GB1172-74—金属硬度与强度换算
【免费下载】 压痕直径与布氏硬度及相应洛氏硬度对照表
![【免费下载】 压痕直径与布氏硬度及相应洛氏硬度对照表](https://img.taocdn.com/s3/m/4ac1821bb307e87100f6963b.png)
附录二压痕直径与布氏硬度及相应洛氏硬度对照表HB HR HB HRd102d54d2.530D210D2 2.5D2HRB HRC HR Ad102d54d2.530D210D2 2.5D2HRBHR C HR A2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.902.953.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.7571268263562760157855553451449547746144442941540138837536335234133132131130229328527726926212912512111711411010710410197.795.092.389.787.234.633.432.331.330.329.328.427.626.725.925.224.523.723.122.421.86765636159585654525149484745444341403938373635343331302928278584838281807978777676757473737271717069696868676766669565643.803.853.903.954.004.054.104.154.204.254.304.354.404.454.504.554.604.654.704.754.804.854.904.955.005.055.105.155.205.2525524824123522922321722120720119719218718317917417016716315915615214914614314013713413112884.982.680.478.376.374.372.470.668.867.165.563.962.460.959.558.156.855.554.353.051.950.749.648.647.546.545.544.643.742.821.220.720.119.619.118.618.117.617.216.816.416.015.615.214.914.514.213.913.613.313.012.712.412.211.911.611.411.210.910.71009998979796959493929189888786858483828180787776757472712625242322212064636362626161(续表)HB HR HB HR d102d54d2.530D210D2 2.5D2HRB HRC HR Ad102d54d2.530D210D2 2.5D2HRBHR C HR A5.30 5.35 5.40 5.45 5.5012612312111811641.941.040.239.438.610.510.313.19.809.6669696766655.555.605.655.705.7511411110910710537.937.136.435.735.09.469.279.108.938.766462615958附录三黑色金属硬度和强度换算表(GB1172—74)硬 度洛 氏表 面 洛 氏维 氏布 氏HRC HRA HR15N HR30N HR45N HV HB② (F =30D2)抗拉强度(MPa)70.0 69.5 69.0 68.5 68.086.686.386.185.885.51037101799797895767.5 67.0 66.5 66.0 65.585.285.084.784.484.194192390688987265.0 64.5 64.0 63.5 63.083.983.683.383.182.892.292.191.991.891.781.381.080.680.279.871.771.270.670.169.585684082581079562.5 62.0 61.5 61.0 60.582.582.282.081.781.491.591.491.291.090.879.479.078.678.177.769.068.467.967.366.878076675273972660.0 59.5 59.0 58.5 58.081.280.980.680.380.190.690.490.290.089.877.376.976.576.175.666.265.665.164.563.97137006886766642607255124962443239157.5 57.0 56.5 56.0 55.579.879.579.379.078.789.689.489.188.988.675.274.874.473.973.563.462.862.261.761.16536426316206092341229322462201215755.0 54.5 54.0 53.5 53.078.578.277.977.777.488.488.187.987.687.473.172.672.271.871.360.559.959.458.858.25995895795705612115207420341995195752.5 52.0 51.5 51.0 50.577.176.976.676.376.187.186.886.686.386.070.970.470.069.569.157.657.156.555.955.35515435345255175014941921188518511817178550.0 49.5 49.0 48.5 48.075.875.575.375.074.085.785.585.284.984.668.668.267.767.366.854.754.253.653.052.45095014934854784884814744684611753172216921663163547.5 47.0 46.5 46.0 45.574.574.273.973.773.484.384.083.783.583.266.465.965.565.064.651.851.250.750.149.547046345644944345544944243643016081581155515291504洛 氏表 面 洛 氏维 氏布 氏HRC HRA HR15N HR30N HR45N HV HB② (F =30D2)抗拉强度(MPa)45.0 44.5 44.0 43.5 43.073.272.972.672.472.182.982.682.382.081.764.163.663.262.762.348.948.347.447.146.54364294234174114244184134074011480145714341411138942.5 42.0 41.5 41.0 40.571.871.671.371.070.881.481.180.880.580.2.61.861.360.960.460.045.945.444.844.243.64053993933883823963913853803751368134713271307128740.0 39.5 39.0 38.5 38.070.570.370.079.979.679.379.078.959.559.058.658.157.643.042.441.841.240.63773723673623573703653603553501268125012321214119737.5 37.0 36.5 36.0 35.578.478.177.877.577.257.256.756.255.855.340.039.438.838.237.63523473423383333453413363323271180116311471131111535.0 34.5 34.0 33.5 33.077.076.776.476.175.854.854.453.953.453.037.036.535.935.334.73293243203163123233183143103061100108510701056104232.5 32.0 31.5 31.0 30.575.575.274.974.774.452.552.051.651.150.634.133.532.932.331.730830430029629230229829429128710281015100198997630.0 29.5 29.0 28.5 28.074.173.873.573.373.050.249.749.248.748.331.130.529.929.328.728928528127827428328027627326996495194092891727.5 27.0 26.5 26.0 25.572.272.472.271.971.647.847.346.946.445.928.127.526.926.325.727126826426125826626326025725490689588487486425.0 24.5 24.0 23.5 23.071.471.170.870.670.345.545.044.544.043.625.124.523.923.322.725525224924624325124824524224085484483582581622.5 22.0 21.5 21.0 20.570.069.869.569.369.043.142.642.241.741.222.121.521.020.419.824023723423122923723423222922780879979178277420.0 19.5 19.0 18.5 18.068.868.568.368.067.840.740.339.839.338.919.218.618.017.416.822622322121821622522222021821676775975274473717.5 17.067.667.338.437.916.215.6214211214211727724洛 氏表 