九年级数学竞赛讲座常量数学到变量数学附答案

合集下载

初中数学竞赛辅导讲义及习题解答第8讲由常量数学到变量数学

初中数学竞赛辅导讲义及习题解答第8讲由常量数学到变量数学

第八讲由常量数学到变量数学数学漫长的发展历史大概历经四个期间:以自然数、分数系统形成的萌芽期;以代数符号系统形成的常量数学期间;以函数观点产生的变量数学期间;以会合论为标记的现代数学期间.函数是数学中最重要的观点之一,它是变量数学的标记,“函数”是从量的侧面去描绘客观世界的运动变化、互相联系,从量的侧面反应了客观世界的动向和它们的互相限制性.函数的基本知识有:与平面直角坐标系有关的观点、函数观点、函数的表示法、函数图象观点及画法.在座标平面内,由点的坐标找点和由点求坐标是“数”与“形”互相变换的最基本形式.点的坐标是解决函数问题的基础,函数分析式是解决函数问题的重点,因此,求点的坐标、探求函数分析式是研究函数的两大重要课题.【例题求解】【例 1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△ APB为直角三角形,则点P 的个数为.思路点拨先在直角坐标平面内描出 A 、 B 两点,连接 AB ,因题设中未指明△ APB 的哪个角是直角,故应分别就∠ A 、∠ B、∠ C 为直角来议论,设点 P(0, x),运用几何知识成立 x 的方程.注:点的坐标是数与形联合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)经过分析式求;(3)解由分析式联立的方程组求.【例 2】如图,向放在水槽底部的烧杯灌水(流量必定 ),注满烧杯后,持续灌水,直至注满水槽.水槽中水面上涨高度h 与灌水时间t 之间的函数关系,大概是以下图象中的()思路点拨向烧杯灌水需要时间,而且水槽中水面上涨高h0 .注:实质生活中量与量之间的关系能够形象地经过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要擅长从图象的形状、地点、发展变化趋向等有关信息中获取启迪.【例 3】南方 A 市欲将一批简单变质的水果运往 B 市销售,共有飞机、火车、汽车三种运输方式,现只可选择此中的一种,这三种运输方式的主要参照数据以下表所示:运输工具途中速度 (千米/时 )途中花费 (元/千米 )装卸花费 (元 )装卸时间 (小时 )飞机2001610002火车100420004汽车50810002若这批水果在运输(包含装卸)过程中的消耗为200 元 /小时,记 A 、B两市间的距离为x 千米.求出(1) 假如用 W l、W 2、W 3分别表示使用飞机、火车、汽车运输时的总支出花费W l、W 2、W 3与小 x 间的函数关系式.(包含消耗),(2) 应采纳哪一种运输方式,才使运输时的总支出花费最小?思路点拨每种运输工具总支出花费=途中所需花费(含装卸花费 )+消耗资用;总支出花费随距离变化而变化,由W l— W 2= 0, W 2一 W 3=0,先确立自变量的特定值,经过议论选择最正确运输方式.【例 4】已知在菱形ABCD 中,∠ BAD = 60°,把它放在直角坐标系中,使AD 边在 y 轴上,点 C 的坐标为 (2 3 , 8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出 A、 B 两点的坐标;(3)设菱形 ABCD 的对角线交点为 P.问:在 y 轴上能否存在一点 F,使得点 P 与点对于菱形ABCD 的某条边所在的直线对称,假如存在,写出点 F 的坐标;假如不存在,请说明原因.F思路点拨(1)重点是探究点A 是在y 轴正半轴上、负半轴上仍是坐标原点,只须判断∠COy 与∠CAD 的大小; (2)利用解直角三角形求 A ,B 两点坐标; (3) 设轴上存在点 F(0,y),则 P 与 F 只可能对于直线 DC 对称.注:成立函数关系式,实质上都是依据详细的实质问题和一些特别的关系、纳成立函数的模型.数据而抽象、归【例 5】如图,已知在 Rt△ ABC 中,∠ B= 90°, BC= 4cm, AB = 8cm, D、 E、 F 分别为AB 、 AC 、 BC 边上的中点,若 P 为 AB 边上的一个动点, PQ∥ BC,且交 AC 于点 Q,以 PQ 为一边,在点 A 的右边作正方形 PQMN ,记 PQMN 与矩形 EDBF 的公共部分的面积为y.(1)当 AP = 3cm 时,求的值;(2)设 AP=cm 时,求 y 与 x 的函数关系式;(3)当 y=2cm2,试确立点P 的地点. (2001 年天津市中考题 )思路点拨对于 (2) ,因为点P 的地点不一样, y 与 x 之间存在不一样的函数关系,故需分类议论;对于(3) ,由相应函数分析式求 x 值.注:确立几何元素间的函数关系式,第一是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动致使图形之间地点发生变化,需要分类议论;(2)确立自变量的几何意义,常用到运动变化、考虑极端情况、特别情况等思想方法.学力训练1.如图,在直角坐标系中,已知点A(4 , 0)、 B(4 , 4) ,∠ OAB = 90°,有直角三角形与Rt△ ABO 全等且以AB 为公共边,请写出这些直角三角形未知极点的坐标.2.在直角坐标系中有两点A(4 ,0), B(0 , 2),假如点C 在 x 轴上 (C 与 A 不重合 ),当点 C的坐标为时,使得由点B、O、C 构成的三角形与△AOB 相像 (起码找出两个知足条件的点的坐标).3.依据指令 [S,A](S ≥ 0, 0° <A<180 ° ),机器人在平面上能达成以下动作:先原地逆时针旋转角度 A ,再朝其面对的方向沿直线行走距离S.现机器人在直角坐标系的坐标原点,且面对 x 轴的正方向, (1)若给机器人下了一个指令[4, 60° ],则机器人应挪动到点;(2) 请你给机器人下一个指令,使其挪动到点 ( 一 5, 5).4.如图,在平面直角坐标系中,直线 AB 与 x 轴的夹角为60°,且点 A 的坐标为 (一 2,0),点 B 在 x 轴上方,设 AB =a,那么点 B 的横坐标为 ()A .2aB .2aC.2a2a 22D .225.一天,小军和爸爸去爬山,已知山脚到山顶的行程为300 米,小军先走了一段行程,爸爸才开始出发.图中两条线段分别表示小军和爸爸走开山脚爬山的行程(米) 与爬山所用的时间( 分钟的关系 )(从爸爸开始爬山时计时),依据图象,以下说法错误的选项是()A .爸爸爬山时,小军已走了50 米B .爸爸走了 5 分钟,小军仍在爸爸的前方C.小军比爸爸晚到山顶D .爸爸前 10 分钟爬山的速度比小军慢,10 分钟以后爬山的速度比小军快6.若函数 y1的自变量 x 的取值范围为一确实数,则m 的取值范围是() 2x mx2A . m<lB . m=1C. m>l D. m≤ 17.如图,在直角坐标系中,已知点A(4 ,0)、点 B(0 ,3),若有一个直角三角形与Rt△ABO 全等,且它们有一条公共边,请写出这个直角三角形未知极点的坐标(不用写出计算过程 ).8.如图,用相同规格黑白两色的正方形瓷砖铺设矩形地面,请察看以下图形并解答有关问题:( 1)设铺设地面所用瓷砖的总块数为y ,请写出 y 与n ( n表示第n个图形 )的函数关系式;(2) 按上述铺设方案,铺一块这样的矩形地面共用了506 块瓷砖,求此时n 的值;(3) 若黑瓷砖每块 4 元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购置瓷砖?(4) 能否存在黑瓷砖与白瓷砖块数相等情况?请经过计算说明为何?9.如图,在平面直角坐标系中有一个正方形ABCD ,它的 4 个极点为A(10 ,0),B (0 ,10),C(一 10, 0),D(0 ,一 10),则该正方形内及界限上共有个整点(即纵横坐标都是整数的点 ).10.如图,已知边长为l 的正方形OABC 在直角坐标系中, A 、 B 两点在第一象限内,OA 与 x 轴的夹角为30°,那么点 B 的坐标是.11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1, 0),尔后它接着按图所示在与x 轴、y轴平行的方向上往返运动,且每分钟挪动1个单位长度,那么在1989 分钟后这个粒子所处地点为.12.在直角坐标系中,已知A(1 , 1),在x轴上确立点P,使△ AOP 为等腰三角形,则切合条件的点 P共有()A.1个B.2个C. 3个D.4个13.已知点 P 的坐标是 ( 2 a l,2 b ),这里 a 、 b 是有理数,PA、PB分别是点P 到x轴和 y 轴的垂线段,且矩形 OAPB 的面积为2,则 P 点可能出现的象限有()A.1 个B.2 个C.3 个D.4 个14.甲、乙二人同时从 A 地出发,沿同一条道路去 B 地,途中都使用两种不一样的速度V l与V 2(Vi<V2) ,甲用一半的行程使用速度V l、另一半的行程使用速度V 2;对于甲乙二人从A地抵达 B 地的行程与时间的函数图象及关系,有图中 4 个不一样的图示剖析.此中横轴 t表示时间,纵轴 s 表示行程,此中正确的图示剖析为()A .图 (1)B .图 (1) 或图 (2)C.图 (3)D.图 (4)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每个月工资、薪金收入不超出800 元,不需交税;超出 800 元的部分为全月应纳税所得额,都应交税,且依据超出部分的多少按不一样的税率交税,详尽的税率以下表:级别全月应纳税所得额税率 (%)1不超出 500 元部分52超出 500 元至 2000 元部分103超出 2000 元至 5000 元部分15(1) 某公民 2002 年 10月的总收人为 1350 元,问他应交税款多少元?(2)设表示每个月收入 (单位:元 ), y 表示应交税款 (单位:元 ),当 1300<x ≤2800 时,请写出 y 对于 x 的函数关系式;(3) 某公司高级职员2002 年 11 月应交税款55 元,问该月他的总收入是多少元?16.如图,在△ ABC 中,∠ C= 90°, AC = 3,BC =4,点 D 是 AB 上随意一点 (A 、B 两点除外 ),过 D 作 AB 垂线与△ ABC 的直角边订交于 E,设 AD= x,△ ADE 的面积为 y ,当点 D 在 AB 上挪动时,求 y 对于x之间的函数关系式.17.现计划把甲种货物1240 吨和乙种货物880 吨用一列货车运往某地,已知这列货车挂有A 、B 两种不一样规格的货车厢共40 节,使用 A 型车厢每节花费6000 元,使用月型车厢每节花费为 8000 元.(1)设运送这批货物的总花费为 y 万元,这列货车挂 A 型车厢x节,试写出 y 与x之间的函数关系式;(2)假如每节 A 型车厢最多可装甲种货物 35 吨和乙种货物 15 吨,每节月型 B 车厢最多可装甲种货物25 吨和乙种货物35 吨,装货时按此要求安排哪几种安排车厢的方案?A 、B 两种车厢的节数,那么共有(3)在上述方案中,哪个方案运费最高?最少运费为多少元 ?18.如图,梯形O ABC 中, O 为直角坐标系的原点,A 、 B 、C 的坐标分别为 (14, 0), (14,3), (4,3).点 P、 Q 同时从原点出发,分别作匀速运动,此中点P 沿 OA 向终点 A 运动,速度为每秒 1 个单位;点Q 沿 OC、CB 向终点 B 运动,当这两点中有一点抵达自己的终点时,另一点也停止运动.(1) 设从出倡始运动了上或在 CB 上时的坐标x 秒,假如点Q 的速度为每秒(用含x的代数式表示);2 个单位,试分别写出这时点Q 在OC(2) 设从出倡始运动了x 秒,假如点P 与点 Q 所经过的行程之和恰巧为梯形OABC 的周长的一半,①试用含x 的代数式表示这时点Q 所经过的行程和它的速度;②试问:这时直线PQ 能否可能同时把梯形OABC 的面积也分红相等的两部分?若有可能,求出相应的x 的值和P、Q 的坐标;如不行能,请说明原因.参照答案。

