LM324运放应用电路大全

合集下载

lm324产生方波经典电路

lm324产生方波经典电路

lm324产生方波经典电路
LM324是一款四路运算放大器,它可以用于产生方波的电路设计。

以下是一个使用LM324产生方波的经典电路:
1. 使用其中一路运算放大器(比如使用LM324的第一路运算放大器)进行比较:
- 将一个三角波或正弦波输入到运算放大器的正输入端(将波形信号接入运放的非反相输入端)。

- 将一个可变电阻接入运算放大器的负输入端(将负输入端接上一个可变电位器)。

- 使用负反馈连接,将该运算放大器的输出接入至其负输入端。

2. 使用确定的电阻值和电位器调整电压,这样可以根据电压是否超过比较器的参考电压来产生方波。

- 当正输入端电压超过负输入端电压,运放输出为高电平。

- 当正输入端电压低于负输入端电压,运放输出为低电平。

- 由于负输入端电压可通过改变电位器的值来控制,因此可以调整输出方波的频率和占空比。

这是一个简单的基于LM324的方波产生电路示例。

根据具体的需求和电路设计要求,可能需要进行一些调整和优化。

LM324集成芯片内部电路分析与典型应用

LM324集成芯片内部电路分析与典型应用

LM324集成芯片内部电路分析与典型应用LM324是一款广泛应用于电子电路中的四运算放大器集成芯片。

它具有四个独立运算放大器,以及相应的补偿电路,用于提供放大器的稳定性和性能。

该芯片采用双电源供电,工作电压范围为+5V至+32V。

LM324还具有很高的共模抑制比和宽带,适用于各种电路应用。

LM324集成芯片的内部电路主要包括四个运算放大器、输入级、输出级和补偿电路。

四个运算放大器可以独立工作,每个放大器都具有一个反馈回路,通过控制输入电压和反馈元件,可以实现不同的功能和放大倍数。

输入级负责将输入信号进行放大和标幺化,以适应后续电路的工作要求。

输出级负责将放大器的输出信号进行电流放大和电压输出,以适应外部电路的连接。

1.信号传感器放大器:LM324可以作为传感器信号的放大器,用于放大和处理小信号。

例如,用于温度传感器、压力传感器、光电传感器等。

2.滤波器:通过适当选择反馈元件和频率调节元件,可以将LM324设计为不同类型的滤波器,如低通滤波器、高通滤波器、带通滤波器等。

3.比较器:LM324可以作为比较器使用,用于比较输入信号与参考信号的大小。

通过调整参考电压,可以实现不同的比较阈值和触发条件。

4.方波发生器:LM324结合一些外部元件,可以构成方波发生器电路。

方波发生器常用于时钟信号发生、脉冲计数器等应用。

5.电压跟随器:通过将运算放大器的非反相输入端与输出端连接,可以实现电压跟随器功能。

电压跟随器通常用于隔离电路和电源稳压器中。

6.麦克风前置放大器:LM324可以用于麦克风前置放大器电路,用于提供麦克风信号的放大和预处理。

除了上述应用,LM324还可以用于电池充电管理、计算器、功率放大器、电压比较等各种电子电路中。

在应用过程中,设计者可以根据具体的要求,选择适当的反馈元件、外部元件和电源电压,以实现所需的功能和性能。

总之,LM324集成芯片具有四个独立运算放大器和相应的补偿电路,广泛应用于各种电子电路中。

LM324四运放的应用

LM324四运放的应用

LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1图 2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途6 孕藕旁吹挠跋旒 R蛟朔臕i输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。

LM324的应用电路及原理

LM324的应用电路及原理

LM324 的应用电路及原理
LM324 的应用电路及原理
LM324 作反相交流放大器
电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电, 由R1、R2 组成1/2V+偏置,C1 是消振电容。

放大器电压放大倍数Av 仅由外接电阻Ri、Rf 决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值, Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co 和Ci 为耦合电容。

