数学物理方法之二阶线性偏微分方程的分类

合集下载

数学物理方法之二阶线性偏微分方程的分类

数学物理方法之二阶线性偏微分方程的分类

第十三章二阶线性偏微分方程的分类本章将介绍二阶线性偏微分方程的基本概念、分类方法和偏微分方程的标准化. 特别对于常系数的二阶线性偏微分方程的化简方法也进行了详细讨论,这对后面的偏微分方程求解是十分有用的.13.1 基本概念(1)偏微分方程含有未知多元函数及其偏导数的方程,如22222(,,,,,,,,,,)0u u u u u F x y u x y x y x y∂∂∂∂∂⋅⋅⋅⋅⋅⋅⋅⋅⋅=∂∂∂∂∂∂其中(,,)u x y ⋅⋅⋅是未知多元函数,而,,x y ⋅⋅⋅是未知变量;,,u u x y ∂∂⋅⋅⋅∂∂为u 的偏导数. 有时为了书写方便,通常记22,,,,x y xx u u u u u u x y x∂∂∂==⋅⋅⋅=⋅⋅⋅∂∂∂(2)方程的阶偏微分方程中未知函数偏导数的最高阶数称为方程的阶.(3)方程的次数偏微分方程中最高阶偏导数的幂次数称为偏微分方程的次数.(4)线性方程一个偏微分方程对未知函数和未知函数的所有偏导数的幂次数都是一次的,就称为线性方程,高于一次以上的方程称为非线性方程.(5)准线性方程一个偏微分方程,如果仅对方程中所有最高阶偏导数是线性的,则称方程为准线性方程.(6)自由项在偏微分方程中,不含有未知函数及其偏导数的项称为自由项.例13.1.2:方程的通解和特解概念二阶线性非齐次偏微分方程2xy u y x =−的通解为221(,)()()2u x y xy x y F x G y =−++其中(),()F x G y 是两个独立的任意函数.因为方程为例13.1.1:偏微分方程的分类(具体见课本P268)2241(,)252sin 2u x y xy x y x y =−+−+称为方程的特解.n 阶常微分方程的通解含有n 个任意常数,而n 阶偏微分方程的通解含有n 个任意函数.二阶的,所以是两个任意的函数.若给函数(),()F x G y 指定为特殊的4()25,()2sin F x x G y y =−=,则得到的解在数学物理方程的建立过程中,我们主要讨论了三种类型的偏微分方程:波动方程;热传导方程;稳定场方程.这三类方程描写了不同物理现象及其过程,后面我们将会看到它们的解也表现出各自不同的特点.我们在解析几何中知道对于二次实曲线22ax bxy cy dx ey f +++++=其中,,,,,a b c d e f 为常数,且设24b ac δ=−13.2二阶线性偏微分方程的分类上述二次曲线分别为双曲线、抛物线和椭圆.受此启发,下面我们来对二阶线性偏微分方程进行分类.下面主要以含两个自变量的二阶线性偏微分方程为例,进行理论分析.而对于更多个自变量的情形尽管要复杂一些,但讨论的基本方法是一样的.两个自变量(x, y )的二阶线性偏微分方程所具有的普遍形式为0,0,0δ>=<则当时,22222(,)(,)(,)(,)(,)(,)(,)u u u u u A x y B x y C x y D x y E x y F x y u G x y x x y y x y ∂∂∂∂∂+++++=∂∂∂∂∂∂(13.2.1)其中,,,,,,A B C D E F G 为(,)x y 的已知函数.定义为方程13.2.1的特征方程22(d )d d +(d )0A yB y xC x −=(13.2.3)它所对应的积分曲线族称为特征曲线族在具体求解方程(13.2.3)时,需要分三种情况讨论判别式24B AC ∆=−当判别式240B AC ∆=−>时,从方程(13.2.3)可以求得两个实函数解12(,) (,) x y C x y C φψ==及也就是说,偏微分方程(13.2.1)有两条实的特征线.于是,令13.2.1双曲型偏微分方程作变换并代入原方程原偏微分方程(13.2.1)变为:此变换是可逆的(,), (,)x y x y ξφηψ==2(,,,,)0u u u u ξηξηξη∂∂∂+Φ=∂∂∂∂21111((,)(,13.2.)(,)(,)4)u D u E u F u G ξηξηξηξηξηξη∂=+∂∂++或表示为此方程称为双曲线偏微分方程的第一种标准形式偏微分方程(13.2.4)变为:111122**22**(,(13.2)(,)(,)(.5),)u u D u E u F u G αβαβαβαβαβαβ∂∂−=+∂∂++2222(,,,,)u u u u u αβαβαβ∂∂∂∂−=Φ∂∂∂∂或表示为此方程称为双曲型偏微分方程的第二种标准形式2(,)tt xx u a u f x t =+波动方程即为双曲型偏微分方程或者进一步作变换,αξηβξη=+=−,22αβαβξη+−==或例13.2.1 原偏微分方程为:板书讲解解:△补充例题:学生自己先做,再演示答案222222y x 0x yu u ∂∂−=∂∂试将方程 化为标准方程。