初中数学竞赛奥数基础讲座反比例函数(含解答)

初中数学竞赛奥数基础讲座反比例函数(含解答)

反比例函数内容讲解1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y=kx(k•为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2.反比例函数的图象和性质.利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,反比例函数y=kx具有如下的性质①当k>0时,函数的图象在第一、三象限,•在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随x 的增加是减小;②当k<0时,•函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随x 的增加而增大.3.反比例函数的确定方法:由于在反比例函数关系式y=kx中,•只有一个待定系数k ,确定了k 的值,也就确定了反比例函数.因此,只需给出一组x 、y 的对应值或图象上点的坐标,代入y=kx中即可求出k 的值,从而确定反比例函数的关系式. 4.用待定系数法求与反比例函数关系式的一般步骤是:①设所求的反比例函数为:y=kx(k ≠0);•②根据已知条件(自变量与函数的对应值)列出含k 的方程;③由代入法解待定系数k 的值;④把k 值代入函数关系式y=kx中.例题剖析例1 如果函数y=k 222k k x +-的图象是双曲线,且在第二、四象限,•那么k 的值是多少?分析:若函数的图象是双曲线,则此函数为反比例函数y=kx,且k ≠0,若图象在第二、四象限,则k<0,故可求出k 的值.解:由反比例函数定义,得211221,200k k k k k k ⎧⎧=-=+-=-⎪⎨⎨<⎩⎪<⎩或所以k=-1,这时函数为y=-1x. 评注:函数y=k x m 反比例函数,则m=-1,k ≠0;若y=mkx 是反比例函数,则m=1,k ≠0.例2 函数y=kx 和y=kx(k<0)•在同一坐标系中的图象是( )分析:对于y=kx 来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选(C ). 解:(C ).评注:由于两个函数中的k 是相同的,所以可以把k 分为两类进行讨论,当k>•0时的图象是什么?当k<0时的图象是什么?例3 如图,正比例函数y=3x 的图象与反比例函数y=kx(k>0)的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为S 1,S 2,…,S 20,则S 1+S 2+…+S 20=_________.分析:因为过正比例函数与反比例函数的交点作x 轴的垂线,x 轴,•正比例函数与垂线所围成的Rt △AOB 的面积是k 的一半. 解:105.评注:若k 取大于0的自然数1,2,3,……n ,则对应的Rt △AOB 的面积分别为S 1,S 2,S 3……S n ,则S 1+S 2+S 3+……+S n =(1)4n n . 例4 正比例函数y=-x 与反比例函数y=-1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D (如图)•,•则四边形ABCD•的面积为________.分析:易知四边形ABCD 是一平行四边形,故可知其面积为S 的4倍,为一常数. 解:函数y=x 与y=1x的图象交点A 、C 的坐标分别为(1,1),(-1,-1),所以△AOB•的面积等于12,根据反比例函数的图象是中心对称图形,得平行四边形ABCD 的面积为2.评注:理解反比例函数中的不变量k 的几何意义是解题的关键. 例5 两个反比例函数y=3x ,y=6x在第一象限内的图象如图所示,点P 1,P 2,P 3,…,P 2005在反比例函数y=6x图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2005,纵坐标分别是1,3,•5,•…,•共2005个连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线,与y=3x的图象交点依次是Q 1(•x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.分析:解题关键是抓住点P 1,P 2,P 3,…,P 2005与点P 1,P 2,P 3,…,P 2005的横坐标相同.解:当点P 1,P 2,P 3,…,P 2005在函数y=6x的图象上,它们的纵坐标分别取1,3,5,...,4009•时相应的横坐标分别为666,,135, (6)4009.Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005)在函数y=3x的图象上,•且这些点的横坐标分别与点P 1,P 2,P 3,…,P 2005的横坐标相同,点Q 2005横坐标是64009.所以点Q 2005的纵坐标是y 2005=k x =34009624009. 评注:本题以能力立意,一方面通过“数”与“形”的转换考查了学生的数学表达能力,另一方面也考查了学生自主探索与合情推理等能力.此类题背景较新颖,有时规律较隐蔽,而成为填空题中的“把关题”.例6 设函数f (x )对所有非零实数x ,有f (x )+2f (1x)=3x ,求方程f (x )=f (-x )的解.分析:通过观察,发现x 与1x 互为倒数,把1x 换成x 后可得到关于f (x )和f (1x)的两个方程,可以求解.解:由f (x )+2f (1x )=3x 得f (1x )+2f (x )=3x , 联立两式,消去f (1x ),得3f (x )=6x -3x ,所以f (x )=2x-x .从而方程f (x )=f (-x ),可化为2x -x=-2x+x ,解得:x=经检验是方程的解.评注:本题由于方程比较特殊,抓住x 与1x互为倒数的特点是解题的关键.例7 反比例函数y=kx(k>0)在第一象限内的图像如图所示,P 为该图像上任意一点,PQ 垂直于x 轴,垂足为Q .设△POQ 的面积为S ,•那么S 的值与k 的值是否存在关系?若有关系,请写出S 与k 之间的关系式;若没有关系,请说明理由.分析:因为S △POQ =12·OQ ·PQ ,若设P 点坐标为P (x ,y ),则OQ=│x │,PQ=│y │,又因为P•点在第一象限,所以x>0,y>0,因此可以得到S △POQ =12xy ,而由y=kx可以得到xy=k ,•于是可以确定S 与k 的关系式. 解:S 与k 之间的关系式为S=12k , 设P 点的坐标为P (x ,y ),则OQ=│x │,PQ=│y │. ∵点P 在第一象限内,∴x>0,y>0, ∴OQ=x ,PQ=y .∴S△POQ=12·OQ·PQ=12xy.又∵xy=k,∴S△POQ =12k.评注:反比例函数的系数k与过双曲线上的点作x轴、y轴的垂线所围成的矩形的面积之间的关系在解题中作用很大,要熟练掌握.例8如图所示,已知反比例函数y=12x的图像与一次函数y=kx+4的图像相交于P、•Q两点,并且P点的纵坐标是6.(1)求这个一次函数的解析式;(2)求△POQ的面积.分析:由已知条件P点的纵坐标是6,而点P在反比例函数y=12x上,可以求得P•点的横坐标为x=2,即P点坐标为(2,6).又P点也在一次函数y=kx+4上,把点(2,6)•代入即可求出一次函数的解析式,•△POQ的面积可以分成△PON与△QON两部分,这两部分的面积能通过P、Q两点的坐标得到.解:(1)∵点P在反比例函数y=12x的图像上,且其纵坐标为6.∴12x=6解得x=2,∴P(2,6).又∵点P在函数y=kx+4的图像上,∴6=2k+4,解得k=1.∴所求一次函数的解析式为y=x+4.(2)解方程组12124,62122, 6.,y x x x y y y x =+⎧=-=⎧⎧⎪⎨⎨⎨=-==⎩⎩⎪⎩得 ∴点Q 的坐标为(-6,-2). 令y=0,代入y=x+4,解得x=-4.∴函数y=x+4的图像与x 轴的交点是N (-4,0).∴△PON 和△QON 的公共边ON=4,ON 边上的高分别为PA=6,QB=2. ∴S △POQ =S △PON +S △QON =12×4×6+12×4×2=16. 评注:本题涉及一次函数及反比例函数的图像,识别图形的形状位置及交点是挖掘此类题目隐含条件的关键.例9 为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图).观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,•请根据题中提供的信息,解答下列问题:(1)•药物燃烧时,•y•关于x•的函数关系式为________,•自变量x•的取值范围是__________;药物燃烧后y 关于x 的函数关系式为________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,•那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10•分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?分析:这是一道紧扣生活热点的应用题,应引起同学们的重视,•同时要学会看图形.解:由图知药物燃烧时,函数为正比例函数设y与x的解析式为y=kx(k≠0)∵点(8,6)在直线上,∴6=8k,∴k=34,∴y与x的解析式为y=34x(0<x≤8).药物燃烧后函数为反比例函数设y与x的解析式为y=`kx(k′≠0),点(8,6)在曲线上,∴k′=8×6=48.∴y与x的解析式为y=48x(x>8).(2)将x=1.6代入反比例函数解析式中y=481.6=30(分钟)答:从消毒开始,至少要经过30分钟后学生才能回教室.(3)把y=3分别代入两个函数解析式,解得x=4和x=16,而16-4=12>10.即空气中每立方米的含药量不低于3毫克的持续时间为12分钟,∴这次消毒有效.评注:本题通过具体问题情境,既考数学的应用,又考应用的数学.•解答这类问题要善于从图象中提取有效信息、从实际问题中构建出数学模型.例10 某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式;(2)按照这种变化规律,若2005年已投入技改资金5万元.①预计生产成本每件比2004年降低多少万元?②如果打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)?分析:观察表格发现“投入技改资金x ”与“产品成本y ”的积不变,•故表中数据满足反比例函数关系.解:(1)设其为一次函数,解析式为y=kx+b 当x=2.5时,y=7.2;当x=3时,y=6 7.2 2.5 2.46313.2k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 ∴一次函数解析式为y=-2.4x+13.2. 把x=4时,y=4.5代入此函数解析式 左边≠右边,∴其不是一次函数. 同理,其也不是二次函数. 设其为反比例函数,解析式为y=kx当x=2.5时,y=7.2可得7.2=2.5k,得k=18 ∴反比例函数为y=18x . 验证:当x=3时,y=183=6,符合反比例函数.同理可验证:x=4时,y=4.5;x=4.5时,y=4成立.∴可用反比例函数y=18x表示其变化规律. (2)解:①当x=5万元时,y=185=3.6.∵4-3.6=0.4(万元),∴生产成本每件比2004年降低0.4万元.②当y=3.2时,3.2=18x,得x=5.625,∵5.625-5=0.625≈0.63(万元).∴还需投入0.63万元.评注:这是一道渗透新课程理念的好题.它没有直接给出函数的解析式,而是让学生从表中获取信息,来索取与其变化规律相合拍的函数,并付诸于具体实际的应用问题之中.较好地考查了学生直觉思维能力和合情推理探索能力、建模能力和解决实际问题的能力.例11 已知,如图所示,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,•点C在y轴上,点B在函数y=kx(k>0,x>0)的图像上,点P(m,n)是函数y=kx上的任意一点,过P作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合的部分面积为S.(1)求B点的坐标和k的值;(2)当S=92时,求点P的坐标;(3)写出S关于m的函数关系式.分析:把矩形面积用坐标表示,A、B坐标可求,S矩形OAGF可用含n的代数式表示,解题的关键是双曲线关于y=x对称,符合题设条件的P点不惟一,故思考须周密.解:(1)依题意,设B点坐标为(x0,y0).所以S正方形OABC=x0y0=9,x0=y0=3即B(3,3),所以x0y0=k,k=9;(2)①P (m ,n )在y=9x上,S 正方形OEP1F =mn=9,所以S矩形OAGF =3n ,由已知可得S=9-3n=92,解得n=32,m=6,•所以P 1(6,32). ②如图(a )所示,同理可求得P 2(32,6).(3)如图(b )所示,当0<m<3时,因为点P 坐标为(m ,n ),所以S 矩形OEGC =3m ,S=S 矩形OEPF -S 矩形OEGC所以S=9-3m (0<m<3)如图(c )所示,当m ≥3时,因为P 点坐标为(m ,n ) 所以S 矩形OAGF =3n ,mn=9,n=9m,所以S=9-3n=9-27m . 评注:求两个函数图象的交点坐标,一般通过解这两个函数解析式组成的方程组得到,求符合某种条件的点的坐标,需根据问题中的数量关系和几何元素间的关系建立关于纵横坐标的方程(组),解方程(组)便可求得有关点的坐标,对于几何问题,•还应注意图形的分类讨论.例12 三个反比例函数(1)y=1k x ;(2)y=2kx ;(3)y=3k x在x 轴上方的图象如图所示,•由此推出k 1,k 2,k 3的大小关系.分析:由图象所在的象限可知:k 1<0,k 2>0,k 3>0;在(2)(3)中,为了比较k 与k 的大小,可取x=a>0,作直线x=a ,与两图象相交,找到y=2k x 与y=3k x的对应函数值b 和c ,由于k 2=ab ,k 3=ac ,而c>b>0,因而k 3>k 2>k 1. 解:k 3>k 2>k 1.