(新)高一函数奇偶性练习题

合集下载

函数奇偶性练习题高一

函数奇偶性练习题高一

函数奇偶性练习题高一一、判断函数的奇偶性1. 判断函数 $f(x) = x^3 3x$ 的奇偶性。

2. 判断函数 $f(x) = \frac{1}{x}$ 的奇偶性。

3. 判断函数 $f(x) = \sqrt{x^2 + 1}$ 的奇偶性。

4. 判断函数 $f(x) = x^2 x^4$ 的奇偶性。

5. 判断函数 $f(x) = \cos(x)$ 的奇偶性。

二、证明函数的奇偶性6. 证明函数 $f(x) = x^2 + x$ 是偶函数。

7. 证明函数 $f(x) = x^3 x$ 是奇函数。

8. 证明函数 $f(x) = \ln(x^2)$ 是偶函数。

9. 证明函数 $f(x) = \tan(x)$ 是奇函数。

10. 证明函数 $f(x) = e^{x^2}$ 是偶函数。

三、求给定函数的奇偶部分11. 求函数 $f(x) = x^4 2x^2 + 1$ 的奇偶部分。

12. 求函数 $f(x) = \sin(x) + \cos(x)$ 的奇偶部分。

13. 求函数 $f(x) = x^5 3x^3 + 2x$ 的奇偶部分。

14. 求函数 $f(x) = \frac{1}{x^2 + 1}$ 的奇偶部分。

15. 求函数 $f(x) = \sqrt{x} \frac{1}{\sqrt{x}}$ 的奇偶部分。

四、综合运用16. 已知函数 $f(x) = ax^3 + bx^2 + cx + d$,若 $f(x)$ 是偶函数,求 $a$、$b$、$c$ 的关系。

17. 已知函数 $f(x) = ax^4 + bx^3 + cx^2 + dx + e$,若$f(x)$ 是奇函数,求 $a$、$b$、$c$、$d$ 的关系。

18. 设函数 $f(x)$ 是奇函数,且 $f(1) = 2$,求 $f(1)$ 的值。

19. 设函数 $f(x)$ 是偶函数,且 $f(2) = 3$,求 $f(2)$ 的值。

20. 已知函数 $f(x) = x^3 + g(x)$ 是奇函数,求 $g(x)$ 的表达式。

高中数学必修一函数的性质奇偶性精选习题测试(打印版)(1)

高中数学必修一函数的性质奇偶性精选习题测试(打印版)(1)

奇偶性1.已知函数f (x )=ax 2+bx +c (a≠0)是偶函数,那么g (x )=ax3+bx 2+cx ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .31 a ,b =0 B .a =-1,b =0 C .a =1,b =0D .a =3,b =03.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2) D .y =x (|x |-2)4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )A .-26B .-18C .-10D .105.函数1111)(22+++-++=x x x x x f 是( ) A .偶函数 B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-37.函数2122)(x x x f ---=的奇偶性为________(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______.10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________.11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f(x )在R 上的表达式.14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.函数的奇偶性练习参考答案1. 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A 2.解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2).∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f (x )=x (|x |-2)答案:D 4.解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26.答案:A 5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.解析:)(x ϕ、g (x )为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数.又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1.答案:C7.答案:奇函数 8.答案:0解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f .答案:11)(2-=x x f 10.答案:0 11.答案:21<m 。

新高中数学必修1奇偶性基础题训练题(含详解)

新高中数学必修1奇偶性基础题训练题(含详解)
因为函数y=f(x)为奇函数,所以f(-2)=-f(2),f(-3)=-f(3).所以
f(-2)-f(-3)=-f(2)+f(3)=1
12.1
【解析】
【分析】
根据奇函数在 处有意义时 可构造方程,解方程求得结果.
【详解】
为奇函数且在 处有意义 ,解得:
本题正确结果:
【点睛】
本题考查根据函数的奇偶性求解参数值的问题,常采用特殊值的方式来进行求解,属于基础题.
综上所述,故选 .
5.B
【解析】
【分析】
观察四个选项中的函数是否关于 轴或原点对称,从而可得出正确选项.
【详解】
选项A中的图象关于原点或 轴均不对称,故排除;
选项C、D中的图象表示的函数的定义域不关于原点对称,不具有奇偶性,故排除;
选项B中的图象关于 轴对称,其表示的函数是偶函数.
故选B.
【点睛】
本题考查奇函数和偶函数图象的特征的理解,属于基础题.
6.C
【解析】
【分析】
根据函数奇偶性的性质,将 转化为 即可求出函数的解析式.
【详解】
若 ,则 ,
当 时, ,

函数 是奇函数,

所以C选项是正确的.
【点睛】
本题主要考查函数解析式的求法,利用函数奇偶性的性质将条件进行转化是解决本题的关键,属基础题.
7.D
【解析】
【分析】
根据函数的奇偶性、单调性以及一些特殊值结合排除法进行判断即可.
选项D: ,故本选项是正确的.
故选D
【点睛】
本题考查了奇函数的性质,属于基础题.
4.D
【解析】
选项, 在定义域上是增函数,但是是非奇非偶函数,故 错;

高一函数的奇偶性和周期性知识点+例题+练习 含答案

高一函数的奇偶性和周期性知识点+例题+练习 含答案

1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数y=f(x)的定义域为A如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.关于y轴对称奇函数如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建改编)下列函数中,①y=x;②y=|sin x|;③y=cos x;④y=e x-e-x为奇函数的是________.(填函数序号)答案 ④解析 对于④,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.2.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________. 答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为______________. 答案 c <a <b解析 由函数f (x )=2|x -m |-1为偶函数,得m =0, 所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数.(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ).∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)下列四个函数:①f (x )=-x |x |;②f (x )=x 3;③f (x )=sin x ;④f (x )=ln xx,同时满足以下两个条件:①定义域内是减函数;②定义域内是奇函数的是________.(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )分别是______________(填奇偶性). 答案 (1)① (2)偶函数,奇函数解析 (1)①中,f (x )=⎩⎪⎨⎪⎧-x 2,x >0,x 2,x ≤0,由函数性质可知符合题中条件,故①正确;②中,对于比较熟悉的函数f (x )=x 3可知不符合题意,故②不正确;③中,f (x )=sin x 在定义域内不具有单调性,故②不正确;④中,定义域关于原点不对称,故④不正确. (2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x ) =-G (x ),∴F (x )是偶函数,G (x )是奇函数.题型二 函数的周期性例2 (1)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.答案 (1)-1 (2)2.5解析 (1)因为f (x )是周期为3的周期函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12 =4×⎝⎛⎭⎫-122-2=-1. (2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=____________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12.题型三 函数性质的综合应用命题点1 函数奇偶性的应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)1 (2)1解析 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系是__________________. 答案 (1)(-1,4) (2)f (-25)<f (80)<f (11)解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.(2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3xe 3x +e 6x=2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x , 解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:40分钟)1.下列函数中,①y =log 2|x |;②y =cos 2x ;③y =2x -2-x 2;④y =log 22-x 2+x ,既是偶函数又在区间(1,2)上单调递增的是________. 答案 ①解析 对于①,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于②,函数y =cos 2x在区间(1,2)上不是增函数;对于③,函数y =2x -2-x 2不是偶函数;对于④,函数y =log 22-x2+x 不是偶函数.2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为________. 答案 -4解析 由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x -1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=3log 5(31)--=-4.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________. 答案 -2解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.若函数f (x )=(ax +1)(x -a )为偶函数,且函数y =f (x )在x ∈(0,+∞)上单调递增,则实数a 的值为________. 答案 1解析 ∵函数f (x )=(ax +1)(x -a )=ax 2+(1-a 2)x -a 为偶函数, ∴f (-x )=f (x ),即f (-x )=ax 2-(1-a 2)x -a =ax 2+(1-a 2)x -a , ∴1-a 2=0,解得a =±1.当a =1时,f (x )=x 2-1,在x ∈(0,+∞)上单调递增,满足条件.当a =-1时,f (x )=-x 2+1,在x ∈(0,+∞)上单调递减,不满足条件.故a =1.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是____________. 答案 (-2,1)解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1. 7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案 2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:20分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是____________.答案 ⎝⎛⎭⎫1,53 解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a+2b=-2.①由f(-1)=f(1),得-a+1=b+2 2,即b=-2a.②由①②得a=2,b=-4,从而a+3b=-10.13.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.答案7解析因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.14.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数.∴f(x)的最大值是2,最小值是1,故③错误.15.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题1.若函数是偶函数,则的递减区间是【答案】【解析】偶函数的图像关于轴对称,故,则,则的递减区间是。