面 洛 氏维 氏布 氏HRB HR15N HR30N HR45N HV HB② (F =30D2)抗拉强度(MPa)100.0 99.5 99.0 98.5 98.091.591.391.291.190.981.781.481.080.780.471.771.270.770.269.623323022722522280379378377376397.5 97.0 96.5 96.0 95.590.890.690.590.490.280.179.879.479.178.869.168.668.167.667.121921621421120875474473572671795.0 94.5 94.0 93.5 93.090.189.989.889.789.578.578.277.877.577.266.566.065.565.064.520620320119919670870069168867592.5 92.0 91.5 91.0 90.589.489.389.189.088.876.976.676.275.975.664.063.463.962.461.919419118918718566765965164463690.0 89.5 89.0 88.5 88.088.788.688.488.388.175.375.074.674.374.061.460.960.359.859.318318017817617462962161460760187.5 87.0 86.5 86.0 85.588.087.987.787.687.573.773.473.072.772.458.858.357.857.256.717217016816616559458758157556885.0 84.5 84.0 83.5 83.087.387.287.086.986.872.171.871.471.170.856.255.755.254.754.116316115915715656255655054553982.5 82.0 81.5 81.0 80.586.686.586.386.286.170.570.269.869.569.253.653.152.652.151.615415215114914814013813713613453452852351851.380.0 79.5 79.0 78.5 78.085.985.885.785.585.468.968.668.267.967.651.050.550.049.549.014614514314214013313213012912850850349849448977.5 77.0 76.5 76.0 75.585.285.185.084.884.767.367.066.666.366.048.547.947.446.946.413913813613513412712612512412348548047647246875.0 74.5 74.0 73.5 73.084.584.484.384.184.065.765.465.164.764.445.945.444.844.343.8132131130129128122121120119118464460456452449洛 氏表 面 洛 氏维 氏布 氏HRB HR15N HR30N HR45N HV HB② (F =30D2)抗拉强度(MPa)72.5 72.0 71.5 71.0 70.583.983.783.683.483.364.163.863.563.162.843.342.842.341.741.212612512412312211711611511511444544243943543270.0 69.5 69.0 68.5 68.083.283.082.982.782.662.562.261.961.561.240.740.239.739.238.612112011911811711311211211111042942642342041867.5 67.0 66.5 66.0 65.582.582.382.282.181.960.960.660.359.959.638.137.637.136.636.111611511511411311010910810810741541241040740565.0 64.5 64.0 63.5 63.081.881.681.581.481.259.359.058.758.358.035.535.034.534.033.511211111011010910710610610510540340039839639462.5 62.0 61.5 61.0 60.581.180.980.880.780.557.757.457.156.756.432.932.431.931.430.91081081071061051041041031031023923903883863856080.456.130.4105102383①是近似强度值,不分钢种,用于换算精度要求不高时,但不适用于铸铁。
强度与硬度换算表
![强度与硬度换算表](https://img.taocdn.com/s3/m/b0cdeb34a32d7375a41780eb.png)
布氏硬度 HB30D2
布氏硬度 d10、2d5、
4d2.5mm
抗拉强度
σbMPa 碳钢
341
3.30
1200
345
3.28
1215
350
3.26
12313553源自241246360
3.21
1263
365
3.19
1279
370
3.17
1296
375
3.15
1213
380
3.13
1331
385
3.11
1348
表面洛氏 硬度
HR45N
39.4 40.0 40.6 41.2 41.8 42.4 43.0 43.6 44.2 44.8 45.4 45.9 46.5 47.1 47.7 48.3 48.9 49.5 50.1 50.7 51.2 51.8 52.4 53.0 53.6 54.2 54.7 55.3 55.9 56.5 57.1 57.6 58.2 58.8 59.4 59.9 60.5 61.1 61.7 62.2
表面洛氏 硬度
HR15N
78.1 78.4 78.7 79.0 79.3 79.6 79.9 80.2 80.5 80.8 81.1 81.4 81.7 82.0 82.3 82.6 82.9 83.2 83.5 83.7 84.0 84.3 84.6 84.9 85.2 85.5 85.7 86.0 86.3 86.6 86.8 87.1 87.4 87.6 87.9 87.6 88.4 88.6 88.9 89.1
829
237
3.93
839
240
3.91
849
242
硬度及强度换算表
![硬度及强度换算表](https://img.taocdn.com/s3/m/9ad91554960590c69fc376db.png)
硬度表示材料抵抗硬物体压入其外表的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料外表,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm 2 (N/mm 2)。
2.洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm 的钢球,在一定载荷下压入被测材料外表,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的标度来表示:• HRA :是采用60kg 载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
• HRB :是采用100kg 载荷和直径1.58mm 淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
• HRC :是采用150kg 载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
3 维氏硬度(HV)以120kg 以内的载荷和顶角为136°的金刚石方形锥压入器压入材料外表,用材料压痕凹坑的外表积除以载荷值,即为维氏硬度HV 值(kgf/mm 2)。
邵氏硬度〔HA 〕 邵氏硬度专用在橡胶方面的硬度测试 做橡胶的应该知道怎么测邵氏硬度〔HA 〕 用于橡胶、塑料等材料的硬度测定,将一定形状的钢制压针,在试验力作用下压入试样外表,当压足平面与试样外表严密贴合时,测量压针相对压足平面的伸出长度。
通过公式计算出邵氏硬度值。
具有构造简单、使用方便、型小体轻、读数直观等特点。
A 型参数:刻度盘值:0-100HA ;压针行程范围:0—2.5mm ;压针端部压力:0.055N-8.05N ;压针顶 端直径:Φ0.79mm+\-0.03m m 。
黑色金属硬度与强度换算值新老标准对比[1]
![黑色金属硬度与强度换算值新老标准对比[1]](https://img.taocdn.com/s3/m/39cf00f5fab069dc502201b5.png)
1. 在形式上 “, 99 年标准”换算值表分为表 1 与 新老标准的对应值差越大 。举例说明见下表 。
表 2 。表 1 为碳钢及合金钢硬度与强度换算值 ,表 2
表 新老标准洛氏硬度与维氏硬度对照值差别比较
为低碳钢硬度与强度换算值 。 2. 换算值表中“74 年标准”是从高硬度值开始
排列 。“99 标准”则相反 ,都改为从低硬度值开始排
发现 “, 99 年标准”与“74 年标准”有不少差别 ,为了 标准中列出的 HRA 值几乎全部是无意义的 。
广大热处理工作者应用方便 ,现将“74 年标准”与
7. 换算表中 HRC 与 HV 的对照值 “, 74 年标
“99 年标准”的差异之处作比较 ,供参考 。
准”与“99 年标准”有较大差别 ,趋势是硬度值越高 ,
774 742 736 782 747
781
740
784 751 744 787 753
788
749
793 760 753 792 760
794
758
803 769 761 797 767
801
767
813 779 770 803 774
809
777
823 788 779 809 781
816
786
HRC 的有效测量范围为 (20~70) 。
