2019学年高二数学下学期期末考试试题-理新版目标版
安徽省皖西南联盟2018-2019学年高二下学期期末联考数学(理)试题(解析版)
2018〜2019第二学期期末考试高二数学试题(理科)考生注意:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:高考必考内容。
第I 卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2)(3)1i i i++=+( )A. 5B. 5iC. 6D. 6i【答案】A 【解析】 【分析】由题,先根据复数的四则运算直接求出结果即可 【详解】由题()()()2351 5.11i i i ii+++==++故选A【点睛】本题考查了复数的运算,属于基础题.2.已知集合{}2|45,{2}A x x x B x =-<=,则下列判断正确的是( )A. 1.2A -∈B. BC. B A ⊆D. {|54}A B x x =-<<U【答案】C 【解析】 【分析】先分别求出集合A 与集合B ,再判别集合A 与B 的关系,得出结果. 【详解】{}{}15,04A x x B x x =-<<=≤<Q , .B A ∴⊆【点睛】本题考查了集合之间的关系,属于基础题.3.某校有高一学生n 名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10n的样本,若样本中男生比女生多12人,则n =( ) A. 990 B. 1320C. 1430D. 1560【答案】B 【解析】 【分析】根据题意得出样本中男生和女生所占的比例分别为611和511,于是得出样本中男生与女生人数之差为65111110n⎛⎫-⨯ ⎪⎝⎭,于此可求出n 的值. 【详解】依题意可得6512111110n⎛⎫-⨯=⎪⎝⎭,解得1320n =,故选:B . 【点睛】本题考考查分层抽样的相关计算,解题时要利用分层抽样的特点列式求解,考查计算能力,属于基础题.4.设向量a v 与向量b v 垂直,且(2,)a k =v,(6,4)b =v,则下列向量与向量a b +v v共线的是( ) A. (1,8) B. (16,2)--C. (1,8)-D. (16,2)-【答案】B 【解析】 【分析】先根据向量a b ⊥r r计算出k 的值,然后写出a b +r r 的坐标表示,最后判断选项中的向量哪一个与其共线.【详解】因为向量a r 与向量b r垂直,所以2640k ⨯+=,解得3k =-,所以()8,1a b +=r r ,则向量()16,2--与向量a b +r r共线, 故选:B.【点睛】本题考查向量的垂直与共线问题,难度较易.当()()1122,,,a x y b x y ==r r ,若a b ⊥r r,则12120x x y y +=,若a b r rP ,则12210x y x y -=.5.某几何体的三视图如图所示,则该几何体的体积为( )A. 3πB. 4πC. 6πD. 8π【答案】A 【解析】 【分析】由三视图得出该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,在利用体积公式求解,即可得到答案.【详解】由三视图可知,该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,故该几何体的体积为12232πππ⨯+⨯⨯=,故选A. 【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.6.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A. ()5,∞-+ B. [)5,∞-+ C. (),5∞-- D. (],5∞-- 【答案】B 【解析】 【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解.【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-.故选B.【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.7.设x,y满足约束条件2020210yxx y+⎧⎪-⎨⎪-+⎩,,,…„…则z x y=+的最大值与最小值的比值为()A. 2- B.32- C.1- D.52-【答案】A【解析】【分析】作出不等式组所表示的可行域,平移直线z x y=+,观察直线在x轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出z最大值和最小值,于此可得出答案.【详解】如图,作出约束条件表示的可行域.由图可知,当直线z x y=+经过点()25A,时.z取得最大值;当直线z x y=+经过点3,22B⎛⎫--⎪⎝⎭时,z取得最小值.故maxmin7272zz==--,故选A.【点睛】本题考查简单的线性规划问题,一般利用平移直线利用直线在坐标轴上的截距得出最优解,考查计算能力,属于中等题.8.已知函数()3cos(2)2f x xπ=+,若对于任意的x∈R,都有12()()()f x f x f x剟成立,则12x x-的最小值为()A. 4B. 1C.12D. 2【答案】D【解析】【分析】由题意得出()f x的一个最大值为()2f x,一个最小值为()1f x,于此得出12x x-的最小值为函数()y f x=的半个周期,于此得出答案.【详解】对任意的x ∈R ,()()()12f x f x f x 剟成立. 所以()()2min 3f x f x ==-,()()2max 3f x f x ==,所以12min22Tx x -==,故选D . 【点睛】本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题. 9.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A. 10 B. 20 C. 20或-10 D. -20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求.【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B .【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用 10.设01p <<,随机变量X ,Y 的分布列分别为( )当X 的数学期望取得最大值时,Y 的数学期望为( ) A. 2 B.3316C.5527D.6532【答案】D【解析】 【分析】先利用数学期望公式结合二次函数的性质得出EX 的最小值,并求出相应的p ,最后利用数学期望公式得出EY 的值.【详解】∵()()222211721322248EX p p p pp p p ⎛⎫=+-+-=-++=--+ ⎪⎝⎭,∴当14p =时,EX 取得最大值.此时32652232EY p p =-++=,故选D . 【点睛】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题.11.若实轴长为2的双曲线2222:1(0,0)y x C a b a b-=>>上恰有4个不同的点(1,2,3,4)i P i =满足2i iPB PA =,其中(1,0)A -,(1,0)B ,则双曲线C 的虚轴长的取值范围为( )A. )+∞B. (C. )+∞D. ( 【答案】C 【解析】 【分析】设点(),P x y ,由2PB PA =结合两点间的距离公式得出点P 的轨迹方程,将问题转化为双曲线C 与点P 的轨迹有4个公共点,并将双曲线C 的方程与动点P 的轨迹方程联立,由>0∆得出b 的取值范围,可得出答案.【详解】依题意可得1a =,设(),P x y ,则由2PB PA =,=2251639x y ⎛⎫++=⎪⎝⎭. 由222221516,39x y b x y ⎧-=⎪⎪⎨⎛⎫⎪++= ⎪⎪⎝⎭⎩,得221101203x x b ⎛⎫+++= ⎪⎝⎭, 依题意可知210018109b ⎛⎫∆=-+> ⎪⎝⎭,解得2187b >,则双曲线C 的虚轴长27b >=. 12.已知函数3()2f x x ax a =++.过点(1,0)M -引曲线:()C y f x =的两条切线,这两条切线与y 轴分别交于A ,B 两点,若||||MA MB =,则()f x 的极大值点为( )A. B.C. D.【答案】A 【解析】 【分析】设切点的横坐标为t ,利用切点与点M 连线的斜率等于曲线C 在切点处切线的斜率,利用导数建立有关t 的方程,得出t 的值,再由MA MB =得出两切线的斜率之和为零,于此得出a 的值,再利用导数求出函数()y f x =的极大值点.【详解】设切点坐标()3,2t t at a ++,∵26y x a '=+,∴32261t at at a t +++=+,即32460t t +=,解得0t =或32t =-.∵MA MB =,∴3020x x y y ==-''+=,即232602a ⎛⎫+⨯-= ⎪⎝⎭,则274a =-,()22764f x x -'=.当4x <-或4x >时,()0f x '>;当44x -<<时,()0f x '<.故()f x 的极大值点为4-.【点睛】本题考查导数的几何意义,考查利用导数求函数的极值点,在处理过点作函数的切线时,一般要设切点坐标,利用切线与点连线的斜率等于切线的斜率,考查计算能力,属于中等题.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.71()7x x -的展开式的第3项为______. 【答案】337x【解析】 【分析】利用二项式定理展开式7717rr rC xx -⎛⎫⋅⋅- ⎪⎝⎭,令2r =可得出答案. 【详解】717x x ⎛⎫- ⎪⎝⎭的展开式的第3项为225371377C x x x ⎛⎫-= ⎪⎝⎭,故答案为337x . 【点睛】本题考查二项式指定项,解题时充分利用二项式定理展开式,考查计算能力,属于基础题. 14.已知tan()1αβ+=,tan()5αβ-=,则tan 2β=______. 【答案】23- 【解析】 【分析】利用两角差的正切公式()()tan 2tan βαβαβ=+--⎡⎤⎣⎦展开,代入相应值可计算出tan 2β的值.【详解】()()()()()()tan tan 152tan2tan 1tan tan 1153αβαββαβαβαβαβ+---⎡⎤=+--===-⎣⎦++-+⨯. 【点睛】本题考查两角差的正切公式的应用,解题时,首先应利用已知角去配凑所求角,然后在利用两角差的公式展开进行计算,考查运算求解能力,属于中等题.15.阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为35,面积为20π,则椭圆C 的标准方程为______. 【答案】2212516y x +=【解析】 【分析】设椭圆的方程为22221(0)y x a b a b +=>>,由面积公式以及离心率公式,求出a ,b ,即可得到答案.【详解】设椭圆C 的方程为22221(0)y x a b a b +=>>,椭圆C 的面积为20S ab ππ==,则20ab = ,又35e ==,解得225a =,216b =.则C 的方程为2212516y x +=【点睛】本题考查椭圆及其标准方程,注意运用离心率公式和a ,b ,c 的关系,考查学生基本的运算能力,属于基础题.16.已知高为H 的正三棱锥P ABC -的每个顶点都在半径为R 的球O 的球面上,若二面角P AB C --的正切值为4,则HR=______. 【答案】85【解析】 【分析】取线段AB 的中点D ,点P 在平面ABC 的射影点M ,利用二面角的定义得出PDC ∠为二面角P AB C --的平面角,于此得出4PMDM=,并在Rt OMC ∆中,由勾股定理2OM +22CM OC =,经过计算可得出R 与H 的比值.【详解】取线段AB 的中点D ,设P 在底面ABC 的射影为M ,则H PM =,连接CD ,PD (图略). 设4PM k =,易证PD AB ⊥,CD AB ⊥,则PDC ∠为二面角P AB C --的平面角, 从而4tan 4PM kPDC DM DM∠===,则DM k =,2CM k =. 在Rt OMC ∆中,222OM CM OC +=,即()()22242k R k R -+=,解得52k R =,故85H R =. 故答案为85. 【点睛】本题考查二面角的定义,考查多面体的外接球,在处理多面体的外接球时,要确定球心的位置,同时在求解时可引入一些参数去表示相关边长,可简化计算,考查逻辑推理能力,属于中等题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21n a n =-,且22n n n S T n +=+.(1)求数列11{}n n a a +的前n 项和n R ; (2)求{}n b 的通项公式.【答案】(1)21nn +(2)12,12, 2.n n n b n -=⎧=⎨⎩,…【解析】 【分析】 (1)先将11n n a a +表示为1111122121n n a a n n +⎛⎫=- ⎪-+⎝⎭,然后利用裂项求和法可求出n R ;(2)先求出数列{}n a 的前n 项和2n S n =,于是得出2nn T =,然后利用作差法11,1,2n n n T n b T T n -=⎧=⎨-≥⎩可求出数列{}n b 的通项公式.【详解】(1)因为()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭,所以11111111112335212122121n n R n n n n ⎛⎫⎛⎫=-+-+⋯+-=-= ⎪ ⎪-+++⎝⎭⎝⎭; (2)因为()21212n n n S n +-==,所以222n nn n T n S =+-=.当1n =时.112b T ==;当2n …时,112n n n n b T T --=-=. 故12,12, 2.n n n b n -=⎧=⎨⎩,…【点睛】本题考查裂项法求和以及作差法求数列通项公式,求通项要结合递推式的结构选择合适的方法求数列通项,求和则需考查数列通项的结构合理选择合适的求和方法进行计算,属于常考题.18.2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如下表格:(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立. (i )若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率; (ii )若从全国所有观众中随机选取16名,记评价为五星的人数为X ,求X 的方差.【答案】(1)81100(2)(i )27320 (ii )3 【解析】 【分析】(1)从表格中找出评价为四星和五星的人数之和,再除以总数可得出所求频率;(2)(i )记事件:A 恰有2名评价为五星1名评价为一星,然后利用独立重复试验的概率可求出事件A 的概率;(ii )由题意得出3~16,4X B ⎛⎫⎪⎝⎭,然后利用二项分布的方差公式可得出DX 的值. 【详解】(1)由给出的数据可得,评价为四星的人数为6,评价为五星的人数是75, 故评价在四星以上(包括四星)的人数为67581+=,故可估计观众对《流浪地球》的评价在四星以上(包括四星)的频率为0.81(或81100); (2)(i )记“恰有2名评价为五星1名评价为一星”为事件A ,则()21357527100100320P A C ⎛⎫=⨯⨯= ⎪⎝⎭; (ii )由题可知3~16,4X B ⎛⎫ ⎪⎝⎭,故33161344DX ⎛⎫=⨯⨯-= ⎪⎝⎭. 【点睛】本题第(1)考查频率计算,第(2)文考查独立重复试验的概率以及二项分布方差的计算,解题前要弄清事件的基本类型以及随机变量所服从的分布列类型,再利用相关公式求解,考查计算能力,属于中等题.19.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin cos sin cos cos b A C a C B A += . (1)求tan A 的值;(2)若1b =,2c =,AD BC ⊥,D 为垂足,求AD 的长. 【答案】(1)tan A =2)1AD = 【解析】 【分析】(1)根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(2)先根据余弦定理求a ,再利用三角形面积公式求AD.【详解】(1)因为sin cos sin cos cos b A C a C B A ==, 所以sin sin cos sin sin cos cos B A C A C B A A +=因为sin 0A ≠,所以sin cos sin cos B C C B A +=,即()sin B C A +=.因为A B C π++=,所以()sin sin B C A +=,所以sin A A =.则tan A =(2)因为tan A =sin A =1cos 2A =.在ABC ∆中,由余弦定理可得2222cos a b c bc A =+- ,即a =由11sin 22bc A a AD =⋅,得111222AD ⨯⨯=. 所以1AD =.【点睛】本题考查正弦定理、余弦定理以及三角形面积公式,考查基本分析求解能力,属中档题. 20.已知()1,2B 是抛物线()2:20M y px p =>上一点,F 为M 的焦点.(1)若1,2A a ⎛⎫⎪⎝⎭,5,3C b ⎛⎫⎪⎝⎭是M 上的两点,证明:FA ,FB ,FC 依次成等比数列. (2)若直线()30y kx k =-≠与M 交于()11,P x y ,()22,Q x y 两点,且12124y y y y ++=-,求线段PQ 的垂直平分线在x 轴上的截距. 【答案】(1)见解析;(2)4 【解析】 【分析】(1)由B 在抛物线上,求出抛物线方程;根据抛物线焦半径公式可得FA ,FB ,FC 的长度,从而证得依次成等比数列;(2)将直线代入抛物线方程,消去x ,根据韦达定理求解出k ,从而可得PQ 中点坐标和垂直平分线斜率,从而求得PQ 垂直平分线所在直线方程,代入0y =求得结果. 【详解】(1)()1,2B Q 是抛物线()2:20M y px p =>上一点42p ∴= 2p ⇒=24y x ∴=根据题意可得:13122FA =+=,112FB =+=,58133FC =+= 2382423=⨯=QFA ∴,FB ,FC 依次成等比数列(2)由234y kx y x=-⎧⎨=⎩,消x 可得24120ky y --= 124y y k∴+=,1212y y k =-12124y y y y ++=-Q 4124k k ∴-=- 2k ⇒=设PQ 的中点()00,x y()0121212y y y k ∴=+==,()001322x y =+= ∴线段PQ 的垂直平分线的斜率为12-故其直线方程为()1122y x -=--当0y =时,4x =【点睛】本题考查抛物线的几何性质、直线与抛物线综合问题,关键在于能够通过直线与抛物线方程联立,得到韦达定理的形式,从而准确求解出斜率.21.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60ABC ∠=︒,PB PC =,E 为线段BC 的中点,F 为线段PA 上的一点.(1)证明:平面PAE ⊥平面BCP . (2)若22PA AB PB ==,二面角A BD F --的余弦值为35,求PD 与平面BDF 所成角的正弦值.【答案】(1)见解析;(2)210【解析】 【分析】(1)由PE BC BC AE ⊥⊥,得BC ⊥平面PAE ,进而可得证;(2)先证得PA ⊥平面ABCD ,设AC BD O ⋂=,以O 为坐标原点,OB uuu v的方向为x 轴正方向,建立空间直角坐标系O xyz -,分别计算平面BDF 的法向量为n v 和PD u u u v,设PD 与平面BDF 所成角为θ,则sin n PDn PDθ⋅=u u uv v u u u v v ,代入计算即可得解.【详解】(1)证明:连接AC ,因为PB PC =,E 为线段BC 的中点, 所以PE BC ⊥.又AB BC =,60ABC ∠=︒,所以ABC ∆为等边三角形,BC AE ⊥. 因为AE PE E ⋂=,所以BC ⊥平面PAE , 又BC ⊂平面BCP ,所以平面PAE ⊥平面BCP . (2)解:设AB PA a ==,则PB PC ==,因为222PA AB PB +=,所以PA AB ⊥,同理可证PA AC ⊥,所以PA ⊥平面ABCD .如图,设AC BD O ⋂=,以O 为坐标原点,OB uuu v的方向为x 轴正方向,建立空间直角坐标系O xyz -. 易知FOA ∠为二面角A BD F --的平面角,所以3cos 5FOA ∠=,从而4tan 3FOA ∠=. 由432AF a =,得23AF a =.又由20,,23a a F ⎛⎫- ⎪⎝⎭,,0,0B ⎫⎪⎪⎝⎭,知2,23a a BF ⎛⎫=- ⎪ ⎪⎝⎭u u u v ,20,,23a a OF ⎛⎫=- ⎪⎝⎭u u u v . 设平面BDF 的法向量为(),,n x y z =v,由n BF ⊥u u u v v ,n OF u u u v v ⊥,得20232023a ax y z a a y z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,不妨设3z =,得()0,4,3n =v .又0,,2a P a ⎛⎫- ⎪⎝⎭,,0,0D ⎛⎫ ⎪ ⎪⎝⎭,所以,2a PD a ⎛⎫=- ⎪ ⎪⎝⎭u u u v . 设PD 与平面BDF 所成角为θ,则sin 10n PDn PDθ⋅===u u uv v u u u v v .所以PD 与平面BDF所成角的正弦值为10.【点睛】用向量法求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.22.已知函数()()()xf x x a e a R =-∈.(1)讨论()f x 的单调性;(2)当2a =时,()()ln F x f x x x =-+,记函数()y F x =在(1,14)上的最大值为m ,证明:43m -<<-. 【答案】(1)单调递减区间为(),1a -∞-,单调递增区间为()1,a -+∞;(2)见解析. 【解析】 【分析】(1)利用导数求函数的单调性即可; (2)对()F x 求导,得()()11xF x x e x ⎛⎫=--⎝'⎪⎭,因为114x <<,所以10x -<,令()1xg x e x=-,求导得()g x 在1,14⎛⎫⎪⎝⎭上单调递增,∃ 01,12x ⎛⎫∈ ⎪⎝⎭,使得()00g x =,进而得()F x 在01,4x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减;所以()()00max 0212m F x F x x x ===--,令()212G x x x=-- ,求导得()G x 在1,12x ⎛⎫∈ ⎪⎝⎭上单调递增,进而求得m 的范围.【详解】(1)因为()()x f x x a e =-,所以()()1xf x x a e =-+',当(),1x a ∈-∞-时,()0f x '<;当()1,x a ∈-+∞时,()0f x '>,故()f x 的单调递减区间为(),1a -∞-,单调递增区间为()1,a -+∞.(2)当2a =时,()()2ln xF x x e x x =--+,则()()()11111xx F x x e x e x x ⎛⎫=--+=-- ⎝'⎪⎭, 当114x <<时,10x -<,令()1x g x e x=-, 则()210xg x e x =+>',所以()g x 在1,14⎛⎫⎪⎝⎭上单调递增, 因为121202g e ⎛⎫=-< ⎪⎝⎭,()110g e =->,所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00g x =,即001x e x =,即00ln x x =-. 故当01,4x x ⎛⎫∈⎪⎝⎭时,()0g x <,此时()0F x '>; 当()0,1x x ∈时,()0g x >,此时()0F x '<.即()F x 在01,4x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减.则()()()00000max 2ln xm F x F x x e x x ===--+ ()00000012212x x x x x x =-⨯--=--. 令()212G x x x =--,1,12x ⎛⎫∈ ⎪⎝⎭,则()()22221220x G x x x-=-=>'. 所以()G x 在1,12x ⎛⎫∈⎪⎝⎭上单调递增,所以()142G x G ⎛⎫>=- ⎪⎝⎭,()()13G x G <=-. 故43m -<<-成立.【点睛】本题考查了利用导数求函数的单调性和取值范围,也考查了构造新函数,转化思想,属于中档题.。
