1时,主触 发器翻转为“0”, 即 Q*主= 0 Q*= Q
R主=1
,即Q*= 0, Q* = 1
5.4 脉冲触发的触发器
其功能表如表5.4.2所示 表5.4.2
CLK J
实验八 触发器
实验目的
1、掌握基本RS、JK、T和D触发器的逻辑功能
2、掌握集成触发器的功能和使用方法 3、熟悉触发器之间相互转换的方法
实验原理
触发器概述 定义:能够存储1位二值信号的基本单元电路。 特点:a.具有两个能自行保持的稳定状态,用来 表 示逻辑状态的0和1,或二进制数的0和1 ; b.根据不同的输入信号可以置1或0. 分类: a. 按触发方式:电平触发器、脉冲触发器和边沿 触发器 b. 按逻辑功能方式:SR锁存器、JK触发器、D触 发器、T触发器、T触发器 c. 按结构:基本SR锁存器、同步SR触发器、主 从触发器、维持阻塞触发器、边沿触发器等
Q 1 0 1
× 0 1
1
也称为D锁存器,其特点是 在CLK的有效电平期间输出 状态始终跟随输入状态变化, 即输出与输入状态相同。
实验六 触发器
实验六触发器一、实验目的1. 学习触发器逻辑功能的测试方法。
2. 熟悉基本RS触发器的组成、工作原理和性能。
3. 熟悉集成JK触发器和D触发器的逻辑功能及触发方式。
二、实验原理触发器具有两个稳定状态,用以表示逻辑状态“1”和逻辑状态“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存储器件,是构成各种时序电路的最基本的逻辑单元。
1.基本RS触发器基本RS触发器是一种无时钟控制的低电平直接触发的触发器。
它具有置“0”、置“1”和“保持”三种功能。
通常S端为置“1”端,因为S=0时触发器被置“1”;R为置“0”端,因为R=0时触发器被置“0”;当S=R=1时,状态保持。
基本RS触发器可以用两个“与非门”(如图6-1)或两个“或非门”组成。
2.JK触发器在输入信号为双端输入的情况下,JK触发器是功能完善、使用灵活和通用性较强的一Q+K Q n,J和K是数据输入端,是触发器状态更新的种触发器。
其状态方程为:Q n+1=J n依据,若J、K有两个或两个以上输入端时,组成“与”的关系。
Q与Q为两个互补输出端,通常把Q=0、Q=1的状态规定为触发器的“0”状态;而把Q=1、Q=0规定为“1”状态。
JK触发器输出状态的更新发生在CP脉冲的下降沿。
JK触发器通常被用作缓冲存储器、移位寄存器和计数器等。
3.D触发器在输入信号为单端输入的情况下,D触发器用起来比较方便。
它的状态方程为:Q n+1=D n,其输出状态的更新发生在CP脉冲的上升沿,所以又称为上升沿触发的边沿触发器。
触发器的状态只取决于时钟到来前D端的状态,D触发器可用作数字信号的寄存、移位寄存、分频和波形发生等。
4.触发器间的转换在集成触发器中,每一种触发器都有自己固定的逻辑功能。
我们可以利用转换的方法获得具有其它功能的触发器。
例如将JK触发器转换成T和Tˊ触发器,也可将JK触发器转换成D触发器。
三、实验仪器及器件1. DS1052E型示波器2. EL-ELL-Ⅳ型数字电路实验系统3. 器件:集成电路芯片74LS00 74LS112 74LS74四、实验内容及步骤1.基本RS 触发器的逻辑功能测试在实验仪上选用74LS00,按图6-1连接实验电路,即为基本RS 触发器。
触发器
第五章 触发器本章教学目的、要求:1. 掌握各种触发器的逻辑功能和工作原理。
2. 熟悉各种触发器的电路结构及动作特点。
3. 了解不同功能触发器之间的相互转换。
重点:触发器的逻辑功能和动作特点。
难点:触发器的不同电路结构及各自的动作特点。
5.1 概 述触发器:(Flip-Flop)能存储一位二进制信号的基本单元。
用FF 表示。
特点:1.具有两个能自行保持的稳定状态,用来表示逻辑状态的0和1,或二进制数的0和1。
2.根据不同的输入信号可以置成 1 或 0 状态。
根据电路结构不同分为:基本RS 触发器、同步RS 触发器、主从触发器、边沿触发器。
按逻辑功能分:RSFF 、DFF 、JKFF 、TFF 等。