【考点】(1)偶函数图像的性质;(2)二次函数单调区间的求法。

2.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断3.若函数的图像关于原点对称,则。

【答案】【解析】试题分析:由题意知恒成立,即即恒成立,所用【考点】奇函数的应用.4.已知函数为奇函数,且当时,,则()A.B.C.D.【答案】D【解析】∵为奇函数,∴.【考点】函数的性质.5.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】【解析】若,则由,得,,解得成立.若,则由,得,即,,得,即,所以.【考点】函数的奇偶性.6.已知偶函数满足,且当时,,则.【答案】2【解析】由知此函数周期 4,因为为偶函数,所以【考点】函数奇偶性周期性7.已知函数是定义在上的奇函数,当时,,则当时, .【答案】【解析】解:由题意得:当时,时,设时,则,又是定义在上的奇函数,时,【考点】本题考查了奇偶性的应用.8.函数为定义在R上的奇函数,当上的解析式为=.【答案】【解析】设,则,所以;因为函数是奇函数,所以所以,当时,【考点】函数奇偶性的性质.9.函数f(x)=x5+x3的图象关于()对称().A.y轴B.直线y=x C.坐标原点D.直线y=-x【答案】C【解析】∵,∴函数是奇函数,它的图象关于原点对称.图象关于y轴对称的函数是偶函数。

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题1.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,如图所示,那么不等式f(x)cosx<0的解集是( ).A.B.C.D.【答案】B.【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.【考点】奇函数的性质,余弦函数的图象,数形结合思想.2.设函数 ().(1)若为偶函数,求实数的值;(2)已知,若对任意都有恒成立,求实数的取值范围.【答案】(1)0;(2)【解析】(1)根据偶函数定义,得到,平方后可根据对应系数相等得到a的值,也可将上式两边平方得恒成立,得a的值。

(2)应先去掉绝对值将其改写为分段函数,在每段上求函数在时的最小值,在每段求最值时都属于定轴动区间问题,需讨论。

最后比较这两个最小值的大小取最小的那个,即为原函数的最小值。

要使恒成立,只需的最小值大于等于1即可,从而求得a的范围试题解析:(1)若的为偶函数,则,,故,两边平方得,展开时,为偶函数。

(2)设,①求,即的最小值:若,;若,②求,即的最小值,比较与,的大小:,故“对恒成立”即为“()”令,解得。

【考点】奇偶性,恒成立问题3.已知函数的定义域为,且为偶函数,则实数的值可以是( ) A.B.C.D.【答案】A【解析】因为函数的定义域为,所以在函数中,,则函数的定义域为,又因为为偶函数,所以,故选A.【考点】本题主要考查了抽象函数的定义域,以及偶函数的性质.4.若函数是奇函数,则为A.B.C.D.【答案】B【解析】由于函数是奇函数,即所以,故选:B.【考点】函数的奇偶性5.已知函数是偶函数,定义域为,则( )A.B.C.1D.-1【答案】C【解析】因为函数是定义在的偶函数,所以,,可得,所以,所以,函数是二次函数,且是偶函数,所以,有,所以,答案选.【考点】函数奇偶性的性质.6.为R上的偶函数,且当时,,则当时,___________.【答案】x(x+1)【解析】因为,为R上的偶函数,所以,。

高中数学必修一函数的性质奇偶性精选习题测试(打印版)

高中数学必修一函数的性质奇偶性精选习题测试(打印版)

VIP 免费 欢迎下载(X )在(— a, — 5]上的单调性,并用定义给予证明.15.设函数y = f (x ) (R 且x z 0)对任意非零实数 X 1、X 2满足f 求证f (x )是偶函数.函数的奇偶性练习参考答案1. 解析:f (x )= ax 2+ bx + c 为偶函数, (x) x 为奇函数, 奇函数的条件.2a ], • a — 1 = 2a ,「. a =丄.故选 A .33.解析: 由 x >0 时,f (x )= x — 2x , f (x )为奇函数,••当 x v 0 时,f (x )=— f ( — x )=—( x + 2x ) =2X (X —2) (X 畠 0),—x — 2x = x (— x — 2). • f(x)=丿即 f (x )= x (|x | — 2)答案:D 4.解析:f (x )、x(—X-2)(x£0),53+ 8= x + ax + bx 为奇函数,f (— 2)+ 8 = 18,二 f (2)+ 8=— 18,二 f (2)=— 26.答案:A 5.解析:此 题直接证明较烦,可用等价形式f (— x )+ f (x )= 0.答案:B 6 .解析:「(X )、g (x )为奇函数,•f(x) - 2二a (x) bg(x)为奇函数.又f (X )在(0,+a )上有最大值 5, • f (X )— 2有最大值3.二 f (X ) — 2在(—a, 0)上有最小值—3, • f ( X )在(—a, 0)上有最小值—1.答案:C7.答案:奇函数8 .答案:0 解析:因为函数 y =( m- 1) x 2+ 2mx+ 3 为偶函数,• f (— x )= f (x ),即(m- 1) ( — x ) 2+ 2m (— x )2 1 + 3= (m- 1)x + 2m )+ 3,整理,得m= 0.9.解析:由f(x)是偶函数,g(x)是奇函数,可得f(x) - g(x) =_ x _ 1奇偶性 2 3 21.已知函数 f (x )= ax + bx + c (a z 0)是偶函数,那么 g (x )= ax + bx + cx ( D.非奇非偶函数 a — 1, 2a ],贝卩( A 奇函数 B.偶函数 C.既奇又偶函数22.已知函数f (x )= ax + bx + 3a + b 是偶函数,且其定义域为]A a , b = 0 3 (x )是定义在 y = x (x — 2) 5 3B. a =— 1, b = 0C. a = 1, b = 0D. a = 3, b = 0 3. 已知f A . 4. 已知f R 上的奇函数,当 x > 0时, B . y = x (| x | — 1) A — 26 (x )= x + ax + bx — 8,且 f (— 2)= 10, C.— 10 5.函数 f (x)- B .— 18 1 x 2 x - 1 曰 2是( .1 X 2 X 1 B .奇函数 f (x ) = x 2— 2x , y = 1 x | f (2)等于 10 C. 那么 D. 则f (x )在R 上的表达式是( )(x — 2) D. y = x (| x |— 2) ( )C.非奇非偶函数 既是奇函数又是偶函数 A 偶函数 6.若(x) , g ( X )都是奇函数,f (x) = • bg(x) 2 在(0,+a)上有最大值 5,则 f ( X )在(— a, 0) 上有( ) A .最小值—5 一 X —2—2 一" f 的奇偶性为— 心-X 2若y =( m-1) x 2+ 2m 灶3是偶函数,则B.最大值—5C.最小值—1D. D.最大值—3 7. 8. 9. 函数f (x)= (填奇函数或偶函数) m = 已知f (x )是偶函数,g (x )是奇函数, 10. 已知函数f (x )为偶函数,且其图象与 11. 设定义在[—2, 2]上的偶函数 值范围. 12. 已知函数f (x )满足f (x + y ) 是偶函数. 13. 已知函数f (x )是奇函数,且当 14. f (x )是定义在(— a,— 1 若 f(x) g(xp X - 1 x 轴有四个交点,则方程 f ( X ) 在区间[0, 2]上单调递减,若 (x )的解析式为=0的所有实根之和为 ____________ .f (1 — m ) v f (m )求实数m 的取+ f (x — y )= 2f (x ) • f (y ) (R 疗 R),且 f (0)M0,试证 f(x )x > 0时,f ( x )= x 3+ 2x 2— 1,求f (x )在R 上的表达式. 5::5,+^)上的奇函数,且(x )在]5,+^)上单调递减,试判断 f(X i • X 2)= f ( x i )+ f ( X 2),g (x ) = ax 3 + bx 2+ cx = f (x ) •:(x)满足答案:A 2.解析:由f (x )= ax 2+ bx + 3a + b 为偶函数,得 b = 0.又定义域为[a — 1,联立f(x) g(x)二£&)=丄(」1) J .答案:f(x) J 10 .答案:0 2x — 1 —x — 1 x -1 x - 111.答案:m 芝1 12.证明:令x = y = 0,有f ( 0)+ f (0)= 2f (0) • f (0),又f (0)z 0,「.可证f (0) 2。