8. “74 年标准”中作的说明 : ( 17. 0 ~ 19. 5)
3. 换算值表中抗拉强度σb 单位已由公斤/ 平 HRC 和 (67. 5~70. 0) HRC 区间与布氏硬度 (450~
方毫米改为 N/ mm2 ,相应的数值均作改变 。特别提 501) 区间的换算超出洛氏和布氏 ( HBS) 硬度试验法
强度和硬度换算表
![强度和硬度换算表](https://img.taocdn.com/s3/m/73cd670690c69ec3d5bb7571.png)
3.70 961 920 909 912 897 918 930
919 917
24 28.5
73.3 48.7 29.3 278 273
3.67 972 932 921 922 908 930 941
931 928
25 29.0
73.5 49.2 29.9 281 276
3.65 984 943 933 932 919 941 951
86.3
86.6
86.8
87.1
87.4
87.6
87.9
87.6
88.4
88.6
88.9
89.1
序 号
洛氏 硬度 HRC
洛氏 硬度 HRA
表面 洛氏 硬度 HR15N
81 57.0 79.5 82 57.5 79.8 83 58.0 80.1 84 58.5 80.3 85 59.0 80.6 86 59.5 80.9 87 60.0 81.2 88 60.5 81.4 89 61.0 81.7 90 61.5 82.0 91 62.0 82.2 92 62.5 82.5 93 63.0 82.8 94 63.5 83.1 95 64.0 83.3 96 64.5 83.6 97 65.0 83.9 98 65.5 84.1 99 66.0 84.4 100 66.5 84.7
89.4 89.6 89.8 90.0 90.2 90.4 90.6 90.8 91.0 91.2 91.4 91.5 91.7 91.8 91.9 92.1 92.2
58.1 58.6 59.0 59.5 60.0 60.4 60.9 61.3 61.8 62.3 62.7 63.2 63.6 64.1 64.6 65.0 65.5 65.9 66.4 66.8 67.3 67.7 68.2 68.6 69.1 69.5 70.0 70.4 70.9 71.3 71.8 72.2 72.6
硬度及强度换算表
![硬度及强度换算表](https://img.taocdn.com/s3/m/c84c1a637e21af45b307a813.png)
硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
2.洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的标度来表示:∙HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
∙HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
∙HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
3 维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值(kgf/mm2)。
邵氏硬度(HA)邵氏硬度专用在橡胶方面的硬度测试做橡胶的应该知道怎么测邵氏硬度(HA)用于橡胶、塑料等材料的硬度测定,将一定形状的钢制压针,在试验力作用下压入试样表面,当压足平面与试样表面紧密贴合时,测量压针相对压足平面的伸出长度。
通过公式计算出邵氏硬度值。
具有结构简单、使用方便、型小体轻、读数直观等特点。
A型参数:刻度盘值:0-100HA;压针行程范围:0—2.5mm;压针端部压力:0.055N-8.05N;压针顶端直径:Φ0.79mm+\-0.03m m。
黑色金属硬度及强度换算表硬度抗拉强度(公斤/毫米2)洛氏表面洛氏维氏 布氏碳钢 铬钢 铬钒钢 铬镍钢 铬钼钢 铬镍 钼钢 铬锰硅钢 超高强度钢不锈钢 不分 钢种 HRC HRA H R15N H R30N H R45N HV HB30D 2(70.0) 86.6 1037 本栏适用二换算精度要求不高的一般钢种(69.5) 86.3 1017 (69.0) 86.1 997 (68.5) 85.8 978 (68.0) 85.5 959 (67.5) 85.2 941 67.0 85.0 923 66.5 84.7 90666.0 84.4 889 65.5 84.1 872 65.0 83.9 92.2 81.3 71.7 856 64.5 83.6 92.1 81.0 71.2 840 64.0 83.3 91.9 80.6 70.6 825 63.5 83.1 91.8 80.2 70.1 810 63.0 82.8 91.7 79.8 69.5 795 62.5 82.5 91.5 79.4 69.0 780 62.0 82.2 91.4 79.0 68.4 766 61.5 82.0 91.2 78.6 67.9 752 61.0 81.7 91.0 78.1 67.3 739 60.5 81.4 90.8 77.7 66.8 726 60.0 81.2 90.6 77.3 66.2 713 269.1 260.7 59.5 80.9 90.4 76.9 65.6 700 262.3 255.1 59.0 80.6 90.2 76.5 65.1 688 255.8 249.6 58.5 80.3 90.0 76.1 64.5 676 249.6 244.3 58.0 80.1 89.8 75.6 63.9 664 243.7 239.1 57.5 79.8 89.6 75.2 63.4 653 238. 234.1 57.0 79.5 89.4 74.8 62.8 642 232.6 229.3 56.5 79.3 89.1 74.4 62.2 631 227.4 224.6 56.0 79.0 88.9 73.9 61.7 620 222.4 220.1 55.5 78.7 88.6 73.5 61.1 609217.7215.7 55.0 78.5 88.4 73.1 60.5 599 206.6 209.8 208.6 213.1 211.5 54.5 78.2 88.1 72.6 59.9 589 203.3 206.1 204.8 208.7 207.4 54.0 77.9 87.9 72.2 59.4 579 200.0 202.5 201.0 204.5 203.4 53.5 77.7 87.671.858.8570196.8 199.0197.4 200.5199.553.0 77.4 87.4 71.3 58.2 561 193.7 195.5 192.5 198.5 193.8 196.7 195.7 52.5 77.1 87.1 70.9 57.6 551 190.6 192.0 189.3 195.1 190.3 193.0 192.1 52.0 76.9 86.8 70.4 57.1 543 188.1 187.5 188.7 186.1 191.8 187.0 189.4 188.5 51.5 76.6 86.6 70.0 56.5 534 184.1 184.5 185.4 183.0 188.6 183.6 186.0 185.1 51.0 76.3 86.3 69.5 55.9 525 (501) 180.3 181.6 182.1 179.9 185.4 180.4 182.7 181.7 50.5 76.1 86.0 69.1 55.3 517 (494) 176.7 178.7 179.0 176.9 182.3 177.3 179.5 178.5硬度抗拉强度(公斤/毫米2)洛氏表面洛氏维氏布氏碳钢铬钢铬钒钢铬镍钢铬钼钢铬镍钼钢铬锰硅钢超高强度钢不锈钢不分钢种HRC H RA H R15N H R30N H R45N HV HB30D250.0 75.8 85.7 68.6 54.7 509 (488) 174.4 173.1 175.8 175.8 173.9 179.3 174.2 176.5 175.9 175.3 49.5 75.5 85.5 68.2 54.2 501 (481) 171.4 169.8 173.0 172.8 171.0 176.2 171.2 173.5 172.3 172.2 49.0 75.3 85.2 67.7 53.6 493 (474) 168.6 166.6 170.2 169.8 168.2 173.3 168.3 170.7 168.8 169.2 48.5 75.0 84.9 67.3 53.0 485 (468) 165.8 163.5 167.5 166.9 165.4 170.4 165.4 167.9 165.5 166.3 48.0 74.7 84.6 66.8 52.4 478 (461) 163.1 160.5 164.9 164.0 162.6 167.6 162.7 165.2 162.3 163.5 47.5 74.5 84.3 66.4 51.8 470 (455) 160.6 157.6 162.3 161.2 159.9 164.8 160.0 162.5 159.2 160.8 47.0 74.2 84.0 65.9 51.2 463 449 158.1 154.9 159.7 158.4 157.3 162.0 157.3 160.0 156.3 158.1 46.5 73.9 83.7 65.5 50.7 456 442 155.6 152.2 157.2 155.7 154.7 159.3 154.7 157.5 153.5 155.5 46.0 73.7 83.5 65.0 50.1 449 436 153.3 149.7 154.7 153.1 152.2 156.7 152.2 155.0 150.8 152.9 45.5 73.4 83.2 64.6 49.5 443 430 151.0 147.2 152.2 150.5 149.7 154.1 149.8 152.6 148.2 150.4 45.0 73.2 82.9 64.1 48.9 436 