宁夏回族自治区银川一中2019_2020学年高二数学下学期期末考试试题理含解析
银川一中2019-2020学年度(下)高二期末考试数学试卷(理科)一、选择题:(每道题5分,共60分)1.已知曲线C :222x y +=,则曲线C 的参数方程为( )A. x y θθ⎧=⎪⎨=⎪⎩(θ为参数[)0,2θ∈π)B. 2cos 2sin x y θθ=⎧⎨=⎩(θ为参数[)0,2θ∈π)C. x y θθ⎧=⎪⎨=⎪⎩(θ为参数[)0,θπ∈)D. 2sin 2cos x y θθ=⎧⎨=⎩(θ为参数[)0,θπ∈)【答案】A 【解析】 【分析】根据圆的参数方程的定义计算可得;【详解】解:因为曲线C :222x y +=,根据cos sin x r y r θθ=⎧⎨=⎩可得其参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数[)0,2θ∈π)故选:A【点睛】本题考查圆的参数方程的定义的应用,属于基础题. 2.在极坐标系中,过点()1,0并且与极轴垂直的直线方程是( ) A. cos ρθ=B. sin ρθ=C. cos 1ρθ=D.sin 1ρθ=【答案】C 【解析】分析:在直角坐标系中,求出直线的方程,利用极坐标与直角坐标的互化公式求得直线极坐标方程.解答:解:在直角坐标系中,过点(1,0)并且与极轴垂直的直线方程是 x=1, 其极坐标方程为 ρcosθ=1, 故选 C .3.621x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为( ) A. -15 B. -20C. 20D. 15【答案】B 【解析】 【分析】先求出二项式展开式的通项,再令x 的指数为3得到r 的值,即得621x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数.【详解】由题得二项展开式的通项为261231661(1)()()(1)rrrr r r rr T C x C x x--+=-=-, 令1233r -=,所以r =3,所以621x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为633()201C -=-. 故选:B.【点睛】(1)本题主要考查二项式展开式中某项的系数的求法,意在考查学生对该知识的掌握水平;(2)621x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为633()201C -=-,不是3620C =,要把二项式系数和项的系数两个不同的概念区分开. 4.若直线的参数方程为12{24x ty t=+=-(t 为参数),则直线的斜率为( )A.12B. 12-C. 2D. 2-【答案】D 【解析】试题分析:消参,将12x t =+两边同乘以2,与24y t =-相加可得,240x y +-=,则直线的斜率为2-.考点:1.参数方程;2.直线的斜率.5.某大型超市开业天数x 与每天的销售额y 的情况如下表所示:销售额/天(万元) 62 75 81 89根据上表提供的数据,求得y 关于x 的线性回归方程为ˆ0.6754.9yx =+,由于表中有一个数据模糊看不清,请你推断出该数据的值为( ) A. 67 B. 68 C. 68.3 D. 71【答案】B 【解析】 【分析】设该数为m ,再求,x y ,然后根据点(),x y 在回归直线上求解. 【详解】设该数为m ,()()()111102030405030,62758189307555x y m m =++++==++++=+, 因为点(),x y 在回归直线上, 所以()13070.673054.95m +=⨯+, 解得:m =68. 故选:B【点睛】本题主要考查线性回归方程的应用,还考查了理解辨析和数据处理的能力,属于基础题.6.求曲线C :22164y x -=经过'32'x x y y=⎧⎨=⎩变换后所得曲线1C 的焦点坐标为( ) A. ()15,0F -,()25,0F B. ()15,0F -,)25,0FC. ()10,5F -,()20,5FD. (15F ,(20,5F -【答案】A 【解析】 【分析】由已知得132x x y y ⎧='⎪⎨⎪='⎩,代入双曲线C 得到曲线C '的标准方程,由此能求出曲线C '的焦点坐标.【详解】解:32x x y y '=⎧⎨'=⎩,∴132x x y y ⎧='⎪⎨⎪='⎩, 代入双曲线22:164y C x -=,得221916x y ''-=. 3a ∴=,4b =,5c ==,∴曲线C '的焦点坐标为1(5,0)F -,2(5,0)F .故选:A【点睛】本题考查伸缩变换的应用,解题时要认真审题,注意双曲线的简单性质的合理运用,属于基础题.7.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则()12P X =等于( )A. 10210123588C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B. 929123588C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C. 929115388C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D. 1029113588C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】利用n 次独立重复实验中恰好发生k 次的概率计算公式,即可求得. 【详解】解:由题意可得,取得红球的概率为38,()12P X =说明前11次取球中,有9次取得红球、2次取得白球,且第12次取得红球,故()92102991111353358881288X C P C ⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=.故选:D.【点睛】本题考查了n 次独立重复实验中恰好发生k 次的概率,解本题须认真分析()12P X =的意义,属于基础题.8. 分配4名水暖工去3个不同的居民家里检查暖气管道,要求4名水暖工都分配出去,且每个居民家都要有人去检查,那么分配的方案共有( ) A. 34A 种 B. 3133A A 种C. 2343C A 种D. 113433C C A 种 【答案】C 【解析】 C试题分析:由题意得:有个居民家去两名水暖工,其他两个居民家各去一名水暖工,因此分配的方案共有2343C A 种,选C. 考点:排列组合9.某学校高三模拟考试中数学成绩X 服从正态分布()75,121N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.参考数据:()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=) A. 261 B. 341C. 477D. 683【答案】B 【解析】分析:正态总体的取值关于75x =对称,位于6486(,)之间的概率是0.6826,根据概率求出位于6486(,)这个范围中的个数,根据对称性除以2 得到要求的结果. 详解:正态总体的取值关于75x =对称,位于6486(,)之间的概率是(75117511)0.682?6P X -+=<<,则估计数学成绩在75分到86分之间的人数约为110000.682?63412⨯⨯≈人. 故选B .点睛:题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩X 关75X =于对称,利用对称写出要用的一段分数的频数,题目得解.10.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:( )附:22()()()()()n ad bc K a b c d a c b d -=++++参照附表,得到的正确结论是A. 在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别有关”B. 在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别无关”C. 有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D. 有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 【答案】C 【解析】试题分析:由表计算得:22100(45153010)==3.0355457525K ⨯-⨯⨯⨯⨯,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,选C . 考点:线性相关11.北京某大学为第十八届四中全会招募了名志愿者(编号分别是,,,号),现从中任意选取人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保号、号与号同时入选并被分配到同一厅的选取种数是( ) A.B.C.D.【答案】C 【解析】 试题分析:号、号与号放在一组,则其余三个编号要么都比6小,要么都比24大,比6 小时,有种选法,都比24大时,有种选法,合计30种选法,号、号与在选厅时有两种选法,所以选取的种数共有种,故正确选项为C.考点:组合与排列的概念.12.在平面直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度,已知曲线C :()2sin2cos 0a a ρθθ=>,过点()2,4P --的直线l 的参数方程为:222242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线l 与曲线C 分别交于M 、N 两点.若PM 、MN 、PN 成等比数列,求a 的值( )A. 1B. 2C. 3D. 4【答案】A 【解析】 【分析】本题首先可以求出曲线C 的直角坐标方程,然后将直线l 的参数方程代入曲线C 的直角坐标方程中,根据韦达定理得出12t t +以及12t t 的值,再然后根据PM 、MN 、PN 成等比数列得出21212t t t t -=,最后将12t t +以及12t t 的值带入21212t t t t -=中,通过计算即可得出结果.【详解】因为曲线C :()2sin2cos 0a a ρθθ=>所以曲线C 的直角坐标方程为()220y ax a =>将直线l 的参数方程2224x t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩代入曲线C 的直角坐标方程得: ()2142216402t a t a -+++=, 设交点M 、N 对应的参数分别为1t 、2t , 则()122422t t a +=+,()122164t t a =+, 因为PM 、MN 、PN 成等比数列,所以21212t t t t -=,即212125t t t t =+,()()2442210164aa +=+,解得1a =或4a =-(舍取),故满足条件的1a =, 故选:A.【点睛】本题考查极坐标方程与直角坐标方程的互化以及直线参数方程的几何意义,考查韦达定理以及等比中项的灵活应用,考查计算能力,考查化归与转化思想,是中档题. 二、填空题:(每道题5分,共20分) 13.若关于x 的不等式23ax -<的解集为51|33x x ⎧⎫-<<⎨⎬⎩⎭,则a =________. 【答案】3- 【解析】试题分析:因为等式23ax -<的解集为51|33x x ⎧⎫-<<⎨⎬⎩⎭,所以51,33-为方程23ax -=的根,即3a ⇒=-,故填3-.考点:绝对值不等式 绝对值方程14.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有5个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这5位乘客在第20层下电梯的人数,则P (X =4)=________. 【答案】10243【解析】 【分析】一位乘客是否在20层下电梯为一次试验,这是5次独立重复试验,153X B ⎛⎫ ⎪⎝⎭~,,用n 次独立重复试验概率公式即可求出P (X =4).【详解】一位乘客是否在20层下电梯为一次试验,这是5次独立重复试验,153X B ⎛⎫ ⎪⎝⎭~,,则有()551233kkk P X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,0123k =,,,,4,5. 所以()41451210433243P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭. 故答案为10243. 【点睛】独立重复试验的特点:(1)每次试验只有两种结果,要么发生,要么不发生;(2)每次试验的结果相互独立.15.若x y ∈R 、且满足32x y +=,则327x y +的最小值是____. 【答案】6 【解析】 【分析】本题首先可以根据基本不等式得出327x y +≥然后代入32x y +=,即可得出结果.【详解】332733x y x y +=+≥=, 因为32x y +=,所以2327236x y +≥=, 故答案为:6.【点睛】本题考查基本不等式求最值,主要考查通过基本不等式求和的最小值,考查幂的运算,考查计算能力,是简单题. 16.设,a b 为正实数,现有下列命题: ①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<; ③若1a b -=,则1a b -<;④若331a b -=,则1a b -<.其中的真命题有____________.(写出所有真命题的编号) 【答案】 ①④ 【解析】试题分析:对于①,因为,由此可知,若这与矛盾,故有成立,所以①为真;对于②取知,所以②不真;对于③取成立,但不成立,所以③不真;对于④由得到:,又因为中至少有一个大于1(否则已知|a 3-b 3|=1不成立),从而成立,故④为真;综上可知真命题有①④.考点:不等式性质.三、解答题:(共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知:椭圆C :2211612x y +=,直线l :2120x y --=. (1)求椭圆C 的参数方程;(2)求椭圆C 上一点P 到直线l 的距离的最小值.【答案】(1)4cos x y θθ=⎧⎪⎨=⎪⎩;(2)min 5d =. 【解析】【分析】(1)直接由椭圆的普通方程得到椭圆的参数方程;(2)设点P坐标为()4cos ()R θθθ∈,运用点到直线的距离公式,以及两角和的正弦公式,化简可得距离d ,再由余弦函数的性质,可得最小值. 【详解】解:(1)因为椭圆C :2211612x y +=所以椭圆的参数方程是4cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数). (2)依题意知椭圆的参数方程是4cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),故椭圆上任意一点()4cos ()P R θθθ∈到直线2120x y --=的距离是3d θθ==--33πθ⎛⎫=+- ⎪⎝⎭,当()2πk Z 3k πθ+=∈时,min 5d =. 【点睛】本题考查椭圆参数方程的运用,以及点到直线的距离公式,考查化简整理的运算能力,属于基础题.18.王府井百货分店今年春节期间,消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对春节前7天参加抽奖活动的人数进行统计,y 表示第x 天参加抽奖活动的人数,得到统计表格如下:经过进一步统计分析,发现y 与x 具有线性相关关系.(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)若该活动只持续10天,估计共有多少名顾客参加抽奖.参与公式:1221ˆ==-⋅=-∑∑ni ii n i i x y nx y b x nx ,ˆˆa y bx =-,71364i i i x y ==∑. 【答案】(1)ˆ23yx =+(2)140人 【解析】【分析】(1)利用回归直线方程计算公式,计算出回归直线方程.(2)利用回归直线方程,估计出第8,9,10三天参加抽奖的顾客人数,由此求得这10天共有的人数.【详解】(1)依题意:()1123456747x =++++++=, ()158810141517117y =++++++=, 721140i i x==∑,71364i i i x y ==∑, 71722173647411ˆ21407167i ii i i x y x y b xx ==-⋅-⨯⨯===-⨯-∑∑, ˆˆ11243ay bx =-=-⨯=, 则y 关于x 的线性回归方程为ˆ23yx =+. (2)预测8x =时,ˆ19y=,9x =时,ˆ21y =,10x =时,ˆ23y =,此次活动参加抽奖的人数约为5+8+8+10+14+15+17+19+21+23=140人.【点睛】本小题主要考查回归直线方程的求法,考查利用回归直线方程进行预测,属于中档题.19.已知函数()2f x x =-.(1)求不等式()3f x <的解集;(2)若0a >,0b >,且111a b+=,求证:()()314f a f b +++≥. 【答案】(1)()1,5-;(2)证明见解析.【解析】【分析】(1)由绝对值的性质求解.(2)由已知得1,1a b >>,则(3)(1)1111f a f b a b a b a b +++=++-=++-=+,然后利用基本不等式可证明不等式成立.【详解】(1)()3f x <,即23x -<,所以323x -<-<,15x -<<,所以不等式解集为(1,5)-..(2)因为0a >,0b >,111a b +=,所以101a<<,101b <<,所以1a >,1b >, 由题意知()()311111f a f b a b a b a b +++=++-=++-=+, 因为111a b+=, 所以11()24b a a b a b a b a b ⎛⎫+=++=++≥⎪⎝⎭,当且仅当b a a b =即2a b ==时等号成立, 所以()()314f a f b +++≥.【点睛】本题考查解含绝对值的不等式,考查用基本不等式证明不等成立,在只有一个绝对值符号时,可以利用绝对值的性质求解.用基本不等式证明不等式时关键是是凑配出基本不等式所需的定值.20.在平面直角坐标系xOy 中,曲线1C 的参数方程为3sin x t y t ⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是cos sin θθ=,曲线2C 的极坐标方程是6cos 4sin ρθθ=+.(1)求直线l 和曲线2C 的直角坐标方程,曲线1C 的普通方程;(2)若直线l 与曲线1C 和曲线2C 在第一象限的交点分别为P ,Q ,求OP OQ +的值.【答案】(1):0l x y -=;222:640C x y x y +--=;221:139x y C +=(2)2. 