小升初专题几何图形和面积

合集下载

【小升初数学专项练习】《二、图形与几何6.三角形的周长与面积--基础(附答案)

【小升初数学专项练习】《二、图形与几何6.三角形的周长与面积--基础(附答案)

小升初数学专项练习一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆6.三角形的周长与面积【小升初考点归纳】三角形的周长等于三边长度之和.三角形面积=底×高÷2.【经典例题】一.选择正确的答案,把序号填在括弧中(共9小题)1.(2019春•镇康县期中)把一根铁丝围成一个等腰三角形,它的两条邻边分别长16cm、6cm;如果把这根铁丝围成一个正方形,边长是()cm.A.7B.9.5C.7或9.5【解析】解:(16+16+6)÷4=38÷4=9.5(厘米)答:边长是9.5厘米.故选:B.2.(2018秋•黄冈期末)一个等腰直角三角形一条直角边的长是4厘米,它的面积是()平方厘米.A.16B.8C.4【解析】解:4×4÷2=16÷2=8(平方厘米)答:它的面积是8平方厘米,故选:B.3.(2018秋•龙泉驿区期末)把一个等腰梯形分成两个三角形,这两个三角形的()完全相同.A.面积B.周长C.形状D.前面三个都不正确【解析】解:把一个等腰梯形分成两个三角形,如右图:A:这两个三角形等高,但是底不相等,它们的面积不相等;B:一个三角形的周长是梯形的上底+梯形的腰长+对角线的长度;另一个三角形的周长是梯形的下底+梯形的腰长+对角线的长度;上底和下底不相等,所以它们的周长也不相同;C:一个是钝角三角形一个锐角三角形,它们的形状不同;故选:D.4.(2018秋•荔湾区期末)一个直角三角形如图(单位:cm),a是()cm.A.1.2B.2.4C.4.8D.6【解析】解::3×4÷2=6(cm2)6×2÷5=2.4(cm)答:a是2.4cm.故选:B.5.(2018秋•成都期末)一个直角三角形的两条直角边分别是3m和5m,它的面积是()A.18m2B.8m2C.7.5m2D.无法计算【解析】解:3×5÷2=15÷2=7.5(m2)答:它的面积是7.5m2.故选:C.6.(2018秋•西山区期末)一个三角形的底和高都扩大到原来的3倍,它的面积就扩大到原来的()倍.A.3B.6C.9D.27【解析】解:3×3=9答:它的面积就扩大到原来的9倍.故选:C.7.(2018秋•崂山区期末)一个三角形和一个平行四边形底相等,面积也相等,如果平行四边形的高是6厘米,那么三角形的高是()厘米.A.6B.3C.12D.18【解析】解:设三角形的高为H,平行四边形的高为h,三角形的面积=底×H×,平行四边形的面积=底×h;底×H×=底×h;则H=h,所以三角形的高=6×2=12(厘米);答:三角形的高是12厘米.故选:C.8.(2018秋•崂山区期末)图中平行四边形的面积是64cm2,涂有阴影的三角形面积是()cm2.A.16B.32C.128【解析】解:64÷2=32(平方厘米);答:涂有阴影的三角形面积是32cm2.故选:B.9.(2018秋•盘龙区期末)一个等腰直角三角形的一条直角边是5cm,它的面积是()A.25cm2B.12.5cm2C.50cm2D.无法确定【解析】解:5×5÷2,=25÷2,=12.5(平方厘米),答:它的面积是12.5平方厘米,故选:B.二.将正确答案填写在横线上(共11小题)10.(2019春•庆云县期中)等腰三角形的两条边长分别是3cm和6cm,则它的周长是15cm.【解析】解:因为3+3=6,所以3不能是等腰三角形等腰,只能是底边,所以这个等腰三角形的腰是6厘米,底是3厘米,6+6+3=12+3=15(cm)答:则它的周长是15cm.故答案为:15cm.11.(2018秋•黄冈期末)一个三角形的面积是130平方厘米,与它等底等高的平行四边形的面积是260平方厘米.【解析】解:130×2=260(平方厘米)答:与它等底等高的平行四边形的面积是260平方厘米.故答案为:260.12.(2018秋•黄冈期末)一个三角形的面积是30平方分米,底是7.5分米,它的高是8分米.【解析】解:30×2÷7.5=60÷7.5=8(分米)答:它的高是8分米.故答案为:8.13.(2018秋•中山市期末)一个直角三角形两条直角边分别是7厘米和9厘米,这个三角形斜边上对应的高是6.3厘米,它的斜边长为10厘米.【解析】解:设它的斜边长为x厘米,6.3x÷2=7×9÷26.3x=63x=10答:它的斜边长为10厘米.故答案为:10.14.(2018秋•黄埔区期末)一个三角形的面积是16cm2,其中一个底是8cm,这个底上的高是4cm,用两个这样的三角形拼成的平行四边形的面积是32cm2.【解析】解:16×2÷8=32÷8=4(厘米)16×2=32(平方厘米)答:这个底上的高是4cm,用两个这样的三角形拼成的平行四边形的面积是32cm2.故答案为:4,32.15.(2019•福田区)一个三角形的底是16厘米,高是10厘米,三角形的面积是80厘米2;与它等底等高的平行四边形的面积是160厘米2.【解析】解:三角形的面积:16×10÷2=160÷2=80(厘米2)平行四边形的面积:80×2=160(厘米2)答:三角形的面积是80厘米2,与它等底等高的平行四边形的面积是160厘米2.故答案为:80;160.16.(2018秋•南通期末)一个三角形的面积是200平方米,高是20米,底是20米,与它等底等高的平行四边形面积是400平方米.【解析】解:(1)200×2÷20=400÷20=20(米)答:底是20米.(2)200×2=400(平方米)答:与它等底等高的平行四边形的面积是400平方米.故答案为:20,400.17.(2018秋•龙泉驿区期末)三角形的底是1.25分米,这条底对应的高是1.6分米,与这个三角形等底等高的平行四边形的面积是2平方分米.【解析】解:1.25×1.6=2(平方分米)答:与这个三角形等底等高的平行四边形的面积是2平方分米.故答案为:2.18.(2018秋•成都期末)一个等腰三角形的两条直角边的长度和是20cm,它的面积是50 cm2.【解析】解:20÷2=10(cm)10×10÷2=100÷2=50(cm2)答:它的面积是50cm2.故答案为:50.19.(2018秋•台安县期末)一块三角形草坪面积是96平方米,底是16米,高是12米.【解析】解:96×2÷16=192÷16=12答:高是12米.故答案为:12.20.(2018秋•成华区期末)读图可知:三角形通过割补转化成了平行四边形.原三角形的高是平行四边形高的2倍,平行四边形与三角形的底相等.【解析】解:读图可知:三角形通过割补转化成了平行四边形.原三角形的高是平行四边形高的2倍,平行四边形与三角形的底相等.故答案为:2倍,相等.三.解析题(共5小题)21.(2019•虹口区模拟)一块三角形的交通标志牌(如右图),它的面积大约是28平方分米,底是8分米,高大约是7分米.【解析】解:28×2÷8,=56÷8,=7(分米);故答案为:7.22.(2018•杭州模拟)我们都知道,三角形面积的计算公式是“底×高÷2”.那么,为什么要“÷2”呢?请写一写或画一画的方式,把你的想法表达出来.【解析】解:用两个完全相同的三角形拼成一个平行四边形,因为平行四边形的面积=底×高,而平行四边形的一半为三角形,所以要“÷2“.23.(2017秋•宁都县期末)图中三角形的面积是12平方厘米,(1)求出它的高;(2)把它分成甲乙两个小三角形,使甲三角形的面积是乙三角形的2倍.【解析】解:12×2÷6=24÷6=4(厘米)6×=4(厘米)6﹣4=2(厘米)如图所示:24.(2018春•南开区期末)在图中,BC∥DE,∠1=63.5°,AE=EC.(1)∠2+∠3=116.5°.(2)∠1+∠3+∠4+∠5=243.5°.(3)若梯形BCED的面积是3.6cm2,则三角形ABC的面积是 4.8cm2.【解析】解:(1)因为BC∥DE,所以∠3=∠CDE,∠2+∠3=∠2+∠CDE=∠ADC,又因为∠1=63.5°,所以,∠ADC=180°﹣63.5°=116.5°.即:∠2+∠3=116.5°(2)∠1+∠3+∠4+∠5=∠1+∠CDE+∠4+∠5,因为∠CDE+∠4+∠5正好是三角形DCE的内角和=180°,所以:∠1+∠3+∠4+∠5=63.5°+180°=243.5°(3)因为E为AC的中点,BC∥DE,所以:D是AB的中点,三角形ADE的面积=三角形DCE的面积,三角形ADC的面积=三角形BDC的面积,设三角形DEC的面积为x平方厘米,则:三角形BDC的面积=三角形ADC的面积=2x=3.6﹣x,所以:x=1.2,三角形ABC的面积=(1.2+1.2)×2=4.8(平方厘米)故答案为:(1)116.5°,(2)243.5°,(3)4.825.(2018春•长沙期中)一根长6分米的铁丝.围绕如图一周够吗?【解析】解:17+23+17=40+17=57(厘米)6分米=60厘米,60厘米>57厘米,所以6分米围绕图形一周够.答:围绕如图一周够.。