424 148.8 144.8 149.8 148.0 147.2 151.6 147.4 150.2 145.7 148.0 44.5 72.9 82.6 63.6 48.3 429 418 146.6 142.6 147.5 145.5 144.8 149.1 145.0 147.8 143.3 145.7 44.0 72.6 82.3 63.2 47.7 423 413 144.5 140.3 145.2 143.1 142.5 146.7 142.7 145.5 141.0 143.4 43.5 72.4 82.0 62.7 47.1 417 407 142.5 138.2 142.9 140.8 140.2 144.3 140.5 143.2 138.7 141.1 43.0 72.1 81.7 62.3 46.5 411 401 140.5 136.1 140.7 138.5 137.9 142.0 138.4 140.9 136.6 138.9 42.5 71.8 81.4 61.8 45.9 405 396 138.6 134.1 138.5 136.2 135.7 139.7 136.2 138.5 134.5 136.8 42.0 71.6 81.1 61.3 45.4 399 391 136.7 132.2 136.4 134.0 133.6 137.5 134.2 136.2 132.5 134.7 41.5 71.3 80.8 60.9 44.8 393 385 134.8 130.3 134.3 131.9 131.5 135.3 132.2 133.9 130.5 132.7 41.0 71.1 80.5 60.4 44.2 388 380 133.1 128.4 132.2 129.8 129.4 133.1 130.2 131.5 128.6 130.7 40.5 70.8 80.2 60.0 43.6 382 375 131.3 126.7 130.2 127.7 127.4 131.0 128.3 129.1 126.8 128.7硬度抗拉强度(公斤/毫米2)洛氏表面洛氏维氏布氏碳钢铬钢铬钒钢铬镍钢铬钼钢铬镍钼钢铬锰硅钢超高强度钢不锈钢不分钢种HRC H RA H R15N H R30N H R45N HV HB30D240.0 70.5 79.9 59.5 43.0 377 370 129.6 124.9 128.2 125.7 125.4 129.0 126.4 126.7 125.0 126.8 39.5 70.3 79.6 59.0 42.4 372 365 127.9 123.2 126.2 123.8 123.5 127.0 124.6 124.3 123.3 125.0 39.0 70.0 79.3 58.6 41.8 367 360 126.3 121.6 124.3 121.9 121.6 125.0 122.8 121.8 121.6 123.238.5 79.0 58.1 41.2 362 355 124.6 119.9 122.5 120.0 119.7 123.1 121.1 119.3 120.0 121.4 38.0 78.7 57.6 40.6 357 350 123.1 118.4 120.6 118.2 117.9 121.2 119.4 118.4 119.7 37.5 78.4 57.2 40.0 352 345 121.5 116.8 118.8 116.5 116.2 119.4 117.7 116.8 118.0 37.0 78.1 56.7 39.4 347 341 120.0 115.3 117.1 114.8 114.4 117.6 116.1 115.3 116.3 36.5 77.8 56.2 38.8 342 336 118.5 113.8 115.3 113.1 112.8 115.8 114.6 113.8 114.7 36.0 77.5 55.8 38.2 338 332 117.0 112.4 113.6 111.5 111.1 114.1 113.0 112.3 113.1 35.5 77.2 55.3 37.6 333 327 115.6 110.9 112.0 109.9 109.5 112.5 111.5 110.9 111.5 35.0 77.0 54.8 37.0 329 323 114.1 109.5 110.4 108.4 107.9 110.8 110.1 109.5 110.0 34.5 76.7 54.4 36.5 324 318 112.7 108.2 108.8 106.9 106.4 109.2 108.6 108.1 108.5 34.0 76.4 53.9 35.9 320 314 111.3 106.8 107.2 105.4 104.9 107.7 107.3 106.7 107.0 33.5 76.1 53.4 35.3 316 310 110.0 105.5 105.7 104.0 103.5 106.2 105.9 105.4 105.6 33.0 75.8 53.0 34.7 312 306 108.6 104.2 104.2 102.7 102.0 104.7 104.6 104.1 104.2 32.5 75.5 52.5 34.1 308 302 107.3 102.9 102.7 101.3 100.7 103.2 103.3 102.8 102.8 32.0 75.2 52.0 33.5 304 298 106.0 101.6 101.3 100.1 99.3 101.8 102.0 101.5 101.5 31.5 74.9 51.6 32.9 300 294 104.7 100.4 99.9 8.8 98.0 100.5 100.8 100.3 100.1 31.0 74.7 51.1 32.3 296 291 103.4 99.1 98.5 97.6 96.7 99.1 99.6 99.0 98.9 30.5 74.4 50.6 31.7 292 287 102.1 97.9 97.2 96.4 95.5 97.8 98.5 97.8 97.6硬度抗拉强度(公斤/毫米2)洛氏表面洛氏维氏布氏碳钢铬钢铬钒钢铬镍钢铬钼钢铬镍钼钢铬锰硅钢超高强度钢不锈钢不分钢种HRC HRA H R15N H R30N H R45N HV HB30D230.0 74.1 50.2 31.1 289 283 100.9 96.7 95.9 95.3 94.3 96.6 97.3 96.6 96.4 29.5 73.8 49.7 30.5 285 280 99.7 95.5 94.6 94.2 93.1 95.3 96.2 95.4 95.1 29.0 73.5 49.2 29.9 281 276 98.4 94.3 93.3 93.2 91.9 94.1 95.1 94.2 94.0 28.5 73.3 48.7 29.3 278 273 97.2 93.2 92.1 92.2 90.8 93.0 94.1 93.1 92.8 28.0 73.0 48.3 28.7 274 269 96.1 92.0 90.9 91.2 89.7 91.8 93.0 91.9 91.7 27.5 72.7 47.8 28.1 271 266 94.9 90.9 89.7 90.2 88.7 90.7 92.0 90.8 90.6 27.0 72.4 47.3 27.5 268 263 93.7 89.8 88.6 89.3 87.7 89.7 91.0 89.7 89.5 26.5 72.2 46.9 26.9 264 260 92.6 88.7 87.5 88.4 86.7 88.6 90.1 88.5 88.4 26.0 71.9 46.4 26.3 261 257 91.4 87.6 86.4 87.6 85.7 87.6 89.2 87.5 87.4 25.5 71.6 45.9 25.7 258 254 90.3 86.5 85.3 86.8 84.7 86.6 88.2 86.4 86.4 25.0 71.4 45.5 25.1 255 251 89.2 85.5 84.3 86.0 83.8 87.4 85.3 85.4 24.5 71.1 45.0 24.5 252 248 88.1 84.4 83.3 85.2 83.0 86.5 84.3 84.4 24.0 70.8 44.5 23.9 249 245 87.0 83.4 82.3 84.5 82.1 85.6 83.2 83.5 23.5 70.6 44.0 23.3 246 242 86.0 82.4 81.3 83.8 81.3 84.8 82.2 82.5 23.0 70.3 43.6 22.7 243 240 84.9 81.4 80.3 83.1 80.5 84.0 81.2 81.6注:1、带括号的硬盘值仅供参考。
基于SPS技术的异种钢焊接
![基于SPS技术的异种钢焊接](https://img.taocdn.com/s3/m/918bc41d78563c1ec5da50e2524de518964bd316.png)