【解析】分析】(1)由cos sin θθ=,得cos sin ρθρθ=,代入cos sin x y ρθρθ=⎧⎨=⎩即可得直线l 的直角坐标方程;由6cos 4sin ρθθ=+,得26cos 4sin ρρθρθ=+,代入cos sin x y ρθρθ=⎧⎨=⎩得曲线2C 的直角坐标方程;由3sin x t y t ⎧=⎪⎨=⎪⎩消去参数即可 (2)得到1C 和2C 的极坐标方程,因为cos sin θθ=,所以tan 1,4πθθ==,把4πθ=代入1C 和2C 的极坐标方程,根据极径的意义可得. 【详解】解:(1)由cos sin θθ=,得cos sin ρθρθ=,代入cos sin x yρθρθ=⎧⎨=⎩,得x y =, 故直线l 的直角坐标方程是0x y -=.由6cos 4sin ρθθ=+,得26cos 4sin ρρθρθ=+, 代入cos sin x y ρθρθ=⎧⎨=⎩,得2264x y x y +=+, 即22640x y x y +--=,故曲线2C 的直角坐标方程是22640x y x y +--=.由3sin x t y t ⎧=⎪⎨=⎪⎩,得2213y ⎛⎫+= ⎪⎝⎭ 即22139x y +=. 故曲线1C 的普通方程是22139x y +=. (2)把cos sin x yρθρθ=⎧⎨=⎩代入22139x y +=中,化简整理, 曲线1C 的极坐标方程为22912cos θρ=+, 曲线2C 的极坐标方程为6cos 4sin ρθθ=+,因为cos sin θθ=,所以tan 1,4πθθ==所以2OP ==,6cos 4sin 44OQ ππ=+=所以2OP OQ += 【点睛】考查直角坐标方程、极坐标方程、参数方程的互相转化以及根据极坐标方程中极径的几何意义求距离,中档题21.选修4-5:不等式选讲 已知函数()212f x x x a =-++,()3g x x =+,(Ⅰ)当2a =-时,解不等式:()()f x g x <;(Ⅱ)若1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围. 【答案】(Ⅰ){}|02x x <<(Ⅱ)4(1,]3a ∈-【解析】试题分析:(I )当a =-2时,不等式()f x <()g x 化为212230x x x -+---<,设函数y =21223x x x -+---,y =15,? 21{2,? 1236,? 1x x x x x x -<--≤≤->,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43]. 考点:绝对值不等式解法,不等式恒成立问题.点评:中档题,绝对值不等式解法,通常以“去绝对值符号”为出发点.有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等.不等式恒成立问题,通常利用“分离参数法”,建立不等式,确定参数的范围.22.2020年1月10日,引发新冠肺炎疫情的9COVID -病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数K 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元.本着节约成本的原则,选择哪种实验方案.【答案】(1)分布列见解析;(2)①825元;②选择方案二.【解析】【分析】(1)利用二项分布的知识计算出分布列.(2)①先求得一个接种周期的接种费用的期望值,由此求得三个接种周期的接种费用的期望值()E X .②首先求得“在一个接种周期内出现2次或3次抗体”的概率,根据相互独立事件概率计算公式,结合随机变量期望值的计算,计算出花费的期望值()E Y .由于()()E X E Y >,所以选择方案二. 【详解】(1)由题意可知,随机变量K 服从二项分布13,2K B ⎛⎫ ⎪⎝⎭, 故()331122k k kP K k C -⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭(0,1,2,3k =)则X 的分布列为(2)①设一个接种周期的接种费用为ξ元,则ξ可能的取值为200,300,因为()12004P ξ==,()33004P ξ==, 所以()1320030027544E ξ=⨯+⨯=. 所以三个接种周期的平均花费为()()33275825E X E ξ==⨯=.②随机变量Y 可能的取值为300,600,900,设事件A 为“在一个接种周期内出现2次或3次抗体”,由(1)知,()311882P A =+=. 所以()()13002P Y P A ===, ()()()160014P Y P A P A ==-⨯=⎡⎤⎣⎦, ()()()19001114P Y P A P A ==-⨯-⨯=⎡⎤⎡⎤⎣⎦⎣⎦, 所以()111300600900525244E Y =⨯+⨯+⨯= 因为()()E X E Y >.所以选择方案二.【点睛】本小题主要考查二项分布,考查相互独立事件概率计算,考查数学期望的计算,属于中档题.。
遂宁市高二数学下学期期末考试试题理含解析
C。 该家庭2019年休闲旅游的消费额是2015年休闲旅游的消费额的六倍
D。 该家庭2019年生活用品的消费额与2015年生活用品的消费额相当
【答案】C
【解析】
【分析】
先对折线图信息的理解及处理,再结合数据进行简单的合情推理逐一检验即可得解。
A。x-2y—1=0B. 2x+y—2=0
C。x+2y—1=0D。 2x-y—2=0
【答案】A
【解析】
【分析】
线段AB经过抛物线y2=4x焦点,由“阿基米德三角形”的特征可得P点坐标,从而得直线PF的斜率,又PF⊥AB,即得直线AB斜率,由点斜式可求直线AB的方程.
【详解】抛物线y2=4x的焦点F的坐标为(1,0),准线方程为:x=﹣1,
二、填空题(本大题共4小题,每小题5分,共20分。)
13。 抛物线 的焦点坐标是__________.
【答案】
【解析】
【分析】
由抛物线的标准方程,可直接写出其焦点坐标.
【详解】因为抛物线方程为 ,所以焦点在 轴上,且焦点为 。
故答案为
【点睛】本题主要考查由抛物线的方程求焦点坐标的问题,属于基础题型.
14。 在 的展开式中, 的系数为__________________。(用数字作答)
【答案】60。
【解析】
试题分析:因为 ,所以 的系数为
考点:二项式定理
【方法点睛】求二项展开式有关问题的常见类型及解题策略
(1)求展开式中的特定项。可依据条件写出第r+1项,再由特定项的特点求出r值即可.
(2)已知展开式 某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数。
2019-2020年高二下学期期末考试数学(理)试题 含答案
2019-2020年高二下学期期末考试数学(理)试题 含答案命题教师:张金荣一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.函数f(x)=ln(x-2)-的零点所在的大致区间是( )A .(1,2) B.(2,3) C.(3,4) D.(4,5)3.函数f(x)=的定义域为( )A . B. C. D.4.设a =60.7,b =0.76,c =log 0.76,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b5.以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”B .“x=1”是“x 2-3x+2=0”的充分不必要条件C .若p ∧q 为假命题,则p,q 均为假命题D .若命题p:∃x 0∈R,使得+x 0+1<0,则﹁p:∀x ∈R,则x 2+x+1≥06.函数y=lg|x |x 的图象在致是( )7.偶函数y=f (x )在x ∈时,f (x )=x-1,则f(x -1)<0的解集是( )A .{x|-1<x <0B .{x|x <0或1<x <2C .{x|0<x <2D .{x|1<x <28.函数f(x)= 满足对任意成立,则实数a 的取值范围是( )A .B .C .D .9.若不等式x 2+ax+1≥0对于一切x(0,)恒成立,则a 的取值范围是( )A .a≥0B .a≥-2C .a≥-D .a≥-310.已知函数f (x )=的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,() A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知函数f(x)是定义在区间上的函数,且在该区间上单调递增,则满足f(2x-1)<f()的x 的取值范围为__________15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(共70分)17.(12分)给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果P ∨q 为真,P ∧q 为假,求实数的取值范围.18.(12分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.19.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.20.(12分)C D E AB P 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(12分)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且,,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
潍坊市高二数学下学期期末考试试题含解析
学生
甲
乙
丙
丁
戊
己
庚
辛
壬
癸
平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;
广西桂林市2019-2020学年高二下学期期末考试质量检测数学(理)试题 Word版含解析
桂林市2019~2020学年度下学期期末质量检测高二年级 数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一个选项是符合题目要求的.1. 23A =( )A. 3B. 6C. 9D. 12【答案】B 【解析】 【分析】直接根据排列数公式计算即可得答案.【详解】解:根据排列数公式()()()121mn A n n n n m =---+得:23326A =⨯=.故选:B.【点睛】本题考查排列数公式的计算,是基础题. 2. i (1+i )=( ) A. 1i -+ B. 1i -- C. 1i + D. 1i -【答案】A 【解析】 【分析】根据复数的乘法运算得到结果.【详解】根据复数的乘法运算得到:原式i (1+i )=i-1. 故选A .【点睛】这个题目考查了复数的乘法运算,题目简单基础. 3. 函数()ln f x x =的导数是( ) A. x B.1xC. ln xD. x e【答案】B 【解析】 【分析】根据导数公式直接计算即可得答案. 【详解】解:因为()1ln 'x x=, 所以()1'f x x=. 故选:B.【点睛】本题考查导数的公式,是基础题. 4.212xdx =⎰( )A. 3B. 2C. 1D.32【答案】A 【解析】 【分析】直接利用微积分基本定理求解即可.【详解】222112|413xdx x ==-=⎰. 故选:A .【点睛】本题考查微积分基本定理的应用,考查计算能力,属于基础题. 5. 5(12)x +的展开式中的常数项为( ) A. -1 B. 1C. 92D. 93【答案】B 【解析】 【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为0,求出r ,可得展开式的常数项.【详解】5(12)x +的展开式的通项为155(2)2r r r r rr T C x C x +==, 当0r =时,可得5(12)x +的展开式中的常数项为00521C =.故选:B .【点睛】本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题6. 用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时,应假设( )A. a b <B. a b ≤C. a b >D. a b ≥【答案】B 【解析】 【分析】直接利用命题的否定,写出假设即可.【详解】用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时, 假设就是命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定, 命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定是:a b . 故选:B .【点睛】本题考查反证法的定义以及命题的否定,基本知识的考查. 7. 关于函数3()f x x x =+,下列说法正确的是( ) A. 没有最小值,有最大值 B. 有最小值,没有最大值 C. 有最小值,有最大值 D. 没有最小值,也没有最大值【答案】D 【解析】 【分析】 利用()'fx 研究函数()f x 的最值.【详解】依题意()'2310f x x =+>,所以()f x 在R 上递增,没有最小值,也没有最大值.故选:D【点睛】本小题主要考查利用导数研究函数的最值,属于基础题. 8. 已知随机变量X 的分布列是则a b +=( ) A.23B.32C. 1D.34【解析】 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案.【详解】解:根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=. 故选:A.【点睛】本题考查分布列的性质,是基础题. 9. 已知随机变量ξ服从正态分布()23,N σ,且(4)0.68P ξ≤=,则(2)P ξ≤=( )A. 0.84B. 0.68C. 0.32D. 0.16【答案】C 【解析】 【分析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果. 【详解】解:根据随机变量ξ服从正态分布()23,N σ,所以密度曲线关于直线3x =对称, 由于()40.68P ξ≤=,所以()410.680.32P ξ≥=-=, 所以()20.32P ξ≤=. 故选:C.【点睛】本题考查正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10. 在正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( )A 5-B.5C. 5- D.5【解析】 【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【详解】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,,∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,,设平面1B BD 的法向量为(),,x n y z =, ∵ n BD ⊥,1 n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则()110n =-,,, ∴10cos ,5n BE n BE n BE⋅==⋅, 设直线BE 与平面1B BD 所成角为θ, 则10sin cos ,5n BE θ==,故选B . 【点睛】本题考查直线与平面所成角的正弦值的求法,解题时要注意向量法的合理运用,准确得到面的法向量是解题的关键,是中档题.11. 根据上级扶贫工作要求,某单位计划从5名男干部和6名女干部中选出1名男干部和2名女干部组成一个扶贫小组,派到某村开展“精准扶贫”工作,那么不同的选法有( )A. 60种B. 70种C. 75种D. 150种【答案】C 【解析】 【分析】根据题意,先在5名男干部中任选1人,再从6名女干部中选出2人,由分步计数原理计算可得答案.【详解】根据题意,先在5名男干部中任选1人,有155C =种选法, 再从6名女干部中选出2人,有2615C =种选法,则有51575⨯=种不同的选法; 故选:C .【点睛】本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.12. 定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2xf x e <的解集为( )A. (),0-∞B. (),2-∞C. ()0,∞+D. ()2,+∞【答案】C 【解析】【详解】构造函数()()x f x g x e=,根据()()f x f x '>可知()0g x '<,得到()g x 在R 上单调递减;根据()()002f g e==,可将所求不等式转化为()()0g x g <,根据函数单调性可得到解集.【解答】令()()x f x g x e =,则()()()()()20x x x xf x e f x e f x f xg x e e ''--'==< ()g x ∴在R 上单调递减 ()02f = ()()002f g e∴== 则不等式()2xf x e >可化为()2xf x e<等价于()2g x <,即()()0g x g < 0x ∴> 即所求不等式的解集为:()0,∞+ 本题正确选项:C【点睛】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数()()xf xg x e =,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系. 二、填空题:本大题共4小题,每小题5分,共20分.13. 已知i 是虚数单位,复数2z i =+,则z =__________.【解析】 【分析】直接根据复数的模的计算公式计算即可得答案.【详解】解:根据复数模的计算公式得:z =【点睛】本题考查复数模的计算,是基础题. 14. 已知()12P B A =,3()10P AB =,则()P A =__________. 【答案】35【解析】 【分析】直接根据条件概率公式计算即可得答案. 【详解】解:根据条件概率公式()()()P AB P B A P A =和已知条件()12P B A =,3()10P AB =, 所以()()()3310152P AB P A P B A ===. 故答案为:35【点睛】本题考查条件概率公式的应用,是基础题.15. 经过圆221x y +=上一点()00,x y 的切线方程为001x x y y +=,则由此类比可知:经过椭圆22221x y a b+=上一点()00,x y 的切线方程为______. 【答案】00221x x y ya b+= 【解析】 【分析】根据圆的切线方程形式,类比推理出椭圆的切线方程.【详解】解:圆的性质中,经过圆上一点()00,M x y 的切线方程就是将圆的方程中的一个x 和y 分别用()00,M x y 的横坐标与纵坐标替换,故可得椭圆22221x y a b +=类似的性质为:过椭圆22221x y a b +=上一点()00,x y 的切线方程为00221x x y ya b+=. 故答案为:00221x x y ya b+=.【点睛】考查了类比推理的数学思想,是基础题.16. 函数()cos f x x x =-在区间[0,]π上的最大值为__________. 【答案】1π+ 【解析】 【分析】求出导函数()f x ',[0x ∈,]π,利用导数研究函数()f x 的单调性,根据单调性可得结果. 【详解】数()cos f x x x =-, ()1sin f x x '=+, [0x ∈,]π,()0f x ∴'>,当[0x ∈,]π时,函数()f x 单调递增;∴函数()f x 在区间[0,]π上的最大值为:()1f ππ=+.故答案为:1π+.【点睛】本题考查了利用导数研究函数的单调性与最值,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共6小题,共70分解答应给出文字说眀、证明过程及演算步骤.17. 在91x x ⎛⎫- ⎪⎝⎭展开式中,求: (1)含x 的项; (2)含3x 的项的系数.【答案】(1)126x ;(2)84-. 【解析】 【分析】(1)写出二项展开式的通项,令x 的指数为1,求得参数的值,代入通项可求得结果;(2)写出二项展开式的通项,令x 的指数为3,求得参数的值,进而可求得展开式中含3x 的项的系数.【详解】(1)91x x ⎛⎫- ⎪⎝⎭展开式的通项为()99219911rr r rr r r T C xC x x --+⎛⎫=-=- ⎝⋅⋅⋅⋅⎪⎭, 令921r -=,得4r =,所以含x 的项为()4491126C x x -=⋅;(2)由(1),令923r -=,得3r =,所以含3x 的项的系数为()339184C ⋅-=-.【点睛】本题考查利用二项式定理求指定项或指定项的系数,考查计算能力,属于基础题. 18. 已知函数1()ln 2f x x x ax =++在(1, (1))f 处的切线方程为2210x y --=. (1)求实数a 的值;(2)求()f x 的单调区间.【答案】(1)0a =;(2)减区间为10,e ⎛⎫ ⎪⎝⎭,增区间为1,e ⎛⎫+∞ ⎪⎝⎭. 【解析】 【分析】(1)求导得()1f x lnx a '=++,利用f '(1)1=,列出关于a 的方程,解之即可. (2)由(1)可知,()1(0)f x lnx x '=+>,令()0f x '=,则1=x e,然后根据原函数的单调性与导函数的正负性之间的联系判断即可得解.【详解】(1)1()2f x xlnx ax =++,()1f x lnx a '∴=++, ()f x 在点(1,f (1))处的切线方程为2210x y --=,f '∴(1)1=,即011a ++=,解得0a =.(2)由(1)可知,1()2f x xlnx =+,()1(0)f x lnx x '∴=+>, 当1(0,)∈x e时,()0f x '<,()f x 单调递减;当1(x e ∈,)+∞时,()0f x '>,()f x 单调递增,故()f x 的单调递减区间为1(0,)e,单调递增区间为1(e ,)+∞.