二阶线性偏微分方程的分类与小结

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结一 两个自变量的二阶线性方程1 方程变换与特征方程两个自变量的二阶线性偏微分方程总表示成fcu u b u b u a u a u a y x yy xy xx =+++++212212112 ①它关于未知函数u及其一、二阶偏导数都是线性的,其中fu c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。

设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。

取自变量变换),(y x ξξ=,),(y x ηη=其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。

=∂∂),(),(y x ηξyx yx ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换,),(ηξx x =,),(ηξy y =因为x x x u u u ηξξξ+=,y y y u u u ηξξξ+=xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)(将代入①使其变为F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。

并可验证222112122211212))((x y y x a a a A A A ηξηξ--=-这表明,在可逆变换下22211212A A A -与2211212a a a -保持相同的正负号。

二阶线性偏微分方程的分类

二阶线性偏微分方程的分类

1 1 令 ( s t ), ( s t )uss utt A1us B1ut C1u D1 2 2 此方程二阶导数部分与弦振动方程类似,称为双曲型方程。
2 (2)当 =a12 -a11a22 =0时u =Au +Bu Cu D 1 2
0 0
多元二阶线性方程的分类
(3) A( x0 )的m个特征值都是负(正)数方程)在点x0属于椭圆型 2u 2u 2u 位势方程:u 2 + 2 + 2 f ( x, y, z ) x y z -1 A= 0 0 0 0 0 -1 0 0 -1 0
三类典型方程
位势方程
椭圆型方程
2u 2u 2u u 2 + 2 + 2 f ( x, y, z ), x, y, z ) , x y z 在热传导问题中,若外界环境及物体内热源不随时间变化, 则经过较长时间后,物体内温度场区域稳定,即温度与时间无关。 2 2 2 = 2 + 2 + 2 是Laplace算子。 x y z f ( x, y, z )=0时称为Laplace方程,也称为调和方程。
多元二阶线性方程的分类
(1) A( x0 )的m个特征值除了一个为正(负)外都是负(正)数 方程)在点x0属于双曲型 -a 2 0 0 2 2 0 0 u u 波动方程: 2 a 2 2 f ( x, t ) A= 2 t x 0 0 -a 0 0 0 0 1 (2) A( x0 )的m个特征值除了一个为0外都是负(正)数 方程)在点x0属于抛物型 -a 2 2 2 2 u u u u 2 热传导方程: a( + 2 + 2) f ( x, y, z , t ) A= 2 0 t x y z 0 0 0 -a 2 0 0 0 0 0

二阶线性微分方程的分类

二阶线性微分方程的分类

b1 a11 xx 2a12 xy a22 yy b1 x b2 y b 2 a11 xx 2a12 xy a22 yy b1 x b2 y c c, f f
如果选取合适的变换
1 (x, y),
2 ( x, y)
做变换
2 x y ) , 3
3 2
原方程化为
2u 1 u u 0. 6( )
2、微分方程一般分类
(1) 按自变量的个数,分为二元和多元方程; (2) 按未知函数及其导数是否线性(看其系数是否和未知函数有关),分为线性微分 方程和非线性微分方程;
a11 , a12 , a22 , b1 , b2 , c, f 都是变量 x, y 在区域 上的实函数
2、两个自变量方程的化简
令 ( x, y), ( x, y)
D( , ) x y 且 在( x0 , y0 )处不为零。 D( x, y) x y
由于
2
(1.7 ')
如果(1.7’)存在一个解 ( x, y ) c ,根据隐函数存在定理, 有
x dy dx y
2
所以(1.7’)可以化为
dy dy a11 2a12 a22 0, dx dx
这样(1.7)的求解就化为下述常微分方程在 积分曲线问题:
a12 a11 xx a12 ( x y yx ) a22 y y 0
方程化为:
u u Au Bu Cu D.
例2:将弦振动方程化为标准形式。
解:方程 utt
特征方程:
a uxx 0 的特征线族是
2

二阶线性偏微分方程的分类与总结

二阶线性偏微分方程的分类与总结
种类:二阶线性偏微分方程包括常系数型、变系数型、具有特殊条件型等。
特点
1
偏微分方程的意义
2
3
描述现实问题中多个变量之间的动态关系。
建立数学模型,为解决实际问题提供理论支持。
通过求解偏微分方程,可以预测未来的发展趋势,为决策提供依据。
二阶线性偏微分方程的分类
02
特征方程为多项式形式
特征方程为三角函数形式
分离变量法
适用范围:积分变换法适用于具有特定边界条件的二阶线性偏微分方程,如周期性边界、狄利克雷边界等。基本思想:利用傅里叶变换、拉普拉斯变换等积分变换方法,将偏微分方程转化为常微分方程,从而简化求解过程。步骤选择适当的积分变换函数,如傅里叶变换、拉普拉斯变换等。对原方程进行积分变换,得到变换后的常微分方程。求解常微分方程,得到原方程的解。通过反变换得到原方程的通解。
二阶线性偏微分方程的展望与发展
05
有限差分法
通过离散化偏微分方程,将连续的空间离散为多个离散点,并使用差分近似公式来计算每个离散点处的数值解。
有限元法
将连续的空间离散为多个小的单元,每个单元内使用线性函数来近似解,从而将偏微分方程转化为线性方程组进行求解。
谱方法
利用傅里叶变换等函数变换方法,将偏微分方程转化为常微分方程进行求解,具有高精度和高分辨率的优点。
《二阶线性偏微分方程的分类与总结》
xx年xx月xx日
CATALOGUE
目录
二阶线性偏微分方程概述二阶线性偏微分方程的分类二阶线性偏微分方程的求解方法二阶线性偏微分方程的应用领域二阶线性偏微分方程的展望与发展二阶线性偏微分方程的案例分析
二阶线性偏微分方程概述
01
VS
二阶线性偏微分方程是包含未知函数及其偏导数的方程,且方程中未知函数的最高阶偏导数不超过二阶。