评注:比较反比例函数的系数k 的大小一般先从图象上去考虑,图象在一、•三象限的k 值比图象在二、四象限的k 值大,同一个象限内图象在外部的k•值比在内部的k 值大. 例13 已知点(1,3)在函数y=kx(k>0)的图象上,矩形ABCD 的边BC 在x 轴上,E•是对角线BD 的中点,函数y=kx(k>0)的图象.经过A 、E 两点,点E 的横坐标为m .(1)求k 的值;(2)求点C 的横坐标(用m 表示);(3)当∠ABD=45°时,求m 的值.分析:由点P 在反比例函数上,可以先求出k 值,利用对称性可以求出点C 的坐标. 解:(1)因为点(1,3)在函数y=kx(x>0)的图象上, 所以3=1k,所以k=3; (2)因为点E 在函数y=3x 的图象上,所以E 点的纵坐标为3m.所以点E 的坐标为(m ,3m ),•设B 点的坐标为(b ,0),所以A 点的坐标为(b ,6m). 因为A 点在函数y=3x 的图象上,所以6m =3b ,所以b=2m.所以C 点的横坐标为OB+BC=b+2(m-b )=2m +2(m-2m )=2m +m=32m ;(3)当∠ABD=45°时,│AB │=│AD │,所以6m =32m -2m=m .所以m 2=6,又因为m>0,所以评注:此题是函数和几何综合题,所以在解题中一定要先看图、读懂图,找出图形中的内在联系.例14 有一个Rt △ABC ,∠A=90°,∠B=60°,AB=1,•将它放在直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数y=x的图象上,求点C 的坐标.分析:通过画图可发现:点A 的位置有两种情况(在第一象限的那支图象上或在第三象限的那支图象上),点B 、C 的位置也有两种情况(可能点靠近原点,也可能点不靠近原点),解题时要注意利用反比例函数图象的对称性. 解:本题共有4种情况.(1)如图①,过点A 做AD ⊥BC 于D ,∵AB=1,∠B=60°,∴BD=12,AD=2,∴点A 的纵坐标为2.将其代入y=x ,得x=2,即OD=2. 在Rt △ADC 中,DC=32,所以OC=72,即点C 1的坐标为(72,0).(2)如图②,过点A 作AE ⊥BC 于E 则AE=2,OE=2,CE=32,所以OC=12.即点C 2的坐标为(12,0).• 根据双曲线的对称性,得点C 3的坐标为(-72,0),点C 4的坐标为(-12,0).所以点C 的坐标分别为:(72,0)、(12,0)、(-72,0)、(-12,0).评注:根据题意,进行分类,是解决本题的突破口.此题涉及与反比例函数相关的综合性问题,能较好地展示学生的思维过程和思维个性,着重考查学生灵活运用所学知识分析问题、解决问题的能力,具有较好的选拨功能. 巩固练习一、填空题1.若一次函数y=kx+b 的图象如图所示,则抛物线y=x 2+kx+b•的对称轴位于y•轴的_______侧;反比例函数y=kbx的图象在第_______象限,在每一个象限内,y 随x•的增大而________. 2.反比例函数y=kx的图象经过点A (m ,n ),其中m ,n 是一元二次方程x 2+kx+4=0的两个根,则A 点坐标为________. 3.如图:函数y=-kx (k ≠0)与y=-4x的图象交于A 、B 两点,过点A 作AC ⊥y 轴,•垂足为点C ,则△BOC 的面积为________.4.已知,点P (n ,2n )是第一象限的点,下面四个命题: (1)点P 关于y 轴对称的点P 1的坐标是(n ,-2n );(2)点P 到原点O ; (3)直线y=-nx+2n 不经过第三象限; (4)对于函数y=nx,当x<0时,y 随x 的增大而减小;其中真命题是_______.(填上所有真命题的序号) 二、选择题5.已知反比例函数y=1mx的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是( ) (A )m<0 (B )m>0 (C )m<12 (D )m>126.已知反比例函数y=kx的图象如图(a )所示,则二次函数y=2k x 2-x+k 2的图象大致为( )7.函数y=-ax+a 与y=ax(a ≠0)在同一坐标系中的图象可能是( )8.如图,A 、B 是函数y=1x的图象上的点,且A 、B 关于原点O 对称,AC ⊥x 轴于C ,BD•⊥x 轴于D ,如果四边形ACBD 的面积为S ,那么( )(A )S=1 (B )1<S<2 (C )S>2 (D )S=29.如图,在直角坐标系中,直线y=6-x 与函数y=4x(x>0)的图象相交于点A 、B ,•设点A 的坐标为(x 1,y 1),那么长为x 1,宽为y 1的矩形面积和周长分别为( ) (A )4,12 (B )8,12 (C )4,6 (D )8,6 三、解答题10.如图,已知一次函数y=kx+b (k≠0)的图像与x 轴、y 轴分别交于A 、B 两点,•且与反比例函数y=mx(m ≠0)的图像在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若OA=OB=OD=1.(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.11.如图,一次函数y=ax+b 的图象与反比例函数y=kx的图象交于M 、N 两点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.12.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数图像经过(a ,b ),(a+•1,b+k )两点.(1)求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图像上,求A 点坐标; (3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.13.反比例函数y=kx的图象上有一点P(m,n),其中m、n是关于t•的一元二次方程t2-3t+k=0的两根,且P到原点O,则该反比例函数的解析式为________.14.老师给出一个函数y=f(x),甲、乙、丙、丁四位同学各指出这个函数的一个性质:甲:函数图像不经过第三象限;乙:函数图像经过第一象限;丙:当x<2时,y随x的增大而减小;丁:当x<2时,y>0已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数:_______.15.已知反比例函数y=12x的图象和一次函数y=kx-7的图象都经过点P(m,2).(1)求这个一次函数的解析式;(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A、B的横坐标分别为a和a+2,求a 的值.16.通过市场调查,一段时间内某地区特种农产品的需求量y(千克)•与市场价格x(元/千克)存在下列函数关系式:y=100000x+6000(0<x<100);又已知该地区农民的这种农产品的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<100),现不计其他因素影响,如果需求数量y等于生产数量z时,即供需平衡,•此时市场处于平衡状态.(1)根据以上市场调查,请你分析当市场处于平衡状态时,•该地区这种农产品的市场价格与这段时间内农民的总销售收入各是多少?(2)受国家“三农”政策支持,该地区农民运用高科技改造传统生产方式,减少产量,以大力提高产品质量.此时生产数量z与市场价格x的函数关系发生改变,•而需求函数关系未发生变化,当市场再次处于平衡状态时,市场价格已上涨了a(0<a<25)•元,问在此后的相同时间段内该地区农民的总销售收入是增加了还是减少了?变化多少?17.如图,直线经过A(1,0),B(0,1)两点,点P是双曲线y=12x(x>0)上任意一点,PM•⊥x轴,PN⊥y轴,垂足分别为M,N.PM与直线AB交于点E,PN的延长线与直线AB交于点F.(1)求证:AF×BE=1;(2)若平行于AB的直线与双曲线只有一个公共点,求公共点的坐标.18.已知矩形ABCD的面积为36,以此矩形的对称轴为坐标轴建立平面直角坐标系.....................,设点A的坐标为(x,y),其中x>0,y>0.(1)求出y与x之间的函数关系式,求出自变量x的取值范围;(2)用x、y表示矩形ABCD的外接圆的面积S,并用下列方法,解答后面的问题:方法:∵a2+22ka=(a-ka)+2k(k为常数且k>0,a≠0),且(a-ka)2≥0,∴a2+22ka≥2k,∴当a-ka=0,•即a=a2+22ka取得最小值2k.问题:当点A在何位置时,矩形ABCD的外接圆面积S最小?并求出S的最小值;(3)如果直线y=mx+2(m<0)与x轴交于点P,与y轴交于点Q,那么是否存在这样的实数m,使得点P、Q与(2)中求出的点A构成△PAQ的面积是矩形ABCD面积的16?若存在,请求出m的值;若不存在,请说明理由.19.已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=12x的图象在第一象限内的一个分支,点P•是这条曲线上任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N•为垂足)分别与直线AB相交于点E和点F.(1)设交点E和F都在线段AB上(如图所示),分别求点E、点F的坐标(用a的代数式表示点E的坐标,用b的代数式表示点F的坐标,只须写出答案,不要求写出计算过程).(2)求△OEF的面积(结果用a、b的代数式表示).(3)△AOF与△BOE是否一定相似,如果一定相似,请予以证明;如果不一定相似或者一定不相似,请简要说明理由.(4)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,•大小始终保持不变的那个角和它的大小,并证明你的结论.答案:一、1.右,二、四、增大 2.(-2,-2) 3.2 4.②、③、④二、5~9.CDCDA三、10.(1)A (-1,0),B (0,1),D (1,0);(2)y=2x,y=x+1. 11.(1)将N (-1,-4)代入y=k x 中得到k=4,反比例函数的解析式为y=4x, 将M (2,m )•代入解析式y=4x 中得m=2, 将M (2,2),N (-1,-4)代入y=ax+b 中,224a b a b +=⎧⎨-+=-⎩解得a=2,b=-2,• 一次函数的解析式为y=2x-2.(2)由图象可知:当x<-1或0<x<2时反比例函数的值大于一次函数的值.12.(1)k=2,y=1x; (2)解方程组121,y x y x ⎧=⎪⎨⎪=-⎩得x 1=1,x 2=-12(舍去), 从而y=1,点A 的坐标为(1,1);(3)符合条件的点P 存在,有下列情况:①若OA 为底,则∠AOP 1=45°,OP 1=P 1A •得P 1(1,0);②若OA 为腰,AP 为底,则由P 2(0),P 30); ③若OA 为腰,OP 为底,则由OP=2,P 4(2,0).13.y=2x-. 14.可填入的答案为:y=1x (x>0)或y=-x+2或y=(x-2)2或y=│x-2│等均可. 15.(1)y=32x-7;(2)A (32a ,a-7),B (a+2,32a-4),C (a+2,122a +),D (a ,12a). 由AB=CD ,得22+32=22+(122a +-12a)2, 即(122a +-12a)=±3,解方程得a=-4,a=2均为所求的值. 16.(1)由已知市场处于平衡,此时y=z 得100000x +6000=400x (x-25)(x+10)=0, ∴x 1=25,x 2=-10(•舍去),把x=25代入z=400x 中,得z=10000(千克).• 一段时间内该地区农民的总销售收入=25×10000=250000(元).(2)∵需求函数关系未变,∴平衡点仍在需求函数图象上.由已知此时价格为(a+25)元/千克,代入y=100000x +6000中得: 此时的需求数量y 1=10000025a ++6000(千克). 又∵此时市场处于平衡,生产数量z 1=需求数量y 1, ∴此时的总销售收入为:(a+25)·(10000025a ++6000)=250000+6000a (•0<a<25). ∴农民总销售收入增加了(250000+6000a )-250000=6000a (元).17.(1)过点E ,F 分别作y 轴,x 轴垂线,垂足分别为D 、C ,则△AOB ,△FCA ,△DBE•为等腰直角三角形.设P (x 0,y 0),则FC=y 0,DE=x 0,0,∴AF·0=2x 0y 0, 又y 0=012x ,即2x 0y 0=1,∴AF ·BE=1; (2)平行于AB 的直线L 的解析式为y=-x+b ,设L 与双曲线的惟一公共点Q 的坐标为(x ,y ).联立12y x b y x =-+⎧⎪⎨=⎪⎩, 得2x 2-2bx+1=0,由△=4b 2-8=0,得所以x=2,y=2,即Q 点的坐标为(2,2). 18.(1)y=9x ,x>0; (2)S=π(x 2+y 2)=π [x 2+(9x )2]≥18π, 当且仅当x=9x ,即x=3,S 最小=18π,此时,y=9x=3, 所以当点A 的坐标为(3,3)时,矩形的外接圆面积S 最小,S 的最小值为18π.(3)存在,如图,设AB 与y 轴相交于点E ,由已知得A (3,3),Q (0,2),P (-2m,0), ∴S △PAQ =S 梯形APOE -S △AEQ -S △OPQ =12 [(-2m +3)×3-1×3-2×(-2m )]=3-1m. ∴3-1m =16×36,解得m=-13.19.(1)E (a ,1-a ),F (1-b ,b )(2)当PM 、PN 和线段AB 相交时,S △EOF =S △AOB -S △AOE -S △BOF =12×1×1-12×1×(1-a )-12×1×(-b )=12a b +-.• 当PM 、PN 中一条与线段AB 相交,另一条与线段AB 的延长线相交时,也可求得S △EOF =12a b +-. (3)△AOF 一定和△BOE 相似,∵OA=OB=1,∴∠OAF=∠EBO ,,,∴点P在函数y=12x图象上,∴b=12a,即:2ab=1.∴AF OAOB BE=,∴△AOF∽△BEO.(4)当点P在曲线上移动时,△OEF中,∠EOF=45°,∵△AOF和△BOE一定相似,•∴∠AFO=∠BOE而∠AFO=∠B+∠BOF,∠BOE=∠BOF+∠EOF,∴∠EOF=45°.。