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)首先,画出函数y=-x^2+2|x|+3的图像,然后确定函数的单调区间。

当x≥0时,y=-x^2+2x+3=-(x-1)+4;当x<0时,y=-x^2-2x+3=-(x+1)^2+4.因此,在区间(-∞,-1]和[1,+∞)上,函数是增函数;在[-1,1]上,函数是减函数。

需要注意的是,函数单调性是针对某个区间而言的,对于单独一个点没有增减变化,因此对于区间端点只要函数有意义,都可以带上。

接下来,考虑函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数的情况下,求实数a的取值范围。

首先,要充分运用函数的单调性,以对称轴为界线这一特征。

将f(x)=x^2+2(a-1)x+2写成[x+(a-1)]^2-(a-1)^2+2的形式,可以发现其对称轴是x=1-a。

因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.最后,判断函数f(x)=-2的奇偶性和函数f(x)=(x-1)的奇偶性。

对于第一个函数,其定义域为R,因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x),因此f(x)为奇函数。

对于第二个函数,其定义域为{x|-1≤x<1},不关于原点对称,因此f (x)既不是奇函数,也不是偶函数。

判断函数的奇偶性时,需要先求出函数的定义域,并考查定义域是否关于原点对称。

然后计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f (-x)=-f(x)之一是否成立。

如果f(-x)与-f(x)的关系不明确,可以考查f(-x)±f(x)是否成立,从而判断函数的奇偶性。

最后,对于函数f(x)=|x|/x,需要判断其奇偶性并确定其在(-∞,+∞)上是增函数还是减函数。

由于f(x)的定义域为R,且f(-x)=f(x),因此f(x)为偶函数。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。

证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。

因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。

因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。

因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析1.若函数是偶函数,则的递减区间是【答案】【解析】偶函数的图像关于轴对称,故,则,则的递减区间是。

【考点】(1)偶函数图像的性质;(2)二次函数单调区间的求法。

2.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断3.设函数为奇函数,,,则=()A.0B.C.D.-【答案】C.【解析】由题意知,,又因为函数为奇函数,所以,且,再令中得,,即,所以,故选C.【考点】函数的奇偶性;抽象函数.4.已知为偶函数,当时,,则满足的实数的个数为().A.2B.4C.6D.8【答案】D【解析】令,则,解得;又因为为偶函数,所以当时,,则或;当时,,方程无解;,方程有两解;,方程有一解;,方程有一解;即当时,有四解,由偶函数的性质,得当时,也有四解;综上,有8解.【考点】函数的性质、方程的解.5.偶函数满足,且在时,,若直线与函数的图像有且仅有三个交点,则的取值范围是()A.B.C.D.【答案】B【解析】因为,所以函数的图像关于直线对称,又是偶函数,所以,即有,所以是周期为2的函数,由,得,即,画出函数和直线的示意图因为直线与函数的图像有且仅有三个交点,所以根据示意图易知:由直线与半圆相切,可计算得到,由直线与半圆相切可计算得到,所以,选B.【考点】1.函数的对称性、奇偶性、周期性;2.函数图像;3.直线与圆的位置关系;4.点到直线的距离公式.6.若函数在其定义域上为奇函数,则实数 .【答案】【解析】小题可采用带特殊值法求得,检验此时在处有定义.【考点】奇函数定义及特殊值法.7.已知函数是偶函数(1)求k的值;(2)若函数的图象与直线没有交点,求b的取值范围;(3)设,若函数与的图象有且只有一个公共点,求实数的取值范围【答案】(1);(2);(3)【解析】(1)因为函数是偶函数,所以根据偶函数的定义,得到一个关于x,k的等式.由于对于任意的x都成立,相当于恒过定点的问题,所以求得k的值.(2)因为函数的图象与直线没有交点,所以对应的方程没有解,利用分离变量的思维可得到一个等式,该方程无解.所以等价两个函数与没有交点,所以求出函数的最值.即可得到b的取值范围.(3)因为,若函数与的图象有且只有一个公共点,所以等价于方程有且只有一个实数根.通过换元将原方程化为含参的二次方程的形式,即等价于该二次方程仅有一个大于零的实根,通过讨论即可得到结论.试题解析:(1)因为为偶函数,所以,即对于任意恒成立.于是恒成立,而不恒为零,所以. 4分(2)由题意知方程即方程无解.令,则函数的图象与直线无交点.因为,由,则,所以的取值范围是 . 8分(3)由题意知方程有且只有一个实数根.令,则关于的方程 (记为(*))有且只有一个正根.若,则,不合题意, 舍去;若,则方程(*)的两根异号或有两相等正根.由或;但,不合题意,舍去;而;若方程(*)的两根异号综上所述,实数的取值范围是. 12分【考点】1.函数的奇偶性.2.函数的与方程的思想的转化.3.换元法的应用.4.含参数的方程的根的讨论.8.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】【解析】若,则由,得,,解得成立.若,则由,得,即,,得,即,所以.【考点】函数的奇偶性.9.定义在上的函数,对任意都有,当时,,则________.【答案】【解析】由可知函数是周期函数且周期为;所以,而当时,,故.【考点】1.函数的周期性;2.抽象函数;3.函数的解析式.10.已知是定义在上的奇函数,当时,,那么的值是( ) A.B.C.D.【答案】A【解析】因为是定义在上的奇函数,所以.【考点】奇函数的定义.11.已知函数的定义域为,且为偶函数,则实数的值可以是( ) A.B.C.D.【答案】A【解析】因为函数的定义域为,所以在函数中,,则函数的定义域为,又因为为偶函数,所以,故选A.【考点】本题主要考查了抽象函数的定义域,以及偶函数的性质.12.已知定义在R上的单调递增函数满足,且。

