2020高考数学--统计与概率专题强化训练
压轴题07 统计与概率压轴题压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)
压轴题07统计与概率压轴题题型/考向一:计数原理与概率题型/考向二:随机变量及其分布列题型/考向三:统计与成对数据的统计分析一、计数原理与概率热点一排列与组合解决排列、组合问题的一般步骤(1)认真审题弄清楚要做什么事情;(2)要做的事情是分步还是分类,还是分步分类同时进行,确定分多少步及多少类;(3)确定每一步或每一类是排列(有序)问题还是组合(无序)问题,元素总数是多少及取出多少元素.热点二二项式定理1.求(a+b)n的展开式中的特定项一般要应用通项公式T k+1=C k n a n-k b k(k=0,1,2,…,n).2.求两个因式积的特定项,一般对某个因式用通项公式,再结合因式相乘,分类讨论求解.3.求三项展开式的特定项,一般转化为二项式求解或用定义法.4.求解系数和问题应用赋值法.热点三概率1.古典概型的概率公式P (A )=事件A 中包含的样本点数试验的样本点总数.2.条件概率公式设A ,B 为随机事件,且P (A )>0,则P (B |A )=P (AB )P (A ).3.全概率公式设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑ni =1P (A i )P (B |A i ).○热○点○题○型一计数原理与概率一、单选题1.现将甲乙丙丁四个人全部安排到A 市、B 市、C 市三个地区工作,要求每个地区都有人去,则甲乙两个人至少有一人到A 市工作的安排种数为()A .12B .14C .18D .22【答案】D【详解】若甲乙两人中的1人到A 市工作,有12C 种选择,其余3人到另外两个地方工作,先将3人分为两组,再进行排列,有2232C A 安排种数,故有12223212C C A =种;若甲乙两人中的1人到A 市工作,有12C 种选择,丙丁中一人到A 市工作,有12C 种选择,其余2人到另外两个地方工作,有22A 种选择,故安排种数有112222C C A 8=种;若安排甲乙2人都到A 市工作,其余丙丁2人到另外两个地方工作,安排种数有22A 2=种,故总共有12+8+2=22种.故选:D2.世界数学三大猜想:“费马猜想”、“四色猜想”、“哥德巴赫猜想”,其中“四色猜想”和“费马猜想”已经分别在1976年和1994年荣升为“四色定理”和“费马大定理”.281年过去了,哥德巴赫猜想仍未解决,目前最好的成果“1+2”由我国数学家陈景润在1966年取得.哥德巴赫猜想描述为:任何不小于4的偶数,都可以写成两个质数之和.在不超过17的质数中,随机选取两个不同的数,其和为奇数的概率为()A .14B .27C .13D .253.在2x x y -+的展开式中,项7x y 的系数为()A .60B .30C .20D .60-【答案】D【详解】由()()6622x x y x x y ⎡⎤-+=-+⎣⎦,可得其二项展开式()61216C ,0,1,2,3,4,5,6rrr r T x x y r -+=-=,若先满足项7x y 中y 的次数,则1r =,可得()()55112226C 6T x x y x x y =-=-,其中()52x x -展开式的通项为()()()52210155C 1C ,0,1,2,3,4,5rrrr r rr T x x x r --+=-=-=,令107r -=,得3r =,可得()32377451C 10T x x =-=-,故项7x y 的系数为()61060⨯-=-.故选:D.4.在)7311⎛⋅ ⎝的展开式中,含1x 的项的系数为()A .21B .35C .48D .56择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A .193243B .100243C .23D .59至少有一个白球”,事件:B “3个球中至少有一个红球”,事件:C “3个球中有红球也有白球”,下列结论不正确的是()A .事件A 与事件B 不为互斥事件B .事件A 与事件C 不是相互独立事件C .()3031P C A =D .()()P AC P AB >的社团.目前话剧社团、书法社团、摄影社团、街舞社团分别还可以再接收1名学生,恰好含甲、乙的4名同学前来教务科申请加入,按学校规定每人只能加入一个社团,则甲进街舞社团,乙进书法社团或摄影社团的概率为()A .14B .15C .16D .183月5日和3月4日胜利召开,为实现新时代新征程的目标任务汇聚智慧和力量.某市计划开展“学两会,争当新时代先锋”知识竞赛活动.某单位初步推选出3名党员和5名民主党派人士,并从中随机选取4人组成代表队参赛.在代表队中既有党员又有民主党派人士的条件下,则党员甲被选中的概率为()A .12B .1115C .713D .27【答案】C【详解】记“随机选取4人”为事件Ω,“代表队中既有党员又有民主党派人士”为事件A ,“党二、多选题9.在9x ⎛+ ⎝的展开式中,下列结论正确的是()A .第6项和第7项的二项式系数相等B .奇数项的二项式系数和为256C .常数项为84D .有理项有2项10.已知01239252222x a a x a x a x a x -=+-+-+-++- ,则下列结论成立的是()A .20911a a a a ++++=LB .3672a =C .9012393a a a a a -+-+-= D .123912398=++++ a a a a 【答案】ABD【详解】()()()()()9929012925122222x x a a x a x a x --+-=+⎣=-+-++-⎡⎤⎦,展开式的通项为()()()()99199C 125C 125r rrrrr rr T x x --+=--=-⋅⋅-⎡⎤⎣⎦,对选项A :令3x =,可得()901292351a a a a ++++=⨯-= ,正确;对选项B :()33498C 2T x =-,所以3398C 672a ==,正确;对选项C :令1x =,可得901293a a a a -+--=- ,错误;对选项D :()()()()()923901239252222x a a x a x a x a x -=+-+-+-++- ,两边同时求导,得()()()()82812391825223292x a a x a x a x -=+-+-++- ,令3x =,123912398=++++ a a a a ,正确.故选:ABD11.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以1A ,2A ,3A 表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是()A .()25P B =B .()1511P B A =C .事件B 与事件1A 相互独立D .1A 、2A 、3A 两两互斥表演分为“燃爆竹、放烟花、辞旧岁、迎新春”4个环节.小光按照以上4个环节的先后顺序进行表演,每个环节表演一次.假设各环节是否表演成功互不影响,若每个环节表演成功的概率均为34,则()A.事件“成功表演燃爆竹环节”与事件“成功表演辞旧岁环节”互斥B.“放烟花”、“迎新春”环节均表演成功的概率为9 16C.表演成功的环节个数的期望为3D.在表演成功的环节恰为3个的条件下“迎新春”环节表演成功的概率为3 4热点一分布列的性质及应用离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n 则(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.(3)E(X)=x1p1+x2p2+…+x i p i+…+x n p n.(4)D (X )=∑ni =1[x i -E (X )]2p i .(5)若Y =aX +b ,则E (Y )=aE (X )+b ,D (Y )=a 2D (X ).热点二随机变量的分布列1.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .E (X )=np ,D (X )=np (1-p ).2.超几何分布一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -k N -M C n N,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M },E (X )=n ·M N .热点三正态分布解决正态分布问题的三个关键点(1)对称轴x =μ.(2)样本标准差σ.(3)分布区间:利用3σ原则求概率时,要注意利用μ,σ分布区间的特征把所求的范围转化为3σ的特殊区间.○热○点○题○型二随机变量及其分布列一、单选题1.某班级有50名学生,期末考试数学成绩服从正态分布()2120,N σ,已(140)0.2P X >=,则[100,140]X ∈的学生人数为()A .5B .10C .20D .30【答案】D【详解】因为期末考试数学成绩服从正态分布()2120,N σ,所以期末考试数学成绩关于120μ=对称,则(140)(100)0.2P X P X >=<=,所以(100140)0.6P X ≤≤=,所以[100,140]X ∈的学生人数为:0.65030⨯=人.故选:D.2.在某个独立重复实验中,事件A ,B 相互独立,且在一次实验中,事件A 发生的概率为p ,事件B 发生的概率为1p -,其中()0,1p ∈.若进行n 次实验,记事件A 发生的次数为X ,事件B 发生的次数为Y ,事件AB 发生的次数为Z ,则下列说法正确的是()A .()()()1pE X p E Y =-B .()()()1p D X pD Y -=C .()()E ZD Y =D .()()()2D Z D X D Y=⋅⎡⎤⎣⎦【答案】C【详解】由已知,(),X B n p ,∴()E X np =,()()1D X np p =-,(),1Y B n p ~-,∴()()1E Y n p =-,()()()()1111D Y n p p np p ⎡⎤=---=-⎣⎦,∵事件A ,B 相互独立,∴一次实验中,A ,B 同时发生的概率()()()()1P AB P A P B p p ==-,∴()(),1Z B n p p ~-,∴()()1E Z np p =-,()()()()()211111D Z np p p p np p p p ⎡⎤=---=--+⎣⎦,对于A ,()2pE X np =,()()()211p E Y n p -=-,()()()1pE X p E Y =-不一定成立,故选项A 说法不正确;对于B ,()()()211p D X np p -=-,()()21pD Y np p =-,()()()1p D X pD Y -=,不一定成立,故选项B 说法不正确;对于C ,()()1E Z np p =-,()()1D Y np p =-,()()E Z D Y =成立,故选项C 说法正确;对于D ,()()()22222211D Z n p p p p ⎡⎤=--+⎣⎦,()()()2221D X D Y n p p ⋅=-,()()()2D Z D X D Y =⋅⎡⎤⎣⎦不一定成立,故选项D 说法不正确.故选:C.3.新能源汽车具有零排放、噪声小、能源利用率高等特点,近年来备受青睐.某新能源汽车制造企业为调查其旗下A 型号新能源汽车的耗电量(单位:kW·h/100km )情况,随机调查得到了1200个样本,据统计该型号新能源汽车的耗电量2(13,)N ξσ ,若()12140.7P ξ<<=,则样本中耗电量不小于14kW h /100km ⋅的汽车大约有()A .180辆B .360辆C .600辆D .840辆4.设1122,这两个正态分布密度曲线如图所示.下列结论中正确的是()A .对任意实数t ,()()P X t P Y t ≥≥≥B .对任意实数t ,()()P X t P Y t ≤≥≤C .()()21P Y P Y μμ≥≥≥D .()()21P X P X σσ≤≤≤..A .两个随机变量的线性相关性越强,相关系数的绝对值越接近于1B .设()21N ξσ~,,且(0)0.2P ξ<=,则(12)0.2P ξ<<=C .线性回归直线ˆˆˆybx a =+一定经过样本点的中心(),x y D .随机变量()B n p ξ~,,若()()3020E D ξξ==,,则90n =从正态分布()272,8N ,则数学成绩位于[80,88]的人数约为()参考数据:()0.6827P X μσμσ-≤≤+≈,()220.9545P X μσμσ-≤≤+≈,()330.9973P X μσμσ-≤≤+≈.A .455B .2718C .6346D .95457.