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 一个等差数列的首项为2,公差为3,则第10项为()。

A. 29B. 30C. 31D. 324. 若函数f(x) = 2x + 3,则f(3)的值为()。

A. 6B. 9C. 12D. 155. 在直角坐标系中,点(3, 4)关于y轴的对称点为()。

A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)二、判断题(每题1分,共5分)1. 两个等腰三角形一定是相似的。

()2. 任何数乘以0都等于0。

()3. 二次函数的图像一定是一个抛物线。

()4. 平行四边形的对角线互相平分。

()5. 一元一次方程的解一定是整数。

()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的周长为______。

2. 若等差数列的首项为a,公差为d,则第n项为______。

3. 若函数f(x) = ax² + bx + c,则它的顶点坐标为______。

4. 在直角坐标系中,点(2, -3)关于原点的对称点为______。

5. 若一个平行四边形的面积为S,底为b,高为h,则S =______。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 简述二次函数的图像特点。

3. 简述勾股定理。

4. 简述平行线的性质。

5. 简述一元二次方程的解法。

五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求它的对角线长。

2. 已知等差数列的首项为3,公差为2,求第10项。

3. 已知函数f(x) = 3x² 12x + 9,求它的顶点坐标。

4. 在直角坐标系中,已知点A(2, 3)和点B(4, 7),求线段AB的长度。

初三数学变量精选练习题及答案一

初三数学变量精选练习题及答案一

初三数学变量精选练习题及答案一问题1
某公司从工厂订购了若干台机器,其中每台机器的成本为5000元。

如果订购的机器数量是x台,请写出一个代数式来表示机器的总成本。

机器的总成本 = 5000 * x
问题2
一个矩形的长度是4x米,宽度是3米。

请写出一个代数式来表示该矩形的面积。

矩形的面积 = 长度 ×宽度 = 4x × 3 = 12x
问题3
一个长方体的长、宽、高分别是x米、2米、3米。

请写出一个代数式来表示该长方体的体积。

长方体的体积 = 长 ×宽 ×高 = x × 2 × 3 = 6x
问题4
一个圆的半径是x米,求该圆的周长。

圆的周长= 2π × 半径= 2πx
问题5
一个正方形的边长是2x米,求该正方形的周长。

正方形的周长 = 边长 × 4 = 2x × 4 = 8x
问题6
一个三角形的底是3米,高是2x米,求该三角形的面积。

三角形的面积 = (底 ×高) / 2 = (3 × 2x) / 2 = 3x
问题7
如果a = 2x + 3y,b = 4x - y,求a + b的代数式。

a +
b = (2x + 3y) + (4x - y) = 6x + 2y
问题8
如果a = 3x - 4y,b = 2x + 5y,求a - b的代数式。

a -
b = (3x - 4y) - (2x + 5y) = x - 9y
以上是初三数学变量精选练习题及答案一的内容。

希望对您的学习有所帮助!。

9、从常量到变量数学-培优 数学张老师

9、从常量到变量数学-培优 数学张老师

9、从常量到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量(constant)数学时期;以函数(function)概念产生的变量(variable)数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,函数是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系(rectangular coordinates in tWO dimen。

ions)相关的概念、函数概念、函数的表示法、函数图象(graph)概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标(coordinates)是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.。