【点睛】本题考查利用导数研究函数的切线方程、单调性,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题. 19. 在数列{}n a 中,已知11a =,112nn na a a +=+.(1)计算2a ,3 a ,4a ;(2)根据计算结果猜想出{}n a 的通项公式n a ,并用数学归纳法证明你的结论. 【答案】(1)213a =,315a =,417a =;(2)121n a n =-,证明见解析.【解析】 【分析】(1)利用()*11112nn na a a n N a +==∈+,,n 分别取234,,可求出234,,a a a ,并由此猜想数列{}n a 的通项公式n a 的表达式;(2)根据计算结果猜想数列{}n a 的通项公式n a 的表达式,用数学归纳法证明①当1n =时,111211a ==⨯-,猜想成立;②假设n k =成立,利用()*112n n n a a n N a +=∈+,可证得当1n k =+时猜想也成立,故可得结论.【详解】(1)∵111,(1,2,3,)12nn a a a n a+===⋅⋅⋅+, ∴1211123a a a ==+,同理可得:315a =,417a =. (2)由(1)计算结果猜想121n a n =-, 下面用数学归纳法证明: ①当1n =时,111211a ==⨯-,猜想成立,②假设当()*1n k k N=+∈时,猜想成立,即:121kak =-. 则当()*1n k k N =+∈时,111121212212(1)1121k k k a k a a k k k +-====+++-+-,所以,当1n k =+时,猜想成立. 根据①②可知猜想对任何*n N ∈都成立.【点睛】本题主要考查了以数列递推式为载体,考查了数列的通项的猜想与证明,解题的关键是利用数学归纳法证明,尤其第二步的证明.属于中档题. 20. 在四棱锥P ABCD -中,已知底面ABCD正方形,PA ⊥底面ABCD ,且2PA AD ==,E 为PD 中点.(1)求证://PB 平面ACE ; (2)求二面角A BE C --的余弦值. 【答案】(1)证明见解析;(2)105- 【解析】 【分析】(1)由中位线可知//OE BP ,结合线面平行判定即可证明//PB 平面ACE ;(2)以A 为原点构建空间直角坐标系,写出对应点的坐标并求出面ABE 、面BCE 的法向量,根据法向量夹角与二面角的关系求它们的夹角的余弦值【详解】(1)证明:连接AC 、BD ,AC BD O = ,连接EO∵在BPD △中,BO OD =,PE ED = ∴//OE BP又∵BP ⊄平面ACE ,OE ⊂平面ACE ∴//BP 平面ACE(2)由题,易知PA ,AD ,AB 两两互相垂直,2PA AD == 故可建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(2,2,0)C ,(0,1,1)E ,(2,0,0)B ,有(0,1,1)AE =,(2,0,0)AB =,(0,2,0)CB =-,(2,1,1)CE =--设(,,)m x y z =为平面ABE 的一个法向量,有020y z x +=⎧⎨=⎩令1y =-,1z =,得(0,1,1)m =-同理若(,,)n x y z =是平面BCE 的一个法向量,有2020y x y z -=⎧⎨--+=⎩令1x =,2z =,得(1,0,2)n = 则10cos ,||5|,|25m n m n m n ⋅〈〉===⨯∴由图知,二面角A BE C --(钝角)的余弦值为10-【点睛】本题考查了线面平行的判定证明平行,利用空间向量求二面角的余弦值,由题意构建空间坐标系并根据二面角所在的两个面确定各点坐标,可得面的法向量,进而求二面角的余弦值21. 东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价8元,售价12元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区100天的销售量如下表:(视样本频率为概率)(1)根据该产品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布列与期望(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进32或33份,哪一种得到的利润更大?【答案】(1)见解析(2)见解析 【解析】 【分析】(1)根据题意可得ξ的取值为30,31,32,33,34,35,36,计算相应的概率值即可确定分布列和数学期望;(2)分别求解当购进32份时的利润和购进33份时的利润即可确定利润更高的决策. 【详解】(1)根据题意可得()111305525P ξ==⨯=,()13331251025P ξ==⨯⨯=,()123313225510104P ξ==⨯⨯+⨯=,()11327332251010525P ξ==⨯⨯+⨯⨯=,()31221134210105550P ξ==⨯⨯+⨯=, ()21235251025P ξ==⨯⨯=,()111361010100P ξ==⨯=,ξ的分布列如下:()131711213031323334353632.825254255025100E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯= (2)当购进32份时,利润()()2131324314830416252525⨯⨯+⨯-⨯+⨯-⨯ 107.5213.92 4.16125.6=++=, 当购进33份时,利润为()()()591313343248314163042410042525⨯⨯+⨯-⨯+⨯-⨯+⨯-⨯ 77.883012.96 3.84124.68=+++=, 125.6124.68>可见,当购进32份时,利润更高.【点睛】本题主要考查离散型随机变量的分布列与数学期望的计算,概率统计的预测作用等知识,意在考查学生的转化能力和计算求解能力. 22. 已知函数()ln 2()f x m x x m =-∈R . (1)当6m =时,试确定()f x 的零点的个数;(2)若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,求证:2m ≤. 【答案】(1)2;(2)证明见解析. 【解析】 【分析】(1)根据条件,利用导函数的符号得到()f x 的单调性和极大值、计算1()f e,2()f e 的符号,由零点存在定理,即可判断零点个数;(2)由题意可得[(1)]2(1)x m ln x x x e +->+-对任意(0,)x ∈+∞恒成立,设(1)y ln x x =+-,求得导数和单调性,得到2(1)(1)x x e m ln x x+-<+-对任意的0x >恒成立,再由此不等式的右边与2作差比较,再求出m 的范围.【详解】(1)当6m =时,知()6ln 2(0)f x x x x =->,则62(3)()2x f x x x-'=-=, ∵当03x <<时,()0f x '>;当3x >,则62(3)()2x f x x x-'=-=, ∴()f x 在区间()0,3是单调递增,在区间(3,)+∞单调递减. ∴max ()(3)6ln 360f x f ==->. 又∵1260f e e⎛⎫=--< ⎪⎝⎭,()221220f e e =-<. ∵()f x 在区间1,3e ⎛⎫ ⎪⎝⎭,在区间()23,e 各有1个零点.综上,函数()f x 零点的个数为2.(2)函数()ln 2f x m x x =-,若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,即为ln(1)2(1)2xm x x mx e +-+>-对任意(0,)x ∈+∞恒成立 即有()(ln(1))21xm x x x e +->+-对任意(0,)x ∈+∞恒成立,设ln(1)y x x =+-,1111x y x x -'=-=++,0x >时,0y '<,函数y 递减, 可得ln(1)0y x x =+-<,则()21ln(1)x x e m x x+-<+-对任意(0,)x ∈+∞恒成立.由()211ln(1)22ln(1)ln(1)x x x e x e x xx x x x+-+--++-=⋅+-+-, 设()1ln(1)(0)xg x x e x x x =+--++>,1()21xg x e x '=--+,21()(1)x g x e x ''=-+,由()y g x ''=在0x >递减,即有()0g x ''<,可得()y g x '=在0x >递减,即有()0g x '<,可得()g x 在0x >递减,可得()0g x <,而ln(1)0x x +-<,可得1ln(1)20ln(1)x x e x xx x+--++⋅>+-. 则由()212ln(1)x x e x x+->+-,所以2m ≤.【点睛】本题考查函数的零点个数和函数恒成立问题解法,零点存在定理和分离参数法、以及构造函数法,考查化简运算能力、推理能力,属于难题.。
西安中学高二数学下学期期末考试试题理含解析
当 时, 。
当 时,原不等式等价于 ,解得 ,∴ ;
②当 时,原不等式等价于 ,
=2(2 1
≥3+4 7.
当且仅当x ,y=4取得最小值7.
故选C.
【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题.
11。 已知函数 ,则不等式 的解集为( )
A。 B. C。 D.
【答案】C
【解析】
【分析】
根据条件先判断函数是偶函数,然后求函数的导数,判断函数在 , 上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.
所以 ,
令 所以函数g(x)在(0,+∞)上单调递增,
由题得
所以函数g(x)是奇函数,所以函数在R上单调递增.
因为对 ,不等式 恒成立,
所以 ,
因为a〉0,所以当x≤0时,显然成立。
当x>0时, ,
所以 ,所以函数h(x)在(0,1)单调递减,在(1,+∞)单调递增。
所以 ,
所以a<e,
所以正整数 的最大值为2.
14。 设 .若曲线 与直线 所围成封闭图形的面积为 ,则 ______。
【答案】:
【解析】
试题分析:因为,曲线 与直线 所围成封闭图形的面积为 ,所以, = = ,解得, .评:简单题,利用定积分的几何意义,将面积计算问题,转化成定积分计算.
15. 直线 与曲线 相切,则 的值为________.
A. 己申年B. 己酉年C. 庚酉年D。 庚申年
【答案】B
【解析】
【分析】
由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1949年的天干和地支分别为首项,即可求出答案.
高中高二数学下学期期末试题 理(含解析)-人教版高二全册数学试题
2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣72.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.103.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.724.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±35.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣16.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.188.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.59.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC210.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣403411.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.14.()dx=.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)=.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:曰需48 49 50 51 52 53 54求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣7【考点】A2:复数的基本概念.【分析】直接由题意求得a,b的值,则答案可求.【解答】解:∵a+bi(a,b∈R)与2﹣3i互为共轭复数,∴a=2,b=3,则a﹣b=﹣1.故选:B.2.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.10【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性即可得出a﹣2=2.【解答】解:∵随机变量ξ~N(l,25),∴P(ξ≤0)=P(ξ≥2),∴a﹣2=2,即a=4.故选A.3.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.72【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、在2、4之中任选1个,安排在个位,②、将剩下的4个数字安排在其他四个数位,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、要求五位数为偶数,需要在2、4之中任选1个,安排在个位,有2种情况,②、将剩下的4个数字安排在其他四个数位,有A44=24种情况,则有2×24=48个五位偶数,故选:B.4.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±3【考点】DC:二项式定理的应用.【分析】在二项式(x+a)10的展开式中,令x的幂指数等于8,求得r的值,可得x8的系数,再根据x8的系数为45,求得a的值.【解答】解:二项式(x+a)10的展开式的通项公式为 T r+1=•x10﹣r•a r,令10﹣r=8,求得r=2,可得x8的系数为•a2=45,∴a=±1,故选:A.5.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣1【考点】67:定积分.【分析】由题意首先求得原函数,然后利用微积分基本定理即可求得定积分的值.【解答】解:由微积分基本定理可得.故选:C.6.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.【考点】CM:条件概率与独立事件.【分析】由题意利用条件概率的计算公式,求得甲中奖的前提下乙也中奖的概率.【解答】解:每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,设甲中奖概率为P(A),乙中奖的概率为P(B),两人都中奖的概率为P(AB),则P(A)=0.6,P(B)=0.6,两人都中奖的概率为P(AB)=0.4,则已知甲中奖的前提下乙也中奖的概率为P(B/A)===,故选:D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.18【考点】67:定积分.【分析】本题考查定积分的实际应用,首先求得交点坐标,然后结合题意结合定积分的几何意义计算定积分的数值即可求得封闭图形的面积.【解答】解:联立直线与曲线的方程:可得交点坐标为(﹣2,2),(4,8),结合定积分与几何图形面积的关系可得阴影部分的面积为:.故选:D.8.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.5【考点】BK:线性回归方程.【分析】根据表中数据计算、,代入回归直线方程中求出m的值.【解答】解:根据表中数据,计算=×(0+1+2+3+4)=2,=×(1.2+m+2.9+4.1+4.7)=,代入回归直线方程=x+1中,得=2+1,解得m=2.1.故选:B.9.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC2【考点】F3:类比推理.【分析】由题意结合平面与空间类比的关系即可得出题中的结论.【解答】解:平面与空间的对应关系为:边对应着面,边长对应着面积,结合题意类比可得.故选:C.10.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣4034【考点】DC:二项式定理的应用.【分析】在所给的等式中,两边同时对x求导,再令x=2,可得a1+2a2+3a3+…+2017a2017 的值.【解答】解:在(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017中,两边同时对x求导,可得﹣2×2017(3﹣2x)2016=a1+2a2(x﹣1)+…+2017a2017(x﹣1)2016,再令x=2,可得a1+2a2+3a3+…+2017a2017=﹣4034,故选:D.11.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.【考点】3O:函数的图象.【分析】求出f′(x)的解析式,判断奇偶性,再根据f″(x)的单调性得出f′(x)的增长快慢变化情况,得出答案.【解答】解:f′(x)=x+sin(x+π)=x﹣sinx,∴f′(﹣x)=﹣x+sinx=﹣f′(x),∴f′(x)是奇函数,图象关于原点对称,排除B,D;∵f″(x)=1﹣cosx在(0,π)上是增函数,∴f′(x)在(0,π)上的增加速度逐渐增大,排除C,故选A.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)【考点】6B:利用导数研究函数的单调性.【分析】根据函数的单调性得到x+1>x2﹣5>0,解不等式即可.【解答】解:∵f(x)>﹣(x+1)f′(x),∴[(x+1)•f(x)]′>0,故函数y=(x+1)•f(x)在(0,+∞)上是增函数,由不等式f(x+1)>(x﹣2)f(x2﹣5)得:(x+2)f(x+1)>(x+2)(x﹣2)f(x2﹣5),即(x+2)f(x+1)>(x2﹣4)f(x2﹣5),∴x+1>x2﹣5>0,解得:﹣2<x<3,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.【考点】CH:离散型随机变量的期望与方差.【分析】利用二项分布的性质求解即可.【解答】解:∵离散型随机变量ξ~B(5,),Dξ=5×=,故答案为:.14.()dx=.【考点】67:定积分.【分析】本题考查定积分的几何意义,首先确定被积函数表示的几何图形,然后结合图形的形状和圆的面积公式即可求得定积分的数值.【解答】解:函数即:(x﹣1)2+y2=1(x≥1,y≥0),表示以(1,0)为圆心,1为半径的圆在x轴上方横坐标从1到2的部分,即四分之一圆,结合定积分的几何意义可得.故答案为.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)= ﹣9 .【考点】63:导数的运算.【分析】由题意首先求得f'(2)的值,然后结合导函数的解析式即可求得最终结果.【解答】解:由函数的解析式可得:∴f′(x)=2x+f′(2)(﹣1),∴f′(2)=4+f′(2)(﹣1),解得f′(2)=,则∴.故答案为:﹣9.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.【考点】KL:直线与椭圆的位置关系.【分析】由曲线C的直角坐标方程,代入直线的参数方程,运用韦达定理,可得|AB|=|t1﹣t2|,化简整理即可得到所求值;【解答】解:把代入+y2=1可得:,整理得:8t2+4t﹣3=0,,|AB|=|t1﹣t2|==.故答案为:.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.【考点】RG:数学归纳法.【分析】归纳S n的表达式,再根据数学归纳法的证题步骤进行证明.【解答】解:记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…S n=l2﹣22+32﹣42+52﹣62+…+(2n﹣1)2﹣(2n)2=﹣n×(2n+1),证明如下:①当n=1时,显然成立,②假设当n=k时,等式成立,即S k=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2=﹣k×(2k+1),那么当n=k+1时,即S k+1=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2+(2k+1)2﹣(2k+2)2=﹣k×(2k+1)+(2k+1)2﹣(2k+2)2=﹣(2k2+5k+3)=﹣(k+1)(2k+3)即n=k+1时,等式也成立.故由①和②,可知等式成立.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.【考点】6H:利用导数研究曲线上某点切线方程;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出f (x)的导数,可得切线的斜率和切点,由点斜式方程可得所求切线的方程;(Ⅱ)求出函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,再由极值的定义,可得所求极值.【解答】解:(Ⅰ)函数f(x)= [(x﹣5)2+121nx]的导数为f′(x)=x﹣5+=,可得y=f (x)在点(1,f(1))处的切线斜率为2,切点为(1,8),即有切线的方程为y﹣8=2(x﹣1),即为2x﹣y+6=0;(Ⅱ)由f′(x)=x﹣5+=,结合x>0,由f′(x)>0,可得x>3或0<x<2,f(x)递增;由f′(x)<0,可得2<x<3,f(x)递减.则f(x)在x=2处取得极大值,且为;f(x)在x=3处取得极小值,且为2+6ln3.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)【考点】BL:独立性检验.