某种品牌手机的电池使用寿命X (单位:年)服从正态分布,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为()A .0.9B .0.7C .0.3D .0.1面包店的面包师声称自己所出售的面包的平均质量是1000g ,上下浮动不超过50g .这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布.假设面包师的说法是真实的,记随机购买一个面包的质量为X ,若()2~,X N μσ,则买一个面包的质量大于900g 的概率为()(附:①随机变量η服从正态分布()2,N μσ,则()0.6827μσημσ-≤≤+=,(22)0.9545P μσημσ-≤≤+=,(33)0.9973P μσημσ-≤≤+=;)A .0.84135B .0.97225C .0.97725D .0.99865二、多选题9.已知随机变量X 服从二项分布29,3B ⎛⎫⎪⎝⎭,随机变量21Y X =+,则下列说法正确的是()A .随机变量X 的数学期望()6E X =B .512(2)93P X ⎛⎫==⨯ ⎪⎝⎭C .随机变量X 的方差()2D X =D .随机变量Y 的方差()4D Y =10.随机变量且20.5P X ≤=,随机变量3,Y B p ,若E Y E X =,则()A .2μ=B .()22D x σ=C .23p =D .()36D Y =坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,则()A .P (X >32)>P (Y >32)B .P (X ≤36)=P (Y ≤36)C .李明计划7:34前到校,应选择坐公交车D .李明计划7:40前到校,应选择骑自行车【答案】BCD【详解】A.由条件可知()230,6X N ,()234,2Y N ~,根据对称性可知()()320.532P Y P X >>>>,故A 错误;B.()()36P X P X μσ≤=≤+,()()36P Y P Y μσ≤=≤+,所以()()3636P X P Y ≤=≤,故B 正确;C.()340.5P X ≤>=()34P Y ≤,所以()()3434P X P Y ≤>≤,故C 正确;D.()()()40422P X P X P X μσ≤<<=<+,()()403P Y P Y μσ≤=≤+,所以()()4040P X P Y ≤<≤,故D 正确.故选:BCD12.假设某厂有两条包装食盐的生产线甲、乙,生产线甲正常情况下生产出来的包装食盐质量服从正态分布()2500,5N (单位:g ),生产线乙正常情况下生产出来包装食盐质量为x g ,随机变量x 服从正态密度函数()2200(1000)x x ϕ--=,其中x ∈R ,则()附:随机变量2(,)N ξμσ-,则()0.683P μσξμσ-<<+=,()220.954P μσξμσ-<<+=,()330.997P μσξμσ-<<+=.A .正常情况下,从生产线甲任意抽取一包食盐,质量小于485g 的概率为0.15%B .生产线乙的食盐质量()2~1000,100x N C .生产线乙产出的包装食盐一定比生产线甲产出的包装食盐质量重D .生产线甲上的检测员某天随机抽取两包食盐,称得其质量均大于515g ,于是判断出该生产线出现异常是合理的三、解答题13.学校要从12名候选人中选4名同学组成学生会,已知有4名候选人来自甲班,假设每名候选人都有相同的机会被选到.(1)求恰有1名甲班的候选人被选中的概率;(2)用X 表示选中的候选人中来自甲班的人数,求()3P X ≥;(3)求(2)中X 的分布列及数学期望.()012344954954954954953E X =⨯+⨯+⨯+⨯+⨯=.14.网购生鲜蔬菜成为很多家庭日常消费的新选择.某小区物业对本小区三月份参与网购生鲜蔬菜的家庭的网购次数进行调查,从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取10户,分别记为A 组和B 组,这20户家庭三月份网购生鲜蔬菜的次数如下图:假设用频率估计概率,且各户网购生鲜蔬菜的情况互不影响·(1)从一单元参与网购生鲜蔬菜的家庭中随机抽取1户,估计该户三月份网购生鲜蔬菜次数大于20的概率;(2)从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取1户,记这两户中三月份网购生鲜蔬菜次数大于20的户数为X ,估计X 的数学期望()E X ;(3)从A 组和B 组中分别随机抽取2户家庭,记1ξ为A 组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,2ξ为B 组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,比较方差()1D ξ与()2D ξ的大小.(结论不要求证明)高科技体验.现有A,B两种型号的小型家庭生活废品处理机器人,其工作程序依次分为三个步骤:分捡,归类,处理,每个步骤完成后进入下一步骤.若分捡步骤完成并且效能达到95%及以上,则该步骤得分为20分,若归类步骤完成并且效能达到95%及以上,则该步骤得分为30分,若处理步骤完成并且效能达到95%及以上,则该步骤得分为50分.若各步骤完成但效能没有达到95%,则该步骤得分为0分,在第三个步骤完成后,机器人停止工作.现已知A款机器人完成各步骤且效能达到95%及以上的概率依次为45,35,13,B款机器人完成各步骤且效能达到95%及以上的概率均为12,每款机器人完成每个步骤且效能是否达到95%及以上都相互独立.(1)求B款机器人只有一个步骤的效能达到95%及以上的概率;(2)若准备在A,B两种型号的小型家庭生活废品处理机器人中选择一款机器人,从最后总得分的期望角度来分析,你会选择哪一种型号?则()416226802030507575257575E X =⨯+⨯+⨯+⨯+14380015270801002525753⨯+⨯+⨯==.设B 款机器人完成所有工作总得分为Y ,则Y 的可能取值为0,20,30,50,70,80,100,所以()()3110,20,30,70,80,10028P Y ξξ⎛⎫==== ⎪⎝⎭,()31150224P Y ⎛⎫==⨯= ⎪⎝⎭,所以Y 的分布列为:Y02030507080100P18181814181818则()11111020305088848E Y =⨯+⨯+⨯+⨯+11400708010050,888⨯+⨯+⨯==因为152503>,所以()()E X E Y >,所以从最后总得分的期望角度来分析,应该选择A 种型号的机器人.三、统计与成对数据的统计分析热点一用样本估计总体1.频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.在频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数.(1)最高的小长方形底边中点的横坐标即众数.(2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.热点二回归分析求经验回归方程的步骤(1)依据成对样本数据画出散点图,确定两个变量具有线性相关关系(有时可省略).(2)计算出x -,y -,∑n i =1x 2i ,∑n i =1x i y i 的值.(3)计算a ^,b ^.(4)写出经验回归方程.热点三独立性检验独立性检验的一般步骤(1)根据样本数据列2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.χ2越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.○热○点○题○型三统计与成对数据的统计分析一、单选题1.已知一组数据1231,31,,31n x x x --- 的方差为1,则数据12,,,n x x x 的方差为()A .3B .1C .13D .19抽取部分员工体检,已知该企业营销部门和研发部门的员工人数之比是4:1且被抽到参加体检的员工中,营销部门的人数比研发部门的人数多72,则参加体检的人数是()A .90B .96C .102D .120【答案】D绩的频率分布直方图如图所示,则下列说法正确的是()A .频率分布直方图中a 的值为0.004B .估计这20名学生考试成绩的第60百分位数为75C .估计这20名学生数学考试成绩的众数为80D .估计总体中成绩落在[)60,70内的学生人数为150【答案】D【详解】由()10237621a a a a a ⨯++++=可得0.005a =,故A 错误;前三个矩形的面积和为()102370.6a aa ⨯++=,所以这20名学生数学考试成绩的第60百分位数为80,故B 错误;这20名学生数学考试成绩的众数为75,故C 错误;总体中成绩落在[)60,70内的学生人数为3101000150a ⨯⨯=,故D 正确.故选:D4.如图,一组数据123910,,,,,x x x xx ⋅⋅⋅,的平均数为5,方差为21s ,去除9x ,10x 这两个数据后,平均数为x ,方差为22s ,则()A .5x >,2212s s >B .5x <,2212s s <C .5x =,2212s s <D .5x =,2212s s >根据食品安全管理考核指标对抽到的企业进行考核,并将各企业考核得分整理成如下的茎叶图.由茎叶图所给信息,可判断以下结论中正确是()A .若2a =,则甲地区考核得分的极差大于乙地区考核得分的极差B .若4a =,则甲地区考核得分的平均数小于乙地区考核得分的平均数C .若5a =,则甲地区考核得分的方差小于乙地区考核得分的方差D .若6a =,则甲地区考核得分的中位数小于乙地区考核得分的中位数A .将总体划分为2层,通过分层随机抽样,得到两层的样本平均数和样本方差分别为12,x x 和2212,s s ,且已知12x x =,则总体方差()2221212s s s =+B .在研究成对数据的相关关系时,相关关系越强,相关系数r 越接近于1C .已知随机变量X 服从正态分布()2,N μσ,若()()151P X P X -+= ,则2μ=D .按从小到大顺序排列的两组数据:甲组:27,30,37,,40,50m ;乙组:24,,33,44,48,52n ,若这两组数据的第30百分位数、第50百分位数都分别对应相等,则67m n +=1,2,…,10A .数据141x +,241x +,…,1041x +的平均数为9B .10120i i x ==∑C .数据13x ,23x ,…,103x 的方差为D .102170i i x ==∑1制动距离(2d ,单位:m )之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v (单位:km/h ).根据实验数据可以推测,下面四组函数中最适合描述1d ,2d 与v 的函数关系的是()A .1d v α=,2d =B .1d v α=,22d v β=C .1d =,2d v β=D .1d =,22d vβ=【答案】B【详解】设()()1d v f v =,()()2d v g v =.由图象知,()()1d v f v =过点()40,8.5,()50,10.3,()60,12.5,()70,14.6,()80,16.7,()90,18.7,()100,20.8,()110,22.9,()120,25,()130,27.1,()140,29.2,()150,31.3,()160,33.3,()170,35.4,()180,37.5.作出散点图,如图1.由图1可得,1d 与v 呈现线性关系,可选择用1d v α=.()()2d v g v =过点()40,8.5,()50,16.2,()60,23.2,()70,31.4,()80,36,()90,52,()100,64.6,()110,78.1,()120,93,()130,108.5,()140,123,()150,144.1,()160,164.3,()170,183.6,()180,208.作出散点图,如图2.由图2可得,2d 与v 呈现非线性关系,比较之下,可选择用22d v β=.故选:B.二、多选题9.下列说法正确的是()A .数据5,7,8,11,10,15,20的中位数为11B .一组数据7,8,8,9,11,13,15,17,20,22的第80百分位数为18.5C .从1,2,3,4,5中任取3个不同的数,则这3个数能构成直角三角形三边长的概率为0.1D .设随机事件A 和B ,已知0.8)PA =(,0.6|PB A =(),(|)0.1P B A =,则()0.5P B =故选:BCD.10.