3.根据存储数据的原理不同分为:静态触发器和动态触发器。
5.2 SR 锁存器一、电路结构与工作原理1.电路结构和工作原理:触发器的1状态:0,1='=Q Q 触发器的0状态:1,0='=Q Q① 当R'D =0, S' D =1时,无论触发器原来处于什么状态,其次态一定为0,即Q =0,Q' =1,称触发器处于置0(复位)状态。
② 当R'D =1,S'D =0时,无论触发器原来处于什么状态,其次态一定为1,即Q =1,Q'=0,SR图形符号QQ 'D'S D'R 置位端或置1复位端或QQ 'D'S D'R 电路结构称触发器处于置1(置位)状态。
③ 当R'D =1,S'D =1时,触发器状态不变,即Q *=Q ,称触发器处于保持(记忆)状态。
④ 当R'D =0,S'D =0时,两个与非门输出均为1(高电平),此时破坏了触发器的互补输出关系,而且当R'D 、S'D 同时从0变化为1时,由于门的延迟时间不一致,使触发器的次态不确定,即Q *=Ø,这种情况是不允许的。
4_触发器的状态转换图
同步RS触发器功能表 同步RS触发器功能表
CLK 1 1 1 1 0 R 0 0 1 1 × S 0 1 0 1 × Qn+1 结论 Qn 维持 1 0 ∅ Qn 置1 置0 不定 关闭
触发器有两个状态, 触发器有两个状态,为1态和0态, 态和0 在两个圆圈内以1 表示之。 在两个圆圈内以1和0表示之。 两状态间用带箭头的弧线连接, 两状态间用带箭头的弧线连接, 箭头指向触发器的次态( 箭头指向触发器的次态 (n+1 态 ) , 箭尾为触发器的现态( 箭尾为触发器的现态(n态)。 弧线旁边标出了状态转换的条件
Qn+1=S+RQn RS=0 约束条件
S=0 R=1 S=0 R=×
1Hale Waihona Puke 0继续触发器的状态转换图
转换状态条件的标 注:R=0,S=1(0→1)
一、RS 触发器的状态转换图 1、同步 触发器的功能表 、同步RS触发器的功能表 2、同步 触发器的特征方程 、同步RS触发器的特征方程 3、同步 触发器的状态转 、同步RS触发器的状态转 换图
JK触发器功能表 JK触发器功能表
J 0 0 1 1 K 0 1 0 1 Qn+1 Qn 0 1
Qn
Qn+1=JQn + KQn
标上表示从0 态转换为1 标上表示从 0 态转换为 1 态的条件。 由真值表知, 态的条件 。 由真值表知 , 若触发器的初态为0,当 J=1 时 , 不管 K为何值 , 只 不管K为何值, CLK的触发边沿一到 的触发边沿一到, 要 CLK 的触发边沿一到 , 均可令触发器置1 均可令触发器置1态。
实验6 触发器逻辑功能测试及应用
实验六 触发器逻辑功能测试及应用一、实验目的:1、掌握基本RS 、JK 、D 、T 和T ′触发器的逻辑功能;2、学会验证集成触发器的逻辑功能及使用方法;3、熟悉触发器之间相互转换的方法。
二、实验原理:触发器:根据触发器的逻辑功能的不同,又可分为: 三、实验仪器与器件:实验仪器设备:D2H +型数字电路实验箱。
集成块:74LS112 74LS74 74LS04 74LS08 74LS02 74LS86 四、实验内容与步骤:1、基本RS 触发器逻辑功能的测试:S=R=0时,保持; S=0,R=1时,置0; S=1,R=0时,置1;S=R=1时,不定。
⎪⎩⎪⎨⎧=+=∙+=+101d d d d n d d n R S R S Q R S Q 或约束条件:2、JK 触发器逻辑功能测试:S=R=0时,保持; S=0,R=1时,置0; S=1,R=0,置1; S=R=1时,翻转。