【例l】 (1)如图l,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(一7,一4),白棋④的坐标为(一6,一8),那么,黑棋①的坐标应该是..(2005年杭州市中考题) (2)如图2,已知边长为l的正方形OABC在直角坐标系中,A、B两点在第一象限内,0A与x轴的夹角为300,那么点B的坐标是.(全国初中数学联赛题)思路点拨对于(1),由自棋②、④的坐标确定原点位置,建立直角坐标系;对于(2),过A、B分别向x 轴作垂线,将求点的坐标转化为求线段的长.【例2】某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点,进行机组试运彳亍,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示:给出以下3个判断:①0点到3点只进水,不出水;②3点到4点,不进水,只出水;③4点到6点不进水,不出水.则上述判断中一定正确的是( ).A.① B.② C.②③ D.①②③(2005年常州市中考题) 思路点拨从图象获取信息,确定该水池的蓄水量与时间的关系.【例3】如果将点P绕定点M旋转l800后与点Q重合,那么这点P与点Q关于点M对称,定点M叫做对称中心,此时,点M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A、B、0的坐标分别为(1,0)、(0,1)、(0,0).点到P1、P2、P3、…中相邻两点都关于△AB0的一个顶点对称,点P1与点P2关于点A 对称,点P2与点P3关于点B对称,点P3与点P4关于点0对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于0点对称,…对称中心分别是A,B,0,A,B,0,…且这些对称中心依次循环,已知P1的坐标是(1,1).试写出点P2、P7、P100的坐标.(2005年南京市中考题) 思路点拨通过实际操作,从寻找对称点变化规律人手.【例4】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.观将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y与x间的函数关系式,并写出X的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.(2004年河北省中考题) 思路点拨对于(2),通过求不等式组的正整数解,确定分配方案,并在此基础上,研究公司获得的最大收益.【例5】如图,在直角坐标系中,已知点A(4,0)点B(0,3),若有一个直角三角形与Rt△AB0全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程).思路点拨因公共边未指明,又未知顶点有不同的位置,故解本例的关键是分类讨论.1.已知点A(2a+3b ,一2)和点B(8,3a+2b)关于x 轴对称,那么a+b= .(2005年四川省中考题)2.如图所示的象棋盘上,若“帅”位于点(1,一2)上,“相”位于点(3,一2)上,则“炮”位于3.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB= 900,有直角三角形与Rt△AB0全等且以AB 为公共边,请写出这些直角三角 形未知顶点的坐标:4.已知函数,2213---=x y 则x 的取值范围是 ,若x 是整数,则此函数的最小值是 . (2005年厦门市中考题)5.如果代数式mn m 1+-有意义,那么直角坐标系中点P(m ,n)的位置在( ).A .第一象限B .第二象限C .第三象限D .第四象限(2005年荆门市中考题) 6.函数42113-+-=x x y 的自变量x 的取值范围是( ). A .x≥1且x≠2 B .x ≠ 2 C.x>1且x≠2 D .全体实数(2005年兰州市中考题) 7.平面直角坐标系中的点)21,2(m m P -关于x 轴的对称点在第四象限,则m 的取值范围在数轴上可表示为( ).(2005年荆州市中考题)8.图l 是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图象.给出下列对应:(1)(a)一(e);(2)(b)一(f);(3)(c)一(h);(4) (d)一(g),其中,正确的是( ). 、A .(1)和(2).B .(2)和(3)C .(1)和(3)D .(3)和(4)(2005年镇江市中考题)9.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形,解决下面的问题:(1)图中的格点△A B C 是由格点△ABC通过哪些变换方法得到的?(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(一3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.(2005年成都市中考题)10.煤炭是龙岩市的主要矿产资源之一,每天有大量的煤炭运往外地.某煤矿现有100吨煤炭要运往甲、乙两厂.通过了解获碍甲、乙两厂的有关信息如下表(表中运费栏“元/t·km”表示每吨煤炭运送1千米所需人民币):要把l00吨煤炭全部运出,试写出总运费y元与运往甲厂x吨煤炭之问的函数关系式;如果你是该矿的矿主,请设计出合理的运送方案,使所需的总运费最低,并求出最低的总运费.(2005年福建省龙岩市中考题)11.在平面直角坐标系中,已知点P。

绵阳市人教版 九年级数学 竞赛专题:代数最值问题(含答案)

绵阳市人教版 九年级数学 竞赛专题:代数最值问题(含答案)

