大数据在互联网金融风控中的应用研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据在互联网金融风控中的应用研究

【摘要】本文首先针对大数据在互联网金融中的应用提出了几个创新的方向,然后介绍了在互联网金融的大环境下风险控制的原则和核心方法,并重点分析了大数据在这些规则下数据积累、加工和应用的场景,最后根据应用的现状提出了需要注意的问题和后续的展望。

【关键词】大数据;互联网金融;风险控制

1.引言

互联网金融是指以依托于支付、云计算、社交网络以及搜索引擎等互联网工具,实现资金融通、支付和信息中介等业务的一种新兴金融。互联网金融不是互联网和金融业的简单结合,而是在实现安全、移动等网络技术水平上,被用户熟悉接受后(尤其是对电子商务的接受),自然而然为适应新的需求而产生的新模式及新业务。是传统金融行业与互联网精神相结合的新兴领域。

论起互联网金融首先想到的是马云的“三步走战略”——平台、数据、金融。未来的互联网金融无疑有着巨大的发展空间,可目前看来三步走已经不符合市场预期,因为市场到今天已经不只是平台之争,特别随着这两年互联网金融爆发式的发展,已经形成了平台、数据、金融相互影响的格局。在这种形势下破局的点在哪里?就在于连接平台、用户、金融等方面的工具——大数据上,谁能对大数据合理利用,谁就能掌握这场数据之争的未来市场。

2.大数据在互联网金融的应用方向

从大数据的应用场景来看尽管达不到人们所预期的精确性,但确实已经有了不少比较成功的商业案例。如Decide利用超过80亿条的已知价格信息预测价格走势,给出购买建议;DataSift通过分析社交网络数据,制定针对性营销方案;Zestfinance则利用大数据进行信用评估,并已累积获得近一亿美元的融资等等。

随着平台的发展和数据的积累,互联网金融也越来越多参与到其中,所以三步走已经转变成交叉并行的三个方面。国内对互联网金融的应用比较多的还是在理财上,这是受了阿里余额宝、百度百发、微信理财通等的影响,可实际上贷款才是金融服务中最具刚性需求的服务。而且随着大众时间和需求上的碎片化程度提升,一方面是银行等金融机构的产品自然而然的落地,二是互联网信贷围绕大数据分析等方式进行了很好的改造。因此大数据已经促进了高频交易、社交情绪分析和信贷风险分析三大金融创新。

2.1 高频交易和算法交易

以高频交易为例,交易者为获得利润,利用硬件设备和交易程序的优势,快

速获取、分析、生成和发送交易指令,在短时间内多次买入卖出,且一般不持有大量未对冲的头寸过夜。现在的高频交易主要采取“战略顺序交易”,即通过分析金融大数据,以识别出特定市场参与者留下的足迹。例如,如果一只共同基金通常在收盘前一分钟的第一秒执行大额订单,能够识别出这一模式的算法将预判出该基金在其余交易时段的动向,并执行相同的交易。该基金继续执行交易时将付出更高的价格,使用算法的交易商可趁机获利。

2.2 通过收集、分析社交媒体上的内容进行市场情绪分析

金融市场的投资者将对情绪分析的研究与应用结合起来。大约两年前,对冲基金开始从Twitter、Facebook、聊天室和博客等社交媒体中提取市场情绪信息开发交易算法。例如一旦从中发现有自然灾害或恐怖袭击等意外信息公布,便立即抛出订单。2008年,精神病专家理查德·彼得森筹集了100万美元在美国加州圣莫尼卡建立了名为MarketPsy Capital的对冲基金,通过追踪聊天室、博客、网站和微博,以确定市场对不同企业的情绪,再据此确定基金的交易策略,到2010年该基金回报率达40%。位于伦敦的小型对冲基金DCM资本从Facebook和Twitter等社交媒体收集信息,将人们对某个金融工具的情绪进行打分,并向零售客户发布预测,辅助投资者作出投资决定。

2.3 加强风险的可审性和管理力度,支持精细化管理

金融机构希望能够收集和分析大量小微企业用户日常交易行为的数据,判断其业务范畴、经营状况、信用状况、用户定位、资金需求和行业发展趋势,解决由于小微企业财务制度的不健全无法真正了解其真实的经营状况的难题。

阿里小贷首创了从风险审核到放贷的全程线上模式,将贷前、贷中以及贷后三个环节形成有效联结,向通常无法在传统金融渠道获得贷款的弱势群体批量发放“金额小、期限短、随借随还”的小额贷款。

3.风险控制的原则和方法

有效的控制风险方法最简单的说法就是不要把鸡蛋放在一个篮子里,所以要求客户必须是“小额、分散”,避免客户过度集中在某一个或几个行业或客户。

先说一下“分散”在风险控制方面的好处,即借款的客户分散在不同的地域、行业、年龄和学历等,这些分散独立的个体之间违约的概率能够相互保持独立性,那么同时违约的概率就会非常小。比如100个独立个人的违约概率都是20%,那么随机挑选出其中2人同时违约的概率为4%(20% ),3个人同时违约的概率为0.8%(20% ),四个人都发生违约的概率为0.016%(20% )。如果这100个人的违约存在相关性,比如在A违约的时候B 也会违约的概率是50%,那么随机挑出来这两个人的同时违约概率就会上升到10%(20%×50%=10%,而不是4%)。因此保持不同借款主体之间的独立性非常重要。

“小额”在风险控制上的重要性则是避免统计学上的“小样本偏差”。例如,平

台一共做10亿的借款,如果借款人平均每个借3万,就是3.3万个借款客户,如果借款单笔是1000万的话,就是100个客户。在统计学有“大数定律”法则,即需要在样本个数数量够大的情况下(超过几万个以后),才能越来越符合正态分布定律,统计学上才有意义。因此,如果借款人坏账率都是2%,则放款给3.3万个客户,其坏账率为2%的可能性要远高于仅放款给100个客户的可能性,并且这100个人坏账比较集中可能达到10%甚至更高,这就是统计学意义上的“小样本偏差”的风险。

相关文档
最新文档