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析1.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断2.若定义在上的奇函数和偶函数满足,则()A.B.C.D.【答案】A【解析】为奇函数和为偶函数,由可得,即,,可解得.故选A.【考点】函数的奇偶性.3.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,如图所示,那么不等式f(x)cosx<0的解集是( ).A.B.C.D.【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.【考点】奇函数的性质,余弦函数的图象,数形结合思想.4.已知函数为偶函数,且若函数,则= .【答案】2014【解析】由函数为偶函数,且得从而,故应填入2014.【考点】函数的奇偶性.5.若函数在其定义域上为奇函数,则实数 .【答案】【解析】小题可采用带特殊值法求得,检验此时在处有定义.【考点】奇函数定义及特殊值法.6.函数的图像大致是()【答案】A【解析】因为的定义域为且,所以为上的偶函数,该函数的图像关于轴对称,只能是图像A、C选项之一,而,故选A.【考点】1.函数的图像;2.函数的奇偶性.7.已知,,则_ ____.【答案】5【解析】函数,,又为奇函数,所以.【考点】函数奇偶性.8.已知是奇函数,且,则.【解析】令,因为此函数是奇函数,所以。

(完整版)函数奇偶性基础练习

(完整版)函数奇偶性基础练习

函数奇偶性练习基础卷一、选择题1.下列图象能表示函数且具有奇偶性的是()解析:图象关于原点或y轴对称的函数具有奇偶性.选项A,D中的图形关于原点或y轴均不对称,故排除;选项C中的图形虽然关于坐标原点对称,但是过(0,-1)和(0,1)两点,这说明当x=0时,y=±1,不符合函数的概念,不是函数的图象,故排除;选项B中图形关于y轴对称,是偶函数.故选B.答案:B2.下列说法中错误的个数为()①图象关于坐标原点对称的函数是奇函数;②图象关于y轴对称的函数是偶函数;③奇函数的图象一定过坐标原点;④偶函数的图象一定与y轴相交.A.4B.3C.2 D.0解析:①②由奇、偶函数的性质知正确;对于③,如f(x)=1,x∈(-∞,0)∪(0,+∞),它是奇函数,但它的图象不x过原点;对于④,如f (x )=1x 2,x ∈(-∞,0)∪(0,+∞),它是偶函数,但它的图象不与y 轴相交.答案:C3.函数f (x )=x(-1﹤x ≦1)的奇偶性是( )A .奇函数非偶函数B .偶函数非奇函数C .奇函数且偶函数D .非奇非偶函数答案选D4.若函数f (x )=(x +1)(x -a )为偶函数,则a 等于( )A .-2B .-1C .1D .2 解析:利用定义求值. ∵f (x )=(x +1)(x -a )为偶函数, ∴f (-x )=f (x ).即(-x +1)(-x -a )=(x +1)(x -a ), ∴x ·(a -1)=x ·(1-a ), 故1-a =0,∴a =1,故选C. 答案:C5.(课本习题改编)若函数f (x )=x (2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1 【解析】∵f (x )=x (2x +1)(x -a )是奇函数,利用赋值法,∴f (-1)=-f (1).∴-1(-2+1)(-1-a )=-1(2+1)(1-a ),∴a +1=3(1-a ),解得a =12. 选A 。