小升初专题复习几何图形

小升初专题复习几何图形

小升初专题复习——几何图形一、三视图及展开图例题1:用同样大小的正方体摆成的物体,从正面看到,从上面看到,从右面看到〔 〕A .B .C .D .变式练习:如图,它是用6个棱长为1分米的正方体拼成的. ①它的外表积是 . ②它的体积是 .二、三角形的底边及面积关系例题1:如图.A 、B 是长方形长和宽的中点,阴影局部的面积是长方形面积的 %.例题2:如图,三角形ABC 面积为27平方厘米,AE=CE ,BF=BC ,求三角形BEF 的面积.变式练习1:如图,直角梯形ADCB 中,三角形BEC 、四边形CEAF 和三角形CFD 的面积一样大.BC=16、AD=20、AB=12,求三角形AEF 的面积.教师姓名 学科 数学 上课时间 讲义序号 (同一学生)学生姓名年级六年级组长签字日期课题名称 几何图形变式练习2:如图,梯形ABCD中共有〔〕对面积相等的三角形A. 22 B. 3 C. 4 D. 5变式练习3:在如图中,平行四边形的面积是20平方厘米,图中甲、丙两个三角形的面积比是,阴影局部的面积是平方厘米.三、多边形内角和例题1:把表填完整多边形…边数 3 4 5 6 …内角和180°180°×2 180°×3 180°×5 …变式练习:探索〔1〕完成表格中未填局部.〔2〕根据表中规律,八边形的内角和是度.〔3〕假设图形的边数为a,内角和为s,请你用一个含有字母的关系式表示图形边数及内角和的关系..图形边数 3 4 5内角和180 180×2 180×3四、长度比拟例题1:面积相等的情况下,长方形、正方形和圆相比,〔〕的周长最短.A.长方形B.正方形C.圆例题2:如图,A是一个圆,B是由三个半圆围成的图形,那么它们周长的大小关系是C A C B.变式练习1:下面三个图形中,哪两个图形的周长相等?〔〕A.图形①和②B.图形②和③C.图形①和③变式练习2:在图形中甲的周长〔〕乙的周长.A.大于B.小于C.等于拓展提升:某高层公寓大火时,小王逃生的时候看了下疏散通道如下图,那么最快逃离到楼梯〔图中阴影〕的通道共有〔〕条.A. 3 B. 9 C. 6 D. 12五、组合图形计数例题1:如图中直角的个数为〔〕个.A. 4 B. 8 C. 10 D. 12例题2:如图,共有〔〕条线段.A. 4 B. 8 C. 10 D. 12例题3:数一数,在右图中共有〔〕个三角形.A.10 B. 11 C. 12 D. 13 E.14A.4 B. 8 C. 10 D. 12变式练习2:如图中直角有〔〕个.A. 1 B. 2 C. 3 D. 4变式练习3:这里共有〔〕条线段.A.三条B.四条C.五条D.六条变式练习4:如下图的7×7的方格内,有许多边长为整数的正方形,其中在有的正方形中黑方格及白方格的个数占一半〔同样多〕.像这样的正方形有〔〕个.A.26 B. 36 C. 46 D. 56E.66变式练习5:图中共有〔〕个长方形.A. 30 B. 28 C. 26 D. 24变式练习6:如图,三角形一共有个.拓展提升1:如图是半个正方形,它被分成一个一个小的等腰三角形,图中,正方形有10 个,三角形有47 个.拓展提升2:如图中,三角形的个数有多少?六、图形的拆拼〔切拼〕例题1:一个圆的周长是15.7分米,把这个圆等分成假设干个小扇形,拼成一个近似的长方形,这个近似的长方形的长是分米,宽是分米.例题2:爸爸给女儿买了一个圆柱形的大生日蛋糕,女儿把蛋糕竖直方向切成22块分给22个小朋友,切成的大小不一定相等.那么至少需切的刀数为?变式练习1:在一块边长为4厘米的正方形的铁皮上,剪出直径为2厘米的小圆片,最多可剪〔〕片.A. 3 B. 4 C. 5 D. 6变式练习2:用一条直线将一个正方形分成两个完全一样的两局部,有几种分法〔〕A. 1种B. 2种C. 3种D. 4种变式练习3:在一块长10分米、宽5分米的长方形铁板上,最多能截取11 个直径是2分米的圆形铁板.拓展提升:请将下面等边三角形按要求分割成假设干个形状和大小都一样的三角形〔1〕分成2个〔2〕分成3个〔3〕分成4个〔4〕分成6个七、立体图形的外表积例题1:把14个棱长为1的正方体,在地面上堆叠成如下图的立体,然后将露出的外表局部染成红色.那么红色局部的面积为〔〕A. 21 B. 24 C. 33 D. 37例题2:如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,那么所得物体的外表积为.变式练习2:把假设干个边长2厘米的正方体重叠起来堆成如下图的立体图形,这个立体图形的外表积是平方厘米.变式练习3:如图是一个长3厘米、宽及高都是2厘米的长方体.将它挖掉一个棱长1厘米的小正方体,它的外表积〔〕A.比原来大B.比原来小C.不变拓展提升〔难〕:在一个棱长为8的立方体上切去一个三棱柱〔如图〕,那么外表积减少.八、立体图形的体积例题1:如图的体积是.〔单位:厘米〕例题2:一支没有用过的圆柱形铅笔,长18厘米,体积是9立方厘米,使用一段时间后变成了如图的样子,这时铅笔的体积是多少立方厘米?变式练习1:有一棱长为5cm的正方体机器零件,现在它的上下面挖去了一个直径为2cm的圆孔,求剩下机器零件的外表积和体积?九、等积变形例题1:如下图,把底面直径8厘米的圆柱切成假设干等分,拼成一个近似的长方体.这个长方体的外表积比原来增加80平方厘米,那么长方体的体积是立方厘米.例题2:一个酸奶瓶〔如图〕,它的瓶身呈圆柱形〔不包括瓶颈〕,容积是32.4立方厘米.当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余局部高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?变式练习1:一个圆锥形沙堆,底面积是3.6平方米,高1.2米.把这堆沙装在长2米、宽1.5米的沙坑里,可以装多高?变式练习2:有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形〔不包括瓶颈〕.现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余局部的高度为5厘米.瓶内现有饮料立方厘米.变式练习3:水平桌面上放着高度都为10厘米的两个圆柱形容器A和B,在它们高度的一半处有一连通管相连〔连通管的容积忽略不计〕,容器A、B底面直径分别为10厘米和16厘米.关闭连通管,10秒钟可注满容器B,如果翻开连通管,水管向B容器注水6秒钟后,容器A中水的高度是多少呢?〔π取3.14〕变式练习4:A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A 注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通〔连通管的容积忽略不计〕,仍用该水龙头向A注水,求〔1〕2分钟容器A中的水有多高?〔2〕3分钟时容器A中的水有多高.十、数阵图中找规律的问题例题1:把自然数依次排成以下数阵:1,2,4,7,11,…3,5,8,12,…6,9,13,…10,14,…15,……现规定横为行,纵为列.求〔1〕第10行第5列排的是哪一个数?〔2〕第5行第10列排的是哪一个数?〔3〕2004排在第几行第几列?变式练习1:淘气用小棒搭房子,他搭3间用了13根小棒,像这样搭15间房子要用〔〕根小棒.A. 60 B. 61 C. 65 D. 75。

苏教版六年级数学小升初专题复习五几何初步知识

苏教版六年级数学小升初专题复习五几何初步知识

苏教版六年级数学小升初专题复习五几何初步知识3.周长和面积计算。

4.立体图形一、定义1.线段:用直尺把两点连接起来,就得到一条线段,线段长就是这两点间的距离。

两点间所有连线中线段最短。

2.射线:把线段的一端无限延长,可以得到条射线。

手电筒发出的光、太阳射出的光线都可看成是射线。

3.直线:把线段的两端无限延长,可以得到一条直线。

二、直线、线段、射线的比较名称三、同一平面上线与线的关系同一平面上的两条直线或平行或相交。

1.垂线:两条直线相交成直角时,这两条直线叫作互相垂直,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫作垂足。

2.平行线:在同一平面内不相交的两条直线叫作平行线。

(1)平行线之间的距离处处相等;(2)平行线间垂线段最短,并且有无数条;(3)垂直于同一条直线的两条直线互相平行。

3.点到直线的连线中,垂线段最短4.线段AB的垂直平分线上的任意一点到线段两端的连线相等。

一、角的分类角:从一点起画两条射线,所组成的图形叫作角。

角两边叉开得越大,角越大;角的大小与角两边的长短无关。

二、角的测量利用量角器可以画角或量出角的度数。

首先将量角器的中心与角的顶点重合,然后再将量角器的零刻度线与角的一边重合,另一条边所对准的刻度就是这个角的度数。

注意要分清是内刻度线还是外刻度线。

三、画角画角的方法有很多,我们应该学会用量角器画指定大小的角。

画角时,首先要确定角的顶点,并画出角的一条边,然后将量角器的中心和零刻度线与角的顶点和画好的一条边都分别重合,数出量角器上所画角的度数,做好标记,然后连接顶点和标记,这样就画好了一个指定度数的角。

要注意美观。

形一、平行四边形和梯形(四边形)圆定义:两组对边分别平行的四边形叫作平行四边形。

只有一组对边平行的四边形叫作梯形。

二、三角形(由三条线段围成的图形)1.按角分2.按边分3.等腰三角形的特征和性质两腰相等,两底角相等,底边上的高是底边的垂直平分线。

4.等边三角形的特征和性质,5.三角形的一些特征和性质 (1)三角形具有稳定性; (2)三角形内角和是180º(3)三角形中任意两边之和大于第三边(4)在三角形中大角所对的边也大;在直角三角形中,斜边最长 (5)在等腰直角三角形中,斜边上的高等于斜边的一半三、圆(封闭的曲线图形) 1.圆的各部分名称在同一个圆内,有无数条直径和半径,所有的直径都相等,所有的半径都相等。

小升初数学复习专题:求阴影部分面积(含答案解析)

小升初数学复习专题:求阴影部分面积(含答案解析)