数理方程第13讲二阶线性偏微分方程的分类

数理方程第13讲二阶线性偏微分方程的分类

( 2.1) 若判别式为 线性偏微分方程分为三类: ,则二阶
时,方程称为双曲型;
时,方程称为抛物型; 时,方程称为椭圆型;
1.双曲型偏微分方程
因为双曲型方程对应的判别式
所以特征曲线是两族不同的实函数曲线,
B B2 4 AC y x c1 , 2A
dy B B 2 4 AC dx 2A
(3.8)
还可以进一步进行化简.上式中小写字母的 为常系数.
为了化简,不妨令
从而有
(3.9)
其中
(2.4)
或者进一步作变换
于是有
所以
又可以进一步将方程(2.4)化为
这种类型的方程称为双曲型方程.我们前面建立的波动方 程就属于此类型. 2.当判别式 时:这时方程
(2.2)一定有重根
因而只能求得一个解,例如,
,特征线为
一条实特征线.作变换
就可以使
由(2.2)式可以得出,一定有
,故可推出
.这样就可以任意选取另一个变换,
与பைடு நூலகம்是两个不同的函数。
2.抛物型偏微分方程
因为抛物型偏微分方程的判别式
线是一族实函数曲线. y B x c
2A
,所以特征曲
其特征方程的解为 因此令 进行自变量变换,则原偏微分方程变为
(2.5)
(2.6)
上式称为抛物型偏微分方程的标准形式.
3.椭圆型偏微分方程
椭圆型偏微分方程的判别式 ,所以特征曲线是
代入(2.1)得到
2 2 2 2u u * [ A( ) B C( ) ] 2 B x x y y x x
2 2 2u [ A( ) B C( ) ] 2 x x y y * u * u D E F *u G *

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类1.把下列方程化为标准形式:(1)02=+++++u cu bu au au au y x yy xy xx 解:因为022211212=⋅-=-a a a a a a所以该方程是抛物型方程,其特征方程为122=-±=aa a a dx dy 。

它只有一族实的特征线 c x y =-在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。

方法一:用抛物型方程的标准形式][12122F Cu u B u B A +++-=ηξηηη 先算出:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-====⋅+⋅+⋅+⋅+⋅=++++=⋅+-+⋅+⋅+⋅=++++==⋅+⋅+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 22122121122122121112221221122ηηηηηξξξξξηηηη ∴])[(1u bu u c b au +++--=ηξηη即01=++-+u au a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出⎪⎩⎪⎨⎧=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη(2)06232=++--y x yy xy xx u u u u u ,解:因为042211212>=-a a a ,所以该方程是双曲型的其特征方程为 ⎩⎨⎧-=+±-=311311dx dy ,特征线为1c y x =-和23c y x =+。

二阶偏微分方程分类

二阶偏微分方程分类

二阶偏微分方程分类二阶偏微分方程是指含有两个独立变量的二阶偏导数的方程。

在数学中,它是一个重要的研究对象,具有广泛的应用领域,如物理学、工程学、生物学等。

本文将对二阶偏微分方程进行分类和介绍。

一、常系数二阶线性偏微分方程常系数二阶线性偏微分方程是指系数不随自变量变化而保持不变的二阶线性偏微分方程。

它们可以写成以下形式:$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} + cu = f(x,y)$$其中$a$、$b$、$c$为常数,$f(x,y)$为已知函数。

这类方程可以通过特征方程法求解。

二、非齐次线性偏微分方程非齐次线性偏微分方程是指右端项不为零的线性偏微分方程。

它们可以写成以下形式:$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$$其中$f(x,y)$为已知函数。

这类方程可以通过格林函数法求解。

三、椭圆型偏微分方程椭圆型偏微分方程是指二阶偏微分方程中的系数满足$b^2 - 4ac < 0$,即判别式小于零的方程。

它们可以写成以下形式:$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = f(x,y)$$其中$a$、$b$、$c$为常数,$f(x,y)$为已知函数。