为了加强学生对党的二十大精神的学习,某大学开展了形式灵活的学习活动.随后组织该校大一学生参加二十大知识测试(满分:100分),随机抽取200名学生的测试成绩,这200名学生的成绩都在区间[]60,100内,将其分成5组:[)60,68,[)68,76,[)76,84,[)84,92,[]92,100,得到如下频率分布直方图.根据此频率分布直方图,视频率为概率,同一组中的数据用该组区间的中点值为代表,则()A .该校学生测试成绩不低于76分的学生比例估计为76%B .该校学生测试成绩的中位数估计值为80C .该校学生测试成绩的平均数大于学生测试成绩的众数D .从该校学生中随机抽取2人,则这2人的成绩不低于84分的概率估计值为0.16到该地旅游的游客中随机抽取10000位游客进行调查,得到各年龄段游客的人数和旅游方式,如图所示,则()A .估计2022年到该地旅游的游客中中年人和青年人占游客总人数的80%B .估计2022年到该地旅游的游客中选择自助游的游客占游客总人数的26.25%C .估计2022年到该地旅游且选择自助游的游客中青年人超过一半D .估计2022年到该地旅游的游客中选择自助游的青年人比到该地旅游的老年人还要多【答案】ABC【详解】设2022年到该地旅游的游客总人数为a ,由题意可知游客中老年人、中年人、青年人的人数分别为0.2a ,0.35a ,0.45a ,其中选择自助游的老年人、中年人、青年人的人数分别为0.04a ,0.0875a ,0.135a ,所以2022年到该地旅游的游客中中年人和青年人的人数为0.350.450.8a a a +=,所以A 正确;因为2022年到该地旅游的游客选择自助游的人数0.040.08750.1350.2625a a a a ++=,所以B 正确;因为2022年到该地旅游且选择自助游的游客的人数为0.2625a ,其中青年人的人数为0.135a ,所以C 正确;因为2022年到该地旅游的游客中选择自助游的青年人的人数为0.135a ,而到该地旅游的老年人的人数为0.2a ,所以D 错误.故选:ABC.12.如图为国家统计局于2022年12月27日发布的有关数据,则()A .营业收入增速的中位数为9.1%B .营业收入增速极差为13.6%C .利润总额增速越来越小D .利润总额增速的平均数大于6%【答案】ABD【详解】由表中数据易知营业收入增速的中位数为9.1%,故选项A 正确;营业收入增速的极差为20.3% 6.7%13.6%-=,故选项B 正确;利润总额增速2022年1-3月累计比2022年1-2月累计上升,故选项C 错误;利润总额增速的平均数(38.0%34.3% 5.0%8.5% 3.5% 1.0% 1.0% 1.1%++++++-2.1% 2.3% 3.0% 3.6%)12 6.6%----÷=,故选项D 正确;故选:ABD .三、解答题13.为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[)[)[)[)[]0,20,20,40,40,60,60,80,80,100分组,绘制频率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立.抗体指标值合计小于60不小于60有抗体没有抗体合计(1)填写下面的2×2列联表,并根据列联表及0.05a =的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(单位:只)(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p ;(ii )以(i )中确定的概率p 作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n 个人注射2次疫苗后产生抗体的数量为随机变量X .试验后统计数据显示,当X =99时,P (X )取最大值,求参加人体接种试验的人数n .参考公式:22()()()()()n ad bc x a b c d a c b d -=++++(其中n a b c d =+++为样本容量)20()P x k ≥0.500.400.250.150.1000.0500.0250k 0.4550.7081.3232.0722.7063.8415.024零假设为0根据列联表中数据,得220.05200(502020110) 4.945 3.8411604070130x x ⨯⨯-⨯=≈>=⨯⨯⨯,根据0.05α=的独立性检验,推断0H 不成立,即认为注射疫苗后小白鼠产生抗体与指标值不小于60有关,此推断犯错误的概率不大于0.05.(2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体’’,事件C =“小白鼠注射2次疫苗后产生抗体”,记事件A ,B ,C 发生的概率分别为(),(),()P A P B P C ,则160()0.8200P A ==,20(|)0.540P B A ==,()1()1()(|)10.20.50.9P C P AB P A P B A =-=-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9p =,(ii )由题意,知随机变量~(,0.9)X B n ,()C 0.90.1(0,1,2,)k k n kn P X k k n -==⨯⨯= ,因为(99)P X =最大,所以999999989898999999100100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1n n n n n n nn ----⎧⨯⨯≥⨯⨯⎨⨯⨯≥⨯⨯⎩,解得1109110,9n ≤≤n Q 是整数,所以109n =或110n =,∴接受接种试验的人数为109或110.14.某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910平均值根部横截面积0.040.060.040.080.080.05a b c 0.070.06ix 材积量i y 0.250.410.220.540.530.340.350.390.430.440.39其中a ,b ,c 为等差数列,并计算得:610.146i i i xy ==∑0.044≈,0.303≈.(1)求b的值;(2)若选取前6个样本号对应数据,判断这种树木的根部横截面积与材积量是否具有很强的线性相关性,并求该林区这种树木的根部横截面积与材积量的回归直线方程(若0.250.75r ≤≤,则认为两个变量的线性相关性一般;若0.75r>,则认为两个变量的线性相关性很强);附:相关系数n i i x y nx yr -=∑回归直线y bx a =+$$$中,1221n i i i n ii x y nx y b xnx ==-=-∑∑ ,a y bx =-$$.(3)根据回归直线方程估计a ,c 的值(精确到0.01).。
高考数学复习专题训练—统计与概率解答题(含解析)
高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。
2020年高考数学试题分项版—统计概率(原卷版)
2020年高考数学试题分项版——统计概率(原卷版)一、选择题1.(2020·全国Ⅰ理,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x2.(2020·全国Ⅰ理,8)⎝⎛⎭⎫x +y2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10 C .15 D .203.(2020·全国Ⅱ理,3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名4.(2020·全国Ⅲ理,3)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i =14pi =1,则下面四种情形中,对应样本的标准差最大的一组是()A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.25.(2020·新高考全国Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种6.(2020·新高考全国Ⅰ,12)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着p i 的增大而增大C .若p i =1n(i =1,2,…,n ),则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )7.(2020·北京,3)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .108.(2020·新高考全国Ⅱ,6)3名大学生利用假期到2个山村参加扶贫工作,每名大学生只去1个村,每个村至少1人,则不同的分配方案共有( ) A .4种 B .5种 C .6种 D .8种9.(2020·新高考全国Ⅱ,9)我国新冠肺炎疫情防控进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数增量大于复工指数的增量C .第3天至第11天复工复产指数均增大都超过80%D .第9天至第11天复产指数增量大于复工指数的增量10.(2020·天津,4)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为( )A .10B .18C .20D .3611.(2020·全国Ⅰ文,4)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B.25 C.12 D.4512.(2020·全国Ⅰ文,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x13.(2020·全国Ⅱ文,3)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k -j =3且j -i =4,则称a i ,a j ,a k 为原位大三和弦;若k -j =4且j -i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .1514.(2020·全国Ⅱ文,4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名15.(2020·全国Ⅲ文,3)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A .0.01B .0.1C .1D .10 二、填空题1.(2020·全国Ⅱ理,14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种. 2.(2020·全国Ⅲ理,14)⎝⎛⎭⎫x 2+2x 6的展开式中常数项是________.(用数字作答) 3.(2020·天津,11)在⎝⎛⎭⎫x +2x 25的展开式中,x 2的系数是________. 4.(2020·天津,13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.5.(2020·江苏,3)已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是________. 6.(2020·江苏,4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.7.(2020·浙江,12)二项展开式(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 4=________,a 1+a 3+a 5=________.8.(2020·浙江,16)盒中有4个球,其中1个红球,1个绿球,2 个黄球,从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P (ξ=0)=________,E (ξ)=________. 三、解答题1.(2020·全国Ⅰ理,19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.2.(2020·全国Ⅱ理,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.3.(2020·全国Ⅲ理,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),4.(2020·新高考全国Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),5.(2020·新高考全国Ⅱ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),6.(2020·北京,18)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案二的概率估计值记为p0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)7.(2020·江苏,23)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示).8.(2020·全国Ⅰ文,17)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?9.(2020·全国Ⅱ文,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.10.(2020·全国Ⅲ文,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),。