n n n Q J Q +=+1电路图为:3、D 触发器逻辑功能测试: (1)异步输入端功能测试:(2)D触发器逻辑功能测试:D Q n =+14、不同类型时钟触发器间的转换: JK 转换为D 触发器:K J D ==D 转换为JK 触发器:D J =,K =JK 转换为T 触发器和T 转换为JK 触发器:T=J=KJK 转换为RS 触发和RS 转换为JK 触发器:Q nJ S = K R =五、实验体会与要求:1.要掌握RS,JK,T,D 触发器的工作条件,以及功能;2.要掌握各触发器之间的关系以及相互之间的转换;3.各触发器的特性表:同步RS 触发器的特性表(n n Q R S Q +=+1)D 触发器的特性表(D Q n =+1)T 触发器的特性表(n n Q T Q ⊕=+1)T ’触发器的特性表(n n Q Q =+1)JK 触发器的特性表(n n n Q K Q J Q +=+1)。
不同功能触发器的相互转换方法
时序逻辑电路中不同功能触发器的相互转换方法,按功能不同可分为RS、JK、D触发器及T,、激励表、状态图及特性方程。
只要增加门电路便可以实现不同功能触发器的相互,例如要将D触发器转换为JK,转换的关键是推导出D触发器的输入端D与JK触发器的输入端J、K及状态输出端Qn,然后用门电路去实现该逻辑表达式。
具体的设计方法有公式法和图表法两。
1公式法,其依据是描述触发器功能的特性方程,设计的过程主要是比较,从而直接推导出源触发器的输入端与目标触发器的输入端及。
以JK触发器转换为D,JK触发器的特性方程为0n+1=JQn+KQn … (1);D触发器的特性方程为Qn+1=D ·· (2)若要分别导出源触发器输入端J、K与目标触发器的输入端D及状态Qn,则可将(2)式化为Qn+1=DQn+DQn … (3)然后比较(1)、(3)两式可推出J=D,K=D故将JK触发器转变为D触发器,如图1。
其虚框内便形成了D。
反过来将D触发器转换为JK,则直接比较(2)、(1),写出D与J、K及Qn的关系为D=JQn+KQn这时需要4,如图2。
但不是所有的转换都,如将T触发器转变为D,T触发器的特性方程为Qn+1=TQn+TQn … (4)比较(4)、(3),从两特性方程前项来看T=D从后项来看T=D产生了矛盾,,这时可采用图表法。
2.图表法,要使用的工具是卡诺图,设计的过程是先列出要实现的目标触发,该真值表反映的是在不同的输入组合及不同的现态下,目标触发器次态的值,再根据使用的源触发,在上述真,最后以此表为依据推导出源触发。
以T触发器转变为D,第一步画出表1表1的前三列是目标触发器D.最后一列为依据源触发器T触发器的激励表得出的输入端T。
如第三行,当D=0,Qn=1,D触发器的次态Qn+1=0状态由1变为0则要求T触发器的输入端T为1第二步推出T与D及Qn,由表1可以直接推出T=DQn+DQn若表达式复杂的话可以使用卡诺图来化简。
触发器的类型转换 数电课件
(公式5.5.2)
图5.5.1—2
Ⅲ. JK D
①. 已知JK触发器的特性方程为
Qn1 J gQn KgQn
②. 待求D触发器的特性方程为
Qn1 D DgQn DgQn
③. 比较这两个特性方程可得待求触发器的转换逻辑方程为
J D K D
④. 其转换实现电路如图5.5.1—3所示。
RS
0
(公式5.5.8)
④. 其转换实现电路如图5.5.1—8所示。 图5.5.1—8
5. T触发器的类型转换
Ⅰ. T D
①. 已知T触发器的特性方程为
Qn1 T Qn
②. 待求D触发器的特性方程为
Qn1 D D Qn Qn
③. 比较这两个特性方程可得待求触发器的转换逻辑方程为
T S RQn Qn SQn RQn
RS 0
(公式5.5.12)
④. 其转换实现电路如图5.5.1—12所示。 图5.5.1—12
6. RS触发器的类型转换
Ⅰ. RS D
①. 已知RS触发器的特性方程为
Qn1 S RQn
RS
RS
0
②. 待求T触发器的特性方程为
Qn1 T Qn TQn TQn
T Qn T Qn Qn
T Qn TQnQn
③. 比较这两个特性方程可得待求触发器的转换逻辑方程为
S T Qn R TQn
④. 其转换实现电路如图5.5.1—14所示。
(公式5.5.14)
图5.5.1—14
Ⅲ. RS JK
①. 已知RS触发器的特性方程为
触发器之间的相互转换
二、触发器之间的相互转换
将JK触发器转化为T、D触发器,很简单,大家都会,那如 何将T转换为JK、D触发器及如何将D转换为JK、T触发器呢?