这类方程在物理学中有广泛的应用,如热传导方程和电场方程等。

四、双曲型偏微分方程双曲型偏微分方程是指二阶偏微分方程中的系数满足$b^2 - 4ac > 0$,即判别式大于零的方程。

二阶偏微分方程的分类

二阶偏微分方程的分类

§3 二阶偏微分方程的分类一、二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程(1)式中a ij(x)=a ij(x1,x2,…,x n)为x1,x2,…,x n的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程称为二阶方程(1)的特征方程;这里a1,a2,…,a n是某些参数,且有.如果点x︒=(x1︒,x2︒,…,x n︒)满足特征方程,即则过x︒的平面的法线方向l:(a1,a2,…,a n)称为二阶方程的特征方向;如果一个(n)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n个自变量方程的分类与标准形式] 在点P(x1︒,x2︒,…,x n︒),根据二次型(a i为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P为椭圆型.(ii) 特征根都不为零,有n个具有同一种符号,余下一个符号相反,称方程在点P为双曲型.(iii) 特征根都不为零,有个具有同一种符号(n>m>1),其余m个具有另一种符号,称方程在点P为超双曲型.(iv) 特征根至少有一个是零,称方程在点P为抛物型.若在区域D内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D内是椭圆型、双曲型或抛物型.在点P作自变量的线性变换可将:椭圆型:双曲型:超双曲型:抛物型:式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为(2)a 11,a 12,a 22为x,y 的二次连续可微函数,不同时为零. 方程a11dy 2a 12dxdy+a 22dx 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线.在某点P(x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类:当Δ>0时,方程为双曲型;当Δ=0时,方程为抛物型;当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将:(i)(i)双曲型:因Δ>0,存在两族实特征曲线,,作变换,和或(ii)(ii)抛物型:因Δ=0,只存在一族实的特征曲线,取二次连续可微函数,使,作变换,,(iii)(iii)椭圆型:因Δ<0,不存在实特征曲线,设为的积分,不同时为零,作变量替换,,。

数学物理方程第四章_二阶线性偏微分方程的分类与总结

数学物理方程第四章_二阶线性偏微分方程的分类与总结

Q(l , m) = a11l 2 + 2a12lm + a22 m 2 = 0
的性质而定。由于这个曲线可以是椭圆、双曲线或抛物线, 的性质而定。由于这个曲线可以是椭圆、双曲线或抛物线,因此我们相应 地定义方程在一点的类型如下: 地定义方程在一点的类型如下: 若方程(4.1)的主部系数 a11 , a12 , a22 在区域Ω中某一点 0,y0)满足 的主部系数 中某一点(x 若方程 满足
§1-3 方程的分类
中每一点上均为双曲型, 如果方程在区域Ω中每一点上均为双曲型,那么我们称方程在区域Ω中是 双曲型的。类似的,对椭圆型和抛物型也有同样的定义。 双曲型的。类似的,对椭圆型和抛物型也有同样的定义。如果一个方程在 中的一部分区域表现为双曲型,在另一部分表现为椭圆型, 区域Ω中的一部分区域表现为双曲型,在另一部分表现为椭圆型,而在分 界面上表现为抛物型,那么, 中称为混合型的。 界面上表现为抛物型,那么,这样的方程在在区域Ω中称为混合型的。 ∂ 2 u ∂ 2u 举例: 举例:y + 2 =0 2 ∂x ∂y 容易看出,如果点(x 上方程(4.1)表现为双曲型或椭圆型,那么一定存 表现为双曲型或椭圆型, 容易看出,如果点 0,y0)上方程 上方程 表现为双曲型或椭圆型 在该点的一个领域,使方程在这个领域内是双曲型或椭圆型的。 在该点的一个领域,使方程在这个领域内是双曲型或椭圆型的。但如果这 个点上方程 方程(4.1)表现为抛物型,则不一定存在一个领域,使方程在这个领 表现为抛物型, 个点上方程 表现为抛物型 则不一定存在一个领域, 域内表现为抛物型。 域内表现为抛物型。 按照刚才的分类方法,很容易看出一维弦振动方程是双曲型的, 按照刚才的分类方法,很容易看出一维弦振动方程是双曲型的,一维热传 导方程是抛物型的,二维拉普拉斯方程是椭圆型的。前面我们已经知道, 导方程是抛物型的,二维拉普拉斯方程是椭圆型的。前面我们已经知道 , 以上三种方程描述的自然现象的本质不同,其解的性质也各异。 以上三种方程描述的自然现象的本质不同,其解的性质也各异。这也从侧 面说明了我们对二阶线性偏微分方程所进行的分类是有其深刻的原因的。 面说明了我们对二阶线性偏微分方程所进行的分类是有其深刻的原因的。 例如,空气动力学中,对于定常Euler方程而言,它在亚音速流动中表现为 方程而言, 亚音速流动中表现为 例如,空气动力学中,对于定常 方程而言 它在亚音速 椭圆型方程 方程, 超音速流动中表现为双曲型, 跨音速流动中表现为 流动中表现为双曲型 流动中表现为混合 椭圆型方程,在超音速流动中表现为双曲型,在跨音速流动中表现为混合 而对于非定常Euler方程而言,它始终表现为双曲型。 方程而言, 双曲型。 型。而对于非定常 方程而言 它始终表现为双曲型