收稿日期:2008-09-29基金项目:甘肃省有色金属新材料省部共建国家重点实验室开放基金资助项目(SK L05002)基于SPS 技术的异种钢焊接 张国栋, 洪 敏, 张建强, 张富巨 (武汉大学焊接研究所,武汉 430072)摘 要:采用SPS 技术进行了异种钢的焊接研究.在不同的SPS 工艺参数下实现了45钢/1828不锈钢的焊接,对焊接接头的显微组织、化学成分、断口特征及显微硬度分布进行了分析,研究了SPS 焊接工艺参数对接头组织和性能的影响规律,并提出了SPS 焊接的冶金结合机理.结果表明,SPS 技术作为一种全新的材料焊接方法,可以在短时、低温、低压下实现异种钢的良好扩散焊接;SPS 工艺中温度对焊接接头组织和性能的影响最大,保温时间和加载压力的影响相对较小.关键词:放电等离子;异种钢;焊接中图分类号:TG 456.9 文献标识码:A 文章编号:0253-360X (2009)02-0141-04张国栋0 序 言异种材料连接可满足构件在工程中不同使用要求,节约成本,提高经济效益.随着材料加工工艺和方法的发展,已经可以将许多异种材料进行有效的冶金连接.目前常采用的焊接方法主要有钎焊、激光焊、摩擦焊等,但这些方法存在焊接温度过高,导致基体材料长大、出现裂纹或结合强度较低等问题,现阶段扩散焊作为一种精密连接方式,很大程度上缓解了这些问题.但通常需要较长时间和较大压力才能达到较好的冶金连接.放电等离子技术SPS (spark plasma sintering )是近年来发展起来的一种新型的快速材料合成技术.该技术融等离子活化、热压、电阻加热为一体,具有升温速度快、时间短、试样晶粒均匀、容易控制细微结构、获得材料致密度高、性能好等特点[1,2].现阶段除应用于各种新材料的制备和硬质合金的合成外,还可进行多层粉末的同步焊接、固体-粉末-固体及固体与固体之间的结合[3,4].采用SPS 技术进行碳钢/不锈钢异种材料的焊接,目前国内外尚未见到相关报道.SPS 技术作为集电场、应力场、温度场等多场耦合技术于一体的新型快速制备工艺,为异种钢焊接提供了一种短时、低温、低压扩散连接的新方法、新工艺,也为其它难焊材料的焊接提供了重要的理论和实践上的借鉴.1 试验方法试验材料为45钢与1828奥氏体不锈钢(1Cr18Ni9T i ),其化学成分如表1,表2所示.采用线切割制成直径<20mm ×5mm 的圆柱试样,焊前将待连接表面用砂纸打磨、抛光,酒精清洗除去杂质后装入<40mm (外径)×20mm (内径)×40mm (高)的SPS 设备高强石墨模具内,装试样时在试样与模具壁之间及上下压头间分别用石墨纸隔开,防止高温时试样与模具内壁粘结.采用日本住友石炭公司SPS3.20MKⅣ型放电等离子设备进行焊接.图1为试样装配示意图,基本试验焊接工艺参数如表3所示.图1 SPS 焊接装置示意图Fig 11 Schematic diagram of SPS welding equipment第30卷第2期2009年2月焊 接 学 报TRANS ACTI ONS OF THE CHI NA WE LDI NG I NSTIT UTI ONV ol.30 N o.2February 2009表1 45钢化学成分(质量分数,%)Table 1 Chemical compo sition of 45steelMn P S S i Cr Ni Cu Fe0.50.0350.030.240.250.250.25余量表2 1828不锈钢(1Cr18Ni9T i )化学成分(质量分数,%)Table 2 Chemical compo sition of 1Cr18Ni9T iMn P S S i Cr Ni T i Fe2.00.0350.031.0018.09.500.50余量表3 SPS 焊接试验工艺参数Table 3 Procedure parameters of SPS welding 编号烧结温度T /℃轴向力F /kN保温时间t /m in1600 2.532600 5.053800 2.5548005.032 试验结果及分析2.1 接头宏观形貌用表3所示的SPS 工艺参数形成的45钢和1828钢的焊接接头如图2a 所示,可见宏观焊接接头表面光洁,试样整体基本无塑性变形,焊后不需进行机械加工,接头成型美观.沿接头纵向切取制备成一系列金相试样如图2b 所示,清晰可见焊缝两侧母材界面分明,宏观上不存在传统熔焊过程中粗大的热影响区,表面无裂纹等微观缺陷.图2 SPS 焊接宏观接头Fig 12 Macrograph of joints by SPS2.2 接头显微组织沿界面焊接熔合线将接头分为焊缝区、扩散转变区和母材区.图3为不同的SPS 焊接工艺参数下接头金相组织,各工艺参数下接头界面连接扩散良好,紧邻焊缝两侧母材均由各自原始组织转变生成铁素体,扩散区与原始母材均匀过渡.不同工艺参数下铁素体晶粒度45钢一侧稍大,相变扩散区宽度不锈钢一侧稍大.表4为不同焊接工艺参数时扩散转变铁素体区宽度.45钢一侧沿扩散区向外铁素体与珠光体均匀分布.距离焊缝较远处,铁素体相对较少,沿珠光体界面均匀呈网状分布.图3 SPS 焊接接头金相组织Fig 13 Metallographic structure s of SPS joints表4 不同工艺参数时扩散区宽度Table 4 Width of diffusion zone under different proce ss 编号45钢一侧宽度L 1/μm1828钢一侧宽度L 2/μm166552100653801424102167图4为800℃,5kN ,3min SPS 连接工艺下接头SE M 微观组织,可清晰的观察到紧邻不锈钢一侧铁素体晶粒为等轴晶,该区域宽约为20~30μm.焊缝界面区存在约1~2μm 的白色块状碳化物析出层.图4 SPS 焊接接头的SEM 微观组织形貌Fig 14 SEM morphologie s of SPS joints2.3 接头元素浓度分布采用EPMA 测定扩散界面附近的C ,Si ,T i ,Cr ,142 焊 接 学 报第30卷Mn ,Ni 元素浓度分布,图5为800℃,5kN ,3min 工艺参数时各元素的浓度分布.在焊缝两侧存在化学位浓度差及单向脉冲放电电流和轴向压力条件下,较短时间内元素扩散已非常均匀,界面两侧出现明显的互扩散现象,Mn 元素从不锈钢越过焊缝向45钢一侧作长程均匀扩散.Ni ,Cr 等元素两侧原始浓度相差较大,同为置换式原子,在SPS 工艺下扩散趋势基本一致,沿焊缝处向45钢一侧发生了明显的下坡扩散,Si 元素在不同工艺下扩散区扩散都比较均匀,界面处浓度较高,C ,T i 母材原始浓度相差较小,均为强碳化物形成元素,在SPS 工艺下分别作长程均匀扩散.图5 扩散连接界面附近的各元素浓度分布Fig 15 E lements concentration of diffuse inter face2.4 接头断口形貌接头界面纵向非标准断口形貌如图6所示.纵向断裂时结合面两侧均为韧性撕裂的韧窝形貌,明显可见焊缝两侧韧窝大小不同.45钢一侧韧窝大小不一,整体韧窝花样相对较大,不锈钢一侧韧窝花样较小,韧窝均匀的分布于整个SPS 连接接头.焊缝两侧铁素体组织在扩散后大小不一,形成不同韧窝特征区,可以从断口形貌上直观的反映.2.5 接头显微硬度分布沿焊缝中心向两侧母材每20μm 打点进行显微硬度分析,对比后发现不同连接工艺参数下接头硬度总体分布趋势一致,如图7所示.焊缝附近微小距离的析出层硬度最高,相比两侧母材有一个明显增高的趋势,初步认为是在SPS 扩散连接时,C 元素与不锈钢中强碳化物合金元素形成了沉淀析出,硬图6 非标准断口微观组织形貌Fig 16 M icro structure of non 2stand fracture surface图7 不同SPS 工艺参数时硬度分布Fig 17 Hardne ss distribution under different proce ss度较高,导致中间部位硬度上升.跨过界面析出层后硬度明显下降,距离界面稍远处呈均匀分布,近焊缝扩散区组织硬度略低于远离焊缝区域的硬度,差别较小.结合金相组织可知焊缝附近组织主要为铁素体,远离焊缝45钢组织为珠光体和铁素体.铁素体硬度本身较珠光体组织要略微低一些.显微硬度计压头落在铁素体上,微观上会造成硬度起伏.不锈钢一侧紧邻焊缝扩散区硬度分布很均匀,沿焊缝往外基本呈平直变化,表明该区扩散非常均匀,性能稳定.根据国家标准G B117274金属硬度与强度换算可知接头焊缝区强度最高,最低处为45钢一侧母材扩散区,在焊接工艺参数为600℃,2.5kN ,3min 时,最低抗拉强度约370MPa.2.6 SPS 焊接机理分析通常SPS 合成时,由特殊电源产生的直流脉冲电压,可以在试样间隙处产生放电等离子体,放电产生的高能粒子撞击材料间接触部分,使表面物质产生蒸发作用而对试样表面起到净化和活化作用,提高扩散连接界面的活性,降低金属原子的扩散自由能,有助于加速原子的扩散作用.第2期张国栋,等:基于SPS 技术的异种钢焊接143在SPS连接工艺下,试样在脉冲电流加热和垂直单向压力的作用下,试样表面微观的凸起处会发生塑性变形和熔化,表面的氧化膜等杂质会被破坏达到紧密接触,由于变形引起的晶格畸变、位错、空位等各种缺陷会在一定程度上堆积,使界面区能量变大,原子处于高激活状态.与此同时,脉冲电流在相邻的金属材料之间瞬间、断续、高频率发生,引起火花放电,并产生大量焦耳热,在界面处向母材两端,会产生一个由高到低的温度梯度,可能导致界面处材料的局部短时熔化.这些能量的补给都能有效的使原子体迁移、晶界迁移都得到加强,因此在试验工艺参数较低的温度和较短时间内可发生充分扩散,产生有效的冶金连接.一般在500℃左右,扩散层在一定时间内开始形成,到600~800℃时最为强烈,800℃时碳扩散达最大值.随着加热时间延长,扩散层就逐渐变宽.由于原始母材本身碳含量一直保持在很低范围内0.1~0.4(质量分数,%),在SPS连接的过程中脉冲电流加热和系统加压的情况下,由于不锈钢一侧合金元素的化学位梯度相对较高,导致45钢母材珠光体中C元素向高合金元素的奥氏体中作扩散迁移,在扩散相变区易形成一个较高硬度的碳化物层,从扫描电镜下的形貌和硬度分布均可以证实.最后扩散结果为,扩散区组织由于碳含量变化以及合金元素扩散及强制冷却的综合作用而发生相变.由扩散区宽度知,温度一定时,压力和扩散保温时间增加,45钢一侧扩散区宽度变大,如600℃,2.5 kN,3min与600℃,5kN,5min SPS工艺参数时,不锈钢一侧扩散区在温度较高时接近温度较低时的2倍;当压力增大但扩散保温时间减少时,如800℃时,2.5kN,5min比800℃,5kN,3min工艺时扩散区的宽度小,可见保温时间对扩散区宽度影响要稍稍大于压力的影响.通过实际SPS扩散连接试验验证,试样保温温度、连接压力以及保温时间等参数对工艺性能的影响,与理论扩散焊接的影响趋势一致,温度对扩散的影响最大,其次是保温时间,压力对扩散的影响最小.3 结 论(1)采用SPS技术,在不同工艺参数实现了45钢和1828不锈钢之间的冶金连接.焊接界面部位元素扩散良好,形成了铁素体带状组织,中间部位生成了碳化物析出层.(2)在不同的SPS工艺参数,接头两侧扩散区宽度不同,较高温度和较大压力下,扩散区宽度相应较大.温度对扩散的影响最大,其次是保温时间,压力对扩散的影响最小.(3)SPS焊接时,脉冲电流的存在使界面部位原子体迁移、晶界迁移得到加强,在较低的温度和较短时间内发生充分扩散,最终产生有效的冶金连接.