LM324 作同相交流放大器
同相交流放大器的特点是输入阻抗高。

其中的R1、R2 组成1/2V+分压电路,通过R3 对运放进行偏置。

电路的电压放大倍数Av 也仅由外接电阻
决定:Av=1+Rf/R4,电路输入电阻为R3。

R4 的阻值范围为几千欧姆到几十千欧姆。

见下图。

1lm324应用实例

1lm324应用实例

R1
C1
VT1
R3
VT3
+VCC IC
C
B A
D
A +
VT2
R5
C2
VT4
O
(b)保护管工作特性
EE
UCE
R2
(a)电 路 图
R4 V
输出限流保护
正常工作时工作点在 A,工作电流过大,工 作点经B 移到C或D 点, 电流基本不变
1 滤波电路的基础知识
作用:选频。 一、滤波电路的种类: 低通滤波器LPF 带通滤波器BPF
GND
VCC
集成运放的主要技术指标
一、开环差模电压增益Aod 无外加反馈情况下的直流差模增益。一般在 105 107之间。理想运放的Aod为。
U O Aod 20 lg U U
二、共模抑制比KCMR 开环差模电压增益与开环共模电压增益之比。 多数集成运放共模抑制比达80dB以上。
100pF C R2 1 V+ R1
+
8
2 VCC_CIRCLE
C1 + C2
6
Vi
1
3
R3 V2
1
VCC_CIRCLE
-
1
2
2
V0
+ C4
C3
产生自激振荡 消振措施: 按规定部位和参数接入校正网络 防止反馈极性接错 避免负反馈过强
合理安排接线,防止杂散电容过大
保护电路
1、输入保护
利用二极管的限幅作用对输入信号幅度加以限制,以免 输入信号超过额定值损坏集成运放的内部结构。无论是输入 信号的正向电压或负向电压超过二极管导通电压,则V1或V2 中就会有一个导通,从而限制了输入信号的幅度,起到了保 护作用。

LM324应用电路

LM324应用电路

LM324应用电路
LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。

可工作在单电源下,电压范围是3.0V-32V或+16V.
LM324的特点:1.短跑保护输出
2.真差动输入级
3.可单电源工作:3V-32V
4.低偏置电流:最大100nA(LM324A)
5.每封装含四个运算放大器。

6.具有内部补偿的功能。

7.共模范围扩展到负电源
8.行业标准的引脚排列
9.输入端具有静电保护功能
LM324引脚图(管脚图)
LM324应用电路图:
1.LM324电压参考电路图
2.LM324多路反馈带通滤波器电路图
3.LM324高阻抗差动放大器电路图
4.LM324函数发生器电路图
5.LM3 24双四级滤波器
6.LM324维思电桥振荡器电路图
7.LM324滞后比较器电路图。

LM324的应用

LM324的应用

LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图 2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

• 反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci 为耦合电容。

• 同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

• 交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

集成运放LM324芯片手册解读

集成运放LM324芯片手册解读
集成运放LM324芯片手册解读
集成运放介绍
手册解读
LM324典型应用电路
单电源3~32v 双电源±1.5V~±16v
LM324是四运算放大器 单电源or双电源
LM324集成运放介绍
2 手册解读
LM324典型应用电路
输入级:差分放大
中间级:放大级
输出级
1 集成运放介绍
2 手册解读
同相输入
u+ u-
测试条件 典型值:1.5V
集成运放介绍
手册解读
3 LM324典型应用电路
电压放大倍数=-Rf/Ri=-10
电压放大倍数=1+Rf/R4
耦合电容
偏置电阻
单电源供电 反相交流放大器
½ V+分压电路 同相交流放大器 R4的阻值范围为几千欧姆到几十千欧姆。
集成放运介绍手册解读 Nhomakorabea3 LM324典型应用电路
同相直流 放大形式
反相输入
正电源 +VCC
uo
–VEE 输 出
LM324典型应用电路
16
1
9
8
接地或者负电源
集成运放介绍
手册解读
LM324典型应用电路
电源电压
差模 输入 电压
输入电压
双电源:最大正电源16v,最小负电源-16V 单电源最大32v
集成运放介绍
输入失调电压
输入 失调 电流
输入偏置电流
手册解读
LM324典型应用电路
VO =2.5(1+R1/R2)
感温探头 测温电路
基准电压
电压参考电路
学习小结
1 LM324引脚手册
同相输入
u+ u-