D JK
已有 Qn+1 = D 欲得
因此,令 D J Qn KQn
J K
Qn+1 = JQn + KQn J Qn K Qn
1D Q CP C1 Q
测试方法及步骤:
1.R、S端和J、K端分别接逻辑开关Ki; 2.CP1接P端,加单次负脉冲,Q1端接电平显示器L。 3.先验证RS的置位、复位功能(填入表1)。 4.R=S=1时,改变J、K组态,记录输出端的状态。填入记录表,验证功
能(填入表二)。
5.将JK触发器的J、K端连着一起,构成T触发器。在CP端输入1KHz连 续脉冲,观察Q的变化,用双踪示波器观察CP、Q的波形,注意相位关 系,描绘之。
下面将介绍四种常用的计数制。
1、十进制计数制 对于十进制数,基数X=10,其整数位权值由右向左依次为个、十、
百、千、...而小数位由左向右依次为十分之一、百分之一、...很容易被 识别。例:
2、二进制计数制
对于二进制数,基数X=2,其整数位权值依次为 的权值为,
,小数位
例:
2.真值表 3.特征方程
Qn1 D
真值表
【任务实施】
测试内容一:
RS触发器功能测试:
测试方法及步骤:
1.用74LS00组成RS触发器; 2.R、S端分别接逻辑开关K, Q 端接 逻辑电平显示端L1,L2。 3.测试结果填入记录表即可。
测试内容二:
JK触发器74LS112功能测试
表一
利用真值表实现触发器的相互转换
利用真值表实现触发器的相互转换在学习时序逻辑电路时,经常会碰到触发器相互转换的问题。
怎样利用给定触发器实现另外一种触发器的功能?很多教材中提到的方法是比较已有触发器和目标触发器的特性方程,把目标触发器特性方程的形式变为与已有触发器相类似的形式,然后通过比较(利用特性方程相等解方程)得出转换电路的逻辑表达式,这种方法很容易忽视触发器的现态Q n。
本文对利用驱动真值表实现触发器相互转换的设计方法作了初步探讨。
1、转换原理要实现触发器的相互转换,其本质是要实现两种触发器之间的逻辑功能的转换,要实现逻辑功能的转换,只要在已给定触发器的基础上外加适当的门电路,使两个不同触发器的逻辑功能完全相同即可。
由于每种触发器的逻辑功能不同,外加的门电路以及门电路的输入变量与输出变量也不相同。
那么如何确定门电路的输入变量与输出变量以及它们之间的关系呢?这里完全可以用数字电路中贯穿的设计思想来解决问题。
任何一种触发器的逻辑功能,是对一定的输入值组合后,完成输出状态由现态Q n→次态Q n+1的转换功能。
而由现态Q n→次态Q n+1的转换只有如下四种状态:0→0、0→1、1→0、1→1。
根据两种触发器的特性方程,将它们由现态Q n→次态Q n+1的转换过程、各自对应的输入值组合起来,从而得到两种触发器的驱动真值表。
从甲→乙的设计步骤如下:(1)确定输入变量、输出变量。
在甲的输入端添加合适的门电路,以乙的输入信号、甲的现态Q n(最后结果中不一定会出现Q n)作为该门电路的输入信号,以甲的输出端作为该门电路的输出信号,输出端的个数与甲的输入端的个数相同;(2)确定驱动真值表。
根据甲、乙各自的特性方程,推导出它们从Q n→Q n+1的转换过程中它们各自的输入变量应满足的状态,由此得出(1)中的输入变量、输出变量之间的对应关系,即得出驱动真值表;(3)确定函数关系表达式。
利用卡诺图对(2)中的驱动真值表进行化简,得到输出变量与输入变量之间的函数关系表达式;(4)根据(3)中的函数表达式画出逻辑图;(5)验证设计是否正确。
触发器(课件)
对应系数相等,则方程一定相等”的原则,求出转 换逻辑。 (4)画电路图
36
2. 转换实例
(1)JK触发器到D、T、T’和RS触发器的转换、
JK触发器
Q n 1
n
JQ
KQn
:D触发器:
Q n 1
D
n
D(Q
Qn
)
n
DQ
DQ n
CP 后,“从” 0
CP 后,“从” Qn
22
3. 特性表
表4.4.2 主从JK触发器的特性表
时钟 输入 CP J K
输出 Q n Q n1
0
0
0
0 保持
0011
1
0
0
1 置1
1011
0
1
0
0 置0
0110
1
1
0
1 翻转
1110
23
