苏科版数学七年级下册:7.4认识三角形

合集下载

苏科版数学七年级下册7.4.1《认识三角形》说课稿

苏科版数学七年级下册7.4.1《认识三角形》说课稿

苏科版数学七年级下册7.4.1《认识三角形》说课稿一. 教材分析《认识三角形》是苏科版数学七年级下册第7章第4节第1课时的一节新授课。

本节课的主要内容有三角形的概念、三角形的性质和三角形的判定。

本节课是在学生已经学习了直线、射线、线段的基础上进行的,是学生进一步学习几何图形的基础。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对直线、射线、线段有一定的了解,但对于三角形的概念和性质可能还比较陌生。

因此,在教学过程中,我需要引导学生通过观察、操作、思考、交流等方式,建立三角形的概念,理解三角形的性质。

三. 说教学目标1.知识与技能目标:使学生掌握三角形的概念,理解三角形的性质,学会用三角形的性质判定三角形。

2.过程与方法目标:培养学生观察、操作、思考、交流的能力,提高学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学与生活的联系。

四. 说教学重难点1.教学重点:三角形的概念和性质。

2.教学难点:三角形性质的证明和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等。

2.教学手段:利用多媒体课件、几何画板等辅助教学。

六. 说教学过程1.导入:通过展示生活中的三角形图片,引导学生回顾已学的直线、射线、线段知识,激发学生的学习兴趣,引出本节课的主题——认识三角形。

2.自主学习:让学生自主阅读教材,理解三角形的概念,培养学生独立学习的能力。

3.合作交流:学生进行小组讨论,探讨三角形的性质,引导学生通过交流、思考、操作等活动,掌握三角形的性质。

4.教师讲解:对学生的探究结果进行总结,讲解三角形的性质,并通过几何画板演示三角形的性质,帮助学生建立直观的空间想象能力。

5.练习巩固:设计一些具有针对性的练习题,让学生运用所学的知识解决问题,提高学生的应用能力。

6.课堂小结:让学生回顾本节课所学的内容,总结三角形的性质,培养学生的归纳总结能力。

苏科版七年级数学下册目录

苏科版七年级数学下册目录

苏科版七年级数学下册目录教材作为七年级数学教学的重要媒介,在课堂教学中有着至关重要的作用,那么数学教材目录主要有什么知识?小编整理了关于苏科版七年级数学下册目录,希望对大家有帮助!苏科版七年级数学下册课本目录第七章平面图形的认识(二)7.1 探索直线平行的条件7.2 探索平行线的性质7.3 图形的平移7.4 认识三角形7.5 三角形的内角和第八章幂的运算8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8.3 同底数幂的除法第九章从面积到乘法公式9.1 单项式乘单项式9.2 单项式乘多项式9.3 多项式乘多项式9.4 乘法公式9.5 单项式乘多项式法则的再认识------因式分解(一)9.6 乘法公式的再认识------因式分解(二)第十章二元一次方程10.1 二元一次方程10.2 二元一次方程组10.3 解二元一次方程组10.4 用方程组解决问题第十一章图形的全等11.1 全等图形11.2 全等三角形11.3 探索三角形全等的条件第十二章数据在我们身边12.1 普查与抽样调查12.2 统计图的选用12.3 频数分布表和频数分布图第十三章感受概率13.1 确定与不确13.2 可能性七年级数学三角形复习内容1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。

2、三角形的性质1)三角形的任意两边之和大于第三边(由此得三角形的两边的差一定小于第三边)2)三角形三个内角的和等于180度(在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度)(一个三角形的3个内角中最少有2个锐角)3)直角三角形的两个锐角互余4)三角形的一个外角等于与它不相邻的两个内角之和(三角形的一个外角大于任何一个与它不相邻的内角) 5)等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一6)三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点7)三角形的外角和是360°8)等底等高的三角形面积相等9)三角形的任意一条中线将这个三角形分为两个面积相等的三角形。

苏科版2020-2021学年七年级数学下册7.4认识三角形考点同步训练(含答案)

苏科版2020-2021学年七年级数学下册7.4认识三角形考点同步训练(含答案)