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)描述lm324应用电路(一)温度控制器采用LM324四运算放大器集成电路,温度控制范围为5~95℃,可广泛应用于工农业生产方面的温度自动控制。

该温度控制器电路由电源电路、温度检测电路、基准电压电路、温度指示电路、电压比较放大电路和控制执行电路组成,如图6-6所示。

图6-6采用LM324运算放大器的温度控制器电路电路中,电源电路由电源开关S、电源变压器T、整流桥堆UR、滤波电容C1、C2、三端稳压集成电路IC2、限流电阻R10和电源指示发光二极管VL1组成;温度检测电路由晶体管式温度传感器V1、电阻R1、电容C3和运算放大器集成电路IC1(N1~N4)内部的N1组成;基准电压电路由电阻R4、R5、R8、电位器RP1~RP3、稳压二极管VS和IC1内部的N4组成;温度指示电路由电阻R2、R3、IC1内部的N2和电压表PV组成;电压比较放大电路由IC1内部的N3和电阻R6、R7组成;控制执行电路由电阻R9、晶体管V2、继电器K、二极管VD 和工作指示发光二极管VL2组成。

交流220V电压经T降压、UR整流、C1滤波及IC2稳压后,为IC1、基准电压电路和控制执行电路提供+9V工作电压,同时将VL1点亮;+9V电压经R5限流、VS稳压后产生+6V左右的基准电压,一路经R4、RP1分压后为N2的正相输入端提供基准电压;另一路先经N4缓冲放大,然后经RP2、RP3分压后,再经R8加至N4的正相输入端,作为N3的基准电压;V1发射结的电压降(Vbe)随着环境温度的变化而变化。

温度上升时,V1的导通内阻变小,发射结的电压降也减小,使N1的输出电压降低,N2的输出电压升高,N4的输出电压则下降;PV用来指示V1检测的温度值(灵敏度为10mV/℃),若PV指示电压值为250mV,则表明温度为25℃;RP3用来设定控制温度值;RP2用来设定RP3的最大输出电压(调节RP2的阻值,使RP3的最大输出电压为1V);RP1用来设定N2正相输入端的基准电压(调节RP1的阻值,使N2的正相输入端电压为530mV)。

LM324应用电路——LED电平指示器带有可调增益放大级电路

LM324应用电路——LED电平指示器带有可调增益放大级电路

LM324应用电路——LED电平指示器带有可调增益放大级电路
既可以接在音频功放电路的输出端,作为功放输出电平指示,也可以接在音频前置放大电路输出端(音量控制电路之前),作为前置级的电平指示器。

电路见下图。

电路中,由LM324运放构成一个增益可调的放大前级,可调电阻RP用来调节增益量;LE D驱动电路由三极管V、电容器C3、稳压二极管VS,电阻器R1一Rn、发光二极管VLl
一VLn和二极管VD1一VDn组成。

来自功率放大器或前置放大器的音频输人信号经C2藕合加至LM324运放的5脚,经LM 324和三极管放大后,从三极管的发射极输出信号电压,将VLl一V Ln逐级点亮。

音频输人信号越强,点亮发光二极管的个数也越多。

元器件选择
R01-R05和R1-Rn选用1/4W碳膜电阻器或金属膜电阻器。

RP选用超小型电位器或立式
可变电阻器。

C1-C3均选用耐压值为16V的铝电解电容器。

VD1-VDn选用1 N4148型硅开关二极管
或2AP5VS选用1/2W、3.6V的硅稳压二极管。

VU-V Ln均选用币5mm的红色高亮度发光二极管。

V选用C8050或58050、3 DG8050型硅NPN晶体管。

IC选用LM324型运算放大集成电路。

LM324四运放的应用

LM324四运放的应用

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

∙反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

∙同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

∙交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形∙有源带通滤波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。