二阶线性偏微分方程的分类与总结

二阶线性偏微分方程的分类与总结

第四章 二阶线性偏微分方程的分类与总结§1 二阶方程的分类1. 证明两个自变量的二阶线性方程经过可逆变换后它的类型不会改变,也就是说,经可逆变换后2211212a a a -=∆的符号不变。

证:因两个自变量的二阶线性方程一般形式为fcu u b u b u a u a u a y x yy xy xx =+++++212212112经可逆变换 ⎩⎨⎧==),(),(y x y x ηηξξ 0),(),(≠y x D D ηξ化为 f u c u b u a u a u a =++++ηηηξηξξ22212112其中 ⎪⎪⎩⎪⎪⎨⎧++=+++=++=22212211222212111222212211112)(2y y x x y y x y y x x x yy x x a a a a a a a a a a a a ηηηηηξηξηξηξξξξξ所以 y x y x y x y x x y y x a a a a a a a ηηξξηηξξηξηξ2211112222122221112222)(+-+=-=∆22221112222222211),(),())(()(⎥⎦⎤⎢⎣⎡∆=--=+-y x D D a a a a a x y y x y x y x ηξηξηξηξξη因0),(),(2>⎥⎦⎤⎢⎣⎡y x D D ηξ,故∆与∆同号,即类型不变。

2. 判定下述方程的类型(1)022=-yy xx u y u x (2)0)(2=++yy xx u y x u (3)0=+yy xx xyu u(4))010001(sgn 0sgn 2sgn ⎪⎩⎪⎨⎧<-=>==++x x x x xu u yu yyxy xx(5) 0424=+++-zz yy xz xy xx u u u u u 解:(1)022=-yy xx u y u x因 022>=∆y x 当0,0≠≠y x 时0,0=>∆x 或0=y 时0=∆。

二阶线性偏微分方程的分类与总结

二阶线性偏微分方程的分类与总结
在控制工程中,控制系统的传递函数往往可以表示为二阶线性偏微分方程,通过求解可以得到系统的稳定性、响应速度等性质。
要点一
要点二
信号处理
在信号处理中,信号的传递和处理往往涉及到二阶线性偏微分方程,例如差分方程、卷积等,通过求解可以得到信号的频谱、滤波效果等性质。
在工程中的应用
二阶线性偏微分方程的求解方法
在物理中的应用
化学反应速率
二阶线性偏微分方程可以描述化学反应的速率,例如反应速度与反应物浓度的关系,通过求解可以得到反应速率常数等参数。
化学振荡
某些化学反应会经历振荡现象,即反应物浓度周期性地变化,二阶线性偏微分方程可以描述这种现象,通过求解可以得到振荡的频率、幅度等性质。
Hale Waihona Puke 在化学中的应用控制工程
要点三
Laplace变换法是一种通过将时域问题转换到复域问题来求解二阶线性偏微分方程的方法。
概述
Laplace变换法
适用于具有初始条件、冲击激励等特殊性质的二阶线性偏微分方程,如RLC电路中的电压电流关系等。
适用范围
将原方程中的未知函数进行Laplace变换,得到复域中的解析解,再通过反变换得到时域中的解。
04
概述
适用范围
步骤
行波法
分离变量法
要点三
概述
分离变量法是一种通过将多变量问题分解为多个单变量问题来求解二阶线性偏微分方程的方法。
要点一
要点二
适用范围
适用于具有周期性、边界条件等特殊性质的二阶线性偏微分方程,如Sturm-Liouville方程等。
步骤
将原方程中的未知函数按照某种方式分解为多个单变量函数,通过对每个单变量函数分别求解,最终得到原方程的解。

二阶线性偏微分分类与总结

二阶线性偏微分分类与总结

§1 二阶线性偏微分方程的分类
§1.1 两个自变量的方程 §1.2 两个自变量的二阶线性
偏微分方程的化简
§1.3 方程的分类
§1 二阶线性偏微分方程的分类
§1-1 两个自变量的方程
遵循由简单到复杂的认知规律,我们先研究两个自变量的二 阶线性偏微分方程的分类问题。
前面遇到的一维热传导方程、弦振动方程和二维拉普拉斯 方程都是两个自变量的二阶线性偏微分方程。不过它们的形式 特殊,若用(x,y)记自变量,一般的二阶线性方程总可以写成如 下的形状
a11 0;。a22 0
这样就达到了简化方程(4.1)的主部的目的。下面考察这种 选取的可能性。
§1-2 两个自变量的二阶线性偏微分方程的化简
我们知道,方程(4.8)的求解可以转化为下述常微分方程在 (x,y)平面上的积分曲线问题:
a11(
dy dx
)2
2a12
dy dx
a22
0
4.9
设φ1(x,y)=c 是方程(4.9)的一族积分曲线,则z=φ1(x,y)是方程(4.8) 的一个解。称方程(4.9)的积分曲线为方程(4.8)的特征线,方程 (4.9)有时也称为方程(4.8)的特征方程。
课本上从物理角度对上述解的光滑性差异进行了解释。下面的图形形象 地反映了不同类型方程的解的光滑性。
2) 解的极值性质
热传导方程和拉普拉斯方程都存在极值原理,但它们所采 取的形式是有区别的。拉普拉斯方程解的极值只可能存在于 边界。至于热传导方程,区域内部的最大值不能超过区域初 始时刻和边界面上的最大值。双曲型方程通常不存在极值原 理,这是因为波在叠加时可以出现扰动增大的情况。
3) 影响区和依赖区
从影响区和依赖区来看,三类方程也有很大区别。波动方 程的扰动是以有限速度传播的,因而其影响区和依赖区是锥 体状的。对热传导方程而言,其扰动传播进行的十分迅速, 某个点的其影响区是该点以上的整个上半平面,依赖区是整 个初始值区间。拉普拉斯方程表示定常状态或平衡状态,因 此不存在扰动传播的问题。