苏科版2020-2021 学年七年级数学下册7.4 认识三角形考点同步训练考点一.三角形:1.如图,图中直角三角形共有()A.1 个B.2 个C.3 个D.4 个2.某同学在纸上画了四个点,如果把这四个点彼此连接,连成一个图形,则这个图形中会有个三角形出现.3.如图,直角三角形的个数为.4.过A、B、C、D、E 五个点中任意三点画三角形;(1)其中以AB 为一边可以画出个三角形;(2)其中以C 为顶点可以画出个三角形.考点二.三角形的角平分线、中线和高:5.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A.B.C.D.6.以下是四位同学在钝角三角形△ABC 中画AC 边上的高,其中正确的是()A.B.C.D.7.在数学课上,同学们在练习画边AC 上的高时,出现下列四种图形,其中正确的是()A.B.C.D.8.如图,△ABC 中,∠BAC 是钝角,AD⊥BC、EB⊥BC、FC⊥BC,则下列说法正确的是()A.AD 是△ABC 的高B.EB 是△ABC 的高C.FC 是△ABC 的高D.AE、AF 是△ABC 的高9.如图,已知P 为直线l 外一点,点A、B、C、D 在直线l 上,且PA>PB>PC>PD,下列说法正确的是()A.线段PD 的长是点P 到直线l 的距离B.线段PC 可能是△PAB 的高C.线段PD 可能是△PBC 的高D.线段PB 可能是△PAC 的高10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形11.如图,在四边形ABCD 中,AB∥CD,3AB=4AD=6CD,E 为AB 的中点.萧钟同学用无刻度的直尺先连接CE 交BD 于点F,再连接AF.则线段AF 是△ABD 的()A.中线B.高线C.角平分线D.中线、高线、角平分线(三线合一)12.如图,D、E 分别是△ABC 的边AC、BC 的中点,则下列说法不正确的是()A.DE 是△ABC 的中线B.BD 是△ABC 的中线C.AD=DC,BE=EC D.DE 是△BCD 的中线13.如图,AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A,在△ABC 中,AB边上的高为()A.AD B.GA C.BE D.CF14.如图,在△ABC 中,∠ACB=60°,∠BAC=75°,AD⊥BC 于D,BE⊥AC 于E,AD 与BE 交于H,则∠CHD=.15.在△ABC 中,AC=5cm,AD 是△ABC 中线,若△ABD 周长与△ADC 的周长相差2cm,则BA=cm.16.如图,在△ABC 中(AB>BC),AB=2AC,AC 边上中线BD 把△ABC 的周长分成30和20 两部分,求AB 和BC 的长.17.如图,△ABC 的周长是21cm,AB=AC,中线BD 分△ABC 为两个三角形,且△ABD的周长比△BCD 的周长大6cm,求AB,BC.18.已知:∠MON=40°,OE 平分∠MON,点A、B、C 分别是射线OM、OE、ON 上的动点(A、B、C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO 的度数是;②当∠BAD=∠ABD 时,x=;当∠BAD=∠BDA 时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.考点三.三角形的面积:19.如图,AD 是△ABC 的中线,DE 是△ADC 的高线,AB=3,AC=5,DE=2,那么点D 到AB 的距离是()A. B. C. D.2 20.如图,在△ABC 中,已知点E、F 分别是AD、CE 边上的中点,且S△BEF=4cm2,则S△ABC 的值为()A.1cm2 B.2cm2 C.8cm2 D.16cm221.已知AD 是△ABC 的中线,BE 是△ABD 的中线,若△ABC 的面积为18,则△ABE 的面积为(A.5 )B.4.5C.4 D.922.如图,D,E,F 分别是边BC,AD,AC 上的中点,若S 四边形的面积为3,则△ABC的面积是()A.5 B.6 C.7 D.8 23.如图,长方形ABCD 中,AB=4cm,BC=3cm,点E 是CD 的中点,动点P 从A 点出发,以每秒1cm 的速度沿A→B→C→E 运动,最终到达点E.若点P 运动的时间为x 秒,那么当x =时,△APE 的面积等于5.24.把一张三角形的纸折叠成如图后,面积减少,已知阴影部分的面积是50 平方厘米,则这张三角形纸的面积是平方分米.考点四.三角形的稳定性:25.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角26.下列图形中不具有稳定性是()A.B.C.D.27.用八根木条钉成如图所示的八边形木架,要使它不变形,至少要钉上木条的根数是()A.3 根B.4 根C.5 根D.6 根考点五.三角形的重心:28.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点29.在Rt△ABC 中,AD 是斜边BC 边上的中线,G 是△ABC 重心,如果BC=6,那么线段AG 的长为.考点六.三角形三边关系:30.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3 31.如图,为估计池塘岸边A、B 两点的距离,小方在池塘的一侧选取一点O,测得OA=15 米,OB=10 米,A、B 间的距离不可能是()A.5 米B.10 米C.15 米D.20 米32.已知关于x 的不等式组至少有两个整数解,且存在以3,a,7 为边的三角形,则a 的整数解有()A.4 个B.5 个C.6 个D.7 个33.若a、b、c 为△ABC 的三边长,且满足|a﹣4|+=0,则c 的值可以为()A.5 B.6 C.7 D.834.已知三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.12 D.1635.△ABC 中,AB=10,BC=2x,AC=3x,则x 的取值范围.36.在△ABC 中,若AB=4,BC=2,且AC 的长为偶数,则AC=.37.若a、b、c 为三角形的三边,且a、b 满足+(b﹣2)2=0,第三边c 为奇数,则c=.38.三角形的两边长分别是3 和4,第三边长是方程x2﹣13x+40=0 的根,则该三角形的周长为.39.如图:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.40.在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,则AD 的取值范围是.参考答案1.解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3 个,故选:C.2.解:∵①当四个点共线时,不能作出三角形;②当三个点共线,第四个点不在这条直线上时,能够画出3 个三角形;③若4 个点能构成凹四边形,则能画出4 个三角形;④当任意的三个点不共线时,则能够画出8 个三角形.∴0 或3 或4 或8.3.解:如图,直角三角形有:△ADC、△BCD、△CDE、△BDE、△ACE、△ACB,一共6 个,故答案为:6.4.解:(1)如图,以AB 为一边的三角形有△ABC、△ABD、△ABE 共3 个;(2)如图,以点C 为顶点的三角形有△ABC、△BEC、△BCD、△ACE、△ACD、△ CDE 共6 个.故答案为:(1)3,(2)6.5.解:B,C,D 都不是△ABC 的边BC 上的高,故选:A.6.解:A、高BD 交AC 的延长线于点D 处,符合题意;B、没有经过顶点B,不符合题意;C、做的是BC 边上的高线AD,不符合题意;D、没有经过顶点B,不符合题意.故选:A.7.解:AC 边上的高应该是过B 作垂线段AC,符合这个条件的是C;A,B,D 都不过B 点,故错误;故选:C.8.解:△ABC 中,画BC 边上的高,是线段AD.故选:A.9.解:A.线段PD 的长不一定是点P 到直线l 的距离,故本选项错误;B.线段PC 不可能是△PAB 的高,故本选项错误;C.线段PD 可能是△PBC 的高,故本选项正确;D.线段PB 不可能是△PAC 的高,故本选项错误;故选:C.10.解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.11.解:∵3AB=6CD,E 为AB 的中点,∴CD=AB,BE=AB,∴CD=BE,又∵AB∥CD,∴∠EBF=∠CDF,又∵∠EFB=∠CFD,∴△BEF≌△DCF(AAS),∴BF=DF,∴线段AF 是△ABD 的中线,故选:A.12.解:∵D、E 分别是△ABC 的边AC、BC 的中点,∴DE 是△ABC 的中位线,不是中线;BD 是△ABC 的中线;AD=DC,BE=EC;DE 是△BCD 的中线;故选:A.13.解:∵AB 边上的高是指过顶点C 向AB 所在直线作的垂线段,∴在AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A 中,只有CF 符合上述条件.故选:D.14.解:延长CH 交AB 于点H,在△ABC 中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH 中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.15.解:如图,∵AD 是△ABC 中线,∴BD=CD,∴△ABD 周长﹣△ADC 的周长=(BA+BD+AD)﹣(AC+AD+CD)=BA﹣AC,∵△ABD 周长与△ADC 的周长相差2cm,∴|BA﹣5|=2,∴解得BA=7 或3.故答案为:3 或7.16.解:设AC=x,则AB=2x,∵BD 是中线,∴AD=DC=x,由题意得,2x+x=30,解得,x=12,则AC=12,AB=24,∴BC=20﹣×12=14.答:AB=24,BC=14.17.解:∵BD 是中线,∴AD=CD=AC,∵△ABD 的周长比△BCD 的周长大6cm,∴(AB+AD+BD)﹣(BD+CD+BC)=AB﹣BC=6cm①,∵△ABC 的周长是21cm,AB=AC,∴2AB+BC=21cm②,联立①②得:AB=9cm,BC=3cm.18.解:(1)①∵∠MON=40°,OE 平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°,②∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°,∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°;故答案为:①20°;②120,60;(2)①当点D 在线段OB 上时,∵OE 是∠MON 的角平分线,∴∠AOB=∠MON=20°,∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20若∠BAD=∠BDA=(180°﹣70°)=55°,则x=35若∠ADB=∠ABD=70°,则∠BAD=180°﹣2×70°=40°,∴x=50②当点D 在射线BE 上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x=20、35、50、125.19.解:∵AC=5,DE=2,∴△ADC 的面积为=5,∵AD 是△ABC 的中线,∴△ABD 的面积为5,∴点D 到AB 的距离是.故选:A.20.解:∵由于E、F 分别为AD、CE 的中点,∴△ABE、△DBE、△DCE、△AEC 的面积相等,∴S△BEC=2S△BEF=8(cm2),∴S△ABC=2S△BEC=16(cm2).故选:D.21.解:∵AD 是△ABC 的中线,∴S△ABD=S△ABC=×18=9,∵BE 是△ABD 的中线,∴S△ABE=S△ABD=×9=4.5.故选:B.22.解:∵D 为BC 的中点,∴S△ABD=S△ACD=S△ABC,∵E,F 分别是边AD,AC 上的中点,∴S△BDE=S△ABD,S△ADF=S△ADC,S△DEF=S△ADF,∴S△BDE=S△ABC,S△DEF=S△ADC=S△ABC,S△BDE+S△DEF=S△ADC+ S△ABC=S△ABC,∴S△ABC=S 阴影部分=×3=8.故选:D.23.解:①如图1,当P 在AB 上时,∵△APE 的面积等于5,∴x•3=5,x=;②当P 在BC 上时,∵△APE 的面积等于5,∴S 长方形ABCD﹣S△CPE﹣S△ADE﹣S△ABP=5,∴3×4﹣(3+4﹣x)×2﹣×2×3﹣×4×(x﹣4)=5,x=5;③当P 在CE 上时,∴ (4+3+2﹣x)×3=5,x=<3+4,此时不符合;故答案为:或5.24.解:∵折叠后面积减少,∴阴影部分的面积占三角形纸的面积的(1﹣﹣)=,∴三角形纸的面积=50÷ =200 平方厘米=2 平方分米.故答案为:2.25.解:加上EF 后,原图形中具有△AEF 了,故这种做法根据的是三角形的稳定性.故选:B.26.解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然B 选项中有四边形,不具有稳定性.故选:B.27.解:过八边形的一个顶点作对角线,可以做5 条,把八边形分成6 个三角形,因为三角形具有稳定性.故选:C.28.解:三角形的重心是三条中线的交点,故选:A.29.解:∵AD 是斜边BC 边上的中线,∴AD=BC=×6=3,∵G 是△ABC 重心,∴=2,∴AG=AD=×3=2.故答案为2.30.解:3+4<8,则3,4,8 不能组成三角形,A 不符合题意;5+6=11,则5,6,11 不能组成三角形,B 不合题意;5+6>10,则5,6,10 能组成三角形,C 符合题意;1+2=3,则1,2,3 不能组成三角形,D 不合题意,故选:C.31.解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B 间的距离在 5 和25 之间,∴A、B 间的距离不可能是5 米;故选:A.32.解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式组至少有两个整数解,∴a>5,又∵存在以3,a,7 为边的三角形,∴4<a<10,∴a 的取值范围是5<a<10,∴a 的整数解有4 个,故选:A.33.解:∵|a﹣4|+ =0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5 符合条件;故选:A.34.解:设第三边的长为x,∵三角形两边的长分别是4 和10,∴10﹣4<x<10+4,即6<x<14.故选:C.35.解:根据题意得:3x﹣2x<10<3x+2x,解得:2<x<10.故答案为:2<x<10.36.解:因为4﹣2<AC<4+2,所以2<AC<6,因为AC 长是偶数,所以AC 为4,故答案为:4.37.解:∵a、b 满足+(b﹣2)2=0,∴a=9,b=2,∵a、b、c 为三角形的三边,∴7<c<11,∵第三边c 为奇数,∴c=9,故答案为9.38.解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3 和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.39.证明:延长ED 到H,使DE=DH,连接CH,FH,∵AD 是△ABC 的中线,∴BD=DC,∵DE、DF 分别为∠ADB 和∠ADC 的平分线,∴∠1=∠2=∠ADB,∠3=∠4=∠ADC,∴∠1+∠4=∠2+∠3=∠ADB+ ∠ADC=×180°=90°,∵∠1=∠5,∴∠5+∠4=90°,即∠EDF=∠FDH=90°,在△EFD 和△HFD 中,,∴△EFD≌△HFD(SAS),∴EF=FH,在△BDE 和△CDH 中,,∴△BDE≌△CDH(SAS),∴BE=CH,在△CFH 中,由三角形三边关系定理得:CF+CH>FH,∵CH=BE,FH=EF,∴BE+CF>EF.40.解:如图,延长AD 到E,使DE=AD,∵AD 是BC 边上的中线,∴BD=CD,在△ABD 和△ECD 中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=5,AC=3,∴5﹣3<AE<5+3,即2<AE<8,1<AD<4.故答案为:1<AD<4.。