2020版高考数学二轮复习专题限时集训5概率、随机变量及其分布理
专题限时集训(五) 概率、随机变量及其分布[专题通关练] (建议用时:30分钟)1.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25 B.35 C.18125D.54125D [由题意可知抽到黄球的次数ξ~B ⎝ ⎛⎭⎪⎫3,35, ∴P (ξ=2)=C 23⎝ ⎛⎭⎪⎫352×25=54125.]2.(2019·咸阳二模)已知甲、乙、丙三人去参加某公司面试,他们被公司录取的概率分别为16,14,13,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为( )A.3172B.712C.2572D.1572B [甲、乙、丙三人去参加某公司面试,他们被公司录取的概率分别为16,14,13,且三个录取结果相互之间没有影响,∴他们三人中至少有一人被录取的概率为:P =1-⎝ ⎛⎭⎪⎫1-16⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-13=712.故选B.] 3.(2019·郑州二模)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( )(附:X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 7,P (μ-2σ<X ≤μ+2σ)=0.954 5)A .906B .2 718C .1 359D .3 413C [∵X ~N (-1,1),∴阴影部分的面积S =P (0﹤X ≤1)=12[P (-3﹤x ≤1)-P (-2﹤x ≤0)]=12(0.954 5-0.682 7)=0.135 9, ∴落入阴影部分的点的个数的估计值为10 000×0.135 9=1 359.故选C.]4.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( )A.13 B.25 C.23D.45B [由题意,甲获得冠军的概率为23×23+23×13×23+13×23×23=2027,其中比赛进行了3局的概率为23×13×23+13×23×23=827,∴所求概率为827÷2027=25,故选B.]5.(2019·巢湖市一模)某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,A 学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为X 分,B 学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为Y 分,则D (Y )-D (X )的值为( )A.12512B.3512C.274D.234A [设A 学生答对题的个数为m ,得分5m ,则m ~B ⎝ ⎛⎭⎪⎫12,14,D (m )=12×14×34=94, ∴D (X )=25×94=2254.设B 学生答对题的个数为n ,得分5n ,则n ~B ⎝⎛⎭⎪⎫12,13, D (n )=12×13×23=83,∴D (Y )=25×83=2003.∴D (Y )-D (X )=2003-2254=12512.故选A.]6.已知随机变量X 服从正态分布N (2,σ2),且P (0≤X ≤2)=0.3,则P (X >4)=________. 0.2 [由正态分布的特征可知P (0≤X ≤2)=P (2≤X ≤4)=0.3.又P (X ≥2)=0.5,∴P (X >4)=0.5-0.3=0.2.]7.[易错题]某种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为________.200 [将“没有发芽的种子数”记为ξ,则ξ=1,2,3,…,1 000,由题意可知ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,又因为X =2ξ,所以E (X )=2E (ξ)=200.]8.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于________.12[由题意可知,n (B )=C 1322=12,n (AB )=A 33=6, 所以P (A |B )=n AB n B =612=12.][能力提升练] (建议用时:30分钟)9.根据以往的数据统计,某支深受广大球迷喜欢的足球队中,乙球员能够胜任前锋、中场、后卫及守门员四个位置,且出场率分别为0.2,0.5,0.2,0.1,当出任前锋、中场、后卫及守门员时,球队输球的概率依次为0.4,0.2,0.6,0.2.则(1)当他参加比赛时,求球队某场比赛输球的概率;(2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率; (3)如果你是教练员,应用概率统计的相关知识分析,如何安排乙球员能使赢球场次更多?[解] 设A 1表示“乙球员担当前锋”,A 2表示“乙球员担当中场”,A 3表示“乙球员担当后卫”,A 4表示“乙球员担当守门员”,B 表示“球队某场比赛输球”.(1)P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)+P (A 4)P (B |A 4)=0.2×0.4+0.5×0.2+0.2×0.6+0.1×0.2=0.32.(2)由(1)知,P (B )=0.32, 所以P (A 1|B )=P A 1B P B =0.2×0.40.32=0.25.(3)因为P (A 1|B )∶P (A 2|B )∶P (A 3|B )∶P (A 4|B )=0.08∶0.10∶0.12∶0.02=4∶5∶6∶1, 所以多安排乙球员担当守门员,能够赢球场次更多.10.为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.方案甲:逐个化验,直到能确定被感染的同学为止.方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中的1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)η表示方案甲所需化验次数,ξ表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳.[解] 设A i (i =1,2,3,4,5)表示方案甲所需化验次数为i 次;B j (j =2,3)表示方案乙所需化验的次数为j 次,方案甲与方案乙相互独立.(1)P (A 1)=P (A 2)=P (A 3)=P (A 4)=16,P (A 5)=13,P (B 2)=C 25C 36C 13+C 35C 36C 13=13,P (B 3)=1-P (B 2)=23,用事件D 表示方案甲所需化验次数等于方案乙所需化验次数, 则P (D )=P (A 2B 2+A 3B 3)=P (A 2)P (B 2)+P (A 3)P (B 3)=16×13+16×23=16.(2)η的可能取值为1,2,3,4,5.ξ的可能取值为2,3.由(1)知P (η=1)=P (η=2)=P (η=3)=P (η=4)=16,P (η=5)=13,所以E (η)=1×16+2×16+3×16+4×16+5×13=103,P (ξ=2)=P (B 2)=13,P (ξ=3)=P (B 3)=23,所以E (ξ)=2×13+3×23=83. 因为E (ξ)<E (η),所以从经济角度考虑方案乙最佳.11.(2019·昆明模拟)为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此种元素的含量不小于18毫克时,该产品为优等品.(1)试用样品数据估计甲、乙两种产品的优等品率;(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E (ξ);(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件,抽到的优等品中,记“甲产品恰比乙产品多2件”为事件C ,求事件C 的概率.[解](1)从甲产品抽取的10件样品中优等品有4件,优等品率为410=25,从乙产品抽取的10件样品中优等品有5件,优等品率为510=12.故甲、乙两种产品的优等品率分别为25,12.(2)ξ的所有可能取值为0,1,2,3.P (ξ=0)=C 35C 310=112,P (ξ=1)=C 15C 25C 310=512,P (ξ=2)=C 25C 15C 310=512,P (ξ=3)=C 35C 310=112.所以ξ的分布列为E (ξ)=0×12+1×12+2×12+3×12=2.(3)抽到的优等品中,甲产品恰比乙产品多2件包括两种情况:“抽到的优等品数甲产品2件且乙产品0件”,“抽到的优等品数甲产品3件且乙产品1件”,分别记为事件A ,B ,P (A )=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫1-25×C 03⎝ ⎛⎭⎪⎫120×⎝ ⎛⎭⎪⎫1-123=9250, P (B )=C 33⎝ ⎛⎭⎪⎫253×C 13⎝ ⎛⎭⎪⎫12⎝ ⎛⎭⎪⎫1-122=3125, 故抽到的优等品中甲产品恰比乙产品多2件的概率为P (C )=P (A )+P (B )=9250+3125=350. 12.春节期间某商店出售某种海鲜礼盒,假设每天该礼盒的需求量在{11,12,…,30}范围内等可能取值,该礼盒的进货量也在{11,12,…,30}范围内取值(每天进1次货).商店每销售1盒礼盒可获利50元;若供大于求,剩余的削价处理,每处理1盒礼盒亏损10元;若供不应求,可从其他商店调拨,销售1盒礼盒可获利30元.设该礼盒每天的需求量为x 盒,进货量为a 盒,商店的日利润为y 元.(1)求商店的日利润y 关于需求量x 的函数表达式;(2)试计算进货量a 为多少时,商店日利润的期望值最大?并求出日利润期望值的最大值.[解](1)由题意得商店的日利润y 关于需求量x 的函数表达式为y =⎩⎪⎨⎪⎧50a +x -a ,a ≤x ≤30,x ∈Z ,50x -a -x ,11≤x <a ,x ∈Z ,化简得y =⎩⎪⎨⎪⎧30x +20a ,a ≤x ≤30,x ∈Z ,60x -10a ,11≤x <a ,x ∈Z .(2)日利润y 的分布列为E (y )=120·{(60×11-10a )+(60×12-10a )+…+[60×(a -1)-10a ]}+120·{(30a +20a )+[30(a +1)+20a ]+…+(30×30+20a )}=120⎣⎢⎡⎦⎥⎤60×+a -a -2-10a a -+30×a +-a2+20a (31-a )=-34a 2+1434a +1 0652,结合二次函数的知识,当a =24时,日利润y 的数学期望最大,最大值为958.5元.【押题1】 三个元件T 1,T 2,T 3正常工作的概率分别为2,4,4,将T 2,T 3两个元件并联后再和T 1串联接入电路,如图所示,则电路不发生故障的概率为________.1532 [三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将T 2,T 3两个元件并联后再和T 1串联接入电路,则电路不发生故障的概率为:p =12×⎝ ⎛⎭⎪⎫14×34+34×14+34×34=1532.] 