人教版 九年级数学 竞赛专题:代数最值问题(含答案)【例1】当x 变化时,分式12156322++++x x x x 的最小值是 .【例2】已知1≤y ,且12=+y x ,则223162y x x ++的最小值为( )A.719 B. 3 C. 727 D. 13 【例3】()21322+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ).【例4】(1)已知211-+-=x x y 的最大值为a ,最小值b ,求22b a +的值. (2)求使()168422+-++x x 取得最小值的实数x 的值.(3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值.【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?【例6】(1)设r x ,1+r x ,…,k x (r k >),为k -r +1个互不相同的正整数,且x r +x r +1+…+x k =2019,求k 的最大可能值.(2)a ,b ,c 为正整数,且432c b a =+,求c 的最小值.(能力训练A 级1.已知三个非负数a ,b ,c ,满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为___________,最大值为 .2.多项式p =2x 2-4xy +5y 2-12y +13的最小值为 .3.已知x ,y ,z 为实数,且x +2y -z =6,x -y +2z =3,那么x 2+y 2+z 2的最小值为 . 4.若实数a ,b ,c ,满足a 2+b 2+c 2=9,则代数式(a -b )2+(b -c )2+(c -a )2的最大值为 ( ) 5.已知两点A (3,2)与B (1,-1),点P 在y 轴上且使P A +PB 最短,则P 的坐标是( )A.(0,21-) B.(0,0) C.(0,611) D.(0,41-)6.正实数x ,y 满足1=xy ,那么44411y x +的最小值为( ) A.21 B. 85 C. 1 D. 45E.27.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示).(1)根据图象,求一次函数b kx y +=的解析式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元. ①试用销售单价x 表示毛利润;②试问:销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?8.方程()()06122=-+-+m x m x 有一根不大于1-,另一根不小于1,(1)求m 的取值范围;(2)求方程两根平方和的最大值与最小值.9.已知实数a ,b 满足122=++b ab a ,求22b ab a +-的最大值与最小值.10.已知a ,b ,c 是正整数,且二次函数c bx ax y ++=2的图象与x 轴有两个不同的交点A ,B ,若点A ,B 到原点的距离都小于1,求a +b +c 的最小值.11.某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为()⎥⎦⎤⎢⎣⎡+-500141x 元.(1)如果将设备从开始投入使用到报废所需的养护与维修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数.(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?B 级1.a ,b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是 .2.设x ,y ,z 都是实数,且满足x +y +z =1,xyz =2,则z y x ++的最小值为 . 3.如图,B 船在A 船的西偏北45°处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离为 km .4.若a ,b ,c ,d 是乘积为1的四个正数,则代数式a 2+b 2+c 2+d 2+ab +bc +ac +ad +bd +cd 的最小值为( )A. 0B. 4C. 8D. 105.已知x ,y ,z 为三个非负实数,且满足3x +2y +z =5,x +y -z =2. 若s =2x +y -z ,则s 的最大值与最小值的和为( )A. 5B.423 C. 427 D. 4356.如果抛物线()112----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值为( )A.1B.2C.3D.47.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?8.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式:x q x p 53,51==.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?9.已知为x ,y ,z 为实数,且5=++z y x ,3=++zx yz xy ,试求z 的最大值与最小值.10.已知三个整数a ,b ,c 之和为13,且bca b =,求a 的最大值和最小值,并求出此时相应的b 与c 值.11.设x 1,x 2,…,x n 是整数,并且满足: ① -1≤x i ≤2,i =1,2,…,n ② x 1+x 2+…+x n =19 ③ x 12+x 22+…+x n 2=99求x 13+x 23+…+x n 3的最大值和最小值.12.已知x 1,x 2,…,x 40都是正整数,且x 1+x 2+…+x 40=58,若x 12+x 22+…+x 402的最大值为A ,最小值为B ,求A +B 的值.参考答案例1. 4 提示:原式=112-62-+)(x . 例2. B 提示:由-1≤y ≤1有0≤x ≤1,则z =2x 2+16x +3y 2=14x 2+4x +3是开口向上,对称轴为71-=x 的抛物线.例3. 分三种情况讨论:①0≤a <b ,则f (x )在a ≤x ≤b 上单调递减,∴f (a )=2b ,f (b )=2a ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b a a b 解得⎩⎨⎧==31b a ②a <b ≤0,则f (x )在a ≤x ≤b 上单调递增,∴f (a )=2a ,f (b )=2b ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b b a a 此时满足条件的(a ,b )不存在. ③a <0<b ,此时f (x )在x =0处取得最大值,即2b =f (0)=213,b =413,而f (x )在x =a 或x =b 处取最小值2a .∵a <0,则2a <0,又∵f (b )=f (413)=021341321-2>+⨯)(,∵f (a )=2a ,即2a =2132-2+a ,则⎪⎩⎪⎨⎧=--=413172b a 综上,(a ,b )=(1,3)或(17-2-,413) 例4. (1)121≤≤x ,y 2 = 21+216143-2+-)(x .当x =43时,y 2取得最大值1,a =1; 当21=x 或x =1时,y 2取得最小值21,b =22.故a 2+b 2=23.(2) 如图,AB =8,设AC =x ,则BC =8- x ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2.10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x当且仅当D ,C ,E 三点共线时,原式取最小值.此时∵EBC ∽△DAC ,有224===DA EB CA BC , 从而x =AC =3831=AB .故原式取最小值时,x =38. (3)如图,原式=[]2222222)24()13()32()01(032--0y x y x -+-+-+-+-+)()(=AB +BC +CD ≥AD ,其中A (-2,0),B (0,3x ),C (1,2y ),D (3,4),并且当点B ,C 在线段AD 上时,原式取得最小值,此时5423=x ,5432=y .例5. 由S =ay m y n a 2)(22+--,得an -S +2ay =a 22n y -,两边平方,经整理得0)()(4322222=+-+-+m a S an y S an a y a .因为关于y 的一元二次方程有实数解,所以[][]0)(34)(422222≥+-⨯--m a S an a S an a ,可化为2223-m a an S ≥)(.∵S >an ,∵am an S 3-≥,即am an S 3+≥,故S 最小=am an 3+.例6(1)设x 1≥1,x 2≥2,x k ≥k ,于是1+2+…+k ≤x 1+x 2+…+x k = 2019,即120192k(k )+≤ k (k +1)≤4006,∵62×63=3906<4006<4032=63×64,∴k ≤62. 当x 1=1,x 2=2,…x 61=61,x 62=112时,原等式成立,故k 的最大可能值为62.(2) 若取⎩⎨⎧=+=-222ba cb ac ,则2)1(2+=b b c 由小到大考虑b ,使2)1(+b b 为完全平方数.当b =8时,c 2=36,则c =6,从而a =28.下表说明c 没有比6更小的正整数解.显然,表中c 4-x 3的值均不是完全平方数,故c的最小值为6.A 级1.57- 111- 2.1 3.14 提示:y =5-x ,z =4-x ,原式=3(x -3)2+14. 4.A 提示:原式=27-(a +b +c )2. 5.D 6.C 7.(1)y =-x +1000(500≤x ≤800) (2)①S =(x -500)(-x +1000)=-x 2+1500x -500000(500≤x ≤800);②S -(x -750)2+62500,即销售单价定为750时,公司可获最大毛利润62500元,此时销量为250件. 8.(1)-4≤m ≤2 (2)设方程两根为x 1,x 2,则x 12+x 22=4(m -34)2+1034,由此得x 12+x 22最小值为1034,最大值为101. 9.设a 2-ab +b 2=k ,又a 2+ab +b 2=1②,由①②得ab =12(1-k ),于是有(a +b )2=12(3-k )≥0,∴k ≤3,从而a +b =.故a ,b 是方程t 2t +12k -=0的两实根,由Δ≥0,得133k ≤≤. 10.设A (x 1,0),B (x 2,0),其中 x 1,x 2是方程ax 2+bx +c =0的两根,则有x 1+x 2=b a -<0,x 1x 2=ca>0,得x 1<0,x 2<0,由Δ=b 2-4ac >0,得b >|OA |=|x 1|<1,|OB |=|x 2|<1,∴-1<x 1<0,-1<x 2<0,于是ca=x 1x 2<1,c <a .由于a 是正整数,已知抛物线开口向上,且当x =-1时,对应的二次函数值大于0,即a -b +c >0,a +c >b .又a ,b ,c 是正整数,有a +c ≥b+1,从而a +c ,则212>>>≥,于是a >4,即a ≥5,故b≥b ≥5.因此,取a =5,b =5,c =1,y =5x 2+5x +1满足条件,故a +b +c 的最小值为11. 11.(1)该设备投入使用x天,每天平均损耗为y =11111[500000(0500)(1500)(2500)(500)]4444x x -+⨯++⨯++⨯++++L =11(1)[500000500x ]42x x x -++⨯=500000749988x x ++. (2)y =500000749988x x ++7749999988≥=.当且仅当5000008xx =,即x =2000时,等号成立.故这台设备投入使用2000天后应当报废.B 级 1.20 提示:a 2-8b ≥0,4b 2-4a ≥0,从而a 4≥64b 2≥64a ,a ≥4,b 2≥4. 2.4 提示:构造方程. 3. 提示:设经过t 小时后,A ,B 船分别航行到A 1,B 1,设AA 1=x ,则BB 1=2x ,B 1A 1 4.D 提示:a 2+b 2≥2ab ,c 2+d 2≥2cd ,∴a 2+b 2+c 2+d 2≥2(ab +cd )≥.∴ab +cd ≥2,同理bc +ad ≥2,ac +bd ≥2. 5.A 提示:x =s -2≥0,y =5-43s ≥0,z =1-13s ≥0,解得2≤s ≤3,故s 的最大值与最小值的和为5. 6.A 提示:|AB C (2125,24k k k -++-),ABC S =V k 2+2k +5=(k +1)2+4≥4. 7.设此商品每个售价为x 元,每日利润为S 元.当x ≥18时,有S =[60-5(x -18)](x -10)=-5(x -20)2+500,即当商品提价为20元时,每日利润为500元;当x ≤18时,S =[60+10(18-x )](x -10)=-10(x -17)2+490,即当商品降价为17元时,每日利润最大,最大利润为490元,综上,此商品售价应定为每个20元. 8.设对甲、乙两种商品的资金投入分别为x ,(3-x )万元,设获取利润为s ,则s 15x =s -15x x 2+(9-10s )x +25s 2-27=0,∵关于x的一元二次方程有实数解,∴(9-10s )2-4×(25s 2-27)≥0,解得1891.05180s ≤=,进而得x =0.75(万元),3-x =2.25(万元).即甲商品投入0.75万元,乙商品投入2.25万元,获得利润1.05万元为最大. 9.y =5-x -z ,代入xy +yx +zx =3,得x 2+(z -5)x +(z 2-5z +3)=0.∵x 为实数,∴Δ=(z -5)2-4(z 2-5z +3)≥0,解得-1≤z ≤133,故z 的最大值为133,最小值为-1. 10.设b cx a b==,则b =ax ,c =ax 2,于是,a +b +c =13,化为a (x 2+x +1)=13.∵a ≠0,∴x 2+x +1-13a=0 ①.又a ,b ,c 为整数,则方程①的解必为有理数,即Δ=52a -3>0,得到1≤a ≤523为有理数,故1≤a ≤16.当a =1时,方程①化为x 2+x -12=0,解得x 1=-4,x 2=3. 故a min =1,b =-4,c =16 或a min =1,b =3,c =9.当a =16时,方程①化为x 2+x +316=0.解得x 1=-34,x 2=-14.故a min =16,b =-12,c =9;或a min =16,b =-4,c =1. 11.设x 1,x 2,…,x n 中有r 个-1,s 个1,t 个2,则219499r s t r s t -++=⎧⎨++=⎩,得3t +s =59,0≤t ≤19.∴x 13+x 23+…+x n 3=-r +s +8t =6t +19.∴19≤x 13+x 23+…+x n 3≤6×19+19=133.∴在t =0,s =59,r =40时,x 13+x 23+…+x n 3取得最小值19;在t =19,s =2,r =21时,x 13+x 23+…+x n 3取得最大值133. 12.∵把58写成40个正整数的和的写法只有有限种,∴x 12+x 22+…+x 402的最大值和最小值存在.不妨设x 1≤x 2≤…≤x 40.若x 1>1,则x 1+x 2=(x 1-1)+(x 2+1),且(x 1-1)2+(x 2+1)2=x 12+x 22+2(x 2-x 1)+2>x 12+x 22.于是,当x 1>1时,可以把x 1逐步调整到1,此时,x 12+x 22+…+x 402的值将增大.同理可以把x 2,x 3,…,x 39逐步调整到1,此时x 12+x 22+…+x 402的值将增大.从而,当x 1,x 2,…,x 39均为1,x 40=19时,x 12+x 22+…+x 402取得最大值,即A =22239111+++L 1442443个+192=400.若存在两个数x i ,x j ,使得x j -x i ≥2(1≤i <j ≤40),则(x i +1)2+(x j -1)2=x i 2+x j 2-2(x i -x j -1)<x i 2+x j 2.这表明,在 x 1,x 2,…,x 40中,若有两个数的差大于1,则把较小的数加1,较大的数减1此时,x 12+x 22+…+x 402的值将减小,因此,当x 12+x 22+…+x 402 取得最小值时,x 1,x 2,…,x 40中任意两个数的差都不大于1. 故 当x 1=x 2=…=x 22=1,x 23=x 24=…=x 40=2时,x 12+x 22+…+x 402取得最小值,即222111+++L 144244322个222222+++⋯+=94从而,A+B=494.。

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若函数f(x) = 2x + 3,则f(-1)的值为()。

A. 1B. 2C. 3D. 54. 下列哪个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形5. 若一个圆的半径为r,则它的周长为()。

A. 2rB. 2πrC. πr²D. r²/2二、判断题(每题1分,共5分)1. 两个负数相乘的结果一定是正数。

()2. 任何数乘以0都等于0。

()3. 对角线相等的四边形一定是矩形。

()4. 一元二次方程ax² + bx + c = 0(a≠0)的解可以用公式x = [-b ± √(b² 4ac)] / 2a求得。

()5. 任何数都有倒数。

()三、填空题(每题1分,共5分)1. 若一个三角形的两个内角分别为30°和60°,则第三个内角的度数为______°。

2. 若2x 5 = 0,则x的值为______。

3. 若一个圆的直径为10cm,则它的面积为______cm²。

4. 若一个等差数列的首项为3,公差为2,则第5项的值为______。

5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请简述一元一次方程的求解方法。

3. 请简述等差数列的定义及通项公式。

4. 请简述平行四边形的性质。

5. 请简述圆的周长和面积的计算公式。

五、应用题(每题2分,共10分)1. 已知一个长方形的长是宽的2倍,且长方形的周长是24cm,求长方形的长和宽。

初中数学竞赛辅导讲义及习题解答 第8讲 由常量数学到变量数学

初中数学竞赛辅导讲义及习题解答 第8讲 由常量数学到变量数学

学力训练1. 如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 .2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标).3.根据指令[S ,A](S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令[4,60°],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( )A .22a -B .22a +C .22a --D .22a +-5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( )A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( ) A .m<l B .m=1 C . m>l D .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程).8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式;(2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖?(4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点).10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是 .11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为 .12.在直角坐标系中,已知A(1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .1个B .2个C . 3个D .4个13.已知点P 的坐标是(a +2l ,b +2),这里a 、b 是有理数,PA 、PB 分别是点P 到x 轴和y 轴的垂线段,且矩形OAPB 的面积为2,则P 点可能出现的象限有( )A .1个B .2个C .3个D .4个14.甲、乙二人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度V l 与V 2(Vi<V2),甲用一半的路程使用速度V l 、另一半的路程使用速度V 2;关于甲乙二人从A 地到达B 地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t 表示时间,纵轴s 表示路程,其中正确的图示分析为( )A .图(1)B .图(1)或图(2)C .图(3)D .图(4)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交税,且根据超过部分的多少按不同的税率交税,详细的税率如下表:级别…(1)某公民2002年10月的总收人为1350元,问他应交税款多少元?(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y 关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元?18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC 上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ 是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由.参考答案。