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单一性和奇偶性例 1(1)画出函数y= -x2+2| x|+3 的图像,并指出函数的单一区间.解:函数图像以以下图所示,当 x≥0时,y= -x2+2x+3 = -( x-1)2+4;当 x< 0 时,y= -x2-2x+3 = -( x+1)2+4 .在( -∞,-1]和[ 0, 1]上,函数是增函数:在[-1, 0]和[ 1, +∞)上,函数是减函数.评析函数单一性是对某个区间而言的,对于单唯一个点没有增减变化,所以对于区间端点只需函数存心义,都能够带上.( 2)已知函数 f( x)= x2+2 ( a-1)x+2在区间( -∞, 4]上是减函数,务实数 a 的取值范围.剖析要充足运用函数的单一性是以对称轴为界限这一特点.解: f( x)= x2+2( a-1)x+2 =[ x+ ( a-1)]2x= 1-a.因为-( a-1)2+2,此二次函数的对称轴是在区间( -∞, 1-a]上 f( x)是单一递减的,若使f( x)在( -∞,4]上单一递减,对称轴x=1-a 一定在 x=4 的右边或与其重合,即 1-a≥4, a≤-3.评析这是波及逆向思想的问题,即已知函数的单一性,求字母参数范围,要注意利用数形联合.例 2判断以下函数的奇偶性:( 1) f ( x)=-( 2) f ( x)=( x-1).解:( 1)f ( x)的定义域为R.因为f ( -x)=| -x+1 | -| -x-1 |=| x-1| -| x+1 |= -f (x).所以 f( x)为奇函数.(2) f ( x)的定义域为{ x| -1≤x< 1},不对于原点对称.所以f( x)既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法以下:(1)求函数的定义域,并考察定义域能否对于原点对称.( 2)计算 f( -x),并与f( x)比较,判断 f ( -x)= f( x)或 f(-x)= -f( x)之一能否建立.f ( -x)与 -f ( x)的关系其实不明确时,可考察f( -x)±f(x)= 0 能否建立,从而判断函数的奇偶性.例 3已知函数f( x)=.(1)判断 f( x)的奇偶性.(2)确立 f( x)在( -∞, 0)上是增函数仍是减函数 ?在区间( 0,+∞)上呢 ?证明你的结论.解:因为 f ( x)的定义域为R,又f ( -x)=== f ( x),所以 f( x)为偶函数.( 2)f( x)在( -∞,0)上是增函数,因为f( x)为偶函数,所以f(x)在( 0,+∞)上为减函数.其证明:取 x1< x2< 0,f ( x1) -f ( x2)=-==.因为 x1< x2< 0,所以x2-x1> 0, x1+x 2< 0,x21 +1> 0, x22+1> 0,得 f ( x1) -f ( x2)< 0,即 f ( x1)< f(x2).所以 f( x)在( -∞, 0)上为增函数.评析奇函数在( a,b)上的单一性与在( -b,-a)上的单一性同样,偶函数在( a,b)与( -b,-a)的单一性相反.例 4 已知 y=f ( x)是奇函数,它在( 0, +∞)上是增函数,且 f( x)< 0,试问 F( x)=在( -∞, 0)上是增函数仍是减函数 ?证明你的结论.剖析依据函数的增减性的定义,能够任取x1< x2< 0,从而判断F( x1)-F( x2)=-=的正负.为此,需分别判断f( x1)、 f ( x2)与 f ( x2)的正负,而这能够从已条件中推出.解:任取 x1、x2∈( -∞,0)且 x1< x2,则有 -x1> -x2> 0.∵ y=f (x)在( 0,+∞)上是增函数,且 f ( x)< 0,∴ f ( -x2)< f( -x1)< 0.①又∵ f( x)是奇函数,∴ f ( -x2)= -f( x2), f( -x1)= -f ( x1)②由①、②得f( x2)> f(x1)> 0.于是F(x1) -F( x2)=> 0,即F(x1)> F( x2),所以 F( x)=在( -∞, 0)上是减函数.评析本题最简单发生的错误,是受已知条件的影响,一开始就在(0, +∞)内任取 x1< x2,睁开证明.这样就不可以保证-x1,-x2,在( -∞, 0)内的随意性而致使错误.防止错误的方法是:要明确证明的目标,有针对性地睁开证明活动.-1, 1)内的单一性.例 5 议论函数 f( x)=( a≠0)在区间(剖析依据函数的单一性定义求解.解:设 -1< x1< x2<1,则f ( x1) -f ( x2)=-=∵ x1, x2∈( -1,1),且 x1< x2,∴x1-x2< 0, 1+x1x2> 0,( 1-x 21)( 1-x 22)> 0于是,当a> 0 时, f (x1)< f( x2);当 a< 0 时, f (x1)> f( x2).故当 a>0 时,函数在(-1, 1)上是增函数;当a<0 时,函数在(-1, 1)上为减函数.评析依据定义议论(或证明)函数的单一性的一般步骤是:( 1)设 x1、x2是给定区间内随意两个值,且x1< x2;(2)作差 f( x1) -f ( x2),并将此差式变形;(3)判断 f( x1) -f ( x2)的正负,从而确立函数的单一性.例 6 求证: f( x)= x+(k>0)在区间(0,k]上单一递减.解:设 0<x1<x2≤k,则f ( x1) -f ( x2)= x1+-x2-=∵ 0< x1< x2≤k,∴x1-x2< 0, 0< x1x2< k2,∴f ( x1) -f ( x2)> 0∴f ( x1)> f ( x2),∴f ( x)= x+中(0,k]上是减函数.评析函数 f ( x)在给定区间上的单一性反应了函数 f (x)在区间上函数值的变化趋向,是函数在区间上的整体性质.所以,若要证明f( x)在[ a,b]上是增函数(减函数),就一定证明对于区间[ a,b]上随意两点x1, x2,当 x1< x2时,都有不等式f( x1)< f( x2)( f (x1)> f ( x2))近似能够证明:函数 f( x)= x+(k>0)在区间[k,+∞]上是增函数.例 7剖析判断函数f( x)=的奇偶性.确立函数的定义域后可脱去绝对值符号.解:由得函数的定义域为[-1,1].这时,|x-2 |= 2-x.∴ f ( x)=,∴ f ( -x)===f(x).且注意到 f (x)不恒为零,从而可知, f (x)=是偶函数,不是奇函数.评析因为函数分析式中的绝对值使得所给函数不像拥有奇偶性,若不作深入思虑,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭露以后,函数的奇偶性就特别显然了.这样看来,解题中先确立函数的定义域不单能够防止错误,并且有时还能够避开议论,简化解题过程.函数奇偶性练习一、选择题1.已知函数f(x)=ax2+bx+c(a≠ 0)是偶函数,那么g( x)= ax3+ bx2+ cx()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数2.已知函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则()A.1a, b=0. a=-, b=0. a=,b=0.a=, b=0C D33.已知f(x)是定义在 R 上的奇函数,当x≥ 0 时,f(x)=x2- 2x,则f(x)在 R 上的表达式是()A.y= x( x- 2)B.y = x(| x|- 1) C.y =| x|( x-2)D.y= x(| x|- 2)4.已知f(x)=x5+ax3+bx- 8,且f(- 2)= 10,那么f( 2)等于()A.- 26B.- 18C.- 10D.105.函数1x 2x1)f ( x)x 2是(1x1A.偶函数B.奇函数C.非奇非偶函数D.既是奇函数又是偶函数6.若(x) ,g(x)都是奇函数, f ( x)a bg ( x) 2 在(0,+∞)上有最大值5,则 f ( x)在(-∞,0)上有()A.最小值- 5B.最大值- 5C.最小值- 1D.最大值- 3二、填空题x22 7.函数f ( x)1的奇偶性为 ________(填奇函数或偶函数).x 28.若y =(-1)x2+2+ 3 是偶函数,则= _________.m mx m9.已知f(x)是偶函数,g(x)是奇函数,若1,则 f ( x)的分析式为_______.f (x) g (x)x110.已知函数f( x)为偶函数,且其图象与 x 轴有四个交点,则方程 f( x)=0的全部实根之和为________.三、解答题11.设定义在[- 2,2]上的偶函数f ()在区间[ 0, 2]上单一递减,若f(1-)<f(),务实x m m数 m的取值范围.12.已知函数 f ( x)知足 f (x+ y)+ f ( x- y)=2f ( x)· f ( y)(x R,y R),且f(0)≠0,试证 f ( x)是偶函数.13. 已知函数f ()是奇函数,且当x>0 时,f()=x3+2 2—1,求f()在 R上的表达式.x x x x14. f(x)是定义在(-∞,-5][5,+∞)上的奇函数,且 f (x)在[5,+∞)上单一递减,试判断 f (x )在(-∞,- 5]上的单一性,并用定义赐予证明.15. 设函数 y = f ( x )( x R 且 x ≠0)对随意非零实数x 1、 x 2 知足 f ( x 1· x 2)= f ( x 1)+ f ( x 2),求证 f ( x )是偶函数.函数的奇偶性练习参照答案1. 分析: f ( x )= ax 2+ bx + c 为偶函数, ( x) x 为奇函数,∴ g ( x )= ax 3+ bx 2+ cx = f ( x )· ( x) 知足奇函数的条件. 答案: A2.分析: 由f( )=2+ bx+ 3 + b 为偶函数,得 b = 0.xax a1 .应选 A .又定义域为[ a -1, 2a ],∴ a - 1=2a ,∴ a33.分析: 由 x ≥ 0 时, f ( x )= x 2- 2x , f ( x )为奇函数,∴当 x < 0 时, f ( x )=- f (- x )=-( x 2+2x )=- x 2- 2x = x (- x -2).x(x 2) ( x 0) ,∴ f ( x)2) ( x 0) 即 f (x )= x (| x | - 2)x( x,答案: D4.分析: f (x )+ 8=x 5+ ax 3+ bx 为奇函数,f (- 2)+ 8= 18,∴ f (2)+ 8=- 18,∴ f ( 2)=- 26.答案: A5.分析: 本题直接证明较烦,可用等价形式f (- x )+ f (x )= 0.答案: B6.分析:( x) 、 g (x )为奇函数,∴ f (x)2 a ( x) bg (x) 为奇函数.又 f (x )在( 0,+∞)上有最大值5,∴ f ( x )- 2 有最大值3.∴ f ( x )- 2 在(-∞, 0)上有最小值- 3, ∴ f ( x )在(-∞, 0)上有最小值- 1. 答案:C7.答案: 奇函数8.答案: 0 分析: 因为函数 y =( m - 1) x 2+ 2mx + 3 为偶函数,∴ f (- x )= f (x ),即( m - 1)(- x ) 2+ 2m (- x )+ 3=( m — 1) x 2+ 2mx + 3,整理,得 m= 0.9.分析: 由 f ( x )是偶函数, g ( x )是奇函数,可得f (x)g( x) 1 ,联立 f ( x) g ( x)1x 1x,∴1 (1111f ( x)x 11 ) .2 x x 2 1答案: f (x)1 10.答案: 011 . 答案: m1x21212. 证明: 令 x = = 0,有 f ( 0)+f (0)= 2 ( 0)· (0),又 f ( 0)≠ 0,∴可证 f ( 0)= 1.令xyf f= 0,∴ f ( y )+ f (- y )= 2f (0)· f ( y ) f (- y )= f ( y ),故 f ( x )为偶函数.13. 分析: 本题主假如培育学生理解观点的能力.f ( x )= x 3+ 2x 2- 1.因 f (x )为奇函数,∴ f ( 0)= 0.当 x <0 时,- x > 0, f (- x )=(- x ) 3+ 2(- x ) 2-1=- x 3+ 2x 2- 1, ∴ f ( x )= x 3- 2x 2+ 1.x 3 2 x 21 ( x 0) , 所以, f (x)( x 0) ,x 32x 21( x0) .评论: 本题主要考察学生对奇函数观点的理解及应用能力.14. 分析: 任取 x 1< x 2≤- 5,则- x 1>- x 2≥- 5.因 f (x )在[ 5,+∞]上单一递减,所以f (- x 1)< f (- x 2) f ( x 1)<- f ( x 2) f ( x 1)>f ( x 2),即单一减函数.评论: 本题要注意灵巧运用函数奇偶性和单一性,并实时转变.15. 分析: 由 x 1, x 2 R 且不为 0 的随意性,令 x 1= x 2= 1 代入可证,f ( 1)= 2f ( 1),∴ f ( 1)=0.又令 x 1=x 2=- 1,∴ f [- 1×(- 1)]= 2f (1)= 0,∴(- 1)= 0.又令 x 1=- 1, x 2= x ,∴ f (- x )= f (- 1)+ f ( x )= 0+ f ( x )= f ( x ),即 f ( x )为偶函数.评论: 抽象函数要注意变量的赋值,特别要注意一些特别值,如,x 1= x 2= 1, x 1=x 2=- 1 或 x 1=x2=0等,而后再联合详细题目要求结构出合适结论特点的式子即可.。