解题公式、方法1、几何图形计算公式:1) 正方形:周长=边长 ×4 C=4a面积 = 边长 × 边长 S=a×a2) 正方体:表面积 = 棱长 × 棱长 ×6 S 表 = a×a×6体积 = 棱长 × 棱长 × 棱长 V=a×a×a3) 长方形:周长 =(长 + 宽)×2 C=2(a+b)面积 = 长 × 宽 S=ab4) 长方体:表面积 =(长 × 宽 + 长 × 高 + 宽 × 高)×2 S=2(ab+ah+bh)体积 = 长 × 宽 × 高 V=abh5) 三角形:面积 = 底 × 高 ÷2 s=ah÷26) 平行四边形:面积 = 底 × 高 s=ah7) 梯形:面积 =(上底 + 下底)× 高 ÷2 s=(a+b)×h÷28) 圆形:周长 = 直径 ×Π=2×Π× 半径 C=Πd=2Πr面积 = 半径 × 半径 ×Π9) 圆柱体:侧面积 = 底面周长 × 高表面积 = 侧面积 + 底面积 ×2体积 = 底面积 × 高10) 圆锥体:体积 = 底面积 × 高 ÷32、面积求解大致分为以下几类:Ø 从整体图形中减去局部;割补法:将不规则图形通过割补,转化成规则图形。

重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。

能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。

练习题例 1. 求阴影部例 2. 正方形面分的面积。

(单位: 厘米) 积是 7 平方厘米,求阴影部分的面积。

(单位: 厘米)例 3. 求图中阴影部分的面积。

专题17:《平面几何的面积(一)》小升初数学专题讲练 (思维导图+知识点精讲+例题分析+变式训练

专题17:《平面几何的面积(一)》小升初数学专题讲练 (思维导图+知识点精讲+例题分析+变式训练

2019-2020学年通用版数学小升初总复习专题汇编讲练专题17 平面几何的面积(一)1、三角形⑴特征:由三条线段围成的图形;内角和是180度;三角形具有稳定性;从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,一个三角形有三条高。

⑵计算公式:s=ah/2⑶分类①按角分A、锐角三角形:三个角都是锐角。

B、直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

C、钝角三角形:有一个角是钝角。

②按边分A、不等边三角形:三条边长度不相等。

B、等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

C、等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

2、四边形⑴特征:①四边形是由四条线段围成的图形。

②任意四边形的内角和是360度。

③只有一组对边平行的四边形叫梯形。

④两组对边分别平行的四边形叫平行四边形,它简洁变形。

长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。

⑵分类①长方形A、特征:对边相等,4个角都是直角的四边形。

有两条对称轴。

B、计算公式:c=2(a+b) s=ab②正方形A、特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

B、计算公式:c=4a s=a²③平行四边形A、特征:两组对边分别平行的四边形;相对的边平行且相等;对角相等;相邻的两个角的度数之和为180度;平行四边形简洁变形。

B、计算公式:s=ah④梯形A、特征:只有一组对边平行的四边形;中位线等于上下底和的一半;等腰梯形有一条对称轴。

B、计算公式:s=(a+b)h/2=mh3、圆⑴圆的生疏圆是平面上的一种曲线图形。

圆中心的一点叫做圆心。

一般用字母o表示。

半径:连接圆心和圆上任意一点的线段叫做半径。

一般用r表示。

在同一个圆里,有很多条半径,每条半径的长度都相等。

通过圆心并且两端都在圆上的线段叫做直径。

一般用d表示。

同一个圆里有很多条直径,全部的直径都相等。

小升初复习专题求阴影部分面积(含答案)(2020年九月整理).doc

小升初复习专题求阴影部分面积(含答案)(2020年九月整理).doc

2017年小升初复习专题-求阴影部分面积(含答案)目标:巩固小学几何图形计算公式,并通过专题复习,加强学生对于图形面积计算的灵活运用。

1、几何图形计算公式:1)正方形:周长=边长×4 C=4a 面积=边长×边长S=a×a2)正方体:表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3)长方形:周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4)长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高V=abh5)三角形:面积=底×高÷2 s=ah÷26)平行四边形:面积=底×高s=ah7)梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28)圆形:周长=直径×Π=2×Π×半径C=Πd=2Πr 面积=半径×半径×Π9)圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2 体积=底面积×高10)圆锥体:体积=底面积×高÷32、面积求解大致分为以下几类:➢从整体图形中减去局部;➢割补法,将不规则图形通过割补,转化成规则图形。

重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。

能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。

例1.求阴影部分的面积。

(单位:厘米) 例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)例3.求图中阴影部分的面积。

(单位:厘米)例4.求阴影部分的面积。

(单位:厘米)例5.求阴影部分的面积。

(单位:厘米) 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。

(完整版)小学六年级小学升初中小升初阴影面积专题复习经典例题图形面积几何图形(含答案)

(完整版)小学六年级小学升初中小升初阴影面积专题复习经典例题图形面积几何图形(含答案)

阴影部分面积专题小学六年级小学升初中1. 求如图阴影部分的面积.(单位:厘米)2. 如图,求阴影部分的面积.(单位:厘米)3. 计算如图阴影部分的面积.(单位:厘米)4. 求出如图阴影部分的面积:单位:厘米.6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)11. 求下图阴影部分的面积.(单位:厘米)12. 求阴影部分图形的面积.(单位:厘米)r ------ io ------- 113. 计算阴影部分面积(单位:厘米)14. 求阴影部分的面积.(单位:厘米)15. 求下图阴影部分的面积:(单位:厘米)16. 求阴影部分面积(单位:厘米)17. (2012&泰县)求阴影部分的面积.(单位:厘米)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积. 1526356分析阴影部分的面积等丁梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答…n 2解:(4+6) X4士2士2-3.14 X士2,2=10— 3.14 X4士2,=10-6.28 ,=3.72 (平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析根据图形可以看出:阴影部分的面积等丁正方形的面积减去4个扇形的面积.正方形的面积等丁(10X 10) 100平方厘米,4个扇形的面积等丁半径为(10士2) 5厘米的圆的面积,即:3.14 X 5X 5=78.5 (平■方厘米). 解答解:扇形的半径是:10 士2,=5 (厘米);10X 10 -3.14 X 5X 5,100-78.5 ,=21.5 (平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.考点组合图形的面积.1526356分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等丁直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10 -2=5 (厘米),长方形的面积*X宽=10X 5=50 (平方厘米),半圆的面积=兀r2士2=3.14 X 52-2=39.25 (平■方厘米),阴影部分的面积=长方形的面积-半圆的面积,=50- 39.25 ,=10.75 (平方厘米);答:阴影部分的面积是10.75 .点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看届丁哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.1526356专题平■面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积-以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8X4-3.14 X42-2,=32 - 25.12 ,=6.88 (平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄活楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.1526356分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4 H 米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2X圆的面积”算出答案.解答解:S=^ r2_ ,_ . 2=3.14 X (4士2)=12.56 (平方厘米);阴影部分的面积=2个圆的面积,=2X 12.56 ,=25.12 (平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.1526356分析图一中阴影部分的面积=大正方形面积的一半-与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积-平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6X6-2-4X6-2=6 (平方厘米);图二中阴影部分的面积=(8+15) X (48士8)士 2 - 48=21 (平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.1526356分析由图意可知:阴影部分的面积皂圆的面积,乂因圆的半径为斜边上的高, 4利用同一个三角形的面积相等即可求出斜边上的高,也就等丁知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15X 20-2X2-25,=300+ 25,=12 (厘米);阴影部分的面积:lx 3.14 X 122,4=Lx 3.14 X 144,=0.785 X 144,=113.04 (平■方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积. 1526356 分析(1)圆环的面积等丁大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积-三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等丁圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:223.14 X (上)-3.14 X 〔萱),2 2=28.26 - 3.14 ,=25.12 (平方厘米);(2)阴影部分的面积:3.14 x 32--X (3+3) X3, 2=28.26 - 9,=19.26 (平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径. 9. 如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.1526356专题平■面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积-以10-2=5厘米为半径的半圆的面积-以3-2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14 X ( 10+3),=3.14 X 13,=40.82 (厘米);面积:ix 3.14 X [ (10+3) 士2]2—【X 3.14 X (10 士2) 2 2ix 3.14 X (3 士2) 2,=以 3.14 X (42.25 - 25 - 2.25),2=以 3.14 X 15,=23.55 (平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=兀r,得出图中两个小半圆的弧长之和等丁大半圆的弧长,是解决本题的关键.10. 求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.1526356■刀忻先用“3+3=6'求出大扇形的半径,然后根据“扇形的面积卫*”分别计360算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积-小扇形的面积=阴影部分的面积”解答即可.解:r=3, R=3+3=6 n=120,解答$喙新一点兀=—"■-□OU JuU=37.68 - 9.42 ,=28.26 (平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11. 求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析先求出半圆的面积3.14 X (10士2)2-2=39.25平方厘米,再求出空白三角形的面积10X (10士2)士2=25平方厘米,相减即可求解.2解答解:3.14 X (10士2)士2 - 10X (10士2)士 2=39.25 - 25=14.25 (平■方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积北圆的面积-空白三角形的面积.12. 求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.1526356分析求阴影部分的面积可用梯形面积减去圆面积的1,列式计算即可.42解答解:(4+10) X4士2-3.14 X4 士4,=28 - 12.56 ,=15.44 (平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13. 计算阴影部分面积(单位:厘米)考点组合图形的面积.1526356专题平■面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积-三角形①的面积,平■行四边形的底和高分另U为10厘米和15厘米,三角形①的底和高分别为10厘米和(15-7)厘米,利用平■行四边形和三角形的面积公式即可求解.解答解:10X 15- 10X ( 15-7)士2,=150- 40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.考点梯形的面积.1526356分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等丁梯形的上底,代入梯形的面积公式即可求解.=96 士2,=48 (平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15. 求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.1526356分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2X 3-2=6 士2=3 (平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16. 求阴影部分面积(单位:厘米).考点组合图形的面积.1526356分析由图意可知:阴影部分的面积=梯形的面积-圆的面积,梯形的上底和高[4都等丁圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9) X4士2-3.14 X42x1,4=13X4士2-3.14 X4,=26 - 12.56 ,=13.44 (平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等丁圆的半径,且阴影部分的面积=梯形的面积-[圆的面积.17. (2012&泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析由图可知,阴影部分的面积=梯形的面积-半圆的面积.梯形的面积(a+b)h,半圆的面积 m兀「2,将数值代入从而求得阴影部分的面积.解答解:*X(6+8) X (6士2)— 3.14 X (6士2)2=以14X3-以 3.14 X 9, 2 '=21 - 14.13,=6.87 (平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