参考文献:[1] Pan W,Shi S L.M icrostructure and mechanical properties of T i3S iC2/3Y2TZP com posites by spark plasma sintering[J].The European Ce2 ram ic S ociety,2007,27(1):413-417.[2] Balázsi C,Shen Z,Kónya Z,et al.Processing of carbon nanotube re2in forced silicon nitride com posites by spark plasma sintering[J].C om2 posites Science and T echnology,2005,65(5):727-733.[3] 深谷保博,奥本泰久,生田明彦,等.Ag,Cu薄膜ろ 付と±通电加热接合をる体并用したAl2O3とS US304の接合[J].溶接协会论文集,2001,19(2):334-336.[4] 何代华.脉冲大电流热焊接合金的机理和工艺研究[D].武汉:武汉理工大学,2005.作者简介:张国栋,男,1975年出生,博士,副教授.主要从事先进连接技术和表面工程方面的研究工作.发表论文80余篇. Email:gdzhang@144 焊 接 学 报第30卷microstructure;shear strengthWettability and microstructure of multicomponent Cu2b ased ac2 tive filler metal on c2BN W ANG Y i1,2,QI U X iaoming1,LU G uanglin3,YI N Shiqiang1(1.C ollege of Materials Science and En2 gineering,Jilin University,Changchun130025,China;2.School of Mechatronics Engineering,Changchun Institute of T echnology, Changchun130012,China;3.The K ey Laboratory for T errain2Ma2 chine Bionics Engineering,The M inistry of Education,Jilin Univer2 sity,Changchun130025,China).p133-136Abstract: By using the sessile drop method,the effects of active elements T i and Z r on the wettability of the multicom ponent Cu2based active filler metal on c2BN were studied.With the help of SE M,E DS and XRD,on basis of the key parameters theory,mi2 crostructure of the multicom ponent Cu2based active filler metal were discussed.I t can be found that the filler metal mainly consisted of Cu s olid s olution,Sn2rich phase as well as a small am ount of inter2 metallic com pound.By calculating the relation am ong the chemical affinity of elements,the in fluence mechanism of the wettability of the active element T i,Z r in the multicom ponent Cu2based active filler metal on c2BN was further elaborated.The results showed that the wettability of CuNiSnT i active filler metal on c2BN is better than Cu2 NiSnZ r.K ey w ords: multicom ponent Cu2based active filler metal;c2 BN;wettability;microstructureB razing of IC10superalloy with Ni2b ased brazing fillers using H f and Z r as melting2point depressants YE Lei,LI X iao2 hong,M AO Wei,XIE Y onghui(Laboratory of Welding and F org2 in g,Beijing Institute of Aeronautical Materials,Beijing100095, China).p137-140Abstract: Three Ni2based brazing fillers were designed using H f,Z r and H f+Z r as melting2point depressant respectively with the addition of a certain am ount of Cr,C o,and M o.The liquidus2tem2 perature,hardness and spreadability of three fillers were measured. The results signify that H f can decrease the hardness and im prove the spreadability of filler m ore effectively than Z r.But as to the capabili2 ty of depressing the liquidus2tem perature,Z r is superior to H f.The tensile strengths at900℃of the joints bonded with three fillers were als o tested.I t shows that the strength of joint brazed with the filler using H f+Z r as melting2point depressant is higher than the others. In particular,Z r2containing filler presents the lowest joint strength. Furtherm ore,the high2tem perature strength of the joint can be im2 proved by adding a certain am ount of Z r to Ni2H f filler.K ey w ords: melting2point depressant;brazing filler;super2 alloy;high tem perature tensile strengthR esearch on dissimilar steel w elding via sp ark plasm a sintering ZH ANG G uodong,H ONG M in,ZH ANG Jianqiang,ZH ANG Fuju(Welding Institute,Wuhan University,Wuhan430072,Chi2 na).p141-144Abstract: The dissimilar steel weldes by spark plasma sinter2 ing(SPS)technology was developed in this paper.The welded joints of45steel and1828stainless steel were obtained under different SPS parameters,and the microstructure,chemical com position,fractog2raphy and micro2hardness of the joints were examined.The in fluence of SPS parameters on the microstructure and properties of welding joints was studied,and the SPS welding metallurgy mechanism was als o discussed.The result indicated that the new SPS technology could make effective welding in short time,low tem perature and pressure,and the in fluence of the tem perature is higher than the holding time and the pressure in the SPS procedure.K ey w ords: s park plasma sintering;dissim ilar metal;weldingTIG2MIG indirect arc w elding process W ANGJun1,2,FE NG Jicai1,HE Peng1,ZH ANG H ongtao1(1.S tate K ey of Laboratory of Advanced Welding Production T echnology,Harbin Institute of T ech2 nology,Harbin150001,China; 2.Jiamusi University,Jiamusi 