大林算法实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 大林算法工业设计和调试

实验目的:

1.认识和理解大林控制算法控制大时延系统的机理和效果。

2掌握实际控制系统的大林控制算法的设计、实现和调试方法及技术。实验内容:

1.测试系统开环阶跃响应求得被控对象的近似传递函数。

2.对被控对象近似传递函数进行等效离散化。

3.基于被控对象等效离散化模型设计大林控制算法,编写出实现程

序,将其嵌入到实验软件中。

4.将设计的大林算法投入运行,并经过调试获得预期控制性能。

5.记下大林控制算法的控制效果。

实验原理及说明:

大林算法是针对工业生产过程中含有纯滞后的被控对象所研究的控制算法,即在调节时间允许的情况下,要求系统没有超调量或只有在允许范围中的很小的超调量。大林算法的设计目标是设计一个数字调节器,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节的串联,并期望整个闭环系统的纯滞后时间和被控对象的滞后时间相同,并且,纯滞后时间与采样周期是整数倍关系。

实验中采样周期为1秒,k=0.15,t=22秒,t1=55秒。

.大林算法中涉及的被调对象的参数:

对象是一阶惯性滞后环节,

<1>对象的放大倍数Kp:Kp=△PV/△OP 阶跃比,这是开环的静态参数,与PID的放大倍数K不是一回事;

<2>对象的时间常数T:干扰阶跃引起PV变化,从变化起到稳定值约2/3处的时间值,不包括滞后时间;

<3>滞后时间T2:干扰阶跃开始到PV开始变化这一段滞后时间,包括:纯滞后时间及容量过渡滞后时间;

2. 整个系统的闭环传递函数相当于是一阶惯性环节, 这是大林算法的期望环节:

<1> 输入R(t)是回路的设定值SP;输出Y(t)是回路的PV值;

<2> 此一阶惯性环节的放大倍数为1,即稳定时PV=SP; 最终偏差接近零;

<3>此期望环节的纯滞后时间应等于被调节对象的纯滞后时间;

<4>此期望环节的闭环时间常数:这是待定的期望参数,为不引起回路的小幅振荡,这个时间值应选用大于等于被调对象的时间常数,

3. 这些参数如果不精确,将引起大林算法的不稳定性,导致调节质量变坏;

相关文档
最新文档