七年级数学下册 7.4 认识三角形测试题(新版)苏科版-(新版)苏科版初中七年级下册数学试题

七年级数学下册 7.4 认识三角形测试题(新版)苏科版-(新版)苏科版初中七年级下册数学试题

认识三角形一选择题:1.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个2.在△ABC中,画出边AC上的高,下面4幅图中画法正确的是()A.B. C. D.3.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( )A.16 B.14 C.12 D.104.三角形两边长为6与8,那么周长的取值X围()A.2<<14 B.16<<28 C.14<<28 D.20<<245.如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.126.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40° B.30° C.20° D.10°7.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值X围是()A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定A.3<<8B.5<<11C.6<<10D.8<<119.一个多边形的外角和是内角和的,这个多边形的边数为( )A.5 B.6 C.7 D.810.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于 ( )A.10 B.7 C.5 D.411.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=25°,则∠BDC 等于()A.60° B.60° C.70° D.75°12.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°13.如图,∠1,∠2,∠3,∠4恒满足的关系是( )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠314.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A. B.C. D.15.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90° B.100° C.130° D.180°16.如图所示,分别以边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为()A. B. C.D.17.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个C.5个D.6个18.一个六边形的六个内角都是120o,连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( ) A. 13 B. 14 C. 15 D. 1619.如图,P为边长为2的正三角形内任意一点,过P点分别做三边的垂线,垂足分别为D,E,F,则PD+PE+PF 的值为( )A.B. C.2 D.20.图1为一X三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:8二填空题:21.已知三角形的边长分别为4、a、8,则a的取值X围是;如果这个三角形中有两条边相等,那么它的周长为.22.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是23.一个多边形的每一个内角为108°,则这个多边形是边形,它的内角和是.24.如图在△ABC中,∠A=50°,∠ABC的角平分线与∠ACB的外角平分线交于点D,则∠D的度数为.25.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=______.则∠P=_________°.27.如图,在四边形ABCD中,∠ɑ,∠β分别是∠BAD、∠BCD相邻的补角,∠B+∠CDA=140°,则∠ɑ+∠β等于________________.28.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F=.29.如图,已知∠A=ɑ,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC 的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=.(用含ɑ的式子表示)30.如图,在四边形ABDC中,∠BAC=90°,AB=2,AC=4,E、F分别是BD、CD的三等分点,连接AE、AF、EF.若四边形ABDC的面积为7,则△AEF的面积为.三简答题:31.若是的三边的长,化简.32.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28,AB=20cm,AC=8cm,求DE的长.33.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10cm,BC=8cm,AC=6cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.34.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.35.一个凸多边形,除了一个内角外,其余各内角的和为2 750°,求这个多边形的边数.36.如图所示,已知BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,且与BD交于点D;(1)若∠ABC=60°,∠DCE=70°,则∠D=°;(2)若∠ABC=70°,∠A=80°,则∠D=°;(3)当∠ABC和∠ACB在变化,而∠A始终保持不变,则∠D是否发生变化?为什么?由此你能得出什么结论?(用含∠A的式子表示∠D)37.我们知道三角形一边上的中线将这个三角形分成两个面积相等的三角形.如图,AD是△ABC边BC上的中线,则S△ABD=S△ACD.(1)如图2,△ABC的中线AD、BE相交于点F,△ABF与四边形CEFD的面积有怎样的数量关系?为什么?(2)如图,在△ABC中,已知点D、E、F分别是线段BC、AD、CE的中点,且S△ABC=8,求△BEF的面积S△BEF。