小升初图形面积40题

小升初图形面积40题

小升初图形面积40题一、计算下列图形的面积1、一个正方形边长是4米,面积是()平方米。

2、一个长方形长是6厘米,宽是4厘米,面积是()平方厘米。

3、一个三角形底是8分米,高是5分米,面积是()平方分米。

4、一个梯形上底是3厘米,下底是5厘米,高是4厘米,面积是()平方厘米。

5、一个平行四边形底是10分米,高是4分米,面积是()平方分米。

二、求下列图形的面积6、有一个平行四边形,它的一组邻边分别长5厘米和8厘米,这个平行四边形的面积是多少平方厘米?61、有一个三角形,它的底长是10厘米,高是6厘米,这个三角形的面积是多少平方厘米?611、有一个梯形,它的上底长是3厘米,下底长是5厘米,高是4厘米,这个梯形的面积是多少平方厘米?6111、有一个正方形,它的边长是6厘米,这个正方形的面积是多少平方厘米?三、比较图形的面积大小10、下面的两个图形,哪一个的面积更大一些?101、下面的两个图形,哪一个的面积更大一些?1011、下面的两个图形,哪一个的面积更大一些?下面的两个图形,哪一个的面积更大一些?下面的两个图形,哪一个的面积更大一些?下面的两个图形,哪一个的面积更大一些?小升初组合图形的面积典型试题在数学的学习中,组合图形的面积是一个重要的概念,尤其在小升初阶段,这一概念的重要性更加凸显。

它不仅涉及到基础几何知识,还考察了学生的逻辑思维和问题解决能力。

本文将通过一些典型的试题,探讨如何解决这类问题。

一、理解基本概念我们需要理解什么是组合图形。

组合图形是由两个或两个以上的基本图形组合而成的图形。

例如,一个房子可以由一个矩形和一个三角形组成,一个汽车可以由一个圆形和一个矩形组成。

二、掌握基本方法在计算组合图形的面积时,我们通常使用以下两种方法:1、分解法:将组合图形分解成几个基本图形,然后分别计算每个基本图形的面积,最后将它们相加得到组合图形的总面积。

2、直接计算法:如果组合图形无法分解成基本图形,或者分解起来比较复杂,我们可以直接计算整个组合图形的面积。

小升初数学思维拓展几何图形专项训练专题5-三角形面积与底的正比关系

小升初数学思维拓展几何图形专项训练专题5-三角形面积与底的正比关系

专题5-三角形面积与底的正比关系小升初数学思维拓展几何图形专项训练(知识梳理+典题精讲+专项训练)1、三角形的面积:s=21×底×高,由该公式有以下推论:(1)当底相同时:S1:S2=a:b;(2)当两个三角形相似时:S1:S2=(a:b)2.【典例一】图中三角形ABC 的面积是2120cm ,AE EC =,23DC BD =,那么三角形AED 的面积是多少2cm ?【分析】根据23DC BD =,则2DC =份,3BD =份,5BC BD DC =+=份,即25DC BC =;若ADC ∆的底边取DC ,ABC ∆的底边取BC ,则这两个三角形的高是相同的,根据三角形的面积公式以及底边和高的关系,则得:ADC ∆的面积25ABC =∆的面积;又因为AE EC =,所以AED ∆和CED ∆底边和高相等,所以AED ∆的面积12ADC =∆的面积;据此得解.【解答】解:根据以上分析,得:21120322⨯⨯+2112052=⨯⨯11205=⨯24=(平方厘米)答:三角形AED 的面积是224cm .【点评】根据三角形的面积公式,以及底边和高的关系推导出三角形之间面积的关系是解决此题的关键.【典例二】有一块平行四边形菜地(如图),DE EF FC ==,13GB BD =,三角形GEF 种的是小白菜,面积是28m ,求这块平行四边形菜地的面积是多少2m【分析】连接GC ,根据DE EF FC ==,所以三角形DEG 和三角形GEF 和三角形CFG 的面积相等,它们是等底等高的三角形,据此可求出三角形DCG 的面积,又因13GB BD =,三角形BCD 和三角形BCG 是等高的三角形,它们底边的比就是面积的比,可求出三角形BCD 的面积,再乘2就是平行四边形菜地的面积,据此解答.【解答】解:如图因DE EF FC ==,8DEG GEF CFG S S S ∆∆∆===(平方米)33824DCG GEF S S ∆∆==⨯=(平方米)又因13GB BD =,所以33243622BCD DCG S S ∆∆==⨯=(平方米)所以平行四边形菜地的面积是36272⨯=(平方米)答:这块平行四边形菜地的面积是72平方米.【点评】本题的重点是连接CG ,再根据三角形面积和底边成正比进行解答.一.选择题(共8小题)1.如图所示,平行四边形ABCD 中,2CD CE =。

小升初数学几何图形30道经典题(含解析).docx

小升初数学几何图形30道经典题(含解析).docx

30道典型几何题解析1. 〔加减法求面积】如图是一个直径为3cm的半圆.让这个半圆以,4点为轴沿逆时针方向旋转6任,此时H点移动到步点.求阴影部分的面枳・(图中长度单位为cm,圆周率按3计算). 【解析】面积二同心角为朋的扇形面积十半回-空白部分而积(也董半圆)=国心角为60°的扇形面积二x jix 二七二 4.5(cm2).360 22. 【割补法求面枳】求下列各图中阴影部分的面枳(图中长度单位为cm,圆周率按3计算),3. 【差不变】三角形彳灰:是直角三角形,阴影I的面积比阴影II的面枳小25cm2 , = 求8(•的长度.【解析】由于阴影1时而积比阴影II的面积小25cm2 ,根据是不变原理,立向三吊形面积疲去半圆而枳为25cm',则直角三角形X8C,西权为1 - R v-K*一十25 = 8兀十25( cm')■2 \ 2 ;况的长度为的卜25) x 2仙=2" 6.25 = 12.53( cm ).4. 【等H代挽】下图(单位;际米)是两个相同的宜伟梯形重龛在一起,求阴影部分的面机【解析】所求面枳等于田中阴影部分的面积,为(20-5 ♦ 20)x8 42= 140(平方厘米).5. 【等面根变形】如卜图,长方形AFEB和长方形FDCE拼成了长方形ABCD ,长方形ABCD的长是20,宽是12.则它内部阴影部分的面积是多少?【解析】根据面枳比例模型可知阴影部分面秋等于长方形面枳的一半,为ix 20x12 = 120.26-【面枳与旋转】如图所示,直角三角形4AC的斜边成长为I。

厘米,匕相C = ", 此时3。

长5厘米.以点8为中心.将顺时针旋转I2(T •点,4、。

分别到达点E、。

的位置.求火•边扫过的图形即图中阴影部分的面积・3取3)[解析】注*分割、平移-补站如图所示,将田形⑴被补到图形⑵的位里,因为 = ,那么= 12(T ,则阴影部分为一圆环的;.7 .【图形与平移】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?【解析】我们可以让静止的瓷砖动起来.把时角线上的黑瓷砖.通过平程这神劫态的处理,移到两条边上(如图2).在这一转化过程中瓷碎的位置发生了夜化,但数量没有变,此时白色逢珪组成一个正方形.大正方形的辿长上能放(101 + 1) + 2二51 (块),白色瓷砖组成.的正方形的边长上能放:51-1 = 50(块),所以白色瓷砖共用了:5Ox 50= 25((块).8.【化整为等】1E方形ABCD与等腰直角三角形BEF放在一起(如图),虬N点为正方形的边的中点,阴影部分的面积是14c此三用形BEF的面积是务少平方厘米?【解析】因为M. N是中点.故我们可以精该图形此行分割.所得图形加下图形中的三角形面积都相竽,阴影和分由7个三角形纽成、且许而积为14平方厘农. 故一个三角形的面枳为2平方厘米,那么三角形BET的血枳是18平方厘黑.9.【幻补法】如图所示的四边形的面积等于多少?【骅析】题目中要求的四边形既不是正方形也不是长方形.椎以运用公式直检求面仅我11可以利用旋转的方法对图形实施变挽:把三角形OAB顶点。

六年级小升初数学总复习【图形与几何】专题训练(解析卷)

六年级小升初数学总复习【图形与几何】专题训练(解析卷)

六年级小升初数学总复习【图形与几何】专题训练(解析卷)六年级小升初数学总复【图形与几何】专题训练【解析卷】直线型面积】1.在图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。

已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。

解答:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边形ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50(厘米2)。

2.图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米,求CD的长。

解答:连结CB。

三角形DCB的面积为4×4÷2-2=6(厘米2),CD=6÷4×2=3(厘米)。

3.有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合。

已知露在外面的部分中,红色面积是20,黄色面积是14。

绿色面积是10,求正方形盒子底部的面积。

解答:把黄色正方形纸片向左移动并靠紧盒子的左边。

由于三个正方形纸片面积相等,所以原题图可以转化成下页右上图。

此时露出的黄、绿两部分的面积相等,都等于(14+10)÷2=12.因为绿:红=A∶黄,以是绿×黄=红×A,A=绿×XXX÷红12×12÷20=7.2.正方形盒子底部的面积是红+黄+绿+A=20+12+12+7.2=51.2.三角形的等积变换】:4.如左下图是两个相同的直角三角形叠在一起组成的,求阴影部分的面积。