高中数学必修一《函数的奇偶性练习题》

高中数学必修一《函数的奇偶性练习题》

函数的奇偶性练习题1.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y =-x 3,x ∈R B .y =sin2x ,x ∈RC .y =2x ,x ∈RD .y =-⎝⎛⎭⎫13x ,x ∈R2.函数f (x )=a 2x -1ax (a >0,a ≠1)的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .34. 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=x ,则f ⎝⎛⎭⎫-134=( ) A.32 B .-32 C.12 D .-126. 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27. 若函数f (x )=|x -2|+a 4-x 2的图象关于原点对称,则f a2=( )A.33 B .-33C .1D .-1 8.已知定义在R 上的奇函数f (x )是一个减函数,若x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,则f (x 1)+f (x 2)+f (x 3)的值( )A .大于0B .小于0C .等于0D .以上都有可能9. 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10. 函数f (x )是定义在R 上的奇函数,下列结论中,正确结论的序号是________.①f (-x )+f (x )=0;②f (-x )-f (x )=-2f (x );③f (x )f (-x )≤0;④f (x )f (-x )=-1.11. 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x 的取值范围是________.12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m -2x 且f (4)=72.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.1. 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( ) A .y =|x | B .y =sin xC .y =e x +e -x D .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.已知f (x )=⎩⎪⎨⎪⎧x 2-x +1(x >0),-x 2-x -1(x <0),则f (x )为( )A .奇函数B .偶函数C .非奇非偶函数D .不能确定奇偶性4. 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.能力提升5. 设函数f (x )=⎩⎪⎨⎪⎧2x,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.] 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.命题p :∀x ∈R ,3x >x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图象关于点(1,0)成中心对称.以下说法正确的是( ) A .p ∨q 真 B .p ∧q 真 C .綈p 真 D .綈q 假 9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________. 10. 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.设定义在[-2,2]上的奇函数f (x )在[0,2]上单调递减,若f (3-m )≤f (2m 2),则实数m 的取值范围是________.12.(13分)已知函数f (x )=lg 1+x1-x.(1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ;(2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.1.A [解析] y =sin2x 在R 上不单调,y =-13x 不是奇函数,y =2x 为增函数,所以B ,C ,D 均错.故选A.2.A [解析] 因为f (-x )=a -x -1a-x =-(a x -a -x )=-f (x ),所以f (x )是奇函数,其图象关于原点对称.故选A.3.A [解析] 依题意当x >0时,f (x )=-f (-x )=-(2x 2+x ),所以f (1)=-3.故选A. 4.3 [解析] 考查函数的奇偶性和转化思想,解此题的关键是利用y =f (x )为奇函数. 已知函数y =f (x )为奇函数,由已知得g (1)=f (1)+2=1, ∴f (1)=-1,则f (-1)=-f (1)=1,所以g (-1)=f (-1)+2=1+2=3. 【能力提升】5.A [解析] 依题意f -134=f -54=f 34=32.故选A.6.A [解析] 由f (x +2)=-f (x )得f (x +4)=-f (x +2)=f (x ),根据f (x )为R 上的奇函数,得f (0)=0,所以f (3)=f (-1)=-f (1)=-1,f (4)=f (0)=0,所以f (3)-f (4)=-1.故选A.7.A [解析] 函数f (x )定义域为{x |-2<x <2},依题意函数f (x )为奇函数,所以f (0)=0,得a =-2,所以f a 2=f (-1)=|-1-2|-24-1=33.故选A.8.A [解析] 由x 1+x 2<0,得x 1<-x 2. 又f (x )为减函数,所以f (x 1)>f (-x 2),又f (x )为R 上的奇函数,所以f (x 1)>-f (x 2). 所以f (x 1)+f (x 2)>0.同理f (x 2)+f (x 3)>0,f (x 1)+f (x 3)>0, 所以f (x 1)+f (x 2)+f (x 3)>0.故选A.9.1.5 [解析] 由f (x +1)+f (x )=3得f (x )+f (x -1)=3,两式相减得f (x +1)=f (x -1),所以f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数,所以f (-2 005.5)=f (-1.5)=f (-2+0.5)=f (0.5)=1.5.10.①②③ [解析] 因为函数f (x )是定义在R 上的奇函数,所以①正确,由f (-x )+f (x )=0,可推得选项②,③正确,④中,要求f (-x )≠0,故④错误.11.(-1-3,+∞) [解析] 由函数f (x )是奇函数,所以当x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x =-f (x )=x 2-ax ,所以a =-2.当x <0时,f (x )>a 即-x 2-2x >-2⇒x 2+2x -2<0,解得-1-3<x <0;当x ≥0时,f (x )>-2恒成立.综上,满足f (x )>a 的x 的取值范围是(-1-3,+∞).12.解:(1)因为f (4)=72,所以4m -24=72,所以m =1.(2)因为f (x )的定义域为{x |x ≠0},又f (-x )=-x -2-x=-x -2x =-f (x ),所以f (x )是奇函数.(3)设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-x 2-2x 2=(x 1-x 2)1+2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上为单调递增函数.(或用求导数的方法) 【难点突破】13.解:(1)因为f (x )是定义域为R 的奇函数,所以f (0)=0, 即-1+b 2+a =0,所以b =1.所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,所以a =2.(2)方法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1.易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (-2t 2+k ). 因f (x )是减函数,所以t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0.从而判别式Δ=4+12k <0,解得k <-13.方法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0,即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0. 整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0.上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.课时作业(六)B【基础热身】1.B [解析] 由题中选项可知,y =|x |,y =e x +e -x 为偶函数,排除A ,C ;而y =-x 3在R 上递减,故选B.2.B [解析] 因为函数f (x )=ax 2+bx 在[a -1,2a ]上为偶函数,所以b =0,且a -1+2a =0,即b =0,a =13.所以a +b =13.3.A [解析] 若x <0,则-x >0,所以f (-x )=(-x )2-(-x )+1=x 2+x +1=-f (x ).若x >0,则-x <0,所以f (-x )=-(-x )2-(-x )-1=-x 2+x -1=-f (x ).所以f (x )为奇函数.4.32[解析] 函数f (x )是定义在R 上的周期为2的偶函数,且当x ∈[0,1]时,f (x )=x +1,那么f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=32.【能力提升】5.D [解析] 因为f (x )为奇函数,所以x >0时,f (x )=-f (-x )=-2-x ,即g (x )=-2-x ,所以g (3)=-2-3=-18.故选D.6.D [解析] 因为x 1<0,x 2>0,|x 1|<|x 2|,所以0<-x 1<x 2.又f (x )是(0,+∞)上的增函数,所以f (-x 1)<f (x 2).又f (x )为定义在R 上的偶函数,所以f (x 1)<f (x 2),所以f (x 1)-f (x 2)<0.选D.7.A [解析] 由已知f (x )是偶函数且是周期为2的周期函数,则f (-2 012)=f (2 012)=f (0)=log 21=0,f (2 011)=f (1)=log 22=1,所以f (-2 012)+f (2 011)=0+1=1,故选择A.8.A [解析] 命题p 是真命题.对于命题q ,函数y =f (x -1)为奇函数,将其图象向左平移1个单位,得到函数y =f (x )的图象,该图象的对称中心为(-1,0),而得不到对称中心为(1,0),所以命题q 为假命题,所以p ∨q 是真命题.故选A.9.-15[解析] 因为f (x +2)f (x )=1,所以f (x +4)f (x +2)=1,于是有f (x +4)=f (x ),所以f (x )是以4为周期的周期函数,f (-5)=f (-1)=1f (-1+2)=1f (1)=-15.10.-9 [解析] 由f (a )=a 3cos a +1=11得a 3cos a =10, 所以f (-a )=(-a )3cos(-a )+1=-a 3cos a +1=-10+1=-9.11.{1} [解析] 因为f (x )是定义在[-2,2]上的奇函数,且在[0,2]上单调递减,所以f (x )在[-2,2]上单调递减,所以f (3-m )≤f (2m 2)等价于⎩⎪⎨⎪⎧-2≤3-m ≤2,-2≤2m 2≤2,3-m ≥2m 2⇔⎩⎪⎨⎪⎧1≤m ≤5,-1≤m ≤1,-32≤m ≤1,即m =1,所以m 的取值范围是{1}.12.解:函数的定义域为{x |-1<x <1}=(-1,1).(1)证明:∀a ,b ∈(-1,1),f (a )+f (b )=lg 1+a 1-a +lg 1+b 1-b =lg (1+a )(1+b )(1-a )(1-b ),f a +b 1+ab =lg 1+a +b 1+ab 1-a +b 1+ab=lg 1+ab +a +b 1+ab -a -b =lg (1+a )(1+b )(1-a )(1-b ), 所以f (a )+f (b )=f a +b1+ab.(2)∀x ∈(-1,1),f (-x )+f (x )=lg 1-x 1+x +lg 1+x 1-x =lg (1-x )(1+x )(1+x )(1-x )=lg1=0,即f (-x )=-f (x ),所以f (x )是奇函数. 【难点突破】13.解:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0. (2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), 所以f (-x )=f (x ),所以f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3, 又f (3x +1)+f (2x -6)≤3, 即f ((3x +1)(2x -6))≤f (64).(*) 方法一:因为f (x )为偶函数, 所以f (|(3x +1)(2x -6)|)≤f (64). 又f (x )在(0,+∞)上是增函数, 所以0<|(3x +1)(2x -6)|≤64.解上式,得3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为x ⎪⎪-73≤x <-13或-13<x <3或3<x ≤5. 方法二:因为f (x )在(0,+∞)上是增函数, 所以(*)等价于不等式组⎩⎪⎨⎪⎧(3x +1)(2x -6)>0,(3x +1)(2x -6)≤64或⎩⎪⎨⎪⎧(3x +1)(2x -6)<0,-(3x +1)(2x -6)≤64, ⎩⎨⎧x >3或x <-13,-73≤x ≤5或⎩⎪⎨⎪⎧-13<x <3,x ∈R .所以3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为 x⎪⎪⎪ )-73≤x <-13或-13<x <3或3<x ≤5.。