例4.4.2已知主从JK触发器输入端的电压波 形如图4.4.4所示,试画出端对应的电压波 形。假定触发器的初始状态为0 。
1
1
1
输入
SR
00 10 01 11
输出
Q n1 功能 1* 不允许 1 置1 0 置0 Q n 保持 Q n 保持 1 置1 0 置0 1* 不允许
9
例4.3.1 画出同步RS触发器输出端波形。已知同 步RS触发器的输入信号波形如图4.3.2所示,设 触发器的初始状态为0,试画出输出端波形图。
从触发器
图4.4.1 主从RS触发器的逻辑图及逻辑符号
17
2. 工作原理
(1)CP=1时,主触发器按S、R翻转,从触发器保持 (2)CP下降沿到达时,主触发器保持,从触发器根 据主触发器的状态翻转 所以,每个CP周期触发器最多可能翻转一次
4.6触发器之间的转换
D
Qn1 D(Q n Qn ) DQ n DQn
对照比较,得出已有 触发器的驱动方程:
根据驱动方程画图:
J D; K D
D
CP 1 1J C1 1K Q Q
2、JK触发器到T触发器的转换 已有触发器的特性方程: Q n1
J Q n KQ n
待求触发器的特性方程: Q n1 TQ n T Q n 对照比较,得出已有 触发器的驱动方程: 根据驱动方程画图:
Q
Qn
CP
C1
每次CP的触发沿到来时, 触发器必然会翻转。 称这种触发器为T'触发器。
T'触发器常用于计数或分频。 CP Q
1 2 3
Q
Q
CP
C
Q
4
5
T'FF的逻辑符号
2分频
五、 SR触发器
1、特性表: S 0 0 0 0 1 1 1 1 R 0 0 1 1 0 0 1 1 Qn Qn+1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 功能 保 持 置 0 置 1 禁 止
根据驱动方程画图: R S
1 & 1 CP
1D C1
Q Q
综上:
◆各类FF之间相互转换的关键:求出已有FF的驱动方程
◆ 转换前后触发方式不变
小结
小
结
一、触发器和门电路一样,也是组成数字电路的基 本逻辑单元。它有两个基本特性:
1. 有两个稳定状态。 2. 在外信号作用下,两个稳定状态可相互转换;没 有外信号作用时,保持原状态不变。
0 1 0 1
0 1 1 0
2、特性方程:
保持
翻转
Q n 1 TQ n T Q n Q n 1 T Q n
T触发器及不同类型触发器的相互转换
T触发器及不同类型触发器的相互转换一、T型触发器及其逻辑功能T型触发器的逻辑符号如图Z1410所示。
其中T为信号输入端,CP为时钟脉冲输入端,Q、为输出端。
逻辑功能是:当T=1时,CP脉冲下降沿到达后触发器发生翻转;当T=0时,在CP脉冲作用后,触发器仍保持原状态不变。
根据上述逻辑关系,可列出T触发器特性表,如表Z1403所示,由特性表可以写出其特性方程为:表Z1403 T触发器特性表Tn Qn Qn+1说明0 0011保持功能1 1011翻转功能如果T=1,则T触发器就处于计数状态,每来一个CP脉冲,触发器状态就翻转一次,这种T触发器称为计数触发器,亦称触发器,其特性方程为:二、不同类型触发器之间的转换触发器的市售产品主要是JK触发器和D触发器。
但是在实际应用中,经常需用具有各种逻辑功能的触发器,这就需要进行不同类型触发器之间的相互转换。
转换方法有公式法和图形法。
这里仅举几个例子就公式法作简单介绍。
1. D触发器转换成JK触发器由D触发器特性方程和JK触发器特性方程可得:Dn== GS1410根据式GS1410可得出D→JK的电路,如图Z1411所示。
2. D触发器转换成T和T'触发器由D触发器的特性方程和T触发器的特性方程,可得Dn== GS1411当Tn=1时,GS1412根据式GS1411可画出由D→T的电路,如图Z1412(a)所示。
由式GS1412可画出由D→T'的电路,如图Z1412(b)所示。
3. JK触发器转换成D触发器由JK触发器的特性方程和D触发器的特性方程,可得=Dn于是有:Jn=Dn,=Dn。
GS1413由式GS1413可画出JK→D的电路,如图Z1413所示。