【押题2】 某企业打算处理一批产品,这些产品每箱100件,以箱为单位销售.已知这批产品中每箱出现的废品率只有两种可能10%或者20%,两种可能对应的概率均为0.5.假设该产品正品每件市场价格为100元,废品不值钱.现处理价格为每箱8 400元,遇到废品不予更换.以一箱产品中正品的价格期望值作为决策依据.(1)在不开箱检验的情况下,判断是否可以购买;(2)现允许开箱,有放回地随机从一箱中抽取2件产品进行检验.①若此箱出现的废品率为20%,记抽到的废品数为X ,求X 的分布列和数学期望; ②若已发现在抽取检验的2件产品中,其中恰有一件是废品,判断是否可以购买. [解](1)在不开箱检验的情况下,一箱产品中正品的价格期望值为:E (ξ)=100×(1-0.2)×100×0.5+100×(1-0.1)×100×0.5=8 500>8 400,∴在不开箱检验的情况下,可以购买. (2)①X 的可能取值为0,1,2,P (X =0)=C 02×0.20×0.82=0.64, P (X =1)=C 12×0.21×0.81=0.32, P (X =2)=C 22×0.80×0.22=0.04,∴X 的分布列为:E (X )②设事件A :发现在抽取检验的2件产品中,其中恰有一件是废品, 则P (A )=C 12×0.2×0.8×0.5+C 12×0.1×0.9×0.5=0.25, 一箱产品中,设正品的价格的期望值为η,则η=8 000,9 000, 事件B 1:抽取的废品率为20%的一箱,则P (η=8 000)=P (B 1|A )=P AB 1P A=C12×0.2×0.8×0.50.25=0.64,事件B2:抽取的废品率为10%的一箱,则P(η=9 000)=P(B2|A)=P AB2P A=C12×0.1×0.9×0.50.25=0.36,∴E(η)=8 000×0.64+9 000×0.36=8 360<8 400,∴已发现在抽取检验的2件产品中,其中恰有一件是废品,不可以购买.。
2023-2024学年湖南省高中数学人教B版 必修二统计与概率强化训练-7-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年湖南省高中数学人教B 版 必修二统计与概率强化训练(7)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)在犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄有关”在犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄无关”有99% 以上的把握认为“是否愿意外派与年龄有关”有99% 以上的把握认为“是否愿意外派与年龄无关”1. 近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.某品牌公司一直默默拓展海外市场,在海外设了多个分支机构,现需要国内公司外派大量中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从中青年员工中随机调查了 位,得到数据如下表:愿意被外派不愿意被外派合计中年员工青年员工合计由并参照附表,得到的正确结论是( )附表:0.100.010.0012.7066.63510.828A. B. C. D. 分层抽样 系统抽样分层抽样 简单随机抽样系统抽样 简单随机抽样简单随机抽样 分层抽样2. 某工厂A ,B ,C 三个车间共生产2000个机器零件,其中A 车间生产800个,B 车间生产600个,C 车间生产600个,要从中抽取一个容量为50的样本,记这项调查为①:某学校高中一年级15名男篮运动员,要从中选出3人参加座谈会,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是( )A. B. C. D. 3. 2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着 的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结样本中的女生数量多于男生数量样本中有学物理意愿的学生数量多于有学历史意愿的学生数量样本中的男生偏爱物理样本中的女生偏爱历史论是不正确的()A. B. C. D. 频率/样本容量组距×频率频率样本数据4. 在频率分布直方图中,小长方形的面积是 ( )A. B. C. D. 甲同学:平均数为2,方差小于1乙同学:平均数为2,众数为1丙同学:中位数为2,众数为2丁同学:众数为2,方差大于15. 若某同学连续3次考试的名次(3次考试均没有出现并列名次的情况)不低于第3名,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次的数据,推断一定是尖子生的是( )A. B. C. D. 12346. 2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业增长呈现加速状态.根据该折线图,下列结论正确的个数为()①每年市场规模量逐年增加;②增长最快的一年为2013~2014;③这8年的增长率约为40%;④2014年至2018年每年的市场规模相对于2010年至2014年每年的市场规模,数据方差更小,变化比较平稳A. B. C. D. 数据4、4、6、7、9、6的众数是4一组数据的标准差是这组数据的方差的平方数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半频率分布直方图中各小长方形的面积等于相应各组的频数7. 下列说法正确的是 ( )A. B. C. D. 8. 执行如图所示的程序框图,设所有输出数据构成的集合为,若从集合中任取一个元素,则满足函数在区间内单调递增的概率为()A. B. C. D.9. 排球比赛的规则是2局3胜制(2局比赛中,优先取得3局胜利的一方,获得最终胜利,无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为 ,前2局中乙队以 领先,则最后乙队获胜的概率是( )A. B. C. D.0.310.650.86110. 受全球新冠疫情影响,2020东京奥运会延期至2021年7月23日到8月8日举行,某射箭选手积极备战奥运,在临赛前的一次训练中共射了1组共72支箭,下表是命中环数的部分统计信息环数<778910频数03a b 22已知该次训练的平均环数为9.125环,据此水平,正式比赛时射出的第一支箭命中黄圈(不小于9环)的概率约为( )A. B. C. D. 直方图中x 的值为0.004在被抽取的学生中,成绩在区间的学生数为30人估计全校学生的平均成绩为84分估计全校学生成绩的样本数据的80%分位数约为93分11. 耀华中学全体学生参加了主题为“致敬建党百年,传承耀华力量”的知识竞赛,随机抽取了400名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,下列说法正确的是( )A. B. C. D. 不可能事件与事件互斥必然事件与事件相互独立若 , 则12. 已知随机事件 , , 满足 , , , 则下列说法错误的是( )A. B. C. D. 13. 我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为 “阳爻”和 “阴爻”,如图就是重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 .14. 假设要考察某公司生产的袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数法抽取样本时,先将800袋牛奶按000,001,…,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个的样本个体的编号是.(下面摘取了随机数表第7行到第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5415. 某项羽毛球单打比赛规则是3局2胜制,运动员甲和乙进入了男子羽毛球单打决赛,假设甲每局获胜的概率为,则由此估计甲获得冠军的概率为 .16. 已知甲、乙二人能译出某种密码的概率分别为和,现让他们独立地破译这种密码,则至少有1人能译出密码的概率为.17. 2021年9月15日,安徽省举行新闻发布会,正式公布了高考综合改革方案.按照方案的要求,高考选科采用“3+1+2”的模式:“3”指语文、数学、外语三门统考学科,以原始分计入高考成绩;“1”指考生从物理、历史两门学科中“首选”一门学科,以原始分计入高考成绩;“2”指考生从政治、地理、化学、生物四门学科中“再选”两门学科,以等级分计入高考成绩.某校对其高一学生的首选学科意向进行统计,得到如下表格:科目性别物理历史合计男46040500女340160500合计8002001000(1) 令A=“从选历史的同学中任选一人,求此人是女生”,B=“从选物理的同学中任选一人,求此人是女生”,判断随机事件A,B的概率,的大小关系;(2) 按照方案,再选学科的等级分赋分规则如下,将考生原始成绩从高到低划分为A,B,C,D,E五个等级,各等级人数所占比例及赋分区间如下表:等级A B C D E人数比例15%35%35%13%2%赋分区间[86,100][71,85][56,70][41,55][30,40]将各等级内考生的原始分依照等比例转换法分别转换到赋分区间内,得到等级分,转换公式为,其中,分别表示原始分区间的最低分和最高分,,分别表示等级赋分区间的最低分和最高分,Y表示考生的原始分,T表示考生的等级分,规定原始分为时,等级分为,原始分为时,等级分为,计算结果四舍五入取整.该校某次化学考试的原始分最低分为50,最高分为98,呈连续整数分布,其频率分布直方图如图所示:①按照等级分赋分规则,估计此次考试化学成绩等级A的原始分区间;②用估计的结果近似代替原始分区间,若某学生化学成绩的原始分为90分,试计算其等级分.18. 某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男16女50合计(参考公式:,其中)0.400.250.150.100.050.0250.780 1.323 2.072 2.706 3.841 5.024(1) 求图中a的值;(2) 根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?(3) 将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望.19. 某心理教育测评研究院为了解某市市民的心理健康状况,随机抽取了n位市民进行心理健康问卷调查,将所得评分(百分制)按研究院制定的心理测评评价标准整理,得到频率分布直方图.已知调查评分在[70,80)中的市民有200人心理测评评价标准调查评分[0,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]心理等级E D C B A(1) 求n的值及频率分布直方图中t的值;(2) 在抽取的心理等级为D的市民中,按照调查评分的分组,分为2层,通过分层随机抽样抽取3人进行心理疏导.据以往数据统计,经心理疏导后,调查评分在[40,50)的市民的心理等级转为B的概率为,调查评分在[50,60)的市民的心理等级转为B的概率为,假设经心理疏导后的等级转化情况相互独立,求在抽取的3人中,经心理疏导后至少有一人的心理等级转为B的概率;(3) 该心理教育测评研究院建议该市管理部门设定预案:若市民心理健康指数的平均值不低于0.75,则只需发放心理指导资料,否则需要举办心理健康大讲堂.根据调查数据,判断该市是否需要举办心理健康大讲堂,并说明理由.(每组的每个数据用该组区间的中点值代替,心理健康指数=调查评分÷100)20. 某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1) 求这个样本数据的中位数和众数;(2) 以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.21. 某地为宣传防疫政策,组织专家建设题库供各单位学习,半个月后,当地电视台举办中小学学生防疫知识竞答闯关比赛,规则如下:每队三人,需要从题库中选三道题依次回答,每人一题.第一道题回答正确得10分,回答错误得0分;第二道题回答正确得20分,回答错误扣10分;第三道题回答正确得30分,回答错误扣20分.每组选手回答这三个问题的总得分不低于30分就算闯关成功.某校为了参加该闯关比赛,选拔了三位选手,这三位选手在进行题库训练时的正确率如下表:选手1号2号3号正确率80%80%90%假设选手答题结果互不影响,用频率代替概率.(1) 若学校安排1号、2号、3号依次出场回答,则“闯关成功”的概率是多少?(2) 如何安排出场顺序使“闯关成功”的概率最大?答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)(3)(1)(2)(3)20.(1)(2)21.(1)(2)。