LM324引脚图资料与电路应用

LM324引脚图资料与电路应用

LM324引脚图资料与电路应用LM324引脚图资料与电路应用 LM324资料: LM324为四运放集成电路,采用14脚双列直插塑料封装。

,内部有四个运算放大器,有相位补偿电路。

电路功耗很小,lm324工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。

它的输入电压可低到地电位,而输出电压范围为O~Vcc。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。

每一组运算放大器可用如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324引脚排列见图1。

2。

lm124、lm224和lm324引脚功能及内部电路完全一致。

lm124是军品;lm224为工业品;而lm324为民品。

由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等特点,因此他被非常广泛的应用在各种电路中。

“我的面试感悟”有奖征文大赛结果揭晓!max232是一种把电脑的串行口rs232信号电平(-10 ,+10v)转换为单片机所用到的TTL信号点平(0 ,+5)的芯片,这个芯片的价格比较贵大约要6元,下面我来介绍一下max232引脚图以及max232和电脑串口的连接电路,RS232引脚定义。

MAX232芯片是美信公司专门为电脑的RS-232标准串口设计的接口电路,使用+5v单电源供电。

内部结构基本可分三个部分:第一部分是电荷泵电路。

由1、2、3、4、5、6脚和4只电容构成。

功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。

第二部分是数据转换通道。

由7、8、9、10、11、12、13、14脚构成两个数据通道。

LM324运放应用电路大全

LM324运放应用电路大全

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

LM324作反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

LM324作同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。

LM324四运放的应用

LM324四运放的应用

LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

●反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

●同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

lm324芯片常用电路

lm324芯片常用电路

LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

●反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

●同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

LM324应用电路设计

LM324应用电路设计

LM324应用电路设计LM324是一款经典的四运算放大器集成电路,具有四个独立的运算放大器,可用于各种电路设计中,如比较器、滤波器、振荡器等。

在本文中,我们将介绍如何设计一个简单的LM324应用电路,以帮助读者更好地了解LM324的使用方法。

在LM324应用电路设计中,我们将设计一个基本的非反相放大器电路。

非反相放大器是最常见的运算放大器应用之一,可以将信号放大至更大的幅度,并且输出的信号与输入信号极性相同。

所需材料:1.LM324芯片x12.电阻R1(10kΩ)x13.电阻R2(100kΩ)x14.电压源x15.示波器x1电路设计:VIN--(R1)----Non-inverting Input(+)(R2)VOUTGND接着,将输入信号连接到非反相输入端(Non-inverting Input(+)),并连接一个示波器到输出端(VOUT),以便观察输出信号变化。

调整电阻R1和R2的数值,可以改变信号的放大倍数,进而调整输出信号的幅度。

电路测试:接通电源后,通过输入信号来测试电路。

输入一个正弦波信号(如1kHz频率的信号),并观察输出信号的变化。

可以通过示波器来观察信号的幅度变化,并调整电阻R1和R2的数值,以改变放大倍数。

注意事项:1.在设计LM324应用电路时,需要注意LM324的供电电压范围以及最大输出电流。

2.在连接电路时,应保证正确连接各个元件,避免发生短路或接反现象。

3.在进行信号测试时,应谨慎操作示波器,避免给设备造成损坏。

总结:通过以上介绍,我们了解了如何设计一个简单的LM324应用电路,以非反相放大器为例。

LM324作为一款经典的四运算放大器集成电路,具有广泛的应用领域,可以用于各种电路设计中。

希望通过本文的介绍,读者能更好地掌握LM324的使用方法,进一步应用于实际的电路设计中。

LM324应用电路图

LM324应用电路图

LM324系列运算放大器就是价格便宜得带差动输入功能得四运算放大器。

可工作在单电源下,电压范围就是3、0V-32V或+16V、LM324得特点:1、短跑保护输出2、真差动输入级3、可单电源工作:3V-32V4、低偏置电流:最大100nA(LM324A)5、每封装含四个运算放大器。