【分析】(Ⅰ)首先由题意求得优秀的人数,据此结合列联表的特征写出列联表即可;(Ⅱ)结合(1)中的列联表结合题意计算K2的值即可确定喜欢数学是否与性别有关.【解答】解:(Ⅰ)由题意可知:所有优秀的人数为:人,据此完成列联表如下所示:优秀非优秀合计甲班10 30 40乙班30 30 60合计40 60 100(Ⅱ)由列联表中的结论可得:,则若按99%的可靠性要求,不能认为“成绩与班级有关系”.20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,求了曲线C的直角坐标方程为,由此能求出曲线C的参数方程;(Ⅱ)求得直线AB的方程,设P点坐标,根据点到直线的距离公式及正弦函数的性质,即可求得点P到直线AB的距离的最大值.【解答】解:(Ⅰ)曲线C的极坐标方程为ρ2(1+3sin2θ)=4,即ρ2(sin2θ+cos2θ+3sin2θ)=4,由x=ρcosθ,y=ρsinθ,得到曲线C的直角坐标方程为x2+4y2=4,即;∴曲线C的参数方程为(α为参数);(Ⅱ)∵曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,∴由已知可得A(2,0),B(0,1),直线AB的方程:x+2y﹣2=0,设P(2cosφ,sinφ),0<φ<2π,则P 到直线AB的距离d==丨sin(φ+)﹣1丨,∴当φ+=π,即φ=时d取最大值,最大值为(+1).点P到直线AB的距离的最大值(+1).21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:48 49 50 51 52 53 54曰需求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)根据利润公式得出函数解析式;(2)(i)求出利润的可能取值及其对应的概率,得出分布列和数学期望;(ii)求出n=51时对应的数学期望,根据利润的数学期望大小得出结论.【解答】解:(1)当n≤50时,y=5n﹣50×3=5n﹣150,当n>50时,y=50×(5﹣3)=100,∴y=.(2)(i)由(1)可知n=48时,X=90,当n=49时,X=95,当n≥50时,X=100.∴X的可能取值有90,95,100.∴P(X=90)==,P(X=95)==,P(X=100)==,∴X的分布列为:X 90 95 100P∴E(X)==98.(ii)由(i)知当n=50时,E(X)=98,当n=51时,y=,∴当n=48时,X=87,当n=49时,X=92,当n=50时,X=97,当n≥51时,X=102,∴P(X=87)=,P(X=92)=,P(X=97)==,P(X=102)=.∴E(X)=87+++=97.7.∵98>97.7,∴每天应购进50盒比较合理.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).【考点】6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的X围,求出函数的单调区间即可;(Ⅱ)问题等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,问题等价于:lnt>,根据函数的单调性证明即可;(Ⅲ)根据<1,令x=,得到(1+)ln(x+1)>1,判断大小即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),因为f′(x)=,当a≤0时,f'(x)>0,所以函数f(x)在(0,+∞)上单调递增;当a>0时,由f'(x)<0得0<x<a,由f'(x)>0得x>a,所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(Ⅱ)证明:①因为x>0,x<(x+l)ln(x+1)等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,所以不等式ln(x+1)>(x>0)等价于:lnt>,即:lnt﹣>0(t>1),由(Ⅰ)得:函数g(t)=lnt﹣在(1,+∞)上单调递增,所以g(t)>g(1)=0,即:ln(x+1)>;②因为x>0,不等式 x<(x+l)ln(x+1)等价于ln(x+1)<x,令h(x)=ln(x+1)﹣x,则h′(x)=﹣1=,所以h'(x)<0,所以函数h(x)=ln(x+1)﹣x在(0,+∞)上为减函数,所以h(x)<h(0)=0,即ln(x+1)<x.由①②得:x>0时,x<(x+l)ln(x+1);(Ⅲ)由(Ⅱ)得:x>0时,<1,所以令x=,得100×ln(+1)<1,即ln()100<1,所以()100<e;又因为>(x>0),所以(1+)ln(x+1)>1,令x=得:100×ln>1,所以ln()100>1,从而得()100>e.所以()100<()100.。
河南省驻马店市汝南县和孝镇第一中学2018-2019学年高二数学理下学期期末试题含解析
河南省驻马店市汝南县和孝镇第一中学2018-2019学年高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小距离为()参考答案:B2. 平面几何中,有边长为a的正三角形内任一点到三边距离之和为定值,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为()A.B.C.D.参考答案:B【考点】类比推理.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.【解答】解:类比在边长为a的正三角形内任一点到三边的距离之和为定值,在一个正四面体中,计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=,BO=AO=a﹣OE,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故选B.3. 设f(x)、g(x)分别是定义在R上的奇函数和偶函数,g(x)恒不为0,当x<0时,f(x)g(x)-f(x)g′(x)>0,且f(3)=0,则不等式f(x)g(x)<0的解集是( ) A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)参考答案:D略4. .若复数z满足其中i为虚数单位,则z=A. 1+2iB. 1-2iC. -1+2iD. -1-2i参考答案:B试题分析:设,则,故,则,选B. 【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.5. 空间两个角α,β的两边分别对应平行,且α=60°,则β为()A.60°B.120°C.30°D.60°或120°参考答案:D【考点】平行公理.【分析】根据平行公理知道当空间两个角α与β的两边对应平行,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.【解答】解:如图,∵空间两个角α,β的两边对应平行,∴这两个角相等或互补,∵α=60°,∴β=60°或120°.故选:D.6. 下列结论判断正确的是()A.任意三点确定一个平面B.任意四点确定一个平面C.三条平行直线最多确定一个平面D.正方体ABCD﹣A1B1C1D1中,AB与CC1异面参考答案:D【考点】平面的基本性质及推论.【专题】数形结合;定义法;空间位置关系与距离.【分析】根据题意,容易得出选项A、B、C错误,画出图形,结合异面直线的定义即可判断D正确.【解答】解:对于A,不在同一直线上的三点确定一个平面,∴命题A错误;对于B,不在同一直线上的四点确定一个平面,∴命题B错误;对于C,三条平行直线可以确定一个或三个平面,∴命题C错误;对于D,如图所示,正方体ABCD﹣A1B1C1D1中,AB与CC1是异面直线,命题D正确.故选:D.【点评】本题考查了平面的基本定理与异面直线的判定问题,解题时应熟练掌握平面基本定理与正方体的几何特征,是基础题.7. θ是第三象限角,方程x2+y2sinθ=cosθ表示的曲线是A. 焦点在x轴上的椭圆B. 焦点在y轴上的椭圆C. 焦点在x轴上的双曲线D. 焦点在y轴上的双曲线参考答案:D8. 在一次试验中,测得的四组值分别是,则Y 与X之间的回归直线方程为()A. B. C.D.参考答案:A9. 把化成二进制为()A. B.C. D.参考答案:A10. 命题1 长方体中,必存在到各顶点距离相等的点;命题2 长方体中,必存在到各棱距离相等的点;命题3 长方体中,必存在到各面距离相等的点。
2018-2019学年四川省乐山市高二(下)期末数学试卷(理科)(含答案)
高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A. 随机抽样B. 分层抽样C. 系统抽样D. 以上都是2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A. 4+8iB. 8+2iC. 4+iD. 2+4i3.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A. 18B. 24C. 30D. 364.设i为虚数单位,则(x-i)6的展开式中含x4的项为()A. -15x4B. 15x4C. -20ix4D. 20ix45.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.6.曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A. (1,3)B. (-1,3)C. (1,3)和(-1,3)D. (1,-3)7.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x=0,则一开始输入的x的值为()A.B.C.D.8.p设η=2ξ+3,则E(η)的值为()A. 4B.C.D. 19.在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A. B. C. D.10.根据如下样本数据,得到回归方程=bx+a,则()x345678y4.02.5-0.50.5-2.0-3.0A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<011.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A. (-∞,]B. (-∞,3]C. [,+∞)D. [3,+∞)12.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)二、填空题(本大题共4小题,共20.0分)13.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为______.14.已知复数z满足(1+2i)z=4+3i,则|z|=______.15.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为______.16.若曲线C1:y=ax2(a>0)与曲线C2:y=e x在(0,+∞)上存在公共点,则a的取值范围为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R)(1)若函数f(x)的导函数为偶函数,求a的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围18.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.参考公式:方差公式:,其中为样本平均数==,=-19.已知函数,.(1)求f(x)在区间(-∞,1)上的极小值和极大值点;(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.20.如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,以AE为折痕将△DAE向上折起,D变为D',且平面D'AE⊥平面ABCE.(Ⅰ)求证:AD'⊥EB;(Ⅱ)求二面角A-BD'-E的大小.21.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图.(Ⅰ)这50个路段为中度拥堵的有多少个?(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.22.已知函数f(x)=(ax-1)e x(x>0,a∈R)(e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)当a=1时,f(x)>kx-2恒成立,求整数k的最大值.答案和解析1.【答案】C【解析】解:∵学生人数比较多,∵把每个班级学生从1到最后一号编排,要求每班编号是5的倍数的同学留下进行作业检查,这样选出的样本是采用系统抽样的方法,故选:C.学生人数比较多,把每个班级学生从1到最后一号编排,要求每班学号是5的倍数的同学留下进行作业检查,这样选出的样本是具有相同的间隔的样本,是采用系统抽样的方法.本题考查系统抽样,当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分即将总体分段,分段的间隔要求相等,系统抽样又称等距抽样.2.【答案】D【解析】解:因为复数6+5i,-2+3i对应的点分别为A(6,5),B(-2,3).且C为线段AB的中点,所以C(2,4).则点C对应的复数是2+4i.故选:D.写出复数所对应点的坐标,有中点坐标公式求出C的坐标,则答案可求.本题考查了中点坐标公式,考查了复数的代数表示法及其几何意义,是基础题.3.【答案】C【解析】解:根据题意,分2种情况讨论:①,选出的3人为2男1女,有C42C31=18种选法;②,选出的3人为1男2女,有C41C32=12种选法;则男女生都有的选法有18+12=30种;故选:C.根据题意,分2种情况讨论:①,选出的3人为2男1女,②,选出的3人为1男2女,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理,属于基础题.4.【答案】A【解析】解:(x-i)6的展开式的通项公式为T r+1=•x6-r•(-i)r,令6-r=4,求得r=2,故展开式中含x4的项为•(-i)2•x4=-15x4,故选:A.在二项式展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.5.【答案】B【解析】【分析】这是一个古典概率模型,求出所有的基本事件数N与事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”包含的基本事件数n,再由公式求出概率得到答案本题是一个古典概率模型问题,解题的关键是理解事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”,由列举法计算出事件所包含的基本事件数,判断出概率模型,理解求解公式是本题的重点,正确求出事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件数是本题的难点.【解答】解:抛掷两颗骰子所出现的不同结果数是6×6=36事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四种故事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”的概率是=,故选B.6.【答案】C【解析】解:设P的坐标为(m,n),则n=m3-m+3,f(x)=x3-x+3的导数为f′(x)=3x2-1,在点P处的切线斜率为3m2-1,由切线平行于直线y=2x-1,可得3m2-1=2,解得m=±1,即有P(1,3)或(-1,3),故选:C.设P的坐标为(m,n),则n=m3-m+3,求出函数的导数,求得切线的斜率,由两直线平行的条件:斜率相等,可得m的方程,求得m的值,即可得到所求P的坐标.本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,考查两直线平行的条件:斜率相等,属于基础题.7.【答案】C【解析】【分析】求出对应的函数关系,由题输出的结果的值为0,由此关系建立方程求出自变量的值即可.解答本题,关键是根据所给的框图,得出函数关系,然后通过解方程求得输入的值.本题是算法框图考试常见的题型,其作题步骤是识图得出函数关系,由此函数关系解题,得出答案.【解答】解:第一次输入x=x,i=1第二次输入x=2x-1,i=2,第三次输入x=2(2x-1)-1=4x-3,i=3,第四次输入x=2(4x-3)-1=8x-7,i=4>3,第五次输入x=2(8x-7)-1=16x-15,i=5>4,输出16x-15=0,解得:x=,故选:C.8.【答案】B【解析】解:由题意可知E(ξ)=-1×+0×+1×=-.∵η=2ξ+3,所以E(η)=E(2ξ+3)=2E(ξ)+3=+3=.故选:B.求出ξ的期望,然后利用η=2ξ+3,求解E(η)即可.本题考查有一定关系的两个变量之间的期望之间的关系,本题也可以这样来解,根据两个变量之间的关系写出η的分布列,再由分布列求出期望.9.【答案】B【解析】解:∵a,b是区间[0,1]上的两个数,∴a,b对应区域面积为1×1=1若函数f(x)=x2+ax+b2无零点,则△=a2-4b2<0,对应的区域为直线a-2b=0的上方,面积为1-=,则根据几何概型的概率公式可得所求的概率为.故选:B.函数f(x)=x2+ax+b2无零点的条件,得到a,b满足的条件,利用几何概型的概率公式求出对应的面积即可得到结论.本题主要考查几何概型的概率计算,根据二次函数无零点的条件求出a,b满足的条件是解决本题的关键.10.【答案】B【解析】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b <0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.通过样本数据表,容易判断回归方程中,b、a的符号.本题考查回归方程的应用,基本知识的考查.11.【答案】C【解析】解:∵函数f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3,若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,∴t≥(x+)在[1,4]上恒成立,令y=(x+),由对勾函数的图象和性质可得:函数在[1,4]为增函数,当x=4时,函数取最大值,∴t≥,即实数t的取值范围是[,+∞),由题意可得f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,由二次函数的性质可得不等式组的解集.本题主要考查函数的单调性和导数符号间的关系,二次函数的性质,属于中档题.12.【答案】B【解析】【分析】本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.先求导函数,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.【解答】解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax-1与y=ln x的图象相切,由图可知,当0<a<时,y=ln x与y=2ax-1的图象有两个交点.则实数a的取值范围是(0,).简解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,可得2a=有两个不同的解,设g(x)=,则g′(x)=,当x>1时,g(x)递减,0<x<1时,g(x)递增,可得g(1)取得极大值1,作出y=g(x)的图象,可得0<2a<1,即0<a<,13.【答案】【解析】解:根据题意,简单随机抽样中每个个体被抽到的概率是相等的,若在含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率P==;故答案为:.根据题意,由简单随机抽样的性质以及古典概型的计算公式可得个体m被抽到的概率P=,化简即可得答案.本题考查古典概型的计算,涉及随机抽样的性质,属于基础题.14.【答案】【解析】解:∵(1+2i)z=4+3i,∴z=,则|z|=||=.故答案为:.把已知等式变形,再由商的模等于模的商求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.15.【答案】【解析】解:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,则=,其==,F到底面D1ED的距离等于棱长1,所以=××1=S故答案为:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,进行等体积转化V D 1-EDF=V F -D1ED后体积易求.本题考查了三棱柱体积的计算,等体积转化法是常常需要优先考虑的策略.16.【答案】[,+∞)【解析】解:根据题意,函数y=ax2(a>0)与函数y=e x在(0,+∞)上有公共点,令ax2=e x得:,设则,由f'(x)=0得:x=2,当x>2时,f'(x)>0,函数在区间(2,+∞)上是增函数,所以当x=2时,函数在(0,+∞)上有最小值,所以.故答案为:.由题意可得,ax2=e x有解,运用参数分离,再令,求出导数,求得单调区间、极值和最值,即可得到所求范围.本题考查导数的运用:求单调区间和极值、最值,考查函数方程的转化思想的运用,属于中档题.17.【答案】解:(1):f(x)=3x2+2(1-a)x-a(a+2),由题因为f(x)为偶函数,∴2(1-a)=0,即a=1.(2)∵曲线y=f(x)存在两条垂直于y轴的切线,∴关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)有两个不相等的实数根,∴△=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,∴,∴a的取值范围为()∪().