高中数学-概率专题强化训练(解析版)
高中数学-概率专题强化训练学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.甲,乙两人下棋,甲不输的概率是0.8,两人下成平局的概率是0.5,则甲胜的概率是( ) A .0.2B .0.3C .0.5D .0.82.抛掷一枚质地均匀的骰子,记事件A =“出现的点数是1或2”,事件B =“出现的点数是2或3或4”,则事件“出现的点数是2”可以记为( ) A .A BB .A BC .A B ⊆D .A B =3.2020年起,山东省高考实行新方案.新高考规定:语文、数学、英语是必考科日,考生还需从思想政治、历史、地理、物理、化学、生物6个等级考试科目中选取3个作为选考科目.某考生已经确定物理作为自己的选考科目,然后只需从剩下的5个等级考试科目中再选择2个组成自己的选考方案,则该考生“选择思想政治、化学”和“选择生物、地理”为( ) A .相互独立事件 B .对立事件C .不是互斥事件D .互斥事件但不是对立事件4.同时投掷两颗质地均匀且大小相同的骰子,用(x ,y )表示结果,其中x 表示第一颗骰子出现的点数,y 表示第二颗骰子出现的点数,记A 为“所得点数之和小于5”,则事件A 包含的样本点个数是( ) A .3 B .4 C .5D .65.若某群体中的成员只用现金支付的概率为0.2,不用现金支付的概率为0.45,则既用现金支付也用非现金支付的概率为( ) A .0.35B .0.65C .0.25D .06.下列说法正确的是( )A .投掷一枚硬币1000次,一定有500次“正面朝上”B .若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定C .为了解我国中学生的视力情况,应采取全面调查的方式D .一组数据1、2、5、5、5、3、3的中位数和众数都是57.2013年华人数学家张益唐证明了孪生素数(素数即质数)猜想的一个弱化形式.素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷个素数p ,使得2p +是素数,素数对(),2p p +称为孪生素数.则从不超过15的素数中任取两个素数,这两个素数组成孪生素数对的概率为( ) A .115B .215 C .15D .4158.一袋中装有5个大小形状完全相同的小球,其中红球3个,白球2个,从中任取2个小球,若事件“2个小球全是红球”的概率为310,则概率为710的事件是( ) A .恰有一个红球 B .两个小球都是白球 C .至多有一个红球D .至少有一个红球9.已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .0.25B .0.2C .0.35D .0.410.甲、乙两人对同一个靶各射击一次,设事件A =“甲击中靶”,事件B =“乙击中靶”,事件E =“靶未被击中”,事件F =“靶被击中”,事件G =“恰一人击中靶”,对下列关系式(A 表示A 的对立事件,B 表示B 的对立事件):①E AB =,①F AB =,①F A B =+,①G A B =+,①G AB AB =+,①()()1P F P E =-,①()()()P F P A P B =+.其中正确的关系式的个数是( )A .3B .4C .5D .6二、多选题11.某人决定就近打车前往目的地前方开来三辆车,且车况分别为“好”“中”“差”他决定按如下两种方案打车.方案一:不乘第一辆车,若第二辆车好于第一辆车就乘此车,否则直接乘坐第三辆车:方案二:直接乘坐第一辆车.若三辆车开过来的先后次序等可能记方案一和方案二坐到车况为“好”的车的概率分别为1p ,2p ,则下列判断不正确的是( ) A .1212p p == B .1213p p ==C .112p =,213p =D .113p =,212p =12.甲、乙两人练习射击,命中目标的概率分别为p 和q ,甲、乙两人各射击一次,下列说法正确的是( ) A .目标未被命中的概率为1pq -B .目标恰好被命中一次的概率为p q +C .目标恰好被命中两次的概率为pqD .目标被命中的概率为1(1)(1)p q ---13.在25件同类产品中,有2件次品,从中任取3件产品,其中不是随机事件的是( ) A .3件都是正品 B .至少有1件次品 C .3件都是次品D .至少有1件正品14.下列说法错误的有( )A .随机事件A 发生的概率是频率的稳定值,频率是概率的近似值B .在同一次试验中,不同的基本事件不可能同时发生C .任意事件A 发生的概率()P A 满足()01P A <<D .若事件A 发生的概率趋近于0,则事件A 是不可能事件15.(多选)某工厂制造一种零件,甲机床的正品率是0.9,乙机床的正品率为0.8,分别从它们制造的产品中任意抽取一件,则( ) A .两件都是次品的概率为0.28 B .至多有一件正品的概率为0.72 C .恰有一件正品的概率为0.26 D .至少有一件正品的概率为0.98 三、填空题16.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从甲,乙,丙,丁4名医生志愿者中,随机选取2名医生赴湖北支援,则甲被选中的概率为_____.17.若分别以连续掷两枚骰子得到的点数m ,n 作为点M 的横坐标、纵坐标,则点M 落在圆229x y +=内的概率为______________.18.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为____.19.在一个不透明的袋中,装有6个红球和若干个绿球,若再往此袋中放入5个白球(袋中所有球除颜色外完全相同)摇匀后摸出一球,摸到红球的概率恰好为25,那么此袋中原有绿球________个.20.甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____.21.从3名男生和2名女生中随机选出2名志愿者,其中至少有1名男生的概率为______.22.甲、乙、丙三名奥运志愿者被随机分到A,B两个不同的岗位,且每个岗位至少1人,则甲、乙两人被分到同一岗位的概率为________.23.某班学生考试成绩统计如下:数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是_______.24.2021年7月9日,第18届中国(长春)国际汽车博览会正式启幕,某汽车企业以“与进取者同享”为主题,携旗下21款重磅车型震撼亮相,展示出该汽车企业的实力和对未来移动出行时代的前瞻性思考.某模特公司从甲、乙、丙、丁、戊5人中随机抽取3人作为该汽车企业A型车的车模,则甲、乙同时被抽到的概率为___________.25.下列四个命题:①样本方差反映的是所有样本数据与样本平均值的偏离程度;①基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;①某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为na mbm n;①如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交.其中真命题的序号是__________.四、解答题26.袋子中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,求下列事件的概率:(1)A=“第一次摸到红球”;(2)B=“第二次摸到红球”;(3)AB=“两次都摸到红球”.27.下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率; (2)求此人停留期间空气重度污染恰有1天的概率.28.为缓解城市垃圾带来的问题,许多城市实行了生活垃圾强制分类.为了加强学生对垃圾分类意义的认识以及养成良好的垃圾分类的习惯,某学校团委组织了垃圾分类知识竞赛活动.设置了四个箱子,分别标有“厨余垃圾”“有害垃圾”“可回收物”“其他垃圾”;另有写有垃圾名称的卡片若干张.每位参赛选手从所有写有垃圾名称的卡片中随机抽取20张,按照自己的判断,将每张卡片放入对应的箱子中.规定每正确投放一张卡片得5分,投放错误得0分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子得5分,放入其他箱子得0分.从所有参赛选手中随机抽取40人,将他们的得分分成以下5组:[]0,20,(]20,40,(]40,60,(]60,80,(]80,100,绘成如下频率分布直方图:(1)求得分的平均数(每组数据以中点值代表);(2)学校规定得分在80分以上的为“垃圾分类知识达人”.为促进社区的垃圾分类,学校决定从抽取的40人中的“知识达人”(其中含A ,B 两位同学)中选出两人利用节假日到社区进行垃圾分类知识宣讲,求A ,B 两人至少1人被选中的概率.29.某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各随机选购一种型号的电脑,有关报价信息如图.(1)写出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(直接写出结果即可)30.某数学兴趣小组有男生3名,记为1a ,2a ,3a ;有女生2名,记为1b ,2b .现从中任选2名学生去参加学校数学竞赛. (1)写出样本空间 所包含的样本点; (2)求参赛学生中恰好有1名男生的概率; (3)求参赛学生中至少有1名男生的概率.31.在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了15个,乙同学猜对了8个.假设猜对每道灯谜都是等可能的,设事件A 为“任选一灯谜,甲猜对”,事件B 为“任选一灯谜,乙猜对”.(1)任选一道灯谜,记事件C 为“恰有一个人猜对”,求事件C 发生的概率;(2)任选一道灯谜,记事件D 为“甲、乙至少有一个人猜对”,求事件D 发生的概率. 32.抛掷两颗骰子,求:(1)向上点数之和是4的倍数的概率; (2)向上点数之和大于5小于10的概率.33.为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如表(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级.(2)用简单随机抽样方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率.34.从长度为1,3,5,7,9的5条线段中任取3条,求这三条线段能构成一个三角形的概率.35.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.参考答案:1.B 【解析】 【分析】甲不输分为甲胜乙和甲乙下成平局两种情况,其中甲胜乙和甲乙下成平局是互斥事件,根据互斥事件的概率加法公式进行求解即可. 【详解】甲不输棋的设为事件A ,甲胜乙设为事件B ,甲乙下成平局设为事件C ,则事件A 是事件B 与事件C 的和,显然B 、C 互斥,所以()()()P A P B P C =+,而()0.8P A =,()0.5P C =,所以()()()0.3P B P A P C =-=,所以甲胜的概率是0.3故选:B 2.B 【解析】根据事件A 和事件B ,计算A B ,A B ,根据结果即可得到符合要求的答案. 【详解】由题意可得:{}1,2A =,{}3,4B =,{}1,2,3,4A B ∴=,{}2A B ⋂=.故选B. 【点睛】本题主要考查的是古典概型的基本事件,考查交事件和并事件,需要借助于集合的运算,集合与集合的关系来解决,是基础题. 3.D 【解析】 【分析】本题首先可以根据题意得出考生选择的两个考试科目的所有可能情况,然后令这些选择构成的集合为Q ,A =“思想政治、化学”,B =“地理、生物”,最后根据A B Q 且A 和B不能同时发生即可得出结果. 