阶线性偏微分方程的分类

阶线性偏微分方程的分类
数学物理方程 第2章二阶线性偏微分方程的分类与标准型
一、两个自变量的二阶线性偏微分方程的分类与标准型
两个自变量的二阶线性偏微分方程的一般形式
a11u xx 2a12u xy a22u yy b1u x b2u y cu f (2.1.1)
其中,a11, a12 , a22 ,b1,b2 , c, f 都是区域 上的实函数,
抛物型PDE (x, y) a122 a11a22 0
dy a12 dx a11
A11
a11( x
)2
2a12
x
y
a22 ( y
)2
A12 a11 x x a12 ( x y x y ) a22 y y
A22
a11
(
x
)2
2a12
x
y
a22
(
y
)2
(2.1.3)
可以看出,如果取一阶偏微分方程
a11
z
2 x
2a12 zx z y
a22
z
2 y
0
的一个特解作为 , 则
(2.1.2)
数学物理方程 第2章二阶线性偏微分方程的分类与标准型 数学物理方程 (x, y)
u(x, y) (x, y) u( , )
复合求导
u u u x x x u u u y y y
2u x 2
2u
2
( )2
x
2
2u
x
x
2u
2
( )2
x
u
2
a11 x2 2a12 xy a22 y 2 b1 x b2 y cu f 0
目的: 通过自变量的非奇异变换来简化方程的主部,
从而据此分类。

第四章 二阶线性偏微分方程的分类与总结

第四章 二阶线性偏微分方程的分类与总结

第四章 二阶线性偏微分方程的分类与总结§1 二阶方程的分类1. 证明两个自变量的二阶线性方程经过可逆变换后它的类型不会改变,也就是说,经可逆变换后2211212a a a -=∆的符号不变。

证:因两个自变量的二阶线性方程一般形式为fcu u b u b u a u a u a y x yy xy xx =+++++212212112经可逆变换 ⎩⎨⎧==),(),(y x y x ηηξξ0),(),(≠y x D D ηξ 化为 f u c u b u a u a u a =++++ηηηξηξξ22212112其中 ⎪⎪⎩⎪⎪⎨⎧++=+++=++=22212211222212111222212211112)(2y y x x y y x y y x x x yy x x a a a a a a a a a a a a ηηηηηξηξηξηξξξξξ所以 y x y x y x y x x y y xa a a a a a a ηηξξηηξξηξηξ2211112222122221112222)(+-+=-=∆22221112222222211),(),())(()(⎥⎦⎤⎢⎣⎡∆=--=+-y x D D a a a a a x y y x y x y x ηξηξηξηξξη因0),(),(2>⎥⎦⎤⎢⎣⎡y x D D ηξ,故∆与∆同号,即类型不变。

2. 判定下述方程的类型(1)022=-yy xx u y u x (2)0)(2=++yy xx u y x u (3)0=+yy xx xyu u(4))010001(sgn 0sgn 2sgn ⎪⎩⎪⎨⎧<-=>==++x x x x xu u yu yyxy xx(5) 0424=+++-zz yy xz xy xx u u u u u 解:(1)022=-yy xx u y u x因 022>=∆y x 当0,0≠≠y x 时0,0=>∆x 或0=y 时0=∆。

二阶线性偏微分方程的分类与小结6页word文档

二阶线性偏微分方程的分类与小结6页word文档

第六章 二阶线性偏微分方程的分类与小结一 两个自变量的二阶线性方程 1 方程变换与特征方程两个自变量的二阶线性偏微分方程总表示成fcu u b u b u a u a u a y x yy xy xx =+++++212212112 ①它关于未知函数u 及其一、二阶偏导数都是线性的,其中fu c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。

设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。

取自变量变换),(y x ξξ=,),(y x ηη=其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。

=∂∂),(),(y x ηξyx yx ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换,),(ηξx x =,),(ηξy y =因为x x x u u u ηξξξ+=,y y y u u u ηξξξ+= xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)(将代入①使其变为F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。