七年级数学下册教案-7.4 认识三角形5-苏科版

七年级数学下册教案-7.4 认识三角形5-苏科版

8.《认识三角形》实验设计
实验目的:
经历操作、探究的过程,从中感悟并探究三角形的三边关系。

实验准备:
3cm、4 cm、5 cm、6 cm、9 cm的小木棒各一根
实验过程:
1.提出问题:一个三角形由三条边组成,是不是任意长度的三条线段首尾顺次相接都可以构成一个三角形呢?
2.实验操作:从准备好的5根小棒中任意选3根,首尾相接摆三角形,组长作好记录,并做好表中计算。

3.合作探究:小组合作交流,分析构成三角形的三条线段的长度之间的关系,探究满足怎样的数量关系的三根小棒能组成三角形。

(小组代表汇报)
4.猜想结论:对汇报结果总结,猜想结论。

5.验证结论:用所学知识对所提猜想进行证明。

小组交流汇报。

自我评价:。

7.4认识三角形(2)课件

7.4认识三角形(2)课件

议一议
钝角三角形和直角三角形的三条中线 也有同样的位置关系吗? 画一画,并与 同伴进行交流。
锐角三角形
直角三角形
钝角三角形
经过动手画和讨论我们发现:
1、通过这节课的学 习活动你有哪些收获? 2、你还有什么想法 吗?
C
议一议
思考
在每个三角形中,这三条角平 分线之间有怎样的位置关系? 将你的结果与同伴进行交流.
结论:
经过动手画和讨论我们发现:
二、新课探究 A
如右图所示,取△ABC 边BC的中点D,连结AD, B 线段AD就是△ABC的一 条中线;
、 D
C
BD=CD
注意:三角形 的中线是线段
也称AD为边BC上 的中线。
初中数学七年级下册 (苏科版)
7.4 认识三角形(2)

想一想
1、还记得如何画过一点做直线的垂线吗?
0 1 2 3 4 5 0 1 2 3 4 5
O
A
0
1
2
3
4
5
6
0 7 8 9 10
1
2 03 1 4 2 5 3
4
5
B

想一想
2、你还记得如何画角的平分线吗?
A
C 2 O B
1
∠1=∠2

想一想
3、你还记得如何画线段的中点吗?
A
0 1 2 3 4
·
O
6 5
B
8 9 10
7
AO=BO
二、新课探究 A
过顶点A作△ABC 边BC的垂线,垂足 为D,线段AD就是 △ABC的一条高,也 叫做BC边上的高。
B
D
C
注意:1、三角形 的高是线段 2、不要忘记标上 的特点:

7.4认识三角形(1)

7.4认识三角形(1)

所有内角都是锐角的三角形———— 锐角三角形
有一个内角是直角的三角形———— 直角三角形
有一个内角是钝角的三角形———— 钝角三角形




⑤ 锐角三角形
③ ⑤
⑥ 直角三角形 ① ④ ⑥
⑦ 钝角三角形 ② ⑦







每组共有四根电线,2cm、4cm、 8cm、11cm,试着摆一个三角形,看谁 先摆好.
为什么 呢?
三角形的任意两边之和大于第三边.
A
c
b
B
a
C
两点之间线段最短.
你知 道为 什么 吗?
三角形的任意两边之差小于第三边.
A
任意 两边之和大于第三边.
b
a
B
任意 两边之差小于第三边.
C
c
你是如何 理解的?
1、三条线段的长度分别为:
(1)3、8、10 (2)5、2、7
(3)5、5、11 (4)13、12、20
A
B
C
D
A
三角形ABC
b
c
记作:△ABC
三角形的顶点: A、B、C
C
B
a
三角形的内角:∠A 、 ∠B 、 ∠C
三角形的边:AB、AC、BC
c
b
a
观察后来写一写

若将房屋顶的框架图抽象成一个几何 图形,标出字母,请聪明的你尽可能 多的表示这些三角形.
A F B
G
C
D
E
知识再现:
(b c a b c
2. 有3、5、7、10四根木条,要摆出 一个三角形,有(B)种摆法。

最新苏科版数学七年级下册《7.4 认识三角形》精品教学课件 (6)

最新苏科版数学七年级下册《7.4 认识三角形》精品教学课件 (6)

B
DC
注意:1、三角形的高是 线段 2、不要忘记标上垂足和 垂直符号
苏科版初中数学精品教学课件设计
议一议
(1) 在纸上画出一个锐角三角形,并画出它的三条高. 它们有怎样的位置关系?与同伴进行交流.
(2) 钝角三角形和直角三角形的三条高,也有同样的位置关系吗?
苏科版初中数学精品教学课件设计
结论: 三角形的三条高的特点:
(2) 钝角三角形和直角三角形的三条中线,也有同样的位置关系吗? 折一折,画一画,并与同伴进行交流.
三角形的三条中线交于一点.
苏科版初中数学精品教学课件设计
三角形的高的定义
在三角形中,从一个顶点向它的对边所
A
在的直线作垂线,顶点和垂足之间的线
段叫做三角形的高线,简称三角形高。
线段AD就是BC边上的高
位置关系? 将你的结果与同伴进行交流.
三角形的三条角平分线交于同一点.
苏科版初中数学精品教学课件设计
三角形中线的定义
在三角形中,连接一个顶点与它对边中点的线段, 叫做这个三角形的中线.
A
B
E
C
图5−11
BE=EC 如图5−1l, AE是BC边上的中线.
苏科版初中数学精品教学课件设计
议一议
在纸上画出一个锐角三角形,并画出它的三条中线. 它们有怎样的位置关系?与同伴进行交流.
锐角三角形 直角三角形 钝角三角形
三角形三条 高所在直线 交于一点
交于一点
交于一点
交点的位置 三角形内部 直角顶点 三角形外部
高在三角形 内部的数量
3条
1条
1条
苏科版初中数学精品教学课件设计
练一练
如图,∠ACE=∠BCE,BD=CD,指出图中 三角形的中线及角平分线。