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析1.已知是定义在上的奇函数,当时,则当时___________.【答案】【解析】设,则,又是定义在上的奇函数,则,故填.【考点】函数的奇偶性.2.设是定义在R上的奇函数,且的图象关于直线对称,则=________【解析】因为是定义在R上的奇函数,所以f(-x)=-f(x).又因为的图象关于直线对称.所以f(x)=f(1-x).所以由上两式可得f(1-x)=-f(-x)即f(-x)="-" f(1-x)=f(2-x).所以函数是一个周期为2的函数.所以.又因为函数是R上的奇函数所以,.所以填0.【考点】1.函数的周期性.2.函数的对称性.3.函数的奇偶性.3.已知偶函数满足,且当时,,则.【答案】2【解析】由知此函数周期 4,因为为偶函数,所以【考点】函数奇偶性周期性4.已知函数,下列叙述(1)是奇函数;(2)是奇函数;(3)的解为(4)的解为;其中正确的是________(填序号).【答案】(1)(3)【解析】这类问题,必须对每个命题都判断其真假,根据的解析式,显然对任意的都有,即是奇函数,(1)正确;当然此时函数是偶函数,(2)错误;对(3)按照分类讨论,可解得不等式的解是,(3)正确;而对不等式来讲,时,不等式就不成立,故(4)错误.填(1)(3).【考点】分段函数,函数的奇偶性,分类讨论.5.已知是定义在上的偶函数,那么=【答案】【解析】是定义在上的偶函数,因为偶函数定义域关于原点对称,,又由偶函数关于轴对称得:,所以【考点】偶函数的性质应用6.已知函数是定义在上的偶函数.当时,,则当时,.【答案】【解析】把转化为,利用偶函数的定义即可得所求.试题解析:时,.所以,.因为是是定义在上的偶函数,所以.【考点】偶函数,转化与化归思想7.定义在上的奇函数,当时,,则方程的所有解之和为.【答案】【解析】利用奇函数的图象关于原点对称的性质,通过观察图象可知方程的解是及的解的相反数.试题解析:作出时的图象,如下所示:方程的解等价于的图象与直线的交点的横坐标,因为奇函数的图象关于原点对称,所以等价于()的图象与直线的交点的横坐标和()的图象与直线的交点的横坐标的相反数,.由得.所以方程的所有解之和为.【考点】奇函数,方程与函数思想8.函数f(x)=x5+x3的图象关于()对称().A.y轴B.直线y=x C.坐标原点D.直线y=-x【答案】C【解析】∵,∴函数是奇函数,它的图象关于原点对称.图象关于y轴对称的函数是偶函数。

高一函数奇偶性题型练习(全)

高一函数奇偶性题型练习(全)

)
A 函 数 才 z) 土 叹 是 奇 函 数
B 函 数 (z) + Iz| 是 偶 函 数
C. 函 数 “ 个(z是 )奇 函 数
D. 函数 lzIf是(偶z)函 数
5. 已 知 f【z),g(z) 分 别 是 定 义 在R 上 的 偶 函 数 和 奇 函 数 ,昆 ) g 一 史 十 吉 +1, 则 D+50 = ( )
2 已 知 函 数 () = 2 八 史 丁 是 定 义 在 (-10) 上 的 奇 函 数 , 则 常 数 m,n 的 值
分 别 为.
题 型六 抽 象 函 数 奇偶 性
1. 设 函 数 f(a) 是 定 义 在 R 上 的 奇 函 数 , 则 下 列 结 论 中 一 定 正 确 的 是 (
)
A 函 数 扎 (e) + 史 是 奇 函 数 “ B, 函 数 (z) + Iz| 是 健 函 数
表 达 式是 (
)
A fl@)=2"+2
B. fl@)=-a*-2z
c. f@=a-20
p f(@)=-2'+2
3. 已 知 书 a) 是 定 义 在 R 上 的 奇 函 数 , 当 a > onf, (@) 一 古 土 8z 一 1, 求 仪 ) 的 解 析 式.
4 已 知 y = 丁 (z) 是 定 义 在 R 上 的 奇 函 数 ,当 z 么 0 时 , 了 四 二 史 一 2z, 则 f(a在 )R 上 的解 析 式 为 .
9(2)
f@)+g(@) | f@)—9(@ | [fl2)g(=)
俩 函数
佳 丽敌
俊 函数
俊 函数
不: 能 一确 确定定 奇奇俊倩 f性

函数的奇偶性(高一新同学初学时用的好资料)

函数的奇偶性(高一新同学初学时用的好资料)