【解析】(1)求出导函数,利用函数的奇偶性求出a即可.(2)求出函数的导数,利用曲线y=f(x)存在两条垂直于y轴的切线,通过△>0求解即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.18.【答案】解:(1)根据题意,由表中的数据可得:=100+=100,=100+=100,则有,从而,故物理成绩更稳定;(2)由于x与y之间具有线性相关关系,则==0.5,则=100-0.5×100=50,则线性回归方程为=0.5x+50,当y=115时,x=130;建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.【解析】(1)根据题意,由数据计算数学、物理的平均数、方差,进而分析可得答案;(2)根据题意,求出线性回归方程,据此分析可得答案.本题考查线性回归方程的计算,涉及数据的平均数、方差的计算,属于基础题.19.【答案】解:(1)当x<1时,f′(x)=-3x2+2x=-x(3x-2),令f′(x)=0,得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,0) 0(0,)(,1)f′(x)- 0+ 0-f(x)极小值极大值∴当x=0时,函数f(x)取得极小值f(0)=0,函数f(x)取得极大值点为x=.(2)①当-1≤x<1时,f(x)=-x3+x2,由(1)知,函数f(x)在[-1,0]和[,1)上单调递减,在[0,]上单调递增.∵,∴f(x)在[-1,1)上的最大值为2.②当1≤x≤e时,f(x)=a ln x.当a≤0时,f(x)在[1,e],上单调递增,∴f(x)max=a.综上所述,当a≥2时,f(x)在[-1,e]上的最大值为a;当a<2时,f(x)在[-1,e]上的最大值为2.【解析】(1)当x<1时,求导函数,确定函数的单调性,可得f(x)在区间(-∞,1)上的极小值和极大值点;(2)分类讨论,确定函数的单调性,即可得到f(x)在[-1,e](e为自然对数的底数)上的最大值.本题考查导数知识的应用,考查函数的单调性与极值、最值,考查分类讨论的数学思想,属于中档题.20.【答案】证明:(Ⅰ)∵,AB=4,∴AB2=AE2+BE2,∴AE⊥EB,取AE的中点M,连结MD',则AD=D'E=2⇒MD'⊥AE,∵平面D'AE⊥平面ABCE,∴MD'⊥平面ABCE,∴MD'⊥BE,从而EB⊥平面AD'E,∴AD'⊥EB;解:(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,如图建立空间直角坐标系,则A(4,2,0)、C(0,0,0)、B(0,2,0)、,E(2,0,0),从而=(4,0,0),,.设为平面ABD'的法向量,则,取z=1,得设为平面BD'E的法向量,则,取x=1,得因此,,有,即平面ABD'⊥平面BD'E,故二面角A-BD'-E的大小为90°.【解析】(Ⅰ)推导出AE⊥EB,取AE的中点M,连结MD',则MD'⊥BE,从而EB⊥平面AD'E,由此能证明AD'⊥EB;(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD'-E的大小.本题考查线线垂直的证明,考查二面角的求法,考查空间中线线、线面、面面的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21.【答案】解:(Ⅰ)(0.2+0.16)×1×50=18,这50路段为中度拥堵的有18个.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3=0.729.P(B)=1-P()=0.271,所以三个路段至少有一个是严重拥堵的概率是0.271.(III)由频率分布直方图可得:分布列如下表:X30364260P0.10.440.360.1E(X)=30×0.1+36×0.44+42×0.36+60×0.1=39.96.此人经过该路段所用时间的数学期望是39.96分钟.【解析】(Ⅰ)利用(0.2+0.16)×1×50即可得出这50路段为中度拥堵的个数.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3.P(B)=1-P()=0.271,可得三个路段至少有一个是严重拥堵的概率.(III)利用频率分布直方图即可得出分布列,进而得出数学期望.本题考查了频率分布直方图的应用、互斥事件的概率计算公式、数学期望,考查了推理能力与计算能力,属于中档题.22.【答案】解:(1)f′(x)=[ax-(1-a)]e x(x>0,a∈R),当a≥1时,f′(x)≥0,f(x)在(0,+∞)上递增;当0<a<1时,f(x)在(0,)上递减,在(,+∞)上递增;当a≤0时,f′(x)≤0,f(x)在(0,+∞)上递减.(2)依题意得(x-1)e x>kx-2对于x>0恒成立,方法一:令g(x)=(x-1)e x-kx+2(x≥0),则g′(x)=xe x-k(x≥0),当k≤0时,f(x)在(0,+∞)上递增,且g(0)=1>0,符合题意;当k>0时,易知x≥0时,g′(x)单调递增.则存在x0>0,使得,且g(x)在(0,x0]上递减,在[x0,+∞)上递增,∴,∴,,由得,0<k<2,又k∈Z,∴整数k的最大值为1.另一方面,k=1时,,g′(1)=e-1>0∴x0∈(,1),∈(1,2),∴k=1时成立.方法二:恒成立,令,则,令t(x)=(x2-x+1)e x-2(x>0),则t′(x)=x(x+1)e x>0,∴t(x)在(0,+∞)上递增,又t(1)>0,,∴存在x0∈(,1),使得,且h(x)在在(0,x0]上递减,在[x0,+∞)上递增,∴,又x0∈(,1),∴∈(1,),∴h(x0)∈(,2),∴k<2,又k∈Z,∴整数k的最大值为1.【解析】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,函数恒成立问题,是一道综合题.(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)方法一:令g(x)=(x-1)e x-kx+2(x≥0),通过讨论k的范围,求出g(x)的最小值,从而确定k的最大值;方法二:分离参数k,得到恒成立,令,根据函数的单调性求出k的最大值即可.。
2019-2020学年河南省信阳市第一职业高级中学高二数学理下学期期末试卷含解析
2019-2020学年河南省信阳市第一职业高级中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 电子钟一天显示的时间是从到,每一时刻都由四个数字组成,则一天中任一时刻显示的四数字之和为的概率为、、、、参考答案:C2. 设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是( ).参考答案:D3. 设函数,若是函数f(x)的极大值点,则实数a的取值范围是()A.B.(-∞,1) C. [1,+∞) D.参考答案:A,因为在处取极大值,故且在的左侧附近为正,在的右侧附近为负.当时,,此时,当时,,当时,故在处取极大值.当时,应为的较小的正根,故,故;当时,有一个正根和负根,因对应的二次函数开口向下,故正跟为即可,故时,总存在使得为的极大值点.综上,的取值范围为,故选A.4. 设函数则a等于()A.-1B.1C.-2 D.2参考答案:C略5. 一位同学对三元一次方程组(其中实系数不全为零)的解的情况进行研究后得到下列结论:结论1:当,且时,方程组有无穷多解;结论2:当,且都不为零时,方程组有无穷多解;结论3:当,且时,方程组无解.但是上述结论均不正确.下面给出的方程组可以作为结论1、2和3的反例依次为()(1);(2);(3)(A)(1)(2)(3)(B)(1)(3)(2)(C)(2)(1)(3)(D)(3)(2)(1)参考答案:B6. 对于R上可导的任意函数f(x),若满足(x-1)30,则必有()A.f(0)+f(2)<2f(1) B. f(0)+f(2)£2f(1)C. f(0)+f(2)32f(1)D. f(0)+f(2)>2f(1)参考答案:C7. 设函数在定义域内可导,的图象如左图所示,则导函数可能为参考答案:D略8. 下列命题中正确的有()个.①若两条直线和第三条直线所成的角相等,则这两条直线互相平行.②空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.③四面体的四个面中,最多有四个直角三角形.④若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的无数条直线.A.1 B.2 C.3 D.4参考答案:C【考点】命题的真假判断与应用.【专题】空间位置关系与距离;简易逻辑;立体几何.【分析】结合空间直线与直线位置关系,平行角定理,棱锥的几何特征,面面垂直的几何特征,逐一分析四个结论的真假,可得答案.【解答】解:①若两条直线和第三条直线所成的角相等,则这两条直线相交,平行,或异面,故错误.②空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,由平行角定理可得正确.③四面体的四个面中,最多有四个直角三角形,如下图中四面体故正确.④若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面内垂直于两面交线的直线,这样的直线有无数条,故正确.故正确的命题个数是3个,故选:C.【点评】本题以命题的真假判断与应用为载体,考查空间直线与直线位置关系,平行角定理,棱锥的几何特征,面面垂直的几何特征等知识点,难度中档.9. 函数的图像与函数()的图像的交点为,则( )A. 2B. 4C. 6D. 8参考答案:D:试题分析:的图象由奇函数的图象向右平移一个单位得到,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得的图象的一个对称中心也是点(1,0),故交点的个数为偶数,且每一对对称点的横坐标之和为2,由此画图可得出正确答案,故选D考点:三角函数的周期性及其性质10. 已知命题P:“对任意”.命题q:“存在”.若“”是真命题,则实数取值范围是()A. B. 或 C. 或D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 如图,边长为a的正△ABC的中线A ks5u F与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列四个命题:①动点A′在平面ABC上的射影在线段AF上;②恒有平面A′GF⊥平面BCED;③三棱锥A′—FED的体积有最大值;④异面直线A′E与BD不可能互相垂直;其中正确命题的序号是.参考答案:①②③12. 在点(1,1)处的切线方程参考答案:13. 已知△ABC的内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,且c=2a,则cos B的值为____________.参考答案:略14. 设集合数列单调递增,集合函数在区间上单调递增,若“”是“”的充分不必要条件,则实数的最小值为.参考答案:略15. 某商场开展促销抽奖活动,摇出的中奖号码是8,2,5,3,7,1,参加抽奖的每位顾客从0~9这10个号码中任意抽出六个组成一组,若顾客抽出的六个号码中至少有5个与摇出的号码相同(不计顺序)即可得奖,则中奖的概率是_______.参考答案:16. 函数y=(x2﹣3)e x的单调减区间为.参考答案:(﹣3,1)【考点】利用导数研究函数的单调性.【分析】求出函数的导数,解关于导函数的不等式,求出函数的递减区间即可.【解答】解:y′=(x+3)(x﹣1)e x,令y′<0,解得:﹣3<x<1,故函数在(﹣3,1)递减,故答案为:(﹣3,1).【点评】本题考查了函数的单调性问题,考查导数的应用,是一道基础题.17. 如图平面直角坐标系xOy中,椭圆,A1,A2分别是椭圆的左、右两个顶点,圆A1的半径为2,过点A2作圆A1的切线,切点为P,在x轴的上方交椭圆于点Q.则= .参考答案:【考点】椭圆的简单性质.【专题】数形结合;分析法;直线与圆;圆锥曲线的定义、性质与方程.【分析】连结A2P,可得△OPA2是边长为a的正三角形,由此算出PA1、PO的方程,联解求出点P的横坐标m=﹣1.由A2P与圆A1相切得到A2P⊥PA1,从而得到直线A2P的方程,将PA2的方程与椭圆方程联解算出Q点横坐标s=.由=,把前面算出的横坐标代入即可求得的值.【解答】解:连结PO、PA1,可得△POA1是边长为2的等边三角形,∴∠PA1O=∠POA1=60°,可得直线PA1的斜率k1=tan60°=,直线PO的斜率k2=tan120°=﹣,因此直线PA1的方程为y=(x+2),直线PO的方程为y=﹣x,设P(m,n),联解PO、PA1的方程可得m=﹣1.∵圆A1与直线PA2相切于P点,∴PA2⊥PA1,可得∠PA2O=90°﹣∠PA1O=30°,直线PA2的斜率k=tan150°=﹣,因此直线PA2的方程为y=﹣(x﹣2),代入椭圆,消去y,得x2﹣x+=0,解之得x=2或x=.∵直线PA2交椭圆于A2(2,0)与Q点,∴设Q(s,t),可得s=.由此可得====.故答案为:.【点评】本题给出与椭圆相关的直线与圆相切的问题,求线段的比值.着重考查了直线的基本量与基本形式、直线与圆的位置关系、椭圆的标准方程与简单几何性质等知识,属于中档题.三、解答题:本大题共5小题,共72分。
山西省太原市2019-2020学年新高考高二数学下学期期末达标测试试题
基础练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知正方体1111ABCD A B C D -的棱长为2,P 是底面ABCD 上的动点,1PA PC ≥,则满足条件的点P 构成的图形的面积等于( ) A .12B .4π C .44π-D .722.已知不等式对任意恒成立,则的最大值为A .B .C .D .3.有8件产品,其中3件是次品,从中任取3件,若X 表示取得次品的件数,则()1P X ≤=( ) A .34B .57C .45D .784.已知数列{}n a 的前n 项和为n S ,且满足()21n n n a S a -=,则下列结论中( )①数列{}2n S 是等差数列;②2n a n <;③11n n a a +<A .仅有①②正确B .仅有①③正确C .仅有②③正确D .①②③均正确5.函数()()sin ln 2xf x x =+的部分图象可能是( )A .B .C .D .6.根据中央对“精准扶贫”的要求,某市决定派7名党员去甲、乙、丙三个村进行调研,其中有4名男性党员,3名女性党员现从中选3人去甲村若要求这3人中既有男性,又有女性,则不同的选法共有( ) A .35种B .30种C .28种D .25种7.已知(1,cos )a a =,(sin ,1)b a =,且0απ<<,若a b ⊥,则α=( )A .23π B .34π C .4π D .6π 8.知11617a =,16log 17b =,17log 16c =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .c b a >>9.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .1310.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,()()2f 21x log x =+-,则()6f -=( ) A .2B .4C .-2D .-411.已知8位学生得某次数学测试成绩得茎叶图如图,则下列说法正确的是( )A .众数为7B .极差为19C .中位数为64.5D .平均数为6412.求二项式()712x -展开式中第三项的系数是( ) A .-672B .-280C .84D .42二、填空题:本题共4小题13.已知命题“x R ∃∈,0x e a +<”为假命题,则a 的取值范围是__________.14.周长为20cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为_______3cm . 15.在极坐标系中,已知圆C 经过点23,6P π⎛⎫⎪⎝⎭,圆心为直线sin 24πρθ⎛⎫+= ⎪⎝⎭C 的极坐标方程为__________.16.已知函数 2(),()4x f x e x g x x bx =-=-+,若对任意1(1,1)x ∈-,存在2(3,4)x ∈,12()()f x g x ≥,则实数b 的取值范围为_____.三、解答题:解答应写出文字说明、证明过程或演算步骤。
2019-2020年高二下学期期末数学试卷(理科) 含解析
2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。
2019-2020学年陕西省西安中学高二下学期期末(理科)数学试卷 (解析版)
2019-2020学年陕西西安中学高二第二学期期末数学试卷(理科)一、选择题(共12小题).1.设集合A={x|x2﹣5x+6>0},B={x|x﹣1<0},则A∩B=()A.(﹣∞,1)B.(﹣2,1)C.(﹣3,﹣1)D.(3,+∞)2.已知a为实数,若复数z=(a2﹣1)+(a+1)i为纯虚数,则=()A.i B.﹣i C.1D.﹣13.已知a=,b=4,c=,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a4.如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()A.﹣1B.0C.2D.45.天干地支纪年法,源于中国中国自古便有十天干与十二地支十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”…依此类推已知1949年为“己丑”年,那么到新中国成立80周年时,即2029年为()A.己丑年B.己酉年C.壬巳年D.辛未年6.若函数f(x)=kx﹣lnx在区间(1,+∞)为增函数,则实数k的取值范围是()A.B.C.[1,+∞)D.(﹣∞,1]7.若a>b>1,﹣1<c<0,则()A.ab c<ba c B.a c>b cC.log a|c|<log b|c|D.b log a|c|>a log b|c|8.已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.9.若实数x,y满足,则z=2x+y﹣1的最小值()A.1B.3C.4D.910.已知x>0,y>0,且,则x+y的最小值为()A.3B.5C.7D.911.已知函数f(x)=x sin x+cos x+,则不等式f(2x+3)﹣f(1)<0的解集为()A.(﹣2,+∞)B.(﹣1,+∞)C.(﹣2,﹣1)D.(﹣∞,﹣1)12.已知函数g(x)=a﹣x2(≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[1,+2]B.[1,e2﹣2]C.[+2,e2﹣2]D.[e2﹣2,+∞)二、填空题:本大题共4小题,每小题5分.13.欧拉公式e iθ=cosθ+i sinθ把自然对数的底数e,虚数单位i,三角函数cosθ和sinθ联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”.若复数z满足(e iπ+i)•z=i,则|z|=.14.设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.15.直线y=﹣x+1与曲线y=﹣e x﹣a相切,则a的值为.16.已知函数y=f(x)在R上的图象是连续不断的一条曲线,并且关于原点对称,其导函数f'(x)为,当x>0时,有不等式x2f'(x)>﹣2xf(x)成立,若对∀x∈R,不等式e2x f(e x)﹣a2x2f(ax)>0恒成立,则正整数a的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(Ⅰ)已知不等式x2﹣ax+a﹣2>0(a>2)的解集为(﹣∞,x1)∪(x2,+∞),求的最小值.(Ⅱ)若正数a、b、c满足a+b+c=2,求证:.18.已知椭圆C:=1,直线l:(t为参数).(Ⅰ)写出椭圆C的参数方程及直线l的普通方程;(Ⅱ)设A(1,0),若椭圆C上的点P满足到点A的距离与其到直线l的距离相等,求点P的坐标.19.已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.20.设函数f(x)=|x+1|+|x﹣2|,g(x)=﹣x2+mx+1.(1)当m=﹣4时,求不等式f(x)<g(x)的解集;(2)若不等式f(x)<g(x)在[﹣2,﹣]上恒成立,求实数m的取值范围.21.如图,有一种赛车跑道类似“梨形”曲线,由圆弧和线段AB,CD四部分组成,在极坐标系Ox中,A(2,),B(1,),C(1,),D(2,﹣),弧所在圆的圆心分别是(0,0),(2,0),曲线M1是弧,曲线M2是弧.(1)分别写出M1,M2的极坐标方程:(2)点E,F位于曲线M2上,且,求△EOF面积的取值范围.22.已知函数f(x)=lnx﹣x.(1)若函数y=f(x)+m﹣2x+x2在上恰有两个零点,求实数m的取值范围;(2)记函数,设x1,x2(x1<x2)是函数g(x)的两个极值点,若,且g(x1)﹣g(x2)≥k恒成立,求实数k的最大值.参考答案一、选择题(共12小题).1.设集合A={x|x2﹣5x+6>0},B={x|x﹣1<0},则A∩B=()A.(﹣∞,1)B.(﹣2,1)C.(﹣3,﹣1)D.(3,+∞)【分析】根据题意,求出集合A、B,由交集的定义计算可得答案.解:根据题意,A={x|x2﹣5x+6>0}={x|x>3或x<2},B={x|x﹣1<0}={x|x<1},则A∩B={x|x<1}=(﹣∞,1);故选:A.2.已知a为实数,若复数z=(a2﹣1)+(a+1)i为纯虚数,则=()A.i B.﹣i C.1D.﹣1【分析】根据纯虚数的定义求出a的值,结合复数的运算法则进行化简即可.解:∵z=(a2﹣1)+(a+1)i为纯虚数,∴,即,即a=1,则z=2i,则====i,故选:A.3.