苏教版七年级下册数学试卷-第7章《平面图形的认识(二)》-7.4-认识三角形(含答案)

苏教版七年级下册数学试卷-第7章《平面图形的认识(二)》-7.4-认识三角形(含答案)

第7章《平面图形的认识(二)》7.4 认识三角形选择题1.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.2.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC3.把三角形的面积分为相等的两部分的是()A.三角形的角平分线 B.三角形的中线C.三角形的高 D.以上都不对4.如果一个三角形的三条高的交点恰是三角形的一个顶点,则这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能5.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.AC是△ABC的高 B.DE是△BCD的高C.DE是△ABE的高 D.AD是△ACD的高6.下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③ B.①② C.②③ D.①③7.下列说法中错误的是()A.三角形三条角平分线都在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条高都在三角形的内部D.三角形三条高至少有一条在三角形的内部8.画△ABC的BC边上的高,正确的是()A.B.C.D.9.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个 C.5个 D.6个10.如图,小方格都是边长为1的正方形,则四边形ABCD的面积是()A.25 B.12.5 C.9 D.8.511.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A .2cm ²B .1cm ²C .12 cm ²D .14 cm ²12.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( ) A .两点之间线段最短 B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性13.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D .垂线段最短14.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB ,CD 两根木条),这样做是运用了三角形的( )A .全等性B .灵活性C .稳定性D .对称性15.下列图形中具有稳定性的是( )A .菱形B .钝角三角形C .长方形D .正方形 16.在△ABC 中,AD 是BC 边上的中线,G 是重心.如果AG=6,则线段DG 的长为( )1 A.2 B.3 C.6 D.1217.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.4cm B.5cm C.6cm D.13cm18.下列长度的三条线段能组成三角形的是()A.1cm、2cm、3.5cm B.4cm、5cm、9cmC.5cm、8cm、15cm D.6cm、8cm、9cm19.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米 B.15米 C.10米 D.5米,20.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm21.现有2cm、4cm、6cm、8cm长的四根木棒,任意选取三根组成一个三角形,则可以组成三角形的个数为()A.1个 B.2个 C.3个 D.4个22.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个 B.5个 C.4个 D.3个23.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm24.在下列长度的四根木棒中,能及4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm25.下列每组数分别表示三根小木棒的长度(单位:cm),将它们首尾相接后能摆成三角形的是()A.1,2,3 B.5,7,12 C.6,6,13 D.6,8,1026.下列长度的三条线段,能组成三角形的是()A.1cm,1cm,3cm B.2cm,3cm,5cmC.3cm,4cm,9cm D.5cm,6cm,8cm27.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm答案:1、D2、A3、B4、C5、C6、B7、C8、C 9、D 10、B 11、B 12、D 13、A 14、C 15、B 16、B 17、C 18、D 19、D 20、B 21、A 22、D 23、B 24、C 25、D 26、D 27、B。

江苏省宿迁市现代实验学校七年级数学下册《74 认识三角形(第2课时)》教案 苏科版

江苏省宿迁市现代实验学校七年级数学下册《74 认识三角形(第2课时)》教案 苏科版

7.4 认识三角形(第二课时)一、教学目的:1、了解三角形的角平分线、高、中线的概念,会画三角形的角平分线、高、中线。

2、理解三角形三条中线、高、角平分线分别都交于一点;直角三角形三条高的交点就是直角顶点;钝角三角形有两条高位于三角形外部,三条高的交点也位于三角形的外部。

3、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。

二、教学重难点:重点:了解三角形的角平分线、高、中线的定义,并会画三角形的角平分线、高、中线。

难点:三角形的内心、重心、垂心的掌握。

锐角三角形。

画出三角形、钝角三角形的重心的不同位置。

三角形的角平分线、高、中线都是线段。

三、教学方法:引导探索法,讲练结合,探索交流。

四、教学过程:(一)创设情境,感悟新知情境一:将橡皮筋的一端固定在⊿ABC的顶点A上,另一端从点B出发沿BC移动到C,引导学生观察这个过程中,哪些线段、角的大小发生了变化?其中,有没有特殊位置的线段?你认为有哪些特殊线段?情境二:每个同学准备一张薄纸任意画一个三角形,并把三个顶点标上字母,按要求操作:(1)把你的三角形对折,使AB所在直线与AC所在直线重合。

(2)然后展开,得折痕为AD。

思考:AD与∠BAC的关系。

(二)探索活动,揭示新知活动一(1)思考:过直线外一点,如何画这条直线的垂线?你能通过折纸的方法得到这条垂线吗?(2)操作:在纸上任意画⊿ABC。

过顶点A作直线BC的垂线,与边BC(或边BC的延长线)相交于点D。

(3)通过“操作”引入“三角形的高”的定义,并强调三角形的高是一条线段,是三角形的顶点和相应垂足之间的线段。

(4)尝试:准备一个锐角三角形的纸片。

提出问题:(1)你能画出这个三角形的3条高吗?(2)你能用折纸的方法得到这3条高吗?这3条高之间有怎样的位置关系?活动二(1)思考:如何画已知角的角平分线?你能通过折纸的方法得到这个角的角平分线吗?(2)操作:在纸上任意画⊿ABC。

苏科版七年级下7.4认识三角形(2)教学课件

苏科版七年级下7.4认识三角形(2)教学课件

请你参与
角平分线
三角形的角平分线
在三角形中,一个 内角的角平分线与它的对 边相交, 这个角的顶点与交点之间的线段, A 叫做三角形的角平分线。


B
1 2

E
C
三角形的角平分线
(1) 分别画出这三个三角形的三条角平分线
(2) 在每个三角形中,这三条角平分线之间 有怎样的位置关系? 三角形的三条角平分线交于同一点.
3、如下图,在△ABC中,∠1=∠2,G为AD 的中点,延长BG交AC于E, F为AB上一点, CF⊥AD于H,下面判断正确的有( ①AD是△ABE的角平分线; ×
A F E G H D A 1 2 E

G
B D
B
C
3、如下图,在△ABC中,∠1=∠2,G为AD 的中点,延长BG交AC于E, F为AB上一点, CF⊥AD于H,下面判断正确的有( ②BE是△ABD边AD上的中线; ×
三条角平分线交于一点,
三条中线交于一点
学以致用
1.三角形的高、中线与角平分线都是( C ) A.直线 B.射线 C.线段 D.可能是直线,也可能是线段
2、如图,在△ABC中,∠ACB=90°,把△ABC 沿直线AC翻折180°,使点B 落在点B′的位 置,则线段AC ( D ) A A.是边BB′上的中线 B.是边BB′上的高 C.是∠BAB′的角平分线
A
画法 三角板或量 角器画垂线 的一部分
用直尺画两 点之间的线 段
D C
性质 三条线相交于 三角形内、外 或边上一点
三条中线相交 于三角形内一 点,且把三角 形分成面积相 等的两部分 三条角平分线 相交于三角形 内一点,且这 点到三边的距 离相等