单位:分米)谜底:32.5平方分米。

拓展:如图所示,已知正方形ABCD和正方形EFGC,且正方形EFGC的边长为6厘米,请问图中阴影部分面积是多少?答案:18平方厘米。

5.如图所示,在平行四边形ABCD中,DE=EF=FC,BG=GD.已知三角形GEF的面积是4平方厘米,求平行四边形的面积。

小升初小学数学几何图形应用题专题练习《不规则立体图形的表面积》答案详解

小升初小学数学几何图形应用题专题练习《不规则立体图形的表面积》答案详解

几何图形—专题11《不规则立体图形的表面积》一.选择题1.(2019春•南山区期末)将棱长为1厘米的小正方体按如图方式摆方在地上,露在外面的面的积是()平方厘米.A.18 B.21 C.24 D.27【解答】解:露在外面的总面数:126624++=(个)一个正方形面的面积:114⨯=(平方厘米)立体图形的总面积:12424⨯=(平方厘米)答:露在外面的面积是24平方厘米.故选:C.2.(2019•郾城区)如图是一个长3厘米、宽与高都是2厘米的长方体.将它挖掉一个棱长1厘米的小正方体,它的表面积()A.比原来大B.比原来小C.不变【解答】解:据题意和图可知,挖掉一个棱长1厘米的小正方体后,它的表面积去掉了2个面,也就是减少了2平方厘米;但是它的表面同时增加了4个面,也就是增加了4平方厘米;所以它的表面积增加了2平方厘米.故选:A.3.(2014•天津)如图,桌面上的模型由20个棱长为a的小正方体组成,现将该模型露在外面的部分涂上涂料,则涂上涂料部分的总面积为()A.250a40a D.220a B.230a C.2【解答】解:从正面看,有10个面露在外面,从左面看,有10个面露在外面,从右面看,有10个面露在外面,从后面看,有10个面露在外面,从上面看,有10个面露在外面,所以涂上涂料部分的总面积为:22⨯++++=.(1010101010)50a a50a.答:涂上涂料部分的总面积为2故选:D.4.(2009春•旅顺口区期末)把9个棱长是10厘米的正方体堆放在墙角(如图),露在外面的面积是()厘米2.A.1500 B.1600 C.1700 D.1800⨯⨯++,【解答】解:(1010)(656)=⨯,10017=(厘米2),1700答:露在外面的面积是1700厘米2.故选:C.5.从由8个棱长是1厘米的小正方体拼成的大正方体中,拿走一个小正方体,如图,这时它的表面积是( )平方厘米.A.增加了B.减小了C.不变【解答】解:观察图形可知,拿走一个小正方体减少了3个面,又增加了3个面,则表面积不变.故选:C.二.填空题6.(2019•北京模拟)21个棱长为1厘米的小正方体组成一个立方体如图,它的表面积是56平方厘米.【解答】解:(9712)2(11)++⨯⨯⨯=⨯⨯⨯28211=(平方厘米)56答:它的表面积是56平方厘米.故答案为:56.7.(2019•益阳模拟)图形是由棱长为1厘米的正方体拼成的,它的表面积是18平方厘米;至少还需要个这样的小正方体才能拼成一个大正方体.【解答】解:根据题干分析可得:(1)表面积为:⨯⨯⨯-⨯⨯,1164116=-,246=(平方厘米),18-=(个),(2)844答:它的表面积是18平方厘米;至少还需要4个这样的小正方体才能拼成一个大正方体.故答案为:18;4.8.(2018•海门市)如图,5个棱长为2分米的正方体硬纸箱堆放在墙角,体积一共是40立方分米,露在外面的硬纸面积是平方分米.⨯⨯⨯=(立方分米)【解答】解:(1)体积是:222540⨯⨯++(2)露在外部的面积是:22(433)=⨯410=(平方分米)40答:体积一共是40立方分米,露在外面的硬纸面积是40平方分米.故答案为:40,40.9.(2017春•宝安区期末)如图是同样大小的小方块堆积起来的,每个小方块的棱长是1cm,这堆小方块露在外面的面积是15平方厘米【解答】解:根据题干分析可得:⨯⨯++11(465)=⨯115=(平方厘米),15答:这堆小方块露在外面的面积是15平方厘米.故答案为:15平方厘米.10.(2015春•汉源县校级期末)计算下面图形的表面积和体积.(单位:分米)⨯+⨯+⨯⨯【解答】解:表面积:(868262)2=++⨯(481612)2=⨯762=(平方分米)152⨯⨯-⨯⨯体积:862421=-968=(立方分米)88答:图形的表面积是152平方分米,体积是88立方分米.11.(2019•益阳模拟)下图是由棱长为2厘米的小正方体搭成的,它的体积是72立方厘米,表面积是平方厘米.⨯⨯⨯=(立方厘米)【解答】解:222972⨯⨯++⨯22(844)2=⨯⨯⨯22162=(平方厘米)128答:它的体积是72立方厘米,表面积是128平方厘米.故答案为:72;128.12.(2019•芜湖模拟)如图的立体图形是由棱长1厘米的小正方体组成的,它的表面积是18平方厘米,至少还需要个这样的小正方体才能拼一个正方体.【解答】解:根据题干分析可得:(1)表面积为:⨯⨯⨯-⨯⨯1164116246=-=(平方厘米)18-=(个)(2)844答:它的表面积是18平方厘米;至少还需要4个这样的小正方体才能拼成一个大正方体.故答案为:18;4.13.(2017•长沙)如图所示,图中所示的立体图形由8个棱长为1cm的立方体块组成,这个立体图形表面积为302cm【解答】解:从前、后、左、右、上、下方向,看到的面的个数分别为:6、6、4、4、5、5.表面积是:⨯⨯+++++11(664455)=⨯1302=30()cm30cm.答:这个立体图形的表面积是2故答案为:30.14.(2014春•相城区校级期末)如图是由棱长1厘米的正方体拼搭成的,放在桌面上的面的大小是4平方厘米,它的表面积是平方厘米,体积是立方厘米.在这个基础上至少添个这样的正方体,就能搭成一个长方体.⨯⨯=(平方厘米)【解答】解:(1)1144⨯⨯⨯+⨯+⨯(2)(11)(425242)=⨯12626=(平方厘米)⨯⨯⨯=(立方厘米)(3)11164⨯⨯-(4)3236=-186=(个)12答:放在桌面上的面的大小是4平方厘米,它的表面积是26平方厘米,体积是6立方厘米.在这个基础上至少添12个这样的正方体,就能搭成一个长方体.故答案为:4,26,6,12.15.将棱长是1cm的小正方体靠墙角摆成如图所示的几何体,摆这个几何体一共用了20个小正方体,要把露在外面的面涂上颜色,那么涂色面的面积之和是平方厘米.+++=(个)【解答】解:(1)1063120答:摆这个几何体一共用了20个小正方体.(2)从正面、上面和右面看,都有10个小正方形,所以涂色的小正方形一共有:⨯=(个)10330⨯⨯=(平方厘米)113030答:涂色面的面积之和是30平方厘米.故答案为:20;30.三.判断题16.(2010秋•零陵区期末)把体积是31m.错误.(判断对错)1m的石块放在地上,石块的占地面积是2【解答】解:由于石块是不规则立体图形,所以不能确定它的底面的形状和面积的具体数量,因此,“把体积是31m.”这种说法是错误的.1m的石块放在地上,石块的占地面积是2故答案为:错误.四.应用题17.如图,把棱长为2cm的小正方体堆成如图所示的形状,求这个立体图形的表面积和体积.【解答】解:(1)图中几何体露出的面有:10416272⨯+⨯=(个)所以这个几何体的表面积是:2272288⨯⨯=(平方厘米)(2)这个几何体共有4层组成,所以共有小正方体的个数为:1491630+++=(个)所以这个几何体的体积为:22230240⨯⨯⨯=(立方厘米)答:这个立体图形的表面积是288平方厘米,体积是240立方厘米.五.解答题18.(2015秋•射阳县校级期末)动手操作:如图,用若干个棱长为1厘米的正方体重叠成如图所示的形状,求这个立体图形的表面积和体积.【解答】解:(1)图中几何体露出的面有:⨯+⨯+⨯927282=++18141648=(个),所以这个几何体的表面积是:114848⨯⨯=(平方厘米);(2)这个几何体共有3层组成,所以共有小正方体的个数为:25916++=(个),所以这个几何体的体积为:1111616⨯⨯⨯=(立方厘米).答:这个立体图形的表面积是48平方厘米,体积是16立方厘米.19.(2014•台湾模拟)用1立方公分的立方块组成下图,求总表面积?【解答】解:[162162(1622)]1⨯+⨯+⨯+⨯=++⨯(323234)1=⨯981=(平方公分).98答:总表面积是98平方公分.20.李丽家装修,决定安装一个滑道,为了安装方便,需要在一个长方体铁块上截去一个长、宽、高分别为6分米、2分米、1分米的小长方体,已知粉刷1平方分米需花费2.75元,那么粉刷这个零件与截去之前的零件相比相差多少元?⨯+⨯+⨯⨯-⨯+⨯【解答】解:62612126261=-2218=(平方分米)4⨯=(元)2.75411答:粉刷这个零件与截去之前的零件相比相差11元.21.如图是由18个边长为1厘米的正方体拼搭成的立体图形,它的表面积是多少平方厘米?+=(个【解答】解:上、下共:9918+=(个)左、右共:7714+=(个)前、后共:8816⨯⨯++表面积:(11)(181416)148=⨯=(平方厘米)48答:这个图形的表面积是48平方厘米.22.3个棱长都是20厘米的正方体堆放在墙角处(如图),露在外面的面积是多少?【解答】解:2020(322)⨯⨯++4007=⨯2800=(平方厘米)答:露在外面的面积是2800平方厘米.23.求图形的表面积与体积(1)(2)【解答】解:(1)556(16516252)2552⨯⨯+⨯+⨯+⨯⨯-⨯⨯150(803210)250=+++⨯-150122250=+⨯-15024450=+-344=(平方厘米)5551652⨯⨯+⨯⨯125160=+285=(立方厘米)答:它的表面积是344平方厘米,体积是285立方厘米.(2)2[3.142040 3.14(202)2]2(204020254025)2040⨯⨯+⨯÷⨯÷+⨯+⨯+⨯-⨯[2512 3.141002]2(8005001000)2800 =+⨯⨯÷+++⨯-3140223002800=÷+⨯-=+-157********=-6170800=(平方分米)53702⨯÷⨯÷+⨯⨯3.14(202)402204025=⨯⨯÷+3.1410040220000=÷+12560220000=+628020000=(立方分米)26280答:它的表面积是5370平方分米,体积是26280立方分米.24.有一个长方体形状的零件,中间挖去一个正方体的孔,你能算出它的表面积吗?(单位:分米)⨯+⨯+⨯⨯+⨯⨯【解答】解:(868565)2224=⨯+11821623616=+=(平方分米)252答:它的表面积是252平方分米.25.(2012春•嘉兴期末)如图是由棱长为5cm的正方体搭成的,它的体积是多少立方厘米?它的表面积是多少平方厘米?⨯⨯⨯,【解答】解:(1)5559=⨯,12591125=(立方厘米);⨯⨯⨯+⨯⨯⨯+⨯⨯⨯,(2)554255525572=++,200250350=(平方厘米);800答:图形的体积是1125立方厘米,表面积是800平方厘米.26.(2012•射洪县)把若干个边长2厘米的正方体重叠起来堆成如图所示的立体图形,这个立体图形的表面积是224平方厘米.⨯+⨯⨯⨯,【解答】解:(94102)(22)=⨯,564=(平方厘米);224答:这个立方体的表面积是224平方厘米.故答案为:224.27.(2012春•吴中区校级期末)在一个棱长为5厘米的正方体上剜去一块长5厘米,宽和高都是1厘米的小长方体,剩下部分的表面积是多少?(1)(2)(3)【解答】解:根据题干分析可得:⨯⨯-⨯⨯,(1)556112=-,1502=(平方厘米),148答:这个立体图形的表面积是148平方厘米.⨯⨯+⨯⨯-⨯⨯,(2)556512112=+-,150102=(平方厘米),158答:这个立体图形的表面积为158平方厘米.⨯⨯+⨯⨯-⨯⨯,(3)556514112=+-,150202=(平方厘米),168答:这个立体图形的表面积是168平方厘米.28.(2009•金华)如图,这座领奖台由四个相同的长方体拼合而成,把它的前后面和②、③两侧面涂上白色油漆,踏板和①的侧面铺上红地毯.(单位:厘米)(1)需要油漆部分的面积是多少?(2)这个领奖台所占的空间有多大?⨯⨯⨯+⨯⨯【解答】解:(1)60204230202=+,96001200=(平方厘米)10800答:需要油漆部分的面积是10800平方厘米.⨯⨯⨯=(立方厘米)(2)6030204144000答:这个领奖台所占的空间有144000立方厘米大.29.将15个棱长为1的正方体堆放在桌面上(如图),喷上红色后再将它们分开.没有涂上红色的部分,面积是几平方厘米?⨯⨯⨯-⨯⨯⨯+⨯+【解答】解:1161511(726210)=-⨯90136=-9036=(平方厘米)54答:面积是54平方厘米.30.如图由19个棱长是2厘米的小正方体重叠而成.求这个立体图形的表面积.⨯⨯⨯⨯【解答】解:(23)(23)6=⨯⨯666=(平方厘米)216答:这个立体图形的表面积是216平方厘米.31.计算立体图形的表面积和体积.【解答】解:(1)(1251210510)25(128)2⨯+⨯+⨯⨯-⨯-⨯ (6012050)2542=++⨯-⨯⨯2302202=⨯-⨯46040=-2420()cm =(2)125105(128)5⨯⨯-⨯-⨯6010545=⨯-⨯⨯600100=-3500()cm =答:不规则图形的表面积是2420cm ,体积是3500cm .。