4. JK触发器转换成RS触发器由RS触发器特性方程:可变换为上式和JK触发器特性方程相比较可得:Jn=SnKn=Rn GS1414由式GS1414可画出JK→RS的电路,如图Z1414所示。
5-第五章触发器Flip-Flop解析
称为:不定状态。
此情形应尽量避免。
因此我们得到了基本RS触发器的功能表如下:
S
R
Q
0
0 不定
0
1 置1
1
0 清0
1
1 保持
S 和 R 均为低电平有效,故: S 称为:置1输入端或置位输入端 R 称为:清0输入端或复位输入端
如果我们规定触发器原来的状态称为“现态”(用Qn表示,简记为
Q),将触发器由于输入值的影响后的输出状态称为“次态”(用 Qn+1
将输入值代入特征方程得:
Qn1 TQ T Q 0 Q 0 Q Q
Qn1 TQ T Q 1 Q 1 Q Q
真值表 TQ 00 01 10 11
Qn+1
0 保持 1
1 翻转 0
状态图
6、T’触发器 将T触发器的T端接高电平即为T’触发器。 T’触发器的特征方程为:
Qn1 TQ T Q 1 Q 1 Q Q
1
1Q Q
B)当S=0,R=1时(即S 1, R 0)
1 1
11 1 0 可以保证门1的输出值为0。
Q
0
可以保证门2的输出值为1
0Q 0 1
此时,触发器的Q端始终输出低电平0,称为:触发器复位或触发器
清0。
C)当S=1,R=0时(即S 0, R 1)
0Q 0 1
0
可以保证门1的输出值为1。
1 翻转 反过来使用,即: 当触发器状态保持时,T=0 当触发器状态翻转时,T=1
1101 1
填卡诺图,化简得:
1110 1
0 01 0 1 01 1
作图得:
Qn1 J Q KQ
⑧用T触发器实现D触发器功能。 分析:T触发器是现有触发器,而D触发器为待求。 所以应求出用D来表示T的表达式。 解:比较两种触发器的特征方程得:
触发器
3. 主要特点
(1)时钟电平控制。同步RS触发器在CP=1期间才能接 收输入信号,在CP=0期间则状态保持不变,与基本RS触发器 相比,对触发器状态的转变加了时钟控制,这样可使多个触发 器在同一个时钟脉冲控制下同步工作,给用户带来了方便。而 且由于同步RS触发器只有在CP=1期间才工作,CP=0期间被 禁止,所以抗干扰能力要比基本RS触发器有了很大的提高。 但在CP=1期间,输入信号仍直接控制着同步RS触发器输出端 的状态。
2.工作原理
(1)同步RS触发器真值表
由图4.3.1(a)可知,当CP=0时,控制门G3、G4被 封锁,G3、G4门输出均为1,G1、G2门构成的基本RS 触发器保持原来状态不变。此时,无论输入端R、S如何 变化,均不会改变G1、G2门的输出,所以对触发器的状 态无影响。只有当CP=1时,控制门被打开,电路才会接 收输入信号,当R=0、S=1时,触发器置1(置位),即 Qn+1=1;当R=1、S=0时,触发器置0(复位),即 Qn+1=0;当R=0、S=0时,触发器置保持原来状态不变, 即Qn+1=Qn;当R=1、S=1时,触发器的两个输出全为1, 这是不允许的,属于不用情况。可见当CP=1时,同步RS 触发器的工作情况与基本RS触发器没有什么区别,不同 的是由于加了两个控制门,输入信号R、S为高电平有效, 即R、S为高电平时表示有信号输入,为低电平时表时无 信号输入,所以两个信号端R、S中,R仍为置0端(复位 端),S仍为置1端(置位端)。根据以上分析可直接列 出同步RS触发器的真值表,如表4.3.1。
反映触发器输入信号取值和状态之间对应关系的图 形称为波形图。根据真值表、卡诺图或状态图可以直接画 出波形图。设触发器现态为0状态(可以给定,未给定可 以假设),根据给出的 和 的波形,可画出触发器的输出 Q和 的波形(忽略门电路的传输时间),如图4.2.3(b)。
触发器之间的功能转换
触发器之间的功能转换(考过)(填空)一、转换的目的:触发器的逻辑功能和电路结构无对应关系。
同一功能的触发器可用不同结构实现;同一结构触发器可做成不同的逻辑功能。
二、触发器之间转换的方法:1、写特征方程写出已有触发器和待求触发器的特征方程。