【最新】苏科版数学七年级下册第七章《认识三角形》公开课课件.ppt

【最新】苏科版数学七年级下册第七章《认识三角形》公开课课件.ppt

思考题:
若等腰 ABC周长为26,AB=6 ,求它的 腰长.
2.有3、5、7、10的四根彩色线形木条, 要摆出一个三角形,有( )种B摆法.
A、1 B、2 C、3 D、4
本节课你有什么收获?
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/122021/1/12Tuesday, January 12, 2021
(3)
所有内角都是锐角的三角形————锐角三角形 有一个内角是直角的三角形————直角三角形
有一个内角是钝角的三角形————钝角三角形




⑤ 锐角三角形
③⑤
⑥ 直角三角形
① ④⑥
⑦ 钝角三角形
②⑦







这些三角形中,有等腰三角形吗?
练一练:
把图中的三角形按角来分类 A
C
B
DE
准备5根木棒长分别为3cm,4cm,5cm,6cm,9cm, 任意取出3根首尾相接搭三角形,并填表:
选择的长度
能否搭出三 角形
能 不能
示意图
3cm,4cm,5cm

A
4
3
B
5
C
(1)任意画一个三角形,量出它的 三边长度,并填空:
a=______;b=_______;c=______ (2)计算并比较:
a+b____c; b+c____a; c+a____b
a-b____c; b-c____a; c-a____b (3)通过以上的计算你认为三角形

数学:7.4 认识三角形同步练习(苏科版七年级下)

数学:7.4 认识三角形同步练习(苏科版七年级下)

数学:7.4 认识三角形同步练习(苏科版七年级下)【基础演练】一、选择题1.现有两根铁条,它们的长分别是30cm和50cm,如果要做成一个三角形铁架,那么在下列四根铁条中应选取()A.20cm的铁条;B.30cm的铁条;C.80cm的铁条;D.90cm的铁条.2.以下列长度的线段为边,可以作一个三角形的是()A.5㎝、10㎝、15㎝; B.5㎝、10㎝、20㎝;C.10㎝、15㎝、20㎝; D.5㎝、20㎝、25㎝.3.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个;B.5个;C.4个;D.3个.4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形的形状是()A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形.5.三角形的角平分线是()A.射线;B.直线;C.线段;D.线段或射线.二、填空题6.等腰三角形的两条边长分别为3cm和4cm,则这个等腰三角形的周长为cm.7.等腰三角形的两条边长分别为4cm和9cm,则第三边长为cm.8.一木工师傅有两根长分别为80cm、150cm的木条,要找第三根木条,将它们钉成一个三角形,现有70cm、105cm、200cm、300cm四根木条,他可以选择长为__ __的木条.9.已知,如图,已知AD、AE分别是△ABC的中线,高线,且AB=5cm,AC=3cm;则△ABD和△ADC的周长之差等于cm;△ABD与△ACD的面积关系是.10.用一根长为15cm的细铁丝围成一个三角形,其三边的长(单位:cm)分别为整数a、b、c,且a>b>c,(1)请写出一组符合上述条件的a、b、c的值;(2)a最大可取,c最小可取.三、解答题11.过A、B、C、D、E五个点中任意三点画三角形;(1)其中以AB为一边可以画出个三角形;(2)其中以C为顶点可以画出个三角形..12.已知:如图△ABC.试作△ABC的:①中线AD;②角平分线BE;③高CH.AB D E第9题图C第11题图ACB第12题图13.已知三角形ABC 的最长边为8,且三条边的比为2:3:4,求这个三角形的周长.【能力提升】14.有一块三角形优良品种试验土地,现引进四个良种进行对比实验,将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(可画图说明)15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴?参考答案1.B ;2.C ;3.D ;4.B ;5.C ;第14题图 n=3n=2n=1 第15题图6.10或11;7.9;8. 105cm、200cm;9.2,相等; 10.答案不唯一,如2、6、7,7,2.11.3,3. 12.提示:钝角三角形的高在三角形的外部. 13.18.14.方法不唯一,可根据“三角形的中线将三角形分成面积相等的两部分”进行方案设计.15.60.。

苏科数学七年级下册第七章认识三角形课件

苏科数学七年级下册第七章认识三角形课件

3cm
5cm
5cm 3cm
3.5cm
2.3cm 1.2cm
1.6cm
4cm
3cm
2.2cm
2cm


③④Βιβλιοθήκη 6cm 6cm6cm

8cm 6cm
10cm

2.5cm
2.5cm
4.3cm

这些三角形,你能按边进行分类吗? 有等腰三角形吗?
1.有两边相等的三角形叫等腰三角形 ; 2.有三边相等的三角形叫等边三角形;
三角形按边分:
不等边三角形:三边都不相等的三角形
三角形
等腰三角形:有两条边相等的三角形
普通等腰三角形
等边三角形
现有四根纸条,任意 取其中三根纸条摆一个三 角形,一定能摆成吗?
(1)任意画一个△ABC ,量出它的 三边长度,并填空:
a=______;b=_______;c=______ (2)计算并比较:
例1:有两根长度分别为5cm和8cm的木棒, 用长度为2cm的木棒与它们能摆成三角形 吗?为什么?长度为13cm的木棒呢?
解:取长度为2cm的木棒时,由于2+5=7 < 8, 出现了两边之和小于第三边的情况,所以它们 不能摆成三角形。
取长度为13cm的木棒时,由于5+8=13,出 现了两边之和等于第三边的情况,所以它们也 不能摆成三角形。
边: 三角形中有三条边:AB,BC,AC.
【做一做】
1.小强用三根木棒组成的图形中,其中符合三角形概念的 是( C )
A.
B.
C.
2.如图三角形ABC 记作: △ABC
A
∠B的对边: AC
C
∠B邻边是: AB,BC