初中数学常量、最新变量的意义部审人教版常见题综合题

初中数学常量、最新变量的意义部审人教版常见题综合题

常量、变量的意义部审人教版常见题综合题1、若实数满足条件,则中()A.必有答案B 解析2、已知关于x的不等式组的整数解共有4个,则的最小值为()A.2B.2.1 答案A 解析3、化简的结果是(;).A.B.C.D.答案B 解析4、若一个数的算术平方根等于它的本身,则这个数是答案D 解析5、若反比例函数的图象经过点(-3,2),则的值为(; 答案A 解析6、-5的绝对值是答案B 解析7、下列各点中是抛物线图像与x轴交点的是( )A.(5,0)B.(6,0)C 答案C 解析8、若不等式组有解,则a的取值范围是()A.a>-1. 答案A 解析考点:解一元一次不等式组.分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.解:由(1)得x≥-a,由(2)得x<1,∴其解集为-a≤x<1,∴-a<1,即a>-1,∴a的取值范围是a>-1,故选A.9、(2014?海拉尔区模拟)用长8米的铝材制成一个矩形窗框,使它的面积为5平方米.若设它的一边长为x米,根据题意列答案C 解析试题分析:一边长为x米,则另外一边长为:4﹣x,根据它的面积为5平方米,即可列出方程式.解:一边长为x米,则另外一边长为:4﹣x,由题意得:x(4﹣x)=5,故选:C.点评:本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.10、下列计算正确的是()A.B.C.D.答案C 解析11、如下左图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图答案A 解析12、如图4,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的余弦值为,则坡面A 答案B 解析13、(2010湖北孝感,17,3分)对实数a、b,定义运算★如下:a★b=,例如2★3=2-3=.计算×答案1 解析14、-5不是; 答案B 解析15、下列图形中,是轴对称图形的是()答案C 解析考点:轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、B、D都不是轴对称图形,只有C 是轴对称图形.故选C.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.16、若不等式组有解,则a的取值范围是; 答案D 解析17、计算:【小题1】(1 + )-()0【小题2】+ ――答案【小题1】原式?????【小题2】原式== 解析18、某公司把500万元资金投入新产品的生产,第一年获得一定的利润,在不抽掉资金和利润的前提下,继续生产,第二年的利润答案D 解析19、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的左面看这个几何体的左视图是答案B 解析20、.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是答案C 解析21、(2014?昆明)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长答案D 解析试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选:D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.22、下列图形中,是中心对称的图形是( 答案B 解析23、如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若表示△ADE的面积,表示四边形DBCE的面积答案B 解析24、某市教育局为了解初中学生参加综合实践活动(包括社会调查、社区服务、科技活动、文体活动四类) 情况, 从全市9万名答案A 解析25、已知抛物线的开口向下,顶点坐标为(2,-3),那么该抛物线有(; ▲;)A 答案B解析26、下列图案是轴对称图形的有()A.1个B.2个C.3个D.4个答案B 解析27、如果的乘积中不含x的一次项,则k的值为; 答案A 解析本题主要考查的是多项式。

浙江初三初中数学竞赛测试带答案解析

浙江初三初中数学竞赛测试带答案解析

浙江初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列等式一定成立的是()A.B.C.D.2.下列式子成立的是()A.a a=a B.(a b)= a bC.0.0081=8.1×10D.3.以下列各组数为边长,能构成直角三角形的是 ( )A.,,B.,,C.32,42,52D.1,2,34.使式子有意义的x的取值范围是()A.x≤1B.x≤1且x≠-2C.x≠-2D.x<1且x≠-25.解关于x的方程时产生增根,则m的值等于()A.-2B.-1C.1D.26.二次函数的图象可能是()7.如图几何体的俯视图是()8.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.10C.11D.129.如图,已知矩形ABCD,R、P分别是DC、BC上的点,E、F分别是AP,RP的中点,当P在BC上从B向C 移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定二、填空题1.⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是 .2.规定"*"为一种运算,它满足a*b=,那么1992*(1992*1992)=____。

3.已知直角三角形的两条边x、y的长满足,则第三边长为4.有五根木条,分别为12cm,10cm,8cm,6cm,4cm,则从中任取三根能组成三角形的概率为5.如图所示,二次函数的图象经过点,且与x轴交点的横坐标为、,其中、下列结论:①;②;③;④;正确的结论是 .三、解答题1.解方程:2.某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?3.如图,在△ABC中,点O是AC边上的一动点,过点O作直线MN//BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。

国开作业数学思想与方法-第三关12参考(含答案)

国开作业数学思想与方法-第三关12参考(含答案)

题目:算术解题方法的基本思想是:首先要围绕所求的数量,收集和整理各种(),并依据问题的条件列出用()表示所求数量的算式,然后通过四则运算求得算式的结果。

选项A:已知数据,未知数据选项B:已知数据,已知数据选项C:已知数据,未知数据选项D:未知数据,未知数据答案:已知数据,已知数据题目:就数学发展的历史进程来看,从算术到代数、从常量数学到变量数学、从确定数学到随机数学等是数学思想方法的几次重要突破。

代数形成解决了具有复杂()的问题,变量数学创立刻划了( )的事物与现象,随机数学出现揭示了( )背后所蕴涵的规律。

选项A:数量关系,运动与变化、统计现象选项B:映射关系、对应关系、随机现象选项C:代数关系、几何问题、统计现象选项D:数量关系,运动与变化,随机现象答案:数量关系,运动与变化,随机现象题目:代数不但讨论正整数、正分数和零,而且讨论负数、虚数和复数。

其特点是用( )来表示各种数。

选项A:数字记号选项B:字母符号选项C:图示符号选项D:箭头符号答案:字母符号题目:代数学形成过程经历了漫长过程:( )。

选项A:符号代数,文字代数,简写代数选项B:文字代数,简写代数,图标代数选项C:文字代数,符号代数,简写代数选项D:文字代数,简写代数,符号代数答案:文字代数,简写代数,符号代数题目:初等数学都是以()为其研究对象,运用这些知识可以有效地描述和解释相对稳定的事物和现象,对于运动变化的事物和现象,它们显然无能为力。

选项A:不变的数量和固定的图形选项B:变化的数字和固定的图形选项C:数量和图形选项D:不变的数量和变化的图形答案:不变的数量和固定的图形题目:变量数学产生的数学基础应该是(),标志是( )。

选项A:线性代数、几何学选项B:概率统计、微积分选项C:数论初步、几何学选项D:解析几何、微积分答案:解析几何、微积分题目:从16世纪开始,自然科学研究的中心问题是运动,科学家们相信对各种运动过程和各种变化着的量之间的依赖关系的研究可以用数学来描述。

初中辅导 初中数学常量与变量课后练习(含答案及解析)

初中辅导 初中数学常量与变量课后练习(含答案及解析)
常量与变量课后练习(含答案)
1.在△ABC 中,它的底边是 a,底边上的高是 h,则三角形面积 S= ah,当 a 为定长时,
在此式中( )
A.S,h 是变量, ,a 是常量
B.S,h,a 是变量, 是常量
C.S,h 是变量, ,S 是常量
D.S 是变量, ,a,h 是常量
2.在圆的周长 C=2πR 中,常量与变量分别是( )
B.R 是变量,π是常量
A.2 是常量,C、π、R 是变量
B.2π是常量,C、R 是变量
C.C、2 是常量,R 是变量
D.2 是常量,C、R 是变量
3.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量
是( )
A.金额
B.数量
C.单价
D.金额和数量
4.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是
()
A.沙漠
B.体温
C.时间
D.骆驼
【考点】常量与变量. 菁优网版 权所有
【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量 x
和 y,对于每一个 x 的值,y 都有唯一的值和它相对应”的函数定义,自变量是时间,因
变量是体温.
【解答】解:∵骆驼的体温随时间的变化而变化,
∴自变量是时间,因变量是体温,
变化的量.根据定义即可判断.
【解答】解:某人要在规定的时间内加工 100 个零件,则工作效率η与时间 t 之间的关系
中:η和 t 是变量,零件的个数 100 是常量.
故选:C.
【点评】本题考查了常量与变量的概念,是一个基础题.
11.对于圆的周长公式 C=2πR,下列说法正确的是( )

初中数学竞赛讲义:第08讲-由常量数学到变量数学

初中数学竞赛讲义:第08讲-由常量数学到变量数学

第八讲由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为.思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x 的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的()思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x 千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F 关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由.思路点拨(1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy 与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P 与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y .(1)当AP =3cm 时,求的值;(2)设AP=cm 时,求y 与x 的函数关系式;(3)当y=2cm 2,试确定点P 的位置.(2001年天津市中考题)思路点拨 对于(2),由于点P 的位置不同,y 与x 之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x 值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1. 如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 . 2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标).3.根据指令[S ,A](S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令[4,60°],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a -B .22a +C .22a --D .22a +-5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). 8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点).10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是 .11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为 .12.在直角坐标系中,已知A(1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .1个B .2个C . 3个D .4个13.已知点P 的坐标是(a +2l ,b +2),这里a 、b 是有理数,PA 、PB 分别是点P 到x 轴和y轴的垂线段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个B.2个C.3个D.4个14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V l与V2(Vi<V2),甲用一半的路程使用速度V l、另一半的路程使用速度V2;关于甲乙二人从A 地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交级别…(1)某公民2002年10月的总收人为1350元,问他应交税款多少元?(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y 关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元?18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC 上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ 是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由.参考答案。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

初中数学专题常量与变量(含答案)

初中数学专题常量与变量(含答案)