6、具有内部补偿得功能。

7、共模范围扩展到负电源8、行业标准得引脚排列9、输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:1、LM324电压参考电路图2、LM324多路反馈带通滤波器电路图3、LM324高阻抗差动放大器电路图4、LM324函数发生器电路图5、LM324双四级滤波器6、LM324维思电桥振荡器电路图7、LM324滞后比较器电路图恒流源运算放大器LM324得D单元构成恒流源,使用中为保证恒流源得线性度,应充分保证电阻R16与R17阻值不小于R14与R15得10倍,且R14与R15、R16与R17两两之间阻值误差要尽可能地小,只有这样才能保证锯齿波得线性度,调试时有时测得得锯齿波为下凹得,这就是由于R14与R15或R16与R17两个电阻之间阻值有较大得差值造成得。

本文就高性能集成四运放LM324得参数,进行实用电路设计,论述电路原理。

LM324就是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它得内部包含四组形式完全相同得运算放大器, 除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示得符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo得信号与该输入端得位相反;Vi+(+)为同相输入端,表示运放输出端Vo得信号与该输入端得相位相同。

LM324得引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2
由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

LM324作反相交流放大器
电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

LM324作同相交流放大器
见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

LM324作交流信号三分配放大器
此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。

LM324作有源带通滤波器
许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。

这种有源带通滤波器的中心频率,在中心频率fo处的电压增益Ao=B3/2B1,品质因数,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。

R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。

上式中,当fo=1KHz时,C取0.01Uf。

此电路亦可用于一般的选频放大。

此电路亦可使用单电源,只需将运放正输入端偏置在1/2V+并将电阻R2下端接到运放正输入端既可。

LM324应用作测温电路
见附图。

感温探头采用一只硅三极管3DG6,把它接成二极管形式。

硅晶体管发射结电压的温度系数约为-2.5mV/℃,即温度每上升1度,发射结电压变会下降2.5mV。

运放A1连接成同相直流放大形式,温度越高,晶体管BG1压降越小,运放A1同相输入端的电压就越低,输出端的电压也越低。

这是一个线性放大过程。

在A1输出端接上测量或处理电路,便可对温度进行指示或进行其它自动控制。

LM324应用作比较器
当去掉运放的反馈电阻时,或者说反馈电阻趋于无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大(实际上是很大,如LM324运放开环放大倍数为100dB,既10万倍)。

此时运放便形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-或接地)。

当正输入端电压高于负输入端电压时,运放输出低电平。

附图中使用两个运放组成一个电压上下限比较器,电阻R1、R1ˊ组成分压电路,为运放A1设定比较电平U1;电阻R2、R2ˊ组成分压电路,为运放A2设定比较电平U2。

输入电压U1同时加到A1的正输入端和A2的负输入端之间,当Ui>U1时,运放A1输出高电平;当Ui<U2,则当输入电压Ui越出[U2,U1]区间范围时,LED点亮,这便是一个电压双限指示器。

若选择U2>U1,则当输入电压在[U2,U1]区间范围时,LED点亮,这是一个“窗口”电压指示器。

此电路与各类传感器配合使用,稍加变通,便可用于各种物理量的双限检测、短路、断路报警等。

LM324应用作单稳态触发器
见附图1。

此电路可用在一些自动控制系统中。

电阻R1、R2组成分压电路,为运放A1负输入端提供偏置电压U1,作为比较电压基准。

静态时,电容C1充电完毕,运放A1正输入端电压U2等于电源电压V+,故A1输出高电平。

当输入电压Ui变为低电平时,二极管D1导通,电容C1通过D1迅速放电,使U2突然降至地电平,此时因为U1>U2,故运放A1输出低电平。

当输入电压变高时,二极管D1截止,电源电压R3给电容C1充电,当C1上充电电压大于U1时,既U2>U1,A1输出又变为高电平,从而结束了一次单稳触发。

显然,提高U1或增大R2、C1的数值,都会使单稳延时时间增长,反之则缩短。

如果将二极管D1去掉,则此电路具有加电延时功能。

刚加电时,U1>U2,运放A1输出低电平,随着电容C1不断充电,U2不断升高,当U2>U1时,A1输出才变为高电平。

相关文档
最新文档