30道小升初几何问题(含答案解析)

30道小升初几何问题(含答案解析)

1II IB'60︒ 30 道典型几何题解析1. 【加减法求面积】如图是一个直径为3cm 的半圆,让这个半圆以 A 点为轴沿逆时针方向旋转60︒ ,此时 B 点移动到 B ' 点,求阴影部分的面积.(图中长度单位为cm ,圆周率按3 计算).【解析】面积= 圆心角为60︒ 的扇形面积+ 半圆- 空白部分面积(也是半圆) = 圆心角为60︒ 的扇形面积= 60 ⨯ π ⨯ 32 = 3π = 4.5(cm 2 ) . 360 22. 【割补法求面积】求下列各图中阴影部分的面积(图中长度单位为 cm ,圆周率按 3 计算):3⑴⑵12⑶⑷【解析】⑴ 4.5⑵ 4 ⑶1⑷ 23. .【差不变】三角形 ABC 是直角三角形, 阴影 I 的面积比阴影 II 的面积小 25cm 2 ,AB = 8cm ,求 BC 的长度.ABC22【解析】由于阴影I 的面积比阴影II 的面积小25cm 2 ,根据差不变原理,直角三角形 ABC 面积减去半圆面积为25cm 2 ,则直角三角形 ABC 面积为1 ⎛ 8 ⎫2π ⨯ ⎪ 2 ⎝ ⎭+ 25 = 8π + 25 ( cm 2 ),BC 的长度为(8π + 25)⨯ 2 ÷ 8 = 2π + 6.25 = 12.53 ( cm ).4. 【等量代换】下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.【解析】所求面积等于图中阴影部分的面积,为(20 - 5 + 20)⨯8 ÷ 2 =140 (平方厘米). 5. 【等面积变形】如下图,长方形 AFEB 和长方形 FDCE 拼成了长方形 ABCD ,长方形ABCD 的长是 20,宽是 12,则它内部阴影部分的面积是多少?BE C【解析】根据面积比例模型可知阴影部分面积等于长方形面积的一半,为1⨯ 20 ⨯12 = 120 . 26. 【面积与旋转】如图所示,直角三角形 ABC 的斜边 AB 长为 10 厘米, ∠ABC = 60︒ ,此时 BC 长 5 厘米.以点 B 为中心,将 ∆ABC 顺时针旋转120︒ ,点 A 、C 分别到达点 E 、D 的位置.求 AC 边扫过的图形即图中阴影部分的面积.( π 取 3)EE【解析】注意分割、平移、补齐.如图所示,将图形⑴移补到图形⑵的位置,3MD NMD N131213131312因为∠EBD = 60︒ ,那么∠ABE =120︒ ,则阴影部分为一圆环的 1.37. 【图形与平移】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用 101 块黑色瓷砖,那么白色瓷砖用了多少块?图1 图 2【解析】我们可以让静止的瓷砖动起来,把对角线上的黑瓷砖,通过平移这种动态的处理,移到两条边上(如图 2).在这一转化过程中瓷砖的位置发生了变化,但数量没有变,此时白色瓷砖组成一个正方形.大正方形的边长上能放(101+1) ÷ 2 = 51(块),白色瓷砖组成的正方形的边长上能放: 51-1 = 50 ( 块) , 所以白色瓷砖共用了: 50⨯ 5 0= 25 0(块).8. 【化整为零】正方形 ABCD 与等腰直角三角形 BEF 放在一起(如图),M 、N 点为正方形的边的中点,阴影部分的面积是 14cm 2,三角形 BEF 的面积是多少平方厘米? 【解析】因为M 、N 是中点,故我们可以将该图形进行分割,所得图形如下FFAABCE BCE图形中的三角形面积都相等,阴影部分由 7 个三角形组成,且其面积为 14 平方厘米, 故一个三角形的面积为 2 平方厘米,那么三角形BEF 的面积是 18 平方厘米。

部编小升初复习专题-求阴影部分面积(含答案)

部编小升初复习专题-求阴影部分面积(含答案)

2017年小升初复习专题-求阴影部分面积(含答案)目标:巩固小学几何图形计算公式,并通过专题复习,加强学生对于图形面积计算的灵活运用。

1、几何图形计算公式:1)正方形:周长=边长×4C=4a面积=边长×边长S=a×a2)正方体:表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3)长方形:周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4)长方体:表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)体积=长×宽×高V=abh5)三角形:面积=底×高÷2s=ah÷26)平行四边形:面积=底×高s=ah7)梯形:面积=(上底+下底)×高÷2s=(a+b)×h÷28)圆形:周长=直径×Π=2×Π×半径C=Πd=2Πr面积=半径×半径×Π9)圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高10)圆锥体:体积=底面积×高÷32、面积求解大致分为以下几类:从整体图形中减去局部;割补法,将不规则图形通过割补,转化成规则图形。

重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。

能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。

例1.求阴影部分的面积。

(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)例3.求图中阴影部分的面积。

(单位:厘米)例4.求阴影部分的面积。

(单位:厘米)例5.求阴影部分的面积。

(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。

小升初数学几何必考题型

小升初数学几何必考题型

小升初数学几何必考题型
小升初数学几何必考题型包括但不限于以下几种:
1. 计算图形面积:这是最常见的几何题型之一,主要考察学生对于不同图形面积计算公式的掌握情况。