第七章一次函数【本章学习要点和训练重点】●了解常量、变量和函数的概念及函数的3种表示方法;•会列简单实际问题的函数解析式,会求函数值和简单函数的自变量的取值范围;理解正比例函数、一次函数的概念,会求正比例函数、一次函数的解析式,会求一次函数的值,会根据已知一次函数的解析式表示直角坐标系中的直线,借助图像了解一次函数的增减性,会根据自变量的取值范围求函数的取值范围,会根据函数的取值范围求自变量的取值范围;会用函数图像刻画两个变量之间的关系,会根据一次函数图像求二元一次方程的解(或近似解),初步具有综合运用知识解决实际问题的能力.7.1 常量与变量课内同步训练1.半径是R的圆的周长C=2πR,,下列说法正确的是()A.C、π、R是常量; B.C是常量,2、π、R是常量;C.R是常量,2、π、C是常量; D.C、R是常量,2、π是常量.2.汽车以80km/h的速度行驶t时,S(km)表示行驶路程,其中常量是________,•变量是________.3.指出下列的各问题中,哪些量是变量,哪些量是常量?(1)半圆形花坛的半径为r,花坛面积为S,怎样用含r的式子表示S?(2)出租车行驶不超过3km,收起步价8元,3km后1.4元/km,出租车车费为y元,•怎样用含乘坐的路程x(x>3,单位:km)的式子表示y?(3)为改善生态环境,保护生态平衡,某乡遵照上级指示,将耕地还林、耕地还草,还林和还草的比为7:5,怎样用含还草的耕地xha•的式子表示还林、•还草的总耕地yha (1ha=10m)?(4)某运动员在400m一圈的跑道上训练,他跑一圈所用的时间t(s)与速度v(m/s)的关系怎样?4.举出一些变化的实例,指出其中的常量与变量.课外延伸训练1.一个三角形的底边长5cm,h可以任意伸缩,写出s随h变化的关系式,•并指出其中的常量与变量.2.给定了火车的速度v=60km/h,要研究火车运行的路程s与时间t之间的关系.在这个问题中,常量是_____,变量是________;若给定路程s=100km,要研究速度v与t之间的关系.在这个问题中,常量是______,变量是________.由这2个问题可知,常量与变量是________ 的.3.分别指出下列各关系式中的变量与常量:(1)如果直角三角形中一个锐角的度数为α,那么另一个锐角的度数β与α之间的的关系式是β=90-α.(2)如果某种报纸的单价为a元,x表示购买这种报纸的份数,•那么购买报纸的总价y(元)与x之间的关系式是y=ax.(3)n边形的内角和的度数S与边数n的关系式是S=(n-2)×180.4.A、B两地相距10km,小王由A骑车到B,速度为12km/h,在小王由A到B•这个过程中,有哪几个量?其中哪些是常量,哪些是变量?它们有何限制?7.1 常量与变量(答案) [课内同步训练]1.D 2.80km,t、s3.(1)S=12πR2,其中12、π是常量,S、R是变量(2)y=8+1.4(x-3),其中8、1.4、3是常量,x、y是变量(3)y=125x,其中125是常量,x、y是变量(4)t= 400s,其中400是常量,s、t是变量 4.略[课外延伸训练]1.s=52h,其中52是常量,h、s是变量 2.60,V、h;100、V、t 相对3.(1)常量是90,变量是β、α(2)常量是a,变量是x、y(3)常量是2、180°,变量是n、s4.•共有路程、速度、时间三个量,其中路程、时间是变量,速度是常量,• 它们满足关系式:•S=12t(其中0≤S≤10).。

九年级数学冀教版常量、变量的意义时璩老师

九年级数学冀教版常量、变量的意义时璩老师

九年级数学冀教版常量、变量的意义时璩老师
1、有一实物如图,那么它的主视图是 ( ) 答案B 解析
2、下列图中是太阳光下形成的影子是答案A 解析考点:平行投影.分析:根据平行投影特点在同一时刻,不同物体的物高和影长成比例可知.解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B、D的影子方向相反,都错误;C中物体的物高和影长不成比例,也错误.故选A.
3、-2的相反数是A. 2B.C.D. -2 答案A 解析
4、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12 答案B 解析
5、等于(;)A 答案C 解析
6、点A1、 A2、 A3、…、 An(n为正整数)都在数轴上.点A1在原点O的左边,且A1O=1;点A2在点A1 答案C 解析
7、下列说法中,正确的是()A.零是最小的整数B.零是最小的正数C.零没有倒数D.零没有绝对值答案C 解析
8、的相反数是()A.-2B.C.2 答案D 解析
9、下列角的平分线中,互相垂直的是()A.平行线的同旁内角的平分线B.平行线答案A 解析
10、-的相反数是(;)A.-B.-2 C.答案C 解析
11、如图(图在第二页)所示是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B 答案C 解析
中考数学北京课标版用一次函数解决实际问题
下列二次根式中,是最简二次根式的是(; 答案B 解析12、若点P在第二象限,则点Q 在()A.第一象限B.第二象限C.第三象限D.第四象限答案D 解析
13,。

初三数学部审浙教版刻画实际问题中变量之间的关2019系答案及解析

初三数学部审浙教版刻画实际问题中变量之间的关2019系答案及解析

初三数学部审浙教版刻画实际问题中变量之间的关系答案及解析1、如下图是一个数值运算程序,当输入值为-4时,则输出的数值为(答案C 解析2、家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买答案A 解析3、若在实数范围内有意义,则的取值范围是A.B.C.D.答案C 解析4、下列各组图形中,是全等形的是答案B 解析5、已知抛物线的开口向下,顶点坐标为(2,-3) ,那么该抛物线有(; ▲;)A 答案B解析6、(2014?孝感模拟)某商场一月份的营业额为400万元,第一季度营业总额为1600万元,若平均每月增长率为x,则答案B 解析试题分析:先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1600,把相关数值代入即可.解:∵一月份的营业额为400万元,平均每月增长率为x,∴二月份的营业额为400×(1+x),∴三月份的营业额为400×(1+x)×(1+x)=400×(1+x)2,∴可列方程为400+400×(1+x)+400×(1+x)2=1600,故选B.点评:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.7、(用配方法) 答案解析8、-2的相反数是()A.B.C.-2D.2 答案D 解析9、下列图形中,是中心对称图形的是A.等边三角形B.等腰直角三角形C.等腰梯形D.菱形答案D 解析考点:中心对称图形;轴对称图形.专题:应用题.分析:根据轴对称图形与中心对称图形的概念分别对等腰直角三角形、等边三角形、菱形、等腰梯形进行分析即可得出结果.解答:解:等边三角形、等腰梯形、等腰直角三角形是轴对称图形,不是中心对称图形,菱形是轴对称图形,也是中心对称图形.故选D.点评:本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,比较简单.10、如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于A.30°B.40°C.60°D.70°答案A 解析11、.如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在新农村建设中,为了丰答案A 解析七年级数学华东师大版运用有理数的运算解决简单问题如果点在第四象限,那么m的取值范围是(;).A.B.C 答案D 解析(2014?中江县一模)到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困答案A 解析试题分析:先用含x的代数式表示2012年发放给每个经济困难学生的钱数,再表示出2013年发放的钱数,令其等于438即可列出方程.解:设每年发放的资助金额的平均增长率为x,则2012年发放给每个经济困难学生450(1+x)元,2013年发放给每个经济困难学生450(1+x)2元,由题意,得:450(1+x)2=625.故选A.点评:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12,如图点C在线段AB上,AC=2BC,M、N分别为AC、BC的中点,若BC=4cm,求线段MN 的长。

初中数学常量、变量的意义冀教版2020年压轴题

初中数学常量、变量的意义冀教版2020年压轴题

常量、变量的意义冀教版压轴题1、地球上水的总储量为1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.01 答案A 解析2、如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是()A.6B.5 C.4D.3 答案B 解析3、函数的自变量x的取值范围是()A.x≠0B.x≠1C.x≥1 D.x≤1 答案B 解析4、不等式组的解集在数轴上表示正确的是()答案C 解析5、下列说法正确的是答案C 解析6、如图,点A在半径为3的⊙O内,OA=,P为⊙O上一点,当∠OPA取最大值时,PA的长等于(答案B 解析7、函数y=中,自变量x的取值范围是A.B.C.D.答案A 解析8、不等式组的解集在数轴上表示如图所示,则该不等式组可能为( 答案A 解析9、-的绝对值是(;)A.-B.- C.D.5 答案C 解析10、下列运算中,不正确的是(;)A.B.C.D.答案D 解析11、实数a、b在数轴上对应的位置如图,则(; 答案C 解析12、同一平面内的三条直线满足a⊥b,b⊥c,则下列式子成立的是答案A 解析13、1. 下列说法不正确的是答案D 解析14、在平移过程中,对应线段(;)A.互相平行且相等B.互相答案解析15、若分式的值为0,则x的值为(;)A 2 答案B 解析16、下列图案是轴对称图形的有()A.1个B.2个C.3个D.4个答案B 解析17、图中几何体的左视图是答案B 解析18、的倒数是A.B.C.D.答案B 解析19、方程的解是A.2B.-2C.3D.-3 答案A 解析20、下列方程的变形正确的是答案D 解析21、如图,已知正方形ABCD的边长为4 ,E是BC边上的一个动点,AE⊥EF,EF交DC于F, 设BE=,FC=,答案A 解析22、已知抛物线的开口向下,顶点坐标为(2,-3),那么该抛物线有(; ▲;)A 答案B解析23、当1<<3时,化简的结果是(答案B 解析24、已知A—G为中学化学中常见物质,它们之间有如图所示的转化关系(部分生成物已略去),其中A、E、F为单质,A、E为答案(1)化合(或氧化反应);(2)Fe3O4,FeCl2;(3)CaCO3+2HCl=CaCl2+H2O+CO2↑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. (河南省竞赛题)思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的( )思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?(湖北省黄冈市中考题)思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由. (江苏省常州市中考题)思路点拨 (1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.(1)当AP=3cm时,求的值;(2)设AP=cm时,求y与x的函数关系式;(3)当y=2cm2,试确定点P的位置.(2001年天津市中考题)思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB=90°,有直角三角形与Rt△ABO全等且以AB为公共边,请写出这些直角三角形未知顶点的坐标.(贵州省中考题)2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标). (广西桂林市中考题)3.根据指令(S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令,则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).(浙江省杭州市中考题)4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a -B .22a +C .22a --D .22a+- (年南昌市中考题)5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米 B .爸爸走了5分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快(江苏省淮安市中考题) 6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). (常州市中考题)8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?(吉林省中考题)9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点). (上海市初中数学竞赛题)10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是 .11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为 .(美国高中数学考试题)12.在直角坐标系中,已知A(1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A.1个 B.2个 C. 3个 D.4个 (2001年湖北赛区选拔赛题)13.已知点P的坐标是(a2),这里a、b是有理数,PA、PB分别是点P到x轴和y轴的垂线+2l,b+段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个 B.2个 C.3个 D.4个 (江苏省竞赛题)14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V l与V2(Vi<V2),甲用一半的路程使用速度V l、另一半的路程使用速度V2;关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)(河北省初中数学创新与知识应用竞赛试题)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交税,且根据超过部分的多少按不同的税率交税,详细的税率如下表:(1)某公民2002年10月的总收人为1350元,问他应交税款多少元?(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?(四川省竞赛题)16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB 垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元? (广州市中考题)18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x 的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由. (苏州市中考题)参考答案。

相关文档
最新文档