函数的奇偶性练习(第一课时)1. 已知f(x)为偶函数,当x <0时,f(x)=2x-3,那么当x >0时,f(x)=_______.已知y =f (x )是奇函数,当x >0时,f (x )=x (1+x ),当x <0时,f (x )等于2. 函数f(x)是偶函数,且在(-∞,0)上表达式是f(x)=x 2+2x+5,则在(0,+∞)上表达式为_______. 3. 已知函数()f x 是定义在(),-∞+∞上的偶函数.当(),0x ∈-∞时,4()f x x x =-,则当()0,x ∈+∞时,()f x =4. 偶函数f(x)在区间[2,4]上是减函数,则f (-3)_____f (3.5).已知f(x)=x 5+ax 3+bx -8,且f(-2)=10,那么f(2)=________.5. 若函数f(x)=x 3+bx 2+cx 是奇函数,函数g(x)=x 2+(c -2) x+5是偶函数,则b=______,c=_______.6.已知函数f (x +1)是奇函数,f (x -1)是偶函数,且f (0)=2,则f (4)=________.7.已知()y f x =为奇函数,若(3)(2)1f f -=,则(2)(3)f f ---= 设函数()()()x a x x x f ++=1为奇函数,则实数=a 。

8.已知偶函数f (x )在区间[0,+∞)单调递增,则满足)31()12(f x f <-的x 取值范围是( ) )32,31.(A )32,31.[B )32,21.(C )32,21.[D . 9.函数是R 上的偶函数,且在上是增函数,若,则实数a 的取值范围是( )A .B .C .D . 10.设函数)(x f 是奇函数,当),0(+∞∈x 时,1)(-=x x f ,则使不等式x x f 的0)(>的取值范围是( )A .1>xB .001><<-x x 或C .01<<-xD .101><<-x x 或11. 函数①y=2(x-1)2-1 ②y=x 2-3|x|+4 ③y=x ④y=x x中即非奇函数也非偶函数的是( )A 、①②③B 、①③④C 、①③D 、①12.已知奇函数f (x )在区间[3,7]上是增函数,且最小值为5,那么函数f (x )在区间[-7,-3]上( )A .是增函数且最小值为-5B .是增函数且最大值为-5C .是减函数且最小值为-5D .是减函数且最大值为-513.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数、又是偶函数的函数一定是).(0)(R x x f ∈=其中正确的命题的个数是 ( )A .1个 B .2个 C .3个 D .4个14、设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4的所有x 之和为( ) A .-3 B .3 C .-8 D .815.已知:函数()y f x =在R 上是奇函数,而且在(0,)+∞上是增函数,证明:()y f x =在(,0)-∞上也是增函数。

高一数学函数的奇偶性练习题

高一数学函数的奇偶性练习题

高一数学函数的奇偶性练习题1、判断奇偶性:$f(x)=x^2-1+1-x^2$2、已知$f(x)=x^5+ax^3+bx-8$且$f(-2)=10$,求$f(2)$。

3、判断函数$f(x)=\begin{cases}x^2(x\geq0)\\-x^2(x<0)\end{cases}$的奇偶性。

4、若$f(x)=(k-2)x+(k-3)x+3$是偶函数,讨论函数$f(x)$的单调区间。

5、定义在$\mathbb{R}$上的偶函数$f(x)$在$(-\infty,+\infty)$是单调递减,若$f(a-6)<f(2a)$,则$a$的取值范围是多少?6、设奇函数$f(x)$的定义域为$[-5,5]$。

若当$x\in[0,5]$时,$f(x)$的图象如右图,则不等式$f(x)<0$的解是什么?7、函数$f(x)$在区间$(-2,3)$上是增函数,则$y=f(x+5)$的递增区间是什么?8、已知定义域为$\mathbb{R}$的函数$f(x)$在区间$(-\infty,5)$上单调递减,对任意实数$t$,都有$f(5+t)=f(5-t)$,那么下列式子一定成立的是$f(9)<f(-1)<f(13)$。

9、已知函数$f(x)=x^2+2(a-1)x+2$在区间$(-\infty,4]$上是减函数,则实数$a$的取值范围是$a\leq3$。

10、定义在$\mathbb{R}$上的函数$y=f(x)$在$(-\infty,2)$上是增函数,且$y=f(x+2)$图象的对称轴是$x=0$,则$f(-1)<f(3)$。

11、已知$f(x)$是定义在$(-2,2)$上的减函数,且$f(m-1)-f(1-2m)>0$,求实数$m$的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数奇偶性练习题
1、判断奇偶性:2211)(x x x f -+-=
2、已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f
3、判断函数⎩⎨⎧<≥-=)0()0()(22x x x
x x f 的奇偶性。

4、若3)3()2()(2
+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间?
5、设定义在]22[,-上的偶函数)(x f 在区间]2,0[上单调递减,若 )()1(m f m f <-,实数m 的取值范围是___________
6、定义在R 上的偶函数)(x f 在)0,(-∞是单调递减,若)2()6(a f a f <-,则a 的取值范
围是如何?
7、设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)
的图象如右图,
则不等式()0<x f 的解
是 .
8、函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( -7,-2 )
9、已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5
-t ),那么下列式子一定成立的是f (9)<f (-1)<f (13)
10、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是(a ≤3)
11、定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( A )
A .f (-1)<f (3)
B .f (0)>f (3)
C .f (-1)=f (-3)
D .f (2)<f (3)
12、已知f (x )是定义在(-2,2)上的减函数,且f (m -1)-f (1-2m )>0,实数m 的取值范围.
13、已知函数 f(x)为偶函数,在(0,+)∞上为减函数,若f()2
1﹥0﹥f(3),则方程f(x)=0的根的个数是 ( )
A 2
B 2或1
C 3
D 2或3
14、设)(x f 是R 上的减函数,则下列关系成立的是( )
A 、)2()(a f a f >
B 、)()(2a f a f <
C 、)()(2a f a a f <+
D 、)()1(2a f a f <+
15、如果奇函数)(x f 在区间)0(],[>>a b b a 上是增函数,且最小值为m ,那么
)(x f 在区间],[a b --上是( )
A 、增函数且最小值为m -
B 、增函数且最大值为m -
C 、减函数且最小值为m -
D 、减函数且最大值为m -
16、在区间),0(+∞上不是增函数的是( )
A .12+=x y
B .132+=x y
C .x
y 2= D .122++=x x y 17、设函数f(x)是R 上的偶函数,且在()+∞,0上是减函数,若,01<x 且021>+x x ,则
A 、)()(21x f x f ->
B 、)()(21x f x f -=-
C 、)()(21x f x f -<-
D 、不能确定
18、如果函数f(x)=x 2+2(a-1)x +2在区间(-∞,4
]上是减函数,则实数a 的取值范围是 ( )
A.[)+∞-,3
B.(]3,-∞-
C. (]5,∞-
D. [)+∞,3
19、定义在R 上的函数0)0(,)(≠=f x f y ,当0>x 时,1)(>x f ,且对任意的R b a ∈,,有)(·)()(b f a f b a f =+
(1)证明:1)0(=f ;(2)证明:对任意的R x ∈,恒有0)(>x f ;
(3)证明)(x f 是R 上的增函数;(4)若1)2(·)(2>-x x f x f ,求x 的取值范围
20、设)(x f 的定义域为),0(+∞,且在),0(+∞上为增函数,)()()(y f x f y
x f -= (1)求证)()()(,0)1(y f x f xy f f +==;
(2)设1)2(=f ,解不等式2)3
1(
)(≤--x f x f
21、已知函数f(x)是定义在R 上的增函数,设F(x)=f(x)-f(a-x),试用函数单调性的定义证明F (x )是R 上的增函数
22、已知f (x )满足f (a )+f (b )=f (a+b ),求证f (x )为奇函数;
23、已知f (x )满足f (x 1+x 2)+f (x 1-x 2)=2f (x 1)f (x 2),求证f (x )为偶函数。

相关文档
最新文档