2. 计算周长:这也是常见的几何题型,主要考察学生对于不同图形周长计算公式的掌握情况。

3. 图形判断:这类题型要求学生根据题目给出的条件判断某个图形是否正确,例如判断一个三角形是否为等腰三角形或等边三角形。

4. 立体几何:这类题型考察学生的空间想象能力,例如判断一个立体图形的展开图是什么形状,或者计算一个立体图形的表面积或体积。

5. 图形运动:这类题型考察学生对于图形运动规律的理解,例如判断一个图形在平移或旋转后与原图的关系。

6. 角度计算:这类题型要求学生计算出某个图形的内角或外角,或者利用给定的条件判断某个角度是否相等或互补。

7. 几何定理应用:这类题型要求学生根据已知的几何定理,判断某个命题是否成立,或者应用几何定理解决问题。

这些题型要求学生掌握基本的几何知识和定理,并且能够灵活运用。

同时,还需要学生具备良好的空间想象能力和问题解决能力。

小升初数学总复习归类精讲-第二章图形与几何(一)图形的认识和测量-平面图形的周长和面积 全国通用

小升初数学总复习归类精讲-第二章图形与几何(一)图形的认识和测量-平面图形的周长和面积 全国通用

平面图形的周长和面积课标要求1.掌握长方形、正方形的周长和面积计算公式,并能解决简单的实际问题,会估计给定的简单图形或不规则图形的面积。

2.掌握三角形、平行四边形、梯形的面积公式,并能解决简单的实际问题。

3.掌握圆、扇形的周长和面积的计算公式,并能解决简单的实际问题。

4.初步运用割、补、平移、旋转等数学方法,综合运用学过的周长、面积公式求组合图形的周长和面积。

考点1 长方形正方形的周长和面积计算1. 用边长是5厘米的两个正方形,拼成一个长方形,拼成的长方形的周长是( )厘米,面积是( )平方厘米。

2. 用两个完全一样的直角三角形拼成一个面积是20平方分米的长方形,已知直角三角形的一条直角边是8分米,则另一条直角边是( )分米。

3. 一张正方形纸先上下对折一次,再左右对折一次,得到的图形是( )形,它的面积是原来正方形的( ),它的周长是原来正方形的多少( )。

4. 下图中大圆的半径是5厘米,小圆的半径是3厘米。

长方形的周长是( )厘米。

5. 长方形的长和宽分别是a 分米、b 分米(a 、b 是不同的自然数),如果长方形的周长是200分米,那么长方形的面积是( )平方分米。

6. 一张正方形纸的边长是12厘米,在它的一个角上剪去一个长4厘米、宽3厘米的长方形后(长方形的边与正方形的边分别平行),剩余图形的周长是( )厘米。

7. 一个长方形的周长是72厘米,如果它的宽增加 ,长减少 ,周长仍和原来一样。

那么原来这个长方形的面积是( )。

8. 一个等腰三角形底和高的比是8:3,把它沿着底边上的高剪开,拼成一个长方形,这个长方形的面积是192平方厘米,长方形的周长是( )厘米。

419.选择(1)如下图,每个小正方形的面积是2cm2,涂色部分的面积是()cm2。

A.32B.24C.20D.10时(2)如下图,将四张长为16厘米、宽为2厘米的长方形纸条垂直相交平放在桌面上,则桌面被覆盖部分的面积是()。

A.72cm2B.128cm2C.124cm2D.112cm2(3)一根彩绳和A、B、C三个钉子围成如下图所示的三角形。

小升初数学专项复习:二、图形与几何8.圆、圆环的面积--基础全国通用版(含答案)

小升初数学专项复习:二、图形与几何8.圆、圆环的面积--基础全国通用版(含答案)

8.圆、圆环的面积【知识点睛】圆的面积公式:S=πr2圆环的面积等于大圆的面积减去小圆的面积即可得,公式:S=πr22-πr12=π(r22-r12)【小题狂做】一.选择题(共16小题)1.(2019春•增城区期中)如果把圆的半径按1:3缩小,那么新的圆与原来的圆的面积比是()A.3:1B.1:3C.1:9D.9:1【解答】解:假设原来圆的半径为1,则缩小后的半径为,新的圆和原来的圆的面积比是:(π××):(π×1×1)=:1=1:9答:新的圆与原来的圆的面积比是1:9.故选:C.2.(2018秋•越秀区期末)用一根长6.28m的绳子刚好能围一棵树的树干2圈.如果树干的横截面为圆形,那么它的面积是()m2.A.12.56B.3.14C.1.57D.0.785【解答】解:6.28÷2÷2÷3.14=3.14÷2÷3.14=0.5(米)3.14×0.52=3.14×0.25=0.785(平方米)答:这棵树的树干的横截面是0.785平方米.故选:D.3.(2018秋•醴陵市期末)一个环形的玉环,外直径8cm,内直径6cm,这个玉环的面积是()cm2.A.12.56B.18.84C.21.98D.31.4【解答】解:3.14×[(8÷2)2﹣(6÷2)2]=3.14×[42﹣32]=3.14×[16﹣9]=3.14×7=21.98(cm2)答:这个玉环的面积是21.98cm2.故选:C.4.(2018秋•河北区期末)一个圆形餐桌,桌面半径是1米,它的面积是()平方米A.12.56B.6.28C.3.14D.0.785【解答】解:3.14×12=3.14(平方米)答:它的周长是6.28米,面积是3.14平方米.故选:C.5.(2018秋•石林县期末)计算如图阴影部分的面积.正确的算式是()A.3.14×6﹣3.14×4B.3.14×(3﹣2)C.3.14×(32﹣22)【解答】解:由圆环的面积公式可得,如图阴影部分的面积,正确的算式是3.14×(32﹣22).故选:C.6.(2018秋•石林县期末)两个圆的半径的比是1:2,它们的面积比是()A.1:2B.4:1C.1:4【解答】解:因为,S=πr2,所以=π(一定),即,半径比是:1;2,面积比是:1:4.故选:C.7.(2018秋•五华区期末)如图,把圆分成若干等份,拼成近似的长方形后,周长增加了8dm.原来的这个圆的面积是()dm2.A.12.56B.25.12C.50.24【解答】解:3.14×(8÷2)2=3.14×16=50.24(平方分米)答:原来圆的面积是50.24平方分米.故选:C.8.(2018秋•阳信县校级期末)如图,以大圆的半径为直径画一小圆,大圆的面积是小圆面积的()倍.A.2B.4C.8D.9【解答】解:设小圆的半径为r,则大圆的半径就是2r,大圆的面积为:π(2r)2=4πr2,小圆的面积为:πr2,所以大圆的面积是小圆的面积的4倍.故选:B.9.(2018秋•福田区期末)如图已知的面积为20cm2,圆的面积是()cm2 A.31.4B.62.8C.314D.无法确定【解答】解:3.14×20=62.8(cm2)答:圆面积是62.8cm2.故选:B.10.(2019•西安模拟)用一张边长是2分米的正方形纸,剪一个面积尽可能大的圆,这个圆的面积是()A.3.14B.12.56C.6.28【解答】解:2÷2=1(分米)S=πr2=3.14×12=3.14(平方分米)答:这个圆的面积是3.14平方分米.故选:A.11.(2019春•东台市校级期中)如果一个圆的半径是a厘米,且2:a=a:3,这个圆的面积是()cm2.A.πB.6 πC.6D.无法求出【解答】解:2:a=a:3a×a=2×3a2=6;所以,这个圆的面积为:πa2=6π(平方厘米);故选:B.12.(2019•广州模拟)一个圆的直径增加2倍后,面积是原来的()A.9倍B.8倍C.4倍D.2倍【解答】解:圆的直径增加2倍,也就是圆的直径扩大3倍,圆的半径也扩大3倍,圆的面积就扩大3×3=9倍.答:面积是原来的9倍.故选:A.13.(2018秋•台安县期末)在一个钟面上,时针长2厘米,分针长3厘米,从8:00到10:00,分针扫过的面积是()A.28.26cm2B.37.68cm2C.56.52cm2【解答】解:3.14×32×2,=3.14×9×2,=56.52(平方厘米),答:分针扫过的面积是56.52平方厘米.故选:C.14.(2019•天河区模拟)钟面上时针的长度1分米,一昼夜时针扫过的面积()平方分米.A.2πB.12πC.24πD.48π【解答】解:π×12×2=2π(平方分米),答:一昼夜时针扫过的面积是2π平方分米.故选:A.15.(2018秋•黄埔区期末)大圆半径正好是小圆的直径,则小圆面积是大圆面积的()A.B.C.2D.4【解答】解:根据题意,假设大圆的半径是2,那么小圆的直径也是2,小圆的半径就是2÷2=1,由圆的面积公式可知:大圆的面积是:π×22=4π,小圆的面积是:π×12=π,则小圆面积是大圆面积的:π÷(4π)==.故选:B.16.(2018秋•深圳期末)一个直径1厘米的圆与一个边长1厘米的正方形相比,它们的面积()A.圆的面积大B.正方形的面积大C.一样大D.无法比较【解答】解:圆的面积:3.14×(1÷2)2=0.785(平方厘米),1×1=1(平方厘米);0.785平方厘米<1平方厘米;故选:B.二.填空题(共11小题)17.(2018秋•简阳市期末)圆的半径扩大到原来的3倍,直径就扩大到原来的3倍,面积就扩大到原来的9.【解答】解:圆的半径扩大到原来的3倍,直径就扩大到原来的3倍,面积就扩大到原来的3×3=9倍.故答案为:3;9倍.18.(2019•绿园区模拟)一个扇形的半径是10厘米,圆心角的度数为90度,扇形的面积是78.5平方厘米.【解答】解:3.14×102×=3.14×100×=78.5(平方厘米),答:这个扇形的面积是78.5平方厘米.故答案为:78.5平方厘米.19.(2019•宁波模拟)把一个直径6厘米的圆按如图剪开后拼成一个近似长方形,这个长方形的长是9.42厘米,面积是28.26平方厘米.【解答】解:3.14×6÷2=9.42(厘米)6÷2=3(厘米)面积是:9.42×3=28.26(平方厘米)答:这个长方形的长是9.42厘米,面积是28.26平方厘米;故答案为:9.42,28.26.20.(2019•福田区)画一个周长为15.7cm的圆,圆规两脚应叉开 2.5cm,所画出的圆的面积是19.625平方厘米.【解答】解:15.7÷3.14÷2=2.5(厘米)3.14×2.52=3.14×6.25=19.625(平方厘米)答:圆规两脚应叉开2.5厘米,所画圆的面积是19.625平方厘米.故答案为:2.5、19.625.21.(2018秋•临河区期末)一个环形的内圆半径是3cm,外圆半径是5cm,这个环形的面积是53.38cm2.【解答】解:3.14×(52﹣32)=3.14×(25﹣9)=3.14×17=53.38(cm2)答:这个环形的面积是53.38cm2.故答案为:53.38.22.(2018秋•越秀区期末)如图(单位:cm),阴影部分的面积是125.6cm2.【解答】解:小圆半径:7﹣4=3(cm)3.14×7×7﹣3.14×3×3=3.14×(49﹣9)=3.14×40=125.6(平方厘米)答:阴影部分的面积是125.6cm2.故答案为:125.6.23.(2018秋•阳信县校级期末)在推导圆的面积公式过程中,把一个圆形纸片分成若干等份,然后把它剪开,照下图的样子拼成一个近似长方形,如果长方形的宽是3厘米,那么近似长方形的周长是18.84厘米,圆的面积是28.26平方厘米.【解答】解:根据图可得:长方形的周长:C=2πr+2r=2×3.14×3+2×3=24.84(厘米)圆的面积:S=r×=πr2=3.14×3×3=28.26(平方厘米)故答案为:24.84;28.26.24.(2018秋•福田区期末)如图,把圆16等分,拼成一个梯形.这时,梯形的面积相当于圆的面积.观察这个梯形,上底相当于圆周长的,下底相当于圆周长的,高相当于圆的圆半径的2倍.梯形的面积=(上底+下底)×高÷2,所以圆的面积=(+)×(2r)÷2=πr2【解答】解:察这个梯形,上底相当于圆周长的,下底相当于圆周长的,高相当于圆的圆半径的2倍.设圆半径为r,则周长为2πr.2πr×=,2πr×=所以圆的面积═(+)×(2r)÷2=πr2×2r÷2=πr2.故答案为:,,,,πr2.25.(2019•集美区校级模拟)把一个半径a厘米的圆无限均分,在拼成一个长方形.拼成的长方形的长是 3.14a厘米,面积是 3.14a2平方厘米.【解答】解:2×3.14×a÷2=3.14a(厘米)3.14×a2=3.14a2(平方厘米)答:拼成的长方形的长是3.14a厘米,面积是3.14a2平方厘米.故答案为:3.14a,3.14a2.26.(2018秋•吉水县期末)一个圆的周长是12.56厘米,这个圆的半径是2厘米,面积是12.56平方厘米.【解答】解:12.56÷3.14÷2=4÷2=2(厘米)3.14×22=3.14×4=12.56(平方厘米)答:这个圆的半径是2厘米,面积是12.56平方厘米.故答案为:2厘米;12.56平方厘米.27.(2018秋•湟源县期末)圆形花坛的周长是62.8米,它的面积是314平方米.【解答】解:62.8÷2÷3.14=31.4÷3.14=10(米)3.14×102=314(平方米)答:它的面积是314平方米.故答案为:314平方米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形等积变形:
①:等底等高的两个三角形面积相等。