【最新】苏科版七年级数学下册第七章《 认识三角形 》公开课课件.ppt

【最新】苏科版七年级数学下册第七章《 认识三角形 》公开课课件.ppt

分工合作:
分别画出 锐角三角形、直角三角形、
钝角三角形的中线 . P23.2
三角形的3条中线都在三 角形的内部,并且交于一点, 这点叫做三角形的重心.
(1)如何画已知角的平分线? A
B EC (2)操作:在纸上任意画ΔABC,画∠A 的平分线,与边BC相交于点E.
线段AE叫做△ABC的角平分线.
是△ 的高.
A
的高,又
E
BDC
图(1)
课堂作业: 2.如图(2),在△ABC中,分别画出
中线AD、角平分线BE、高CF.
A
BC
图(2)
课后探究
1.如图:
(1)AC是哪些三角形的边?
(2)若AB⊥CD,垂足为D,则CD是哪些 三角形的高?
(3)若E是BC中点,则AE是哪个三角形
的中线?
A
D F
B EC
第七章 平面图形的认识
7.4 认识三角形(2)
我自信,我出色;我拼搏,我成功!
1. 下列每组数分别是三根小木棒的长度, 用它们能摆成三角形吗?学科网 zxxk
(1)3cm, 4cm, 5cm ; (2)8cm, 7cm, 15cm
(1)(3)
(3) 13cm, 12cm, 20cm;
(4)5cm, 5cm, 11cm 2.现有长度分别1cm,2cm,3cm,4cm,5cm
注 意:
l三角形的角平分线是一条线段,它与一 个角的平分线不同.
l三角形的角平分线的说法:
AE是ΔABC的角平分线;
AE平分∠BAC交BC于E;
1 ∠BAE=∠EAC= ∠BAC;
2
B
∠BAC=2∠BAE=2∠EAC.
A EC
分工合作:

苏科版七年级数学下册7.4-认识三角形课件

苏科版七年级数学下册7.4-认识三角形课件
认识三角形课件
目录
• 引言 • 三角形的定义与性质 • 三角形的分类 • 三角形的内角和定理 • 三角形的外角 • 习题与解答 • 总结与回顾
01
引言
教学目标
01
02
03
知识目标
学生能够理解三角形的定 义、性质和分类。
能力目标
学生能够运用三角形的知 识解决实际问题,提高数 学应用能力。
情感目标
应用一
应用三
利用内角和定理计算三角形的角度。
利用内角和定理判断三角形的形状。
应用二
利用内角和定理解决三角形角度的几 何问题。
特殊三角形的内角和
01
等边三角形的内角和
等边三角形的三个内角都相等,每个角度为60度,因此内角和为180度。
02
等腰三角形的内角和
等腰三角形有一个顶角和两个底角,顶角和底角的度数不同,但两个底
07
总结与回顾
本节课的重点和难点
重点
三角形的定义、性质和分类。
难点
如何应用三角形的性质解决实际问题,以及如何理解三角形的分类标准。
对学生的建议和要求
建议学生多做练习, 加深对三角形性质的 理解。
鼓励学生在日常生活 中多观察、多思考, 将所学知识应用到实 际中。
要求学生掌握三角形 的分类方法,能够根 据不同标准对三角形 进行分类。
培养学生对数学的兴趣和 热爱,激发他们的探索精 神。
教学内容概述
三角形的定义、性质和分类
介绍三角形的定义,并探讨其基本性质和分类。
三角形在实际生活中的应用
通过实例展示三角形在日常生活中的应用,如建筑、工程等。
三角形的作图和证明
介绍如何作图和证明三角形的一些基本定理,如塞瓦定理等。

苏科版七年级下册数学《7.4认识三角形》课件-(共14张PPT)

苏科版七年级下册数学《7.4认识三角形》课件-(共14张PPT)

2 如图,S△ABC=1, S△BDE= S△DEC= S△ACE。
求△ADE的面积。
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知, 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服 表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微 存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以 定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是 而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做 让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志 类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶 的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。 灾难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的, 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。