并可验证222112122211212))((x y y x a a a A A A ηξηξ--=-这表明,在可逆变换下22211212A A A -与2211212a a a -保持相同的正负号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章二阶线性偏微分方程的分类本章将介绍二阶线性偏微分方程的基本概念、分类方法和偏微分方程的标准化. 特别对于常系数的二阶线性偏微分方程的化简方法也进行了详细讨论,这对后面的偏微分方程求解是十分有用的.13.1 基本概念(1)偏微分方程含有未知多元函数及其偏导数的方程,如22222(,,,,,,,,,,)0u u u u u F x y u x y x y x y∂∂∂∂∂⋅⋅⋅⋅⋅⋅⋅⋅⋅=∂∂∂∂∂∂其中(,,)u x y ⋅⋅⋅是未知多元函数,而,,x y ⋅⋅⋅是未知变量;,,u u x y ∂∂⋅⋅⋅∂∂为u 的偏导数. 有时为了书写方便,通常记22,,,,x y xx u u u u u u x y x∂∂∂==⋅⋅⋅=⋅⋅⋅∂∂∂(2)方程的阶偏微分方程中未知函数偏导数的最高阶数称为方程的阶.(3)方程的次数偏微分方程中最高阶偏导数的幂次数称为偏微分方程的次数.(4)线性方程一个偏微分方程对未知函数和未知函数的所有偏导数的幂次数都是一次的,就称为线性方程,高于一次以上的方程称为非线性方程.(5)准线性方程一个偏微分方程,如果仅对方程中所有最高阶偏导数是线性的,则称方程为准线性方程.(6)自由项在偏微分方程中,不含有未知函数及其偏导数的项称为自由项.例13.1.2:方程的通解和特解概念二阶线性非齐次偏微分方程2xy u y x =−的通解为221(,)()()2u x y xy x y F x G y =−++其中(),()F x G y 是两个独立的任意函数.因为方程为例13.1.1:偏微分方程的分类(具体见课本P268)2241(,)252sin 2u x y xy x y x y =−+−+称为方程的特解.n 阶常微分方程的通解含有n 个任意常数,而n 阶偏微分方程的通解含有n 个任意函数.二阶的,所以是两个任意的函数.若给函数(),()F x G y 指定为特殊的4()25,()2sin F x x G y y =−=,则得到的解在数学物理方程的建立过程中,我们主要讨论了三种类型的偏微分方程:波动方程;热传导方程;稳定场方程.这三类方程描写了不同物理现象及其过程,后面我们将会看到它们的解也表现出各自不同的特点.我们在解析几何中知道对于二次实曲线22ax bxy cy dx ey f +++++=其中,,,,,a b c d e f 为常数,且设24b ac δ=−13.2二阶线性偏微分方程的分类上述二次曲线分别为双曲线、抛物线和椭圆.受此启发,下面我们来对二阶线性偏微分方程进行分类.下面主要以含两个自变量的二阶线性偏微分方程为例,进行理论分析.而对于更多个自变量的情形尽管要复杂一些,但讨论的基本方法是一样的.两个自变量(x, y )的二阶线性偏微分方程所具有的普遍形式为0,0,0δ>=<则当时,22222(,)(,)(,)(,)(,)(,)(,)u u u u u A x y B x y C x y D x y E x y F x y u G x y x x y y x y ∂∂∂∂∂+++++=∂∂∂∂∂∂(13.2.1)其中,,,,,,A B C D E F G 为(,)x y 的已知函数.定义为方程13.2.1的特征方程22(d )d d +(d )0A yB y xC x −=(13.2.3)它所对应的积分曲线族称为特征曲线族在具体求解方程(13.2.3)时,需要分三种情况讨论判别式24B AC ∆=−当判别式240B AC ∆=−>时,从方程(13.2.3)可以求得两个实函数解12(,) (,) x y C x y C φψ==及也就是说,偏微分方程(13.2.1)有两条实的特征线.于是,令13.2.1双曲型偏微分方程作变换并代入原方程原偏微分方程(13.2.1)变为:此变换是可逆的(,), (,)x y x y ξφηψ==2(,,,,)0u u u u ξηξηξη∂∂∂+Φ=∂∂∂∂21111((,)(,13.2.)(,)(,)4)u D u E u F u G ξηξηξηξηξηξη∂=+∂∂++或表示为此方程称为双曲线偏微分方程的第一种标准形式偏微分方程(13.2.4)变为:111122**22**(,(13.2)(,)(,)(.5),)u u D u E u F u G αβαβαβαβαβαβ∂∂−=+∂∂++2222(,,,,)u u u u u αβαβαβ∂∂∂∂−=Φ∂∂∂∂或表示为此方程称为双曲型偏微分方程的第二种标准形式2(,)tt xx u a u f x t =+波动方程即为双曲型偏微分方程或者进一步作变换,αξηβξη=+=−,22αβαβξη+−==或例13.2.1 原偏微分方程为:板书讲解解:△补充例题:学生自己先做,再演示答案222222y x 0x yu u ∂∂−=∂∂试将方程 化为标准方程。