如右图,AB 平行CD ,
有ACD BCD S S ∆∆=,进一步可得出12S S =
②:两个三角形高相等,面积之比等于底边之比;
两个三角形底边相等,面积之比等于高之比。

③:共边定理:如图,△ABC 和△ABD 有公共底边AB ,
它们另一个顶点的连线CD 和AB 相交于点E ,则有 ABC ABD S CE S DE ∆∆=。

(因为ABC AEC ABD AED S S S S ∆∆∆∆=)
鸟头定理:
如右图,△AED 和△ABC 有一个公共角,则有
AED ABC S AE AD S AB AC
∆∆=⨯ 蝴蝶定理:
如图在任意四边形中,对角线AC 和BD 相交于O 点,则有
①1423
S S S S =,或1324S S S S ⨯=⨯ ②
ABD DBC S AO S OC ∆∆= (因为23ABD DBC S S AO S S OC ∆∆==)
梯形蝴蝶定理:
这是蝴蝶定理的特殊情况,如图,在梯形ABCD 中有
①221324S S S S ⨯==
②221324::::::S S S S a b ab ab =
梯形ABCD 面积占的份数为2
()a b + DO :OB =AO :OC =a :b
燕尾定理:
如图,在三角形中,AD ,BE ,CF 相交于点O ,
则有ABO ACO S BD S DC
∆∆= (因为ABO OBD ACO OCD S S S S ∆∆∆∆=) 各种周长面积体积公式
1. 如图,已知正方形ABCD和正方形AEFG的边长分别为8和5,且B,A,E三点在一条直线上,求△BDF的面积
2. 如图,圆的面积和长方形的面积相等,已知圆的周长是62.8厘米,求阴影部分的周长。

(π取
3.14)
3. 已知梯形ABCD的下底BC是上底AD长度的1.5倍,且图中阴影部分和空白部分面积相等,△OBC面积等于12,求△OAD的面积。

4. 如图,阴影部分面积占正方形面积的_______%
第4题第5题
5. 图中阴影①比阴影②面积小48平方厘米,AB=40厘米,求BC的长。

6. 如图,正方形ABCD的边长是4厘米,EF和AB平行,图中阴影部分的面积等于_________。

第6题第7题
7. 已知△DOC面积等于15平方厘米,
2
3
BO BD
,求梯形ABCD的面积。

8. 如图,已知OC=2 AO,四边形EOCD的面积等于10平方厘米,求梯形EBCD的面积。

9. 如图梯形ABCD面积是45平方厘米,高6厘米,底边BC长10厘米,求△OBC的面积。

10. 已知平行四边形ABCD面积是7.2平方厘米,E是BC中点,求阴影部分面积是多少?
11. 已知正方形ABCD的边长是5厘米,△ADF比△FCE面积小5平方厘米,求CE的长。

12. 有一个边长是10厘米的正方体容器,里面装了一半深度的水1,问①将一个底面直径是6厘米,高8厘米的圆柱体铁块底面朝下放入容器中,容器中的水面上升多少厘米?
②将一个底面直径是8厘米,高9厘米的圆柱体铁块放入容器中,容器中的水面上升多少厘米?
13. 一种正方形小方桌的边长是1米,把它的四边都撑开,就成了一个圆形(如图)。

求撑开以后的面积。

14. 如图,△ABC 中,AD 的长度是AB 的
34,AE 长度是AC 的23
,则△ADE 的面积是△ABC 的________。

第14题 第15题
15. 如图,△ABC 中,13BF AB =,14CD BC =,15AE AC =,则()()
DEF ABC S S ∆∆= 16. 如图,正方形ABCD 的面积是60平方厘米,E ,F 分别是BC 和CD 的中点,求阴影部分的面积。

17. 如图,△ABC 中,D ,E 分别是BC 和AC 的中点,△ABC 的面积由①到⑤五个部分组成,已知①的面积比④多6平方厘米,请问:△ABC 的面积是多少平方厘米?
18. △ABC 中,CE =2AE ,AF =FD ,△ABC 的面积为1,那么阴影部分的面积是多少?
19. △ABC 中,:4:3CE AE =,:3:1BD DC =,△ABC 的面积为1,那么阴影部分的面积是多少?
20. △ABC 中,CF EF =,:2:1BF FD =,△CFD 的面积为1,那么△ABC 的面积是多少?
21. 一个长方体的长宽高分别是9厘米,6厘米,4厘米,把它截成两个一样大的长方体,表面积增加了多少平方厘米?
22. 一个正方体棱长为1,如左图所示把它切成两个长方体,这两部分表面积之和是多少?如果在此基础上如右图那样再切4刀,切成18块长方体,这18块长方体表面积之和是多少?
23. 如图,30个棱长为1的正方体堆成一个四层的立体图形,请问这个立体图形的表面积是多少?
24. 如图,一个长30厘米,宽10厘米,高12厘米的长方体水池,存有四分之三池水。

① 将一个高11厘米,体积330立方厘米的圆柱放入池中,水面高度变成多少? ②如果再放入一个同样的圆柱,水面高度又变成了多少?
③如果再放入一个同样的圆柱,水面高度又变成了多少?
25. 一个矿泉水瓶总共高22厘米,其下半部分可以看成一个圆柱体,底面直径为6厘米,现在往里面装入一定量的水,正着放的时候水面高度是15厘米,若把矿泉水瓶倒过来放,其水面高度是17厘米(如图所示),则这个矿泉水瓶的容积为______________毫升。

26. 有一个几何体,分别从上面,正面,左面观察,得到的图形如下面所示,其长度如图所示(单位:厘米),求这个几何体的体积。

俯视图正面视图左面视图
27. 如图,6个正方形块,折叠起来后可以组成一个正方体,则折起来以后数字“5”对面的数字是_________.
28. 有一个由单位正方体堆成的几何体,从上面,正面,左面三个方向看,得到的图形如下所示,则这个几何体一共是由_________个正方体堆成。

上面视图正面视图左面视图
29. 现有一张正方形纸片(图①),先沿对角线对折一次得到一个等腰直角三角形(图②),
再沿此等腰直角三角形的对称轴对折一次得到第二个等腰直角三角形,并将此等腰直角三角形的两个底角附近分别剪出一个圆孔和一个小直角三角形(图③),然后将纸片打开成原来的正方形,请在图④中补充出打开以后正方形纸片的形状。

图①图②图③图④。

相关文档
最新文档