【详解】由题意得,考生选择的两个考试科目可能为“思想政治、化学”、“思想政治、历史”、“思想政治、地理”、“思想政治、生物”、“历史、地理”、“历史、化学”、“历史、生物”、“地理、化学”、“地理、生物”、“化学、生物”,设这些选择构成的集合为Q,令A=“思想政治、化学”,B=“地理、生物”,则A B Q,且A和B不能同时发生,故该考生“选择思想政治、化学”和“选择生物、地理”是互斥事件但不是对立事件,故选:D.【点睛】本题考查互斥事件以及对立事件的相关性质,主要考查互斥事件以及对立事件的判定,考查推理能力,体现了基础性,是简单题.4.D【解析】【分析】根据题意列出所有情况即可得出.【详解】解析:由题可得“所得点数之和小于5”包含{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}共6个样本点.故选:D.5.A【解析】【分析】利用互斥事件的概率公式,计算结果.【详解】支付方式中包含3种方法:只用现金支付,不用现金支付,既用现金,也用非现金支付,这三种支付方法,并且是互斥事件,p=--=.所以既用现金,也用非现金支付的概率10.20.450.35故选:A6.B【解析】【分析】根据统计量,对各项分析判断即可得解.【详解】对于A ,因为每次抛掷硬币都是随机事件,所以不一定有500次“正面朝上”,故A 错误; 对于B ,因为方差越小越稳定,故B 正确;对于C ,为了解我国中学生的视力情况,应采取抽样调查的方式,故C 错误; 对于D ,数据1、2、5、5、5、3、3按从小到大排列后为1、2、3、3、5、5、5, 则其中位数为3,故D 错误, 故选:B. 7.C 【解析】 【分析】由题意得不超过15的素数有6个,满足题意的孪生素数对有3对,利用古典概型公式可得结果. 【详解】不超过15的素数有2,3,5,7,11,13,共6个,则从不超过15的素数中任取两个素数共有2615C =种根据素数对(),2p p +称为孪生素数,则由不超过15的素数组成的孪生素数对为(3,5),(5,7),(11,13), 共有3组, 能够组成孪生素数的概率为31155P == 故选:C 【点睛】本题考查古典概型概率公式,考查组合知识的应用,考查分析问题解决问题的能力,属于基础题. 8.C 【解析】根据题意可得概率为710的事件是“2个小球全是红球”的对立事件即可得出. 【详解】 因为7311010=-,所以概率为710的事件是“2个小球全是红球”的对立事件,应为:“一个红球一个白球”与“两个都是白球”的和事件,即为“至多有一个红球”.9.A 【解析】当三次投篮恰有两次命中时,就是三个数字xyz 中有两个数字在集合{}1,2,3,4,再逐个考察个数据,最后利用古典概型的概率公式计算可得. 【详解】解:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.共5组随机数,∴所求概率为510.25204==. 故选:A 【点睛】本题主要考查了随机事件概率的含义及其运算,以及用数值表示随机事件的意义,属于基础题. 10.B 【解析】 【分析】根据事件关系,靶为被击中即甲乙均未击中;靶被击中即至少一人击中,分为恰有一人击中或两人都击中,依次判定即可. 【详解】由题可得:①E AB =,正确;①事件F =“靶被击中”,AB 表示甲乙同时击中,F AB AB AB =++,所以①错误;①F A B =+,正确,①A B +表示靶被击中,所以①错误;①G AB AB =+,正确;①,E F 互为对立事件,()()1P F P E =-,正确;①()()()()P F P A P B P AB =+-,所以①不正确. 正确的是①①①①. 故选:B 【点睛】此题考查事件关系和概率关系的辨析,需要熟练掌握事件的关系及其运算,弄清事件特征及其概率特征准确辨析. 11.ABD【分析】用列表法列举基本事件,分别求概率,即可判断. 【详解】记“车况好、中、差”分别为A ,B ,C ,方案一包含的基本事件数为1n ,方案二包含的基本事件数为2n ,列表如下由表中所列事件数可知,13162p ==,22163p ==,所以选项C 正确.故选:ABD. 12.CD 【解析】 【分析】根据题意,结合概率的计算,逐项分析即可得解. 【详解】对A ,目标未被命中,则两次都不中,概率为(1)(1)1p q p q pq --=--+,故A 错误; 对B ,目标恰好被命中一次,则甲中乙不中,或乙中甲不中, 概率为(1)(1)2p q p q p q pq -+-=+-,故B 错误;对C ,目标恰好被命中两次,则两次都中,概率为pq ,故C 正确; 对D ,目标被命中,从反面考虑可得概率为1(1)(1)p q ---,故D 正确;13.CD 【解析】 【分析】根据题意25件产品中只有2件次品,所以不可能取出3件都是次品,且至少有1件正品,即可得解. 【详解】25件产品中只有2件次品,所以不可能取出3件都是次品, 则“3件都是次品”不是随机事件,是不可能事件,又25件产品中只有2件次品,从中任取3件产品,则“至少有1件正品”为必然事件, 而A ,B 是随机事件, 故选:CD 14.CD 【解析】 【分析】根据概率与频率的关系判断①正确,根据基本事件的特点判断①正确,根据必然事件,不可能事件,随机事件的概念判断①错误,根据小概率事件的概念判断①错误. 【详解】①随机事件A 发生的概率是频率的稳定值,频率是概率的近似值,①A 中说法正确; 基本事件的特点是任意两个基本事件是互斥的,①在同一次试验中,不同的基本事件不可能同时发生,①B 中说法正确;必然事件发生的概率为1,不可能事件发生的概率为0,随机事件发生的概率大于0且小于1.①任意事件A 发生的概率P (A )满足()01P A ≤≤.①C 中说法错误;若事件A 发生的概率趋近于0,则事件A 是小概率事件,但不是不可能事件,①D 中说法错误. 故选CD 【点睛】本题主要考查了概率的概念和有关性质,属于概念辨析题,对一些易混概念必须区分清. 15.CD【分析】根据独立事件和对立事件的概率公式计算概率后判断. 【详解】记事件A 为“从甲机床制造的产品中抽到一件正品”,事件B 为“从乙机床制造的产品中抽到一件正品”,事件C 为“抽取的两件产品中至多有一件正品”,事件D 为“抽取的两件产品中恰有一件正品”,事件E 为“抽取的两件产品中至少有一件正品”.由题意知A ,B 是相互独立事件,则()()()0.10.20.02P AB P A P B ==⨯=,故A 错误; ()()()()P C P AB P AB P AB =++()()()()()()0.90.20.10.80.10.20.28P A P B P A P B P A P B =++=⨯+⨯+⨯=,故B 错误;()()()()()()()0.90.20.10.80.26P D P AB P AB P A P B P A P B =+=+=⨯+⨯=,故C 正确; ()()110.020.98P E P AB =-=-=,故D 正确.故选:CD . 16.12【解析】 【分析】根据基本事件总数,与甲被选中包含的基本事件求解概率即可. 【详解】解:某医疗团队从甲,乙,丙,丁4名医生志愿者中,随机选取2名医生赴湖北支援, 基本事件有(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)共6个. 甲被选中包含的基本事件有(甲,乙),(甲,丙),(甲,丁)共3个, ①甲被选中的概率为p 3162==. 故答案为:12. 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题. 17.19【解析】求出以连续掷两枚骰子得到的点数m ,n 作为点M 的横坐标、纵坐标样本点的个数,列出在圆229x y +=内的样本点,即可求解. 【详解】分别以连续掷两枚骰子得到的点数m ,n 作为点M 的横坐标、纵坐标,样本点总数6636n =⨯=.点M 落在圆229x y +=内包含的样本点有()1,1,()1,2,()2,1,()2,2,共4个,故点M 落在圆229x y +=内的概率41369P ==. 故答案为:19.【点睛】本题考查古典概型的概率,常见类型事件样本点个数要多加归纳总结,属于基础题. 18.316【解析】 【分析】 【详解】试题分析:总的数对有4416⨯=,满足条件的数对(1,4),(4,1),(2,2)共有3个, 故概率为316P =考点:等可能事件的概率.点评:本题考查运用概率知识解决实际问题的能力,注意满足独立重复试验的条件,解题过程中判断概率的类型是难点也是重点,这种题目高考必考,应注意解题的格式 19.4 【解析】 【分析】设袋中原有x 个绿球,利用最终摸到红球的概率构建关系式,解得x 即可. 【详解】设此袋中原有绿球x 个,共有6+x 个,再往此袋中放入5个白球后,共11+x 个,其中红球6个,所以摇匀后摸出一球,摸到红球的概率为62 115x=+解得4x=,所以原有绿球4个,故答案为:4.【点睛】本题考查了古典概型的概率计算,属于基础题.20.0.3【解析】甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,利用独立事件的概率乘法公式和概率的加法公式能求出甲队以2:1获胜的概率.【详解】甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,则甲队以2:1获胜的概率是:0.60.50.60.40.50.60.3P=⨯⨯+⨯⨯=.故答案为:0.3.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.21.9 10【解析】【分析】首先设3名男生为A,B,C,2名女生为a,b,再用列举法列出全部基本事件,找到至少有1名男生的基本事件个数,即可得到答案.【详解】设3名男生为A,B,C,2名女生为a,b,从5名学生中选2名志愿者,共有:AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个基本事件.至少有1名男生共有9个基本事件,概率为9 10.故答案为:9 10【点睛】本题主要考查古典概型,列举法列出全部基本事件为解题的关键,属于简单题.22.1 3【解析】【分析】这是一个古典概型,利用列举法得到分配的基本事件总数,再找出甲、乙两人被分到同一岗位的基本事件数,代入公式求解.【详解】所有可能的分配方式如表:则样本空间共有6个样本点,令事件M为“甲、乙两人被分到同一岗位”,则事件M包含2个样本点,所以()2163p M==,故答案为:1 323.0.2【解析】【分析】设这个班有100人,根据题意可分析数学不及格有15人,语文不及格有5人,都不及格的有3人,因此可知一学生数学不及格,则他语文也不及格的为15人中有3人,计算概率即可.【详解】由题意设这个班有100人,则数学不及格有15人,语文不及格有5人,都不及格的有3人,则数学不及格的人里头有3人语文不及格,①已知一学生数学不及格,则他语文也不及格的概率为:30.215p==.故答案为:0.2.24.310##0.3【解析】【分析】列出从5人中随机抽取3人的所有的情况,由古典概型概率计算公式可得答案.【详解】从5人中随机抽取3人,所有的情况为(甲、乙、丙),(甲、乙、丁),(甲、乙、戊),(甲、丙、丁),(甲、丙、戊),(甲、丁、戊),(乙、丙、丁),(乙、丙、戊),(乙、丁、戊),(丙、丁、戊),共10种,其中满足甲、乙同时被抽到的情况有(甲、乙、丙),(甲、乙、丁),(甲、乙、戊),共3种,故答案为:3 10.25.①①.【解析】【分析】根据方差定义、互斥与对立概念、平均数计算方法以及线面位置关系确定命题真假.【详解】因为样本方差反映的是所有样本数据与样本平均值的偏离程度,所以①对因为基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B 不为互斥事件,所以①错;因为某校高三(1)班和高三(2)班的人数分别是,m n,若一模考试数学平均分分别是,a b,则这两个班的数学平均分为ma nbm n++,所以①错;因为如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行(同侧时)或相交(异侧时),所以①对. 因此真命题的序号是①①. 故答案为:①①.26.(1)25(2)25(3)110【解析】首先写出整个样本空间中的所有可能的结果,然后再分别列举出事件,,A B AB 所含的结果,再由概率公式计算概率. 【详解】解:将两个红球编号为1,2,三个黄球编号为3,4,5.第一次摸球时有5种等可能的结果,对应第一次摸球的每个可能结果,第二次摸球时都有4种等可能的结果,将两次摸球的结果配对,组成20种等可能的结果,用表表示.