154007,China).p145-148Abstract: A TIG2MIGindirect arc welding system was set up by reforming the traditional TIGwelding system in which the arc was ignited and burnt steadily between the tungsten and the welding wire.This new process was used to deposit CuS i3welding wire onto the30CrMnS i steel plate.The effect of welding current and feeding wire speed on the consistency of the welding process and the effect of the flux,welding current,welding speed and distance between the tungsten and the welding wire were analyzed by changing the welding process parameters.The result shows that by choosing the proper process parameters,low heat input and high deposition ratio joint can be obtained in TIG2MIG indirect arc welding process,at the s ome time,the deleterious iron picking up can be als o retrained for the decreasing of the mutual s olution between the deposited metal and the w ork piece.K ey w ords: TIG;MIG;indirect arcI nfluences of laser w elding on fatigue propertis of SPF/DB Ti2 6Al24V alloy Y AO Wei,G ONG Shuili(National K ey Laborato2 ry F or High Energy Density Beam Processing T echnology,Beijing Aeronautical Manu facturing T echnology Research Institute,Beijing 100024,China).p149-152Abstract: T ensile and fatigue properties of SPF/D B titanium alloy and its laser welded joints were investigated ex perimentally,and S2N curve was obtained.M icrostructure and fatigue fracture features were observed,and in fluences of laser welding on fatigue properties of SPF/D B T i26Al24V alloy were analyzed.I t sh owed that tensile strength of the laser welded joints of SPF/D B T i26Al24V alloy is less than that of the base metal slightly,but fatigue strength of the laser welded joints,ab out40%of its tensile strength,is less than that of the base metal obviously.SPF/D B T i26Al24V alloy is com posed of e2 quiaxed structure withαandβphases,and its laser welded joints are com posed of weave structure withα,acicular martensiteα′andβphas2 es.Uniformal and coarse microstructure is an im portant factor causing decrease of fatigue properties of laser welded joints.T he fracture of SPF/D B T i26Al24V alloy is plastic failure,but the welded joints are quasi2cleavage fracture which decreases fatigue properties obviously. At the same time the minute flaws below the sur face of weld are usual2 ly the origin of fatigue failure of laser welded joints.K ey w ords: titanium alloy;SPF/DB;laser welding;fatigue propertiesⅧMAI N T OPICS,ABSTRACTS&KEY W ORDS2009,V ol.30,N o.2。
金属硬度与强度换算
![金属硬度与强度换算](https://img.taocdn.com/s3/m/136bb18d4028915f804dc2a4.png)
42 71.6 81.1 61.3 45.4 399 391 3.09 1367 1322 1364 1340 1336 1375 1342 1362 1325 1347
56 79 88.9 73.9 61.7 620 - - - - - - - - - 2224 - 2201
57 79.5 89.4 74.8 62.8 642 - - - - - - - - - 2324 - 2293
58 80.1 89.8 75.6 63.9 664 - - - - - - - - - 2437 - 2391
49 75.3 85.2 67.7 53.6 493 474 2.81 1686 1666 1702 1698 1682 1733 1683 1707 1688 1692
50 75.8 85.7 68.6 54.7 509 488 2.77 1744 1731 1758 1758 1739 1793 1742 1765 1759 1753
782
817
782
791
11
22.0
69.8
42.6
21.5
237
234
3.95
829
794
785
819
789
825
792
799
12
22.5
70.0
43.1
22.1
240
237
3.93
839
804
794
825
797
832
802
强度、硬度换算表
![强度、硬度换算表](https://img.taocdn.com/s3/m/b9098c00b52acfc789ebc9cb.png)
82.9
64.1
48.9
436
424
2.97
1488
1448
1498
1480
1472
1516
1474
1502
1457
1480
58
45.5
73.4
83.2
64.6
49.5
443
430
2.95
1510
1472
1522
1505
1497
1541
1498
1526
1482
1504
59
46.0
73.7
83.5
892Βιβλιοθήκη 855843860
838
874
853
854
18
25.5
71.6
45.9
25.7
258
254
3.80
903
865
853
868
847
866
882
864
864
19
26.0
71.9
46.4
26.3
261
257
3.78
914
876
864
876
857
876
892
875
874
20
26.5
72.2
46.9
26.9
2.85
1631
1605
1649
1640
1626
1676
1627
1652
1623
1635
64
48.5
75.0
84.9
67.3
53.0
洛氏硬度与布氏硬度对照表HRC&HB
![洛氏硬度与布氏硬度对照表HRC&HB](https://img.taocdn.com/s3/m/e72514533c1ec5da50e27031.png)
高速工具钢的洛氏和维氏硬度之间的实测换算值与国家标准GB/T1172-1974《黑色金属硬度及强度换算表》中的换 算值不相符合,其有自身的特殊性。根据我国具体的生产实际情况,有必要建立我国自己的淬硬高速钢洛氏硬度和 维氏硬度换算的标准。用附加公式HRC=100-37353/(HV+200)来进行辅助换算可以得到非常精确的结果,该公式在 实际应用中非常方便
洛氏硬度
布氏/洛氏硬度换算表
抗拉强度 布氏硬 度
洛氏硬度
标尺A 60kg 85.6 85.3
85 84.7 84.4 84.1 83.8 83.4
83 82.6 82.2 82.2 81.8 81.3
标尺B 100kg
-
标尺C (约磅/英 硬质合
150kg 寸2)
金球
68
-
3030301kg
67.5
-
72
-
抗拉强度
(约磅/英 寸2)
166,000 160,000 155,000 150,000 145,000 141,000 137,000 133,000 129,000 126,000 122,000 118,000 115,000 111,000
105,000 102,000 100,000 98,000 95,000 93,000 90,000 89,000 87,000 85,000 83,000 81,000 79,000 76,000 73,000 71,000 67,000 65,000 63,000
⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载 后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体 或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料 硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 ⑶维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值, 即为维氏硬度值(HV)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45.0 73.2 82.9 64.1 48.9 436 44.5 72.9 82.6 63.6 48.3 429 44.0 72.6 82.3 63.2 47.7 423 43.5 72.4 82.0 62.7 47.1 417 43.0 72.1 81.7 62.3 46.5 411 42.5 71.8 81.4 61.8 45.9 405 42.0 71.6 81.1 61.3 45.4 399 41.5 71.3 80.8 60.9 44.8 393 41.0 71.1 80.5 60.4 44.2 388 40.0 70.8 80.2 60.0 43.6 382
铬锰 硅钢
超高强 度钢
不锈钢
不分 钢种
1650 1620 1595 1570 1540 1515 1495 1470
1675 1645 1620 1595 1570 1545 1520 1495
1655 1625 1590 1560 1535 1505 1480 1455
1660 1630 1605 1575 1550 1525 1500 1475
345 1190 1145 1165 1140 1140 1170 1155
1145 1160
341 1175 1130 1150 1125 1120 1155 1140
1130 1140
336 1160 1115 1130 1110 1105 1135 1125
1115 1125
332 1145 1100 1115 1095 1090 1120 1110
根据 G B 1172-74
表 1 (完)
硬
度
抗 拉 强 度,N/mm2
洛氏
表面洛氏
HRC 30N HR45N 75.3 85.2 67.7 53.6 75.0 84.9 67.3 53.0 74.7 84.6 66.8 52.4
维氏 HV 493 485 478
960 960
30.0
74.1 50.2 31.1 289 283 990 950 940 935 925 950 955
455 1575 1545 1590 1580 1570 1615 449 1550 1520 1565 1555 1545 1590 442 1525 1495 1540 1525 1515 1560 436 1505 1470 1515 1500 1495 1535 430 1480 1445 1495 1475 1470 1510
表1
硬
度
抗 拉 强 度,N/mm2
洛 HRC
氏 HRA
表面洛氏 HR15N HR30N HR45N
维氏 布氏 碳钢
HV HB30D2
铬 钢 铬矾钢 铬镍钢 铬钼钢
铬镍 钼钢
70.0 86.6 69.5 86.3 69.0 86.1 68.5 85.8 68.0 85.5 67.5 85.2 67.0 85.0 66.5 84.7 66.0 84.4 65.5 84.1
2045 2010 1970 1935 1900 1865 1835 1800 1770 1740
2090 2045 2005 1965 1930 1895 1855 1825 1790 1760
1710 1730 1680 1700
1725 1690
2555 2500 2450 2395 2345 2295 2250 2205 2160 2115 2075 2035 1995 1955 1920 1885 1850 1815 1780 1750 1720 1690
55.0 78.5 88.4 73.1 60.5 599 54.5 78.2 88.1 72.6 59.9 589 54.0 77.9 87.9 72.2 59.4 579 53.5 77.7 87.6 71.8 58.8 570 53.0 77.4 87.4 71.3 58.2 561 52.5 77.1 87.1 70.9 57.6 551 52.0 76.9 86.8 70.4 57.1 543 51.5 76.6 86.6 70.0 56.5 534 51.0 76.3 86.3 69.5 55.9 525 501 50.5 76.1 86.0 69.1 55.3 517 494
黑色金属硬度及强度换算值
根据 GB1172-74
本标准适用于碳素钢、合金钢等钢种。 1 本标准中所列换算值(见表 1、 表 2)是对包括碳钢、铬钢、铬钒钢、铬镍 钢、铬钼钢、铬镍钼钢、铬锰硅钢、超高强度钢、不锈钢等钢系中主要钢种进行实 验的基础上制定的。 2 表 1所列各个钢系的换算值,对含碳量由低到高的钢种基本适用。 表 2 适用于 低碳钢。 3 本标准中所列换算值只有当试件组织均匀一致时,才能得到较精确的结果。 4 表 1 中不分钢种栏所列的强度值,适用于换算精度要求不高的一般钢种。
360 1240 1190 1220 1195 1190 1225 1205 1195 1190 1210
355 1220 1175 1200 1175 1175 1205 1190 1170 1175 1190
350 1205 1160 1180 1160 1155 1190 1170
1160 1175
50.0 75.8 85.7 68.6 54.7 509 488 1710 1700 1725 1725 1705 1760 49.5 75.5 85.5 68.2 54.2 501 481 1680 1665 1695 1695 1675 1730
铬锰 硅钢
超高强 度钢
不锈钢
不分 钢种
2640 2570 2510 2450 2390 2335 2280 2230 2180 2135
37.0
78.1 56.7 39.4 347
36.5
77.8 56.2 38.8 342
36.0
77.5 55.8 38.2 338
35.5
77.2 55.3 37.6 333
370 1270 1225 1255 1235 1230 1265 1240 1245 1225 1245
365 1255 1210 1240 1215 1210 1245 1220 1220 1210 1225
1060 1065
34.0
76.4 53.9 35.9 320 314 1090 1050 1050 1035 1030 1055 1050
1045 1050
33.5
76.1 53.4 35.3 316 310 1080 1035 1035 1020 1015 1040 1040
1035 1035
33.0
1037 1017 997 978 959 941 923 906 889 872
65.0 83.0 92.2 81.3 71.7 856 64.5 83.6 92.1 81.0 71.2 840 64.0 83.3 91.9 80.6 70.6 825 63.5 83.1 91.8 80.2 70.1 810 63.0 82.8 91.7 79.8 69.5 795 62.5 82.5 91.5 79.4 69.0 780 62.0 82.2 91.4 79.0 68.4 766 61.5 82.0 91.2 78.6 67.9 752 61.0 81.7 91.0 78.1 67.3 739 60.5 81.4 90.8 77.7 66.8 726
布氏 碳钢
HB30D2
474 1655 468 1625 461 1600
铬 钢 铬矾钢 铬镍钢 铬钼钢
1635 1605 1575
1670 1645 1615
1665 1635 1610
1650 1620 1595
铬镍 钼钢
1700 1670 1645
47.5 74.5 84.3 66.4 51.8 470 47.0 74.2 84.0 65.9 51.2 463 46.5 73.9 83.7 65.5 50.7 456 46.0 73.7 83.5 65.0 50.1 449 45.5 73.4 83.2 64.6 49.5 443
424 1460 1420 1470 1450 1445 1485 1445 1475 1430 1450 418 1440 1400 1445 1425 1420 1460 1420 1450 1405 1430 413 1415 1375 1425 1405 1400 1440 1400 1425 1385 1405 407 1400 1355 1400 1380 1375 1415 1380 1405 1360 1385 401 1380 1335 1380 1360 1350 1395 1355 1380 1340 1360 396 1360 1315 1360 1335 1330 1370 1335 1360 1320 1340 391 1340 1295 1340 1315 1310 1350 1315 1335 1300 1320 385 1320 1280 1315 1295 1290 1325 1295 1315 1280 1300 380 1305 1260 1295 1275 1270 1305 1275 1290 1260 1280 375 1290 1245 1275 1250 1250 1285 1260 1265 1245 1260
995 995
31.5
74.9 51.6 32.9 300 294 1025 985 980 970 960 985 990
985 980
31.0
74.7 51.1 32.3 296 291 1015 970 965 955 950 970 975
970 970
30.5
74.4 50.6 31.7 292 287 1000 960 955 945 935 960 965