当判别式240B AC ∆=−=时,方程(13.2.3)一定有重根d d 2y B x A=,所以特征曲线是一族实函数曲线.其特征方程的解为(,)x y c φ=因此令(,), x y y ξφη==作变换,则原方程变为13.2.2抛物型偏微分方程--------13.2.6此方程称为抛物型偏微分方程的标准形式222222(,)(,)(,)(,)u D u E u F u G ξηξηξηξηξηη∂=++−∂22(,,,,)0u u u u ξηηξη∂∂∂+Φ=∂∂∂热传导(扩散)方程就属于这种类型.u t = a 2u xx + f(x,t)抛物型方程又可记为例13.2.2 原偏微分方程为:板书讲解当判别式240B AC ∆=−<时,如上讨论得到特征方程的解为偏微分方程(13.2.1)的两条特征线是一对共轭复函数族13.2.3椭圆型偏微分方程12(,)i (,); (,)i (,)x y x y c x y x y c φψφψ+=−=(,), (,)x y x y ξφηψ==若令作变换,则偏微分方程变为上式称为椭圆型偏微分方程的标准形式.22333322(,)(,)(,)(,)u u D u E u F u G ξηξηξηξηξηξη∂∂+=++−∂∂-----13.2.7椭圆型方程又可记为如下形式.22(,,,,)0u u u u ξηηξη∂∂∂+Φ=∂∂∂22u ξ∂+∂2222220U U U x y z ρε∂∂∂++=−∂∂∂拉普拉斯(Laplace)方程、泊松(Poisson)方程等都属于这种类型.静电场的电势方程----泊松(Poisson)方程例13.2.3 原偏微分方程为:板书讲解§13.3 二阶线性常系数偏微分方程的进一步化简如果二阶偏微分方程的系数是常数,则标准形式的方程还可以进一步化简.下面按三种类型分别介绍化简的方法13.3.1双曲型对于下列含常系数的第一种标准形式的双曲型标准方程还可进一步化简21111(,)u u ud e f u G ξηξηξη∂∂∂=++−∂∂∂∂111,,d e f 1(,)G ξη11(,)(,)e d u eξηξηξη+=v 注:上式中用小写字母代表常系数,以便与我们不妨令大写字母代表某函数区别开来, 例如.为了化简,从而有211(,)h J ξηξη∂=−∂∂vv (10.4.2)其中11()111111, (,)(,)e d h d e f J G eξηξηξη−+=+=由第二种标准形式的双曲型偏微分方程(含常系数)可以进一步化简22****111122(,)u u u u d e f u G ξηξηξη∂∂∂∂−=++−∂∂∂∂(10.4.3)式中***111,,d e f均为常系数.若令**11(,)(,)e d u eξηξηξη+=v 则有(10.4.4)22**1122(,)h J ξηξη∂∂−=−∂∂v v v (10.4.5)其中**11()***2*2****111111112, (,)(,)e d h f e d e d J G eξηξηξη−+=−++=对于含常系数的抛物型偏微分标准方程(含常系数)222222(,)u u ud e f u G ξηηξη∂∂∂=++−∂∂∂还可以进一步化简.上式中小写字母222,,d e f 均为常系数.为了化简,不妨令22(,)(,)e d u e ξηξηξη+=v 从而有2222(,)h J ξηη∂=−∂vv 13.3.12抛物型13.3.3椭圆型对于下列第一种标准形式的椭圆型标准方程(含常系数)22333322(,)u u u ud e f u G ξηξηξη∂∂∂∂+=++−∂∂∂∂还可以进一步进行化简.上式中小写字母的333,,d e f 为常系数.为了化简,不妨令33(,)(,)e d u eξηξηξη+=v 从而有233(,)h J ξηξη∂=−∂∂vv 其中33()2333333(), (,)(,)e d h f e d J G e ξηξηξη−+=−−=含有两个自变量的线性偏微分方程的一般形式也可以写成下面的形式:[](,)L u G x y =其中L 是二阶线性偏微分算符,G 是x,y 的函数.线性偏微分算符有以下两个基本特征:11221122[][];[][][];L cu cL u L c u c u c L u c L u =+=+§13.5 二阶线性偏微分方程的特征其中12,,c c c 均为常数.进一步有如下结论:1.齐次的线性偏微分方程的解有以下特性:u cu 为方程的解时,则也为方程的解;(1).当也是方程的解;12,u u 1122c u c u +为方程的解,则(2)若(3)线性偏微分方程的叠加原理(4)线性偏微分方程的积分解叠加原理是线性偏微分方程具有一个非常重要的特性k u [] (1,2,)k L u f k ==⋅⋅⋅即若是方程(其中L 是二阶线性偏微分算符)的解.如果级数1k kk u c u ∞==∑收敛,且二阶偏导数存在(其中(1,2,)k c k =⋅⋅⋅为任意常数),则1k kk u c u ∞==∑一定是方程1[] kk k L u cf ∞==∑的解(当然要假定这个方程右端的级数是收敛的).3.非齐次的线性偏微分方程的解具有如下特性:IIIu u+为非齐次方程的通解;IuIIu 为非齐次方程的特解,为齐次方程的通解,则(1)若(2) 若1122[](,),[](,),L u H x y L u H x y ==则1212[](,)(,)L u u H x y H x y +=+二阶线性偏微分方程总结基本概念分类与化标准形式进一步化简解的特性作业习题13.1 a c。

相关文档
最新文档