2、变换特征方程变换待求触发器的特征方程,使之形式与已有触发器的特征方程一致。
3、比较系数根据方程式,如果变量相同、系数相等则方程一定相等的原则,比较已有和待求触发器的特征方程,求出转换逻辑。
4、画逻辑图根据转换逻辑画出逻辑图。
注意:(1)现有触发器的特征方程不能变换。
(2)关键是变换待求触发器的特性方程;(3)难点是解决已有触发器的输入端的接法.三、注意:1、触发器之间的转换方法也可适合任何两种逻辑功能触发器之间的相互转换。
2、掌握好触发器之间的转换方法,可使逻辑电路不受触发器类型的控制,能更好的应用自如的设计出更简单的逻辑功能电路。
四、举例1.D 触发器转换成JK 触发器(1) 写特征方程D 触发器的特征方程:D Q n =+1JK 触发器的特征方程:n n 1n Q K Q J Q +=+(2) 变换特征方程变换JK 触发器的特征方程,使之形式与已有D 触发器的特征方程一致。
(3)比较系数,求出转换逻辑将两个触发器的特征方程进行比较,可见,使D 触发器的输入为n n n n Q K Q J Q K Q J D =+=,则D 触发器实现JK 触发器的功能。
(4)画逻辑图将D 触发器的输入信号用转换逻辑连接实现JK 触发器的功能,图所示。
图 D 触发器转换成JK 触发器2.D 触发器转换成RS 触发器(1) 写特征方程D 触发器的特征方程:D Q n =+1 RS 触发器的特征方程:n 1n Q R S Q +=+(2) 变换特征方程变换RS 触发器的特征方程,使之形式与已有D 触发器的特征方程一致。
(3)比较系数,求出转换逻辑将两个触发器的特征方程进行比较,可见,使D 触发器的输入为n Q R S D +==n Q R S ,则D 触发器实现RS 触发器的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q n 1 JQ n KQ n
n 1 n n
TQ TQ T 触发器的特征方程 Q 比较上述特征方程,只要令J=T,K=T。JK 触发器的特征方程就变成为
Q n 1 TQ n TQ n
与T 触发器的特征方程完全相同。可见,如果将JK 触发器中的J、K 端都连 到T,JK 触发器就变成了T 触发器。将主从JK 触发器转换为主从T 触发器的 电路如图2所示。 若令T=1,主从JK触发器就变成了主从
n n
T′触发器
1
图4 D触发器转换为T 触发器电路图
谢谢
T 触发器。
图2 主从JK触发器转换为 主从T触发器电路图
3. D 触发器转换为JK 触发器
D触发器的特征方程 JK触发器的特征方程
Q n 1 D
Q n 1 JQ n KQ n
n n D J Q K Q 比较上述特征方程,只要能保证 则D 触发器就变成了JK 触发器。其电路如图3所示,通过增加辅助电路 (虚框内电路)就能实现转换。
。
则JK触发器的特征方程就与D 触发器的特征方程完全相同的形式。可见, 如果将JK 触发器中的J 端连到D,K 端连到 D , JK 触发器就变成了D 触发 器。将主从JK 触发器转换为主从D 触发器的电路如图1所示。
图1 主从JK 触发器转换为主从D 触发器电路图
2. JK触发器转换为T 、T′触发器
数字电子技术基础——广东省精品资源共享课程
第3章 3.2触发器间的相互转换
深圳职业技术学院 陈海松
1. JK触发器转换为D触发器
JK触发器的特征方程 D触发器的特征方程
Q n ห้องสมุดไป่ตู้1 JQ n KQ n
Q n 1 D
D
比较上述特征方程,如果令JK 触发器中的 J=D, K D ,即 K JK 触发器的特征方程变为 Q n1 DQ n DQ n D(Q n Q n ) D
图3 D触发器转换为JK触发器电路图
4. D 触发器转换为T 触发器
D触发器的特征方程
Q n 1 D
T 触发器的特征方程 Q n 1 TQ n TQ n
比较上述特征方程,只要能保证 D TQ TQ T Q 则D 触发器就变成了T 触发器。其电路如图4所示,它是通过增加一个 异或门实现转换。 若令T=1,则D触发器就变成了T′ 触发器。