已知a=,b=4,c=,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a【分析】可得出,然后可比较a2,b2和c2的大小关系,从而可得出a,b,c的大小关系.解:,∵,且,∴b2>c2>a2,∴b>c>a.故选:D.4.如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()A.﹣1B.0C.2D.4【分析】先从图中求出切线过的点,再求出直线L的方程,利用导数在切点处的导数值为切线的斜率,最后结合导数的概念求出g′(3)的值.解:∵直线L:y=kx+2是曲线y=f(x)在x=3处的切线,∴f(3)=1,又点(3,1)在直线L上,∴3k+2=1,从而k=,∴f′(3)=k=,∵g(x)=xf(x),∴g′(x)=f(x)+xf′(x)则g′(3)=f(3)+3f′(3)=1+3×()=0,故选:B.5.天干地支纪年法,源于中国中国自古便有十天干与十二地支十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”…依此类推已知1949年为“己丑”年,那么到新中国成立80周年时,即2029年为()A.己丑年B.己酉年C.壬巳年D.辛未年【分析】由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1949年的天干和地支分别为首项,即可求出答案.解:天干是以10为公差构成的等差数列,地支是以12为公差的等差数列,从1949年到2029年经过80年,且1949年为“己丑”年,以1949年的天干和地支分别为首项,则80÷10=8,则2029的天干为己,80÷12=6余8,则2029的地支为酉,故选:B.6.若函数f(x)=kx﹣lnx在区间(1,+∞)为增函数,则实数k的取值范围是()A.B.C.[1,+∞)D.(﹣∞,1]【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.故选:C.7.若a>b>1,﹣1<c<0,则()A.ab c<ba c B.a c>b cC.log a|c|<log b|c|D.b log a|c|>a log b|c|【分析】运用对数函数的单调性和不等式的可乘性,即可得到所求大小关系.解:由﹣1<c<0得0<|c|<1,又a>b>1,可得log|c|a<log|c|b<0,则0>log a|c|>log b|c|,0<﹣log a|c|<﹣log b|c|,a>b>1>0,可得﹣a|log b|c|>﹣b log a|c|,即为b log a|c|>a|log b|c|,故选:D.8.已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【分析】利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.解:令g(x)=x﹣lnx﹣1,则,由g'(x)>0,得x>1,即函数g(x)在(1,+∞)上单调递增,由g'(x)<0得0<x<1,即函数g(x)在(0,1)上单调递减,所以当x=1时,函数g(x)有最小值,g(x)min=g(0)=0,于是对任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,因函数g(x)在(0,1)上单调递减,则函数f(x)在(0,1)上递增,故排除C,故选:A.9.若实数x,y满足,则z=2x+y﹣1的最小值()A.1B.3C.4D.9【分析】将目标函数变形画出相应的直线,将直线平移至A(1,2)时纵截距最大,z 最小解:画出实数x,y满足的可行域,作直线y=﹣2x﹣1+z,再将其平移至A(1,2)时,直线的纵截距最小,z最小为3故选:B.10.已知x>0,y>0,且,则x+y的最小值为()A.3B.5C.7D.9【分析】将x+1+y=2(+)(x+1+y)的形式,再展开,利用基本不等式,注意等号成立的条件.解:∵x>0,y>0,且,∴x+1+y=2(+)(x+1+y)=2(1+1++)≥2(2+2)=8,当且仅当=,即x=3,y=4时取等号,∴x+y≥7,故x+y的最小值为7,故选:C.11.已知函数f(x)=x sin x+cos x+,则不等式f(2x+3)﹣f(1)<0的解集为()A.(﹣2,+∞)B.(﹣1,+∞)C.(﹣2,﹣1)D.(﹣∞,﹣1)【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,+∞)上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.解:f(﹣x)=﹣x sin(﹣x)+cos(﹣x)+=x sin x+cos x+=f(x),则f(x)是偶函数,f′(x)=sin x+x cos x﹣sin x+x=x+x cos x=x(1+cos x),当x≥0时,f′(x)≥0,即函数在[0,+∞)上为增函数,则不等式f(2x+3)﹣f(1)<0得f(2x+3)<f(1),即f(|2x+3|)<f(1),则|2x+3|<1,得﹣1<2x+3<1,得﹣2<x<﹣1,即不等式的解集为(﹣2,﹣1),故选:C.12.已知函数g(x)=a﹣x2(≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[1,+2]B.[1,e2﹣2]C.[+2,e2﹣2]D.[e2﹣2,+∞)【分析】由已知,得到方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在上有解,构造函数f(x)=2lnx﹣x2,求出它的值域,得到﹣a的范围即可.解:由已知,得到方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在上有解.设f(x)=2lnx﹣x2,求导得:f′(x)=﹣2x=,∵≤x≤e,∴f′(x)=0在x=1有唯一的极值点,∵f()=﹣2﹣,f(e)=2﹣e2,f(x)极大值=f(1)=﹣1,且知f(e)<f(),故方程﹣a=2lnx﹣x2在上有解等价于2﹣e2≤﹣a≤﹣1.从而a的取值范围为[1,e2﹣2].故选:B.二、填空题:本大题共4小题,每小题5分.13.欧拉公式e iθ=cosθ+i sinθ把自然对数的底数e,虚数单位i,三角函数cosθ和sinθ联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”.若复数z满足(e iπ+i)•z=i,则|z|=.【分析】利用欧拉公式可得:e iπ=cosπ+i sinπ=﹣1.代入(e iπ+i)•z=i,化简可得z,再利用模的运算性质即可得出.解:e iπ=cosπ+i sinπ=﹣1.∵(e iπ+i)•z=i,∴(﹣1+i)z=i,∴z=,则|z|===.故答案为:.14.设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.【分析】利用定积分表示图形的面积,从而可建立方程,由此可求a的值.解:由题意,曲线y=与直线x=a,y=0所围成封闭图形的面积为==,∴=a2,∴a=.故答案为:.15.直线y=﹣x+1与曲线y=﹣e x﹣a相切,则a的值为2.【分析】求出原函数的导函数,设直线y=﹣x+1与曲线y=﹣e x﹣a相切于(),得到函数在x=x0处的导数,再由题意列关于x0与a的方程组求解.解:由y=﹣e x﹣a,得y′═﹣e x﹣a,设直线y=﹣x+1与曲线y=﹣e x﹣a相切于(),则.∴,解得.∴a的值为2.故答案为:2.16.已知函数y=f(x)在R上的图象是连续不断的一条曲线,并且关于原点对称,其导函数f'(x)为,当x>0时,有不等式x2f'(x)>﹣2xf(x)成立,若对∀x∈R,不等式e2x f (e x)﹣a2x2f(ax)>0恒成立,则正整数a的最大值为2.【分析】可得函数f(x)为R上的奇函数.令g(x)=x2f(x),则g(x)为奇函数.可得g(x)在[0,+∞)单调递增.函数g(x)在R上单调递增.对∀x∈R,不等式e2x f(e x)﹣a2x2f(ax)>0恒成立,⇔e2x f(e x)>a2x2f(ax)﹣ax⇔g(e x)>g(ax).即只需e x>ax.进而得出答案解:定义在R上的函数f(x)关于原点对称,∴函数f(x)为R上的奇函数.令g(x)=x2f(x),则g(x)为奇函数.g′(x)=x2f'(x)+2xf(x),当x>0时,不等式g′(x)>0,g(x)在[0,+∞)单调递增.∴函数g(x)在R上单调递增.不等式e2x f(e x)﹣a2x2f(ax)>0恒成立,⇔e2x f(e x)>a2x2f(ax)﹣ax⇔g(e x)>g (ax).∴e x>ax.当x>0时,a<=h(x),则h′(x)=,可得x=1时,函数h(x)取得极小值即最小值,h(1)=e.∴a<e.此时正整数a的最大值为2.a=2对于x≤0时,e x>ax恒成立.综上可得:正整数a的最大值为2.故答案为:2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(Ⅰ)已知不等式x2﹣ax+a﹣2>0(a>2)的解集为(﹣∞,x1)∪(x2,+∞),求的最小值.(Ⅱ)若正数a、b、c满足a+b+c=2,求证:.【分析】(Ⅰ)利用根与系数的关系及基本不等式求解的最小值;(Ⅱ)方法一:直接利用基本不等式结合a+b+c=2证明;方法二:由已知结合柯西不等式证明.【解答】(Ⅰ)解:a>2时,△=a2﹣4(a﹣2)>0,∵不等式x2﹣ax+a﹣2>0(a>2)的解集为(﹣∞,x1)∪(x2,+∞),∴方程x2﹣ax+a﹣2=0的两根为x1,x2,由韦达定理可得x1+x2=a,x1x2=a﹣2,∵a>2,∴a﹣2>0,则,当且仅当a=3时取等号.故的最小值为4;(Ⅱ)证法一:由a、b、c为正数且a+b+c=2,由基本不等式,有,三式相加可得:,∴,即(当且仅当a=b=c时等号成立);证法二:由a、b、c为正数且a+b+c=2,由柯西不等式,∴,即(当且仅当a=b=c时等号成立).18.已知椭圆C:=1,直线l:(t为参数).(Ⅰ)写出椭圆C的参数方程及直线l的普通方程;(Ⅱ)设A(1,0),若椭圆C上的点P满足到点A的距离与其到直线l的距离相等,求点P的坐标.【分析】(Ⅰ)直接利用三角代换写出椭圆C的参数方程,消去此时t可得直线l的普通方程;(Ⅱ)利用两点间距离公式以及点到直线的距离公式,通过椭圆C上的点P满足到点A 的距离与其到直线l的距离相等,列出方程,即可求点P的坐标.解:(Ⅰ)椭圆C:(θ为为参数),l:x﹣y+9=0.…(Ⅱ)设P(2cosθ,sinθ),则|AP|==2﹣cosθ,P到直线l的距离d==.由|AP|=d得3sinθ﹣4cosθ=5,又sin2θ+cos2θ=1,得sinθ=,cosθ=﹣.故P(﹣,).…19.已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=cos﹣=﹣.20.设函数f(x)=|x+1|+|x﹣2|,g(x)=﹣x2+mx+1.(1)当m=﹣4时,求不等式f(x)<g(x)的解集;(2)若不等式f(x)<g(x)在[﹣2,﹣]上恒成立,求实数m的取值范围.【分析】(1)求出f(x)的分段函数的形式,代入m的值,求出g(x)的解析式,通过讨论x的范围,解不等式求出不等式的解集即可;(2)问题等价于g(x)>3恒成立,即g(x)min>3,求出m的范围即可.解:(1)f(x)=|x+1|+|x﹣2|,∴f(x)=,当m=﹣4时,g(x)=﹣x2﹣4x+1,①当x≤﹣1时,原不等式等价于x2+2x<0,解得:﹣2<x<0,故﹣2<x≤﹣1;②当﹣1<x<2时,原不等式等价于x2+4x+2<0,解得:﹣2﹣<x<﹣2+,故﹣1<x<﹣2+;③x≥2时,g(x)≤g(2)=﹣11,而f(x)≥f(2)=3,故不等式f(x)<g(x)的解集是空集;综上,不等式f(x)<g(x)的解集是(﹣2,﹣2+);(2)①当﹣2≤x≤﹣1时,f(x)<g(x)恒成立等价于mx>x2﹣2x,又x<0,故m<x﹣2,故m<﹣4;②当﹣1<x≤﹣时,f(x),g(x)恒成立等价于g(x)>3恒成立,即g(x)min>3,只需即可,即,综上,m∈(﹣∞,﹣).21.如图,有一种赛车跑道类似“梨形”曲线,由圆弧和线段AB,CD四部分组成,在极坐标系Ox中,A(2,),B(1,),C(1,),D(2,﹣),弧所在圆的圆心分别是(0,0),(2,0),曲线M1是弧,曲线M2是弧.(1)分别写出M1,M2的极坐标方程:(2)点E,F位于曲线M2上,且,求△EOF面积的取值范围.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用三角形的面积公式和极径的应用及三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.曲线是弧,解:(1)由题意可知:M1的极坐标方程为.记圆弧AD所在圆的圆心(2,0)易得极点O在圆弧AD上.设P(ρ,θ)为M2上任意一点,则在△OO1P中,可得ρ=4cosθ().所以:M1,M2的极坐标方程为和ρ=4cosθ().(2)设点E(ρ1,α),点F(),(),所以ρ1=4cosα,.所以==.由于,所以.故.22.已知函数f(x)=lnx﹣x.(1)若函数y=f(x)+m﹣2x+x2在上恰有两个零点,求实数m的取值范围;(2)记函数,设x1,x2(x1<x2)是函数g(x)的两个极值点,若,且g(x1)﹣g(x2)≥k恒成立,求实数k的最大值.【分析】(1)由题意得函数y=f(x)+m﹣2x+x2=x2﹣3x+lnx+m(x>0),令h(x)=x2﹣3x+lnx+m(x>0),求导,列表分析随着x的变化f′(x),f(x)变化情况,得当x=1时,h(x)的极小值为h(1)=m﹣2,,h(2)=m﹣2+ln2.若函数y=f(x)+m﹣2x+x2在上恰有两个零点,则即解得m的取值范围.(2)由题意得,求导,令g'(x)=0得x2﹣(b+1)x+1=0的两个根是x1,x2,结合韦达定理得x1+x2=b+1,x1x2=1,因为,所解得:,所以g(x1)﹣g(x2)=2lnx1﹣(x12﹣),(0<x1≤),令,求导,分析单调性,得F(x)min,k≤F(x)min,即可得出答案.解:(1)f(x)=lnx﹣x,∴函数y=f(x)+m﹣2x+x2=x2﹣3x+lnx+m(x>0),令h(x)=x2﹣3x+lnx+m(x>0),则,令h'(x)=0得,x2=1,列表得:x1(1,2)2 h'(x)0﹣0+h(x)单调递减极小值单调递增m﹣2+ln2∴当x=1时,h(x)的极小值为h(1)=m﹣2,又,h(2)=m﹣2+ln2.∵函数y=f(x)+m﹣2x+x2在上恰有两个零点∴即,解得.(2)∵,∴,令g'(x)=0得x2﹣(b+1)x+1=0,∵x1,x2是g(x)的极值点,∴x1+x2=b+1,x1x2=1,∴,∵,∴解得:,∴,=令,则,∴F(x)在上单调递减;∴当时,∴k的最大值为.。
黑龙江省哈尔滨市第一中学2018-2019学年度下学期期末考试高二数学试卷
哈一中2018—2019学年度下学期期末考试高二数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一、选择题(共12小题)1.全集R U =,集合{}3A x x =≥,{}05B x x =≤<,则集合()U A B ⋂=( )A .{}03x x <<B .{}03x x ≤≤C .{}03x x <≤D .{}03x x ≤<2.复数12i -的虚部为( )A .15iB .15CD 3.设R x ∈,则“1122x -<”是“31x <”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( )A .3πB .1C .23πD .35.已知命题:R p x ∃∈,210x x -+≥,命题:q 若22a b <,则a b <,下列命题为真命题的是()A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝6.要得到sin 4xy =的图象,只需把sin y x =的图象上的所有点( )A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14,纵坐标不变C .纵坐标伸长到原来的4倍,横坐标不变D .纵坐标缩短到原来的14,横坐标不变7.已知函数()lg f x x =,则函数()()1g x f x =-的图像大致是( )A B .C .D .8.已知函数()21f x x =-+,()g x kx =,若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭ B .1,12⎛⎫ ⎪⎝⎭ C .()1,2 D .()2,+∞9.已知当1x <时,()()21f x a x =-+;当1x ≥时,()x f x a =(0a >且1a ≠),若对任意12x x ≠,都有()()12120f x f x x x ->-成立,则a 的取值范围是( ) A .()1,2 B .31,2⎛⎤ ⎥⎝⎦ C .3,22⎡⎫⎪⎢⎣⎭ D .()()0,12,⋃+∞10.已知角θ的始边与x 轴的非负半轴重合,终边过点()3,4M -,则cos2θ的值为( )A .725-B .725C .2425-D .2425 11.如图所示,图中曲线方程为21y x =-,用定积分表达围成封闭图形(阴影部分)的面积正确的是( )A .()2201x dx -⎰ B .()2201x dx -⎰ C .2201x dx -⎰ D .()()22221111x dx x dx -+-⎰⎰ 12.已知方程cos x k x=在()0,+∞上有两个不同的解α,β()αβ<,则下面结论正确的是( )A .1tan 41πααα+⎛⎫+= ⎪-⎝⎭ B .1tan 41πααα-⎛⎫+= ⎪+⎝⎭ C .1tan 41πβββ+⎛⎫+= ⎪-⎝⎭ D .1tan 41πβββ-⎛⎫+= ⎪+⎝⎭ 二、填空题(共4小题)13.已知()4sin 455α+︒=,45135α︒<<︒,则sin α=______. 14.已知2336m n ==,则11m n+=______. 15.已知()y f x =是奇函数,当()0,2x ∈时,()1ln 2f x x ax a ⎛⎫=->⎪⎝⎭,当()2,0x ∈-时,()f x 的最小值为1,那么实数a 的值为______.16.有下列命题:①函数()2y f x =-+与()2y f x =-的图象关于y 轴对称;②若函数()x f x e =,则12,R x x ∀∈,都有()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭; ③若函数()log a f x x =,()0,1a a >≠在()0,+∞上单调递增,则()()21f f a ->+;④若函数()2201021f x x x +=--()R x ∈,则函数()f x 的最小值为2-.其中真命题的序号是______.三、解答题(共7小题)17.已知函数()4cos sin 16f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的最小正周期;(2)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 18.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3此抽奖的机会,记该顾客在3此抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.19.如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(1)证明:1AC AB =;(2)若1AC AB ⊥,160CBB ∠=︒,AB BC =,求二面角111A A B C --的余弦值.20.已知椭圆()2222:10x y E a b a b +=>>过点(,且离心率e =.(1)求椭圆E 的方程;(2)设直线():1R l x my m =-∈交椭圆E 于A ,B 两点,判断点9,04G ⎛⎫-⎪⎝⎭与以线段AB 为直径的圆的位置关系,并说明理由.21.已知函数()()()322ln R f x a x a x a =--+-∈(1)若函数()y f x =在区间()1,3上单调,求a 的取值范围;(2)若函数()()g x f x x =-在10,2⎛⎫ ⎪⎝⎭上无零点,求a 的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 为极坐标为2,3π⎛⎫ ⎪⎝⎭,点B 在曲线2C 上,求OAB △面积的最大值. 22.已知函数()2f x x a a =-+.(1)当2a =时,求不等式()6f x ≤的解集;(2)设函数()21g x x =-,当R x ∈时,()()3f x g x +≥,求a 的取值范围.。
高二下学期期末考试数学试题(图片版)
,则 .………………………………………10分
故函数在 和 上单调递增…………………………………………11分
在 上单调递减.………………………………………………………………12分
17.(本小题满分12分)
解:(Ⅰ)由A∩B={3,7}得 2+4 +2=7,解得 =1或 =-5.………………4分
所以 , 在 上单调递减,……………………………………10分
.………………………………………………………………………11分
所以 最小值为 .…………………………………………………………………12分
所以至少一种产品研发成功的概率为 .………………………………………5分
(2)依题意, ,……………………6分
由独立试验同时发生的பைடு நூலகம்率计算公式可得:
;………………………………………………7分
;…………………………………………………8分
;……………………………………………………9分
;…………………………………………………………10分
所以 的分布列如下:
………………………………………………………………………………………11分
则数学期望 .