苏科版七年级下册数学第七章 7.4 认识三角形

苏科版七年级下册数学第七章 7.4 认识三角形

(1)3cm,5cm,10cm ( × ) 3+5<10
(2)5cm,4cm,9cm
( × ) 5+4=9
(3)4cm,6cm,9cm
( √ ) 4+6>9
例1.如图,在△ABC中,点D、E分别在 BC、AB上,AD交CE于点F。 (1)图中以AC为边的三角形有
△_A_BC_,_△_A_DC_,_△_A_EC_,_△_A_FC_;
3,4,9 3,5,9 3,6,9 4,5,9
3+4<9 3+5<9 3+6=9 4+5=9
通过上面的实验,的确可以猜想得到:
三角形的任意两边之和大于第三边
猜想
推导
如图,BC是连接B、C两点的线段, 根据基本事实“两点之间线段最短”
可以得AB+AC>BC。
同理可以得到 AB+BC>AC, AC+BC>AB。
在三角形中,连接一个顶点与它对边中点
的线段,叫做三角形的中线.
如图,线段AD就是△ABC的中线.
(1)三角形的中线是一条线段
(2)∵AD为△ABC的中线
∴BD=CD
D
∵BD=CD
∴AD为△ABC的中线
你能画出这个三角形的所有中线吗?
A
A1
A2
O
O
O
B
C
B1
C1 B2
C2
(3)一个三角形有3条中线 且相交于三角形内部一点。
试一试:在下图中,哪些三角形是锐角三角形、直角三角 形、钝角三角形?把相应的序号填入下面相关的椭圆框内。
∠C =90°
∠F =106°
∠G = 32,∠H = 74°,
(1) (2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.4认识三角形学习目标1.理解三角形的概念及其中线、高、角平分线的概念,并能正确画出任意一个三角形的中线、角平分线和高.2.按照边长、角的大小对三角形进行分类.3.探索并证明三角形的任意两边之和大于第三边.知识详解:知识点一:三角形的有关概念1.定义:不在同一条直线上的三条线段首尾依次相连所组成的图形叫做三角形.2.三角形的基本要素:边:组成三角形的3条线段叫做三角形的边,三角形有3条边.顶点:三角形中相邻两边的公共端点叫做三角的顶点,三角形有3个顶点.角:三角形中相邻两条边所夹的角叫做三角形的内角,简称三角形的角,三角形有3个内角.3.三角形及其元素的表示:如图,顶点是A,B,C的三角形,记作“△ABC”,读作“三角形ABC”,∠A,∠B,∠C是三角形的内角,线段AB、BC、CA是三角形的边.拓展:1.由三角形的定义可知:三角形有三个特征:(1)三条线段;(2)三条线段不在同一条直线上;(3)三条线段首尾依次相接.这也是识别三角形的依据.2.用符号“△”时,其后必须紧跟表示三角形的三个顶点的大写字母,字母顺序可以自由安排.“△”不能单独使用,如“三角形的角”不能写成“△的角”.3.△ABC的三边,有时也用cb,来表示.,来表示.顶点A所对的边BC用a表示,边AC,边AB分别用cba,(2)以AD 为边的三角形有 . (3)∠AED 是 , 的内角. 知识点二:三角形的分类 1.按角分类⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形三角形2.按边分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧等边三角形角形腰和底不相等的等腰三等腰三角形不等边三角形三角形说明:1.根据角的大小来识别三角形的形状时,一般只需要考虑三角形中最大的角.若三角形中最大的角是锐角,则三角形是锐角三角形;若三角形中最大的角是直角,则三角形是直角三角形;若三角形中最大的角是钝角,则三角形是钝角三角形.2.常见的特殊三角形有:等腰三角形(按边分)、等边三角形(按边分)、直角三角形(按角分)、等腰直角三角形(既按角分又按边分)、等边三角形和等腰直角三角形都是特殊的等腰三角形.例2:现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是( )A. 3B. 4或5C. 6或7D. 8知识点三:三角形的三边关系1.三角形的三边关系:三角形任意两边之和大于第三边,三角形的任意两边之差小于第三边.2.三边关系的应用(1)根据这一关系可以判断已知的三条线段是否可以构成一个三角形;(2)在一个三角形中,可由已知的两边来确定第三边的取值范围.拓展:1.从三角形三边关系的研究钟可知三角形的三边相互制约——三角形的任意两边之和大于第三边,且任意两边之差小于第三边.2.判断c>a>+b,,三个条件缺一不可.c+,>+c,三条线段能否组成一个三角形,应注意:ba,baacb当a是c,三条线段中最长的一条时,只需要aa,b+,就有任意两条线段的和大于第三边.cb>3.根据三角三边自之间的关系可得结论:已知三角形的两边为ba+<<-ba,,则第三边c满足.||bac例3:下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.)a4>aaa(4,,08知识点四:三角形的中线、角平分线、高1.三角形的中线在三角形中,连接一个顶点与它的对边中点的线段叫做这个三角形的中线.1BC.几何表达:如图,E是BC的中点,线段AE是△ABC的中线,则BE=EC=2拓展:1.三角形的中线是线段,而非直线.2.三角形的一条中线可以把三角形分成面积相等的两个三角形.3.通过画出锐角三角形、钝角三角形和直角三角形的三条中线,我们可以发现一个三角形中一共有三如图,△ABC的中线分别为AD、BE、CF,它们相交于点O.例4:如图,某校生物兴趣小组有一块三角形的试验田,现某种作物的四个品种进行对比试验,需将这块土地分成面积相等的四块,请你设计几种不同的划分方案供选择(画图说明).2.三角形的角平分线在三角形中,一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.1∠BAC.几何表达:如图,AD是∠BAC的平分线,则∠BAD=∠DAC=2注意:1.三角形的角平分线与角的平分线既有联系,也有区别,区别:三角形的角平分线是一条线段,角的平分线是一条射线;联系:三角形的一个内角的角平分线与对边相交,这个角的顶点与交点之间的线段就是三角形的一条角平分线.2.通过画出锐角三角形、钝角三角形和直角三角形的三条角平分线,我们可以发现一个三角形中一共有三条角平分线,都在三角形的内部,它们相交于一点,交在三角形的内部,这个交点叫做三角形的内心.如图,△ABC的角平分线分别为AD、BE、CF,它们相交于点O.例5:如图,在△ABC中,AD是∠A的平分线,若∠B=50°,∠C=70°,则∠BAD= °.3.三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高线,简称三角形的高.几何表达:如图,线段AG是△ABC的边BC上的高,则∠AGB=∠AGC=90°.拓展:1.借助三角尺画三角形高的一般步骤一靠:使三角尺的一条直角边与一条边所在的直线重合;二移:沿着这条直线平移三角尺,使三角尺的另一条直角边经过三角形的这条边所对的顶点;三画:沿着这条直角边从顶点到底边所在直线画一条线段,这条线段就是三角形的高.2.一个三角形有三条高,这三条高的位置根据三角形的形状而定.锐角三角形三条高都在三角形内部;直角三角形两条高与直角边重合,三条高相交于直角顶点;钝角三角形两条高在三角形外部,一条高在三角形的内部,三条高没有交点,三条高所在的直线相交于一点,如图:例6:如图,过△ABC 的顶点A 作BC 边上的高,以下作法正确的是( )拓展例题:拓展点一:三角形三边关系的应用 1.求三角形第三边的长或取值范围例1:两根木棒的长分别是7cm 和9cm ,现要你选择第3根木棒,将它们钉成一个三角形,若选择的木棒长度是7的倍数,则你选择的木棒的长度为 cm.2.三角形的构成数量例2:长为9,6,5,4的四根木条,组成三角形,选法有( ) A.1 种 B. 2种 C.3种 D.4种 3.三角形三边的化简例3:若c b a ,,是△ABC 的三边,化简.||||||b a c a c b c b a --+--+--拓展点二:三角形中线的运用例4:如图所示,在△ABC中,已知点D,E,F分别是BA、AD、CE的中点,且2=S,4cm∆ABC则=S .∆BEF拓展点三:三角形高的运用例5:△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4B. 4或5C. 5或6D. 6拓展点四:三角形三边关系在实际生活中的应用例6:有四个停车场,位于如图所示的四边形ABCD的四个顶点,现在要建立一个汽车维修站,你能运用“三角形两边之和大于第三边”,在四边形ABCD的内部找一点P,使点P到A,B,C,D四点的距离之和最小吗?易错提醒易错点一:忽视三角形三边关系的检验导致错解例1:已知一个等腰三角形的两边长为3和7,求等腰三角形的周长.易错点二:没有正确理解三角形的高基础巩固:1.如图,以BC为边的三角形有()A.3个B. 4个C. 5个D. 6个2.已知三角形的两边长分别是3和8,则该三角形第三边长可能是()A. 5B. 10C. 11D. 123.下面给出的四个三角形都有一部分被遮住,其中不能按角判断三角形类型的是()4.如图,在△ABC中,∠C=90°,D、E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.BC是△ABE的高B.BE是△ABD的中线C.BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.在如图所示的图形中,三角形有个;以∠B为内角的三角形有和;在这两个三角形中,∠B对的边分别为和 .6.如图是钝角△ABC,请画出:(1)AB边上的高CD;(2)BC边上的中线AE;(3)∠BAC的平分线AF;(4)写出图中相等的线段;(5)写出图中面积相等的三角形.能力提升7.以长为13cm,10cm,5cm,7cm的四条线段中的三条线段为边可以画出三角形的个数为()A. 1B. 2C. 3D. 48.如图,正方形网格中,每个小方格都是边长为1个单位长度的正方形,A,B两点在小方格的顶点上,位置如图所示,C也在小方格的顶点上,且以A,B,C为顶点的三角形的面积为1个平方单位,则符合条件的点C的个数为()9.如图所示,在△ABC中,BC边上的高是;在△AEC中,AE边上的高是 .10.“综合与实践”学习活动小组准备制作一组三角形,记这些三角形的三边均分别为a并且这些三角形三边的长度大于1且小于5的整数个单位长度.b,c,,(1)用记号)cba≤≤表示一个满足条件的三角形,如(2,3,3)表示边长分别为a)(,b,(c2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足cb<的三角形(用给定的单位长度,不写作法,保a<留作图痕迹)。

相关文档
最新文档