…………………………………………………………………………………………12分
20.(本小题满分12分)
解:(Ⅰ)函数 …………………………………………………1分
所以 ………………………………………………………………3分
当 =1时,集合B={0,7,3,1};……………………………………………………5分
当 =-5时,因为2- =7,集合B中元素重复.…………………………………6分
哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题理含解析
【详解】解:(Ⅰ)设 , 两条生产线的产品质量指标值的平均数分别为 , ,由直方图可得 ,
同理 , ,因此 生产线的质量指标值更好.
(Ⅱ) 生产线的产品质量指标值的众数为80
由 生产线的产品质量指标值频率分布直方图,前两组频率为
前三组频率为
,
所以 在 上递增,在 上递减,
所以 的极大值为 ,极小值为
注意到当 时, ,
所以由 有 个极值点,可得 。
所以实数 的取值范围是 。
故答案为: ;
【点睛】本小题主要考查利用导数研究函数的极值点,属于中档题.
三、解答题
17。在直角坐标系 中,圆C的参数方程 ( 为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系。
A. , B。 ,
C , D。 ,
【答案】D
【解析】
试题分析:均值为 ;
方差为
,故选D。
考点:数据样本的均值与方差。
10.已知函数 ,则 ( )
A。 B。eC。 D。 1
【答案】C
【解析】
【分析】
先求导,再计算出 ,再求 .
【详解】由题得 ,
所以 .
故选:C.
【点睛】本题主要考查导数的计算,意在考查学生对该知识的掌握水平和基本的计算能力,属基础题。
【详解】涉及函数定义域为 ,
设 ,则 ,
∵ ,∴ ,∴ 在 上单调递增,
不等式 可化为 ,即 ,所以 , ,又 ,得 ,
∴原不等式的解为 .
故选:A.
【点睛】本题考查用导数解不等式,解题关键是构造新函数,利用新函数的单调性解不等式,新函数需根据已知条件和需要解的不等式确定,简单的有 , , , ,等等,复杂点的如 ,或 ,象本题 难度更大.注意平时的积累.
重庆市垫江中学校2019-2020学年高二下学期期末联考数学试卷含答案
重庆市垫江中学校2019-2020学年高二下学期期末联考数学试卷含答案数学试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名.准考证号等填写在答题卷规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上.4.考试结束后,将答题卷交回。
第Ⅰ卷(选择题 共60分)一、选择题。
(本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.(改编)若21i z i =+(其中i 是虚数单位),则z =( ) A .4 B .2 C .1 D 22.为对某组数据进行分析,建立了四种不同的模型进行拟合,现用回归分析原理,计算出四种模型的相关指数R 2分别为0。
97,0。
86,0。
65,0.55,则拟合效果最好的回归模型对应的相关指数R2的值是()A.0。
55 B.0。
86 C.0。
65D.0.973.在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为()A.0.05B.0。
1 C.0。
15D.0。
24.(改编)曲线y=x2+ln x在点(1,1)处的切线方程为( )A.3x-y-2=0 B.x-3y+2=0 C.3x+y-4=0 D.x+3y-4=05.(改编)某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种6.从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)=()A.错误!B.错误!C.错误!D.错误!7.(改编)某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元) 4 2 3 5销售额y (万元) 49 26 39 54根据上表可得回归方程+=a x b y 中的∧b 为9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年度2019高二期末理科数学试卷考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知复数34,z i i =+为虚数单位, z 是z 的共轭复数,则iz=() A. 4355i -+ B. 4355i -- C. 432525i -+ D. 432525i --2.对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体( )A. 各正三角形内的点B. 各正三角形的中心C. 各正三角形某高线上的点D. 各正三角形各边的中点3.用反证法证明命题“若220a b +=,则,a b 全为()0,a b R ∈”,其反设正确的是( ) A. ,a b 至少有一个不为0 B. ,a b 至少有一个为0 C. ,a b 全不为0 D. ,a b 中只有一个为0 4.设函数()f x 可导,则()()11lim3k f k f k→--等于( )A. ()1f 'B.()113f ' C. ()31f -' D. ()113f -' 5.如图所示,阴影部分的面积为( )A.12 B. 1 C. 23 D. 766.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A.e - B.1 C.-1 D.e 7.函数()()21e xf x x =-的递增区间为( )A. (),-∞+∞B. 1,2⎛⎫+∞ ⎪⎝⎭ C. 1,2⎛⎫-∞- ⎪⎝⎭ D. 1,2⎛⎫-+∞ ⎪⎝⎭8.已知()1nx +的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A. 92B. 102C. 112D. 1229.下面几种推理过程是演绎推理的是 ( )A .某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人B .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A+∠B =180°C .由平面三角形的性质,推测空间四边形的性质D .在数列{a n }中,a 1=1,a n =12 (a n -1+11n a -)(n≥2),由此归纳出{a n }的通项公 10.函数sin ln y x x =+在区间[]3,3-的图象大致为( )A. B. C. D.11.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山。
现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、 二辩、三辩、 四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有( ) A. 14种 B. 16种 C. 20种 D. 24种12.已知定义在实数集R 上的函数()f x 满足()13f =,且()f x 的导数()f x ' 在R 上恒有()()2f x x R '<∈,则不等式()21f x x <+ 的解集为( ) A. ()1,+∞ B. (),1-∞- C. ()1,1- D. ()(),11,-∞-⋃+∞第II 卷(非选择题)二、填空题13.⎰+30)sin 2(πdx x x = 。
14.()6121x x x ⎛⎫-- ⎪⎝⎭的展开式中, 3x 的系数是____________.(用数字填写答案) 15.函数()32393,f x x x x =--+若函数()()g x f x m =-在R 上有3个零点,则m 的取值范围为__________.16.学校艺术节对同一类的,,,A B C D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C 或D 作品得一等奖”; 乙说:“B 作品获得一等奖”;丙说:“,A D 两项作品未获得一等奖”;丁说:“是C 作品获得一等奖”.若这四位同学只有两位的话是对的,则获得一等奖的是__________.三、解答题17.(10,其中a≥0.18.(12分)设a 为实数,函数f (x )=x 3﹣x 2﹣x+a ,若函数f (x )过点A (1,0),求函数在区间[﹣1,3]上的最值.19.(12分)已知函数()2xf x e x a =-+, x R ∈,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求函数()y f x =的解析式;(2)当x R ∈时,求证: ()2f x x x ≥-+;20.(12分)数列{}n a 满足*153618,n n a a n n N ++=+∈,且14a =. (1)写出{}n a 的前3项,并猜想其通项公式; (2)用数学归纳法证明你的猜想.21.(12分)已知()nxx2323+展开式各项系数的和比它的二项式系数的和大992.(Ⅰ)求n ;(Ⅱ)求展开式中6x 的项; (Ⅲ)求展开式系数最大项.22.(12分)已知函数()()()1ln ,,af x x a xg x a R x+=-=-∈.(1)若1a =,求函数()f x 的极小值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围,( 2.718e =)参考答案1.C2.B3.A4.D5.B6.C .7.D8.A9.B 10.A 11.D 12.A 13.2192π+ 【解析】222330011(2sin )(cos )|()(01)9292x x dx x x ππππ+=-=---=+⎰.考点:定积分的计算. 14.180-【解析】由题意得,()6121x x x ⎛⎫-- ⎪⎝⎭展开式中3x 项为()()()()24424236612121180xC x C x x x ⎛⎫-+--=- ⎪⎝⎭,所以展开式中3x 的系数为180-.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数. 15.(-24,8) 【解析】因为()()()2369313f x x x x x =--=+-',则当(),1x ∈-∞-时, ()0f x '>,函数()y f x =单调递增;当()1,3x ∈-时, ()0f x '<,函数()y f x =单调递减;当()3,x ∈+∞时, ()0f x '>,函数()y f x =单调递增。
所以函数()y f x =在1x =-时取极大值()18f -=, ()y f x =在3x =时取极小值()324f =-,结合图形可知当248m -<<时,函数()y f x =与y m =的图像有三个交点,即函数()y f x m =-有三个零点,应填答案()24,8-。
点睛:解答本题的关键是求出函数()y f x =的极大值()18f -=与极小值()324f =-,然后再结合函数()y f x =的图像将函数()y f x m =-的零点的个数问题转化为两个函数()y f x =与函数y m =的图像的交点的个数问题。
16.B【解析】若甲同学说的话是对的,则丙、丁两位说的话也是对的;若丁同学说的话是对的,则甲、丙两位说的话也是对的,所以只有乙、丙两位说的话是对的,所以获得一等奖的作品是B .17.用分析法证明。
【解析】试题分析:要证32a a +-+<1a a +-成立, 需证132a a +++<11a a++需证32a a +++>1a a ++ 因为31,2a a a a +>++>显然成立,所以原命题成立。
考点:本题主要考查不等式证明,分析法。
点评:容易题,利用分析法证明不等式,从格式上来说,表述要规范。
本题也可转化证明3a a ++<12a a +++,两边平方。
18.函数f (x )的最大值为16,最小值为0. 【解析】试题分析:由题意可得f (1)=1﹣1﹣1+a=0,从而化简f (x )=x 3﹣x 2﹣x+1,f′(x )=3x 2﹣2x ﹣1=(3x+1)(x ﹣1),从而判断函数的单调性再求最值即可. 解:∵函数f (x )过点A (1,0), ∴f(1)=1﹣1﹣1+a=0, ∴a=1,∴f(x )=x 3﹣x 2﹣x+1,f ′(x )=3x 2﹣2x ﹣1=(3x+1)(x ﹣1), ∴f(x )在[﹣1,﹣]上是增函数,在[﹣,1]上是减函数, 在[1,3]上是增函数;而f (﹣1)=﹣1﹣1+1+1=0, f (﹣)=﹣﹣++1=1+=,f (1)=0,f (3)=27﹣9﹣3+1=16,故函数f (x )的最大值为16,最小值为0. 19.(1)()21xf x e x =--;(2)见解析;【解析】试题分析:(1)利用导函数研究函数切线的方法可得函数的解析式为()21xf x e x =--.(2)构造新函数()()21xg x f x x x e x =+-=--.结合函数的最值和单调性可得()2f x x x ≥-+.(1)根据题意,得()'2xf x e x =-,则()'01f b ==.由切线方程可得切点坐标为()0,0,将其代入()y f x =,得1a =-, 故()21xf x e x =--.(2)令()()21xg x f x x x e x =+-=--.由()'10xg x e =-=,得0x =,当(),0x ∈-∞, ()'0g x <, ()y g x =单调递减; 当()0,x ∈+∞, ()'0g x >, ()y g x =单调递增. 所以()()min 00g x g ==,所以()2f x x x ≥-+.20.(1)62n a n =-(2)见解析【解析】试题分析: (1)由1234,10,16a a a ===,猜想62n a n =-;试题解析:解:(1)1234,10,16a a a ===,猜想62n a n =-;(2)①验证1n =时成立; ②假设,n k k N +=∈时,猜想成立,即有62k a k =-,由153618k k a a k ++=+,,及62k a k =-,证得1n k =+时成立,故命题成立.(2)①当1n =时, 14612a ==⨯-成立;②假设,n k k N +=∈时,猜想成立,即有62k a k =-, 由153618k k a a k ++=+,,及62k a k =-,得()164612k a k k +=+=+-,即当1n k =+时猜想成立, 由①②可知, 62n a n =-对一切正整数n 均成立. 21.(Ⅰ)5n =(Ⅱ)690x (Ⅲ)263405x 【解析】试题分析:(Ⅰ)99224=-n n Θ,322=∴n ,.5=∴n 4分(Ⅱ)()()3410525325133r rr rrr r xC x x CT +-+==,令63410=+r,得2=r . 展开式中6x 的项为662253903x x C T ==. 8分(Ⅲ)设第1+r 项的系数为1+r t ,则rrr C t 351=+,由⎩⎨⎧≥≥+++rr r r t t t t 121,得2927≤≤r ,所以4=r . 展开式系数最大项为32632644554053x x C T ==. 12分考点:二项式定理点评:二项式定理()na b +中通项1r n r rr n T C a b -+=是常考点,利用其可求出任意一项;展开式的二项式系数和为2n,系数和只需令未知量为1即可22.(1)1;(2)详见解析;(3):或.【解析】试题分析:(1)求出()f x 的导函数,研究单调性,即可得到函数的极小值;(2)对参数a 分类讨论,明确函数的单调区间;(3)原问题等价于在区间[]1,e 上存在一点0x ,使得,即求函数()h x 的最小值即可.试题解析: (1)的定义域为,当时,,,(0,1) 1 -+极小值所以在处取得极小值1.(2),,①当时,即时,在上,在上,所以在上单调递减,在上单调递增;②当,即时,在上,所以,函数在上单调递增.综上所述,①当时,的单调递减区间是,单调递增区间是;②当时,函数的单调递增区间是,不存在减区间.(3)在上存在一点,使得成立,即在上存在一点,使得,即函数在上的最小值小于零.由(2)可知①即,即时,在上单调递减,所以的最小值为,由可得.所以;②当,即时,在上单调递增.所以最小值为,由可得;③当,即时,可得最小值为,因为,所以,,故,此时,不成立.综上讨论可得所求的范围是:或.。