(1)第一次摸到红球的可能结果有8种(表中第1,2行),即()()()()()()()(){}1,2,1,3,1,4,1,5,2,1,2,3,2,4,2,5A =,所以()82205P A == (2)第二次摸到红球的可能结果也有8种(表中第1、2列),即()()()()()()()(){}2,1,3,1,4,1,5,1,1,2,3,2,4,2,5,2B =,所以()82205P B == (3)事件AB 包含2个可能结果,即()(){}1,2,2,1AB =,所以()212010P AB == 【点睛】本题考古典概型,属于基础题.解题关键是列举出样本空间中所有基本事件.27.(1)512 (2)512【解析】 【分析】(1)由图查出11月1日至11月12日中空气重度污染的天数,直接利用古典概型概率计算公式得到答案;(2)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案. 【详解】解:(1)某人随机选择11月1日至11月12日中的某一天到达该市,其到达日期的所有可能结果有1日,2日,3日,…,12日,共12种,其中此人到达当日空气重度污染的有1日,2日,3日,7日,12日,共5种,①此人到达当日空气重度污染的概率为512. (2)此人停留3天的所有可能结果有123(,,),234(,,),345(,,),456(,,),567(,,),678(,,),789(,,),8910(,,),91011(,,),101112(,,),111213(,,),121314(,,),共12种,其中恰有1天重度污染的有345(,,),567(,,),678(,,),789(,,),101112(,,)共5种, ①此人停留期间空气重度污染恰有1天的概率为512. 【点睛】本题考查了古典概型及其概率计算公式,训练了学生的读图能力,是基础题. 28.(1)56 (2)1328【解析】 【分析】(1)利用平均数公式即可求得结果;(2)列出所有基本事件,利用古典概型概率公式计算即可求得结果. (1)由频率分布直方图可求得各组的频率自左到右依次为:0.1,0.15,0.3,0.25,0.2, 所以得分的平均数100.1300.15500.3700.25900.256x =⨯+⨯+⨯+⨯+⨯=. (2)所抽取的40人中,得分在80分以上的有400.28⨯=人,。
2020高考数学解答题核心素养题型《专题11 概率与统计综合问题》+答题指导)(解析版)
专题11 概率与统计综合问题【题型解读】几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件、互斥事件常作为解答题的一问考查,也是进一步求分布列、期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】 (2018·天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16,现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ①用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;②设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【答案】见解析【解析】(1)由题意得,甲、乙、丙三个部门的员工人数之比为3∶2∶2.由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人、2人、2人. (2)①随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k 4C 3-k3C 37(k =0,1,2,3).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×35=7.②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥. 由①知,P (B )=P (X =2),P (C )=P (X =1), 故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以事件A 发生的概率为67.【素养解读】本题考查分层抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式,考查分析问题和解决问题的能力,体现了数学运算和数据分析等核心素养.试题难度:中.【突破训练1】 (2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】见解析【解析】(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为所以E (X )=0×4+1×24+2×4+3×24=12.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到了1个红灯的概率为1148.▶▶题型二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,常有解答题的考查,属于中档题.复习中应强化应用类习题的理解与掌握,弄清随机变量的所有取值,它是正确求随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中应强化解答题的规范性训练.【例2】 (2018·北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,“ξk =0”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.【答案】见解析【解析】 (1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A . 因为第四类电影中获得好评的电影有200×0.25=50(部), 所以P (A )=50140+50+300+200+800+510=502 000=0.025.(2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B ,则P (B )=0.25×(1-0.2)+(1-0.25)×0.2=0.35.(3)由题意可知,定义随机变量如下:ξk =⎩⎪⎨⎪⎧0,第k 类电影没有得到人们喜欢,1,第k 类电影得到人们喜欢,则ξk 显然服从两点分布,故Dξ1=0.4×(1-0.4)=0.24,Dξ2=0.2×(1-0.2)=0.16, Dξ3=0.15×(1-0.15)=0.127 5,Dξ4=0.25×(1-0.25)=0.187 5, Dξ5=0.2×(1-0.2)=0.16, Dξ6=0.1×(1-0.1)=0.09.综上所述,Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6.【素养解读】本题考查统计中的概率计算、随机变量的方差计算,考查运算求解能力,体现了数据分析、数学运算等核心素养.试题难度:中.【突破训练2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列.(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【答案】见解析【解析】(1)由题意知,X 所有可能取值为200,300,500, 由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4, P (X =500)=25+7+490=0.4, 因此X 的分布列为当300≤n ≤500时,若最高气温不低于25,Y =6n -4n =2n ; 若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以当n=300时,Y的数学期望达到最大值,最大值为520元.▶▶题型三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下.(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面的列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;附:K 2=(a +b)(c +d)(a +c)(b +d).【答案】见解析【解析】(1)记B 表示事件“旧养殖法的箱产量低于50 kg”,C 表示事件“新养殖法的箱产量不低于50 kg”. 由题意知P (A )=P (BC )=P (B )P (C ). 旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故P (C )的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得如下列联表.K 2=100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法箱产量的中位数的估计值为 50+0.5-0.340.068≈52.35(kg).【素养解读】本题考查频率分布直方图、独立性检验、中位数、相互独立事件的概率,考查学生的阅读理解能力、数据处理能力.主要体现了数据分析,数学运算等核心素养.【突破训练3】 (2017·北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小(只需写出结论). 【答案】见解析【解析】(1)由题图知,在服药的50名患者中,指标y 的值小于60的有15人. 所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为1550=0.3.(2)由题图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.P (ξ=0)=C 22C 24=16,P (ξ=1)=C 12C 12C 24=23,P (ξ=2)=C 22C 24=16.所以ξ的分布列为故ξ的期望E (ξ)=0×6+1×3+2×6=1.(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据方差. 题型四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差等)的考查,解答题中也有所考查.【例4】 (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t . (1)分析利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?请说明理由. 【答案】见解析【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施资源额的预测值为y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势,2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年的数据建立基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. (以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.)【素养解读】本题以统计图为背景,考查线性回归方程,考查运算求解能力和数形结合思想,体现了数学运算的核心素养.【突破训练4】 下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17(y i -y -)2=0.55,∑i =17(t i -t -)(y i -y -)=∑i =17t i y i -t -∑i =17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y -=9.327≈1.331及(1)得b ^=∑i =17(t i -t -)(y i -y -)∑i =17(t i -t -)2=2.8928≈0.103,a ^=y --b ^t -=1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程,得y ^=0.92+0.10×9=1.82.所以预测2019年我国生活垃圾无害化处理量约为1.82亿吨.。
(北师大版)2020版高考数学一轮复习大题专项突破高考大题专项6高考中的概率、统计与统计案例文
1.(2019届河北唐山摸底考试,18)某厂分别用甲、乙两种工艺生产同一种零件,尺寸在内(单位:mm)的零件为一等品,其余为二等品.在两种工艺生产的零件中,各随机抽取10个,其尺寸的茎叶图如图所示:(1)分别计算抽取的两种工艺生产的零件尺寸的平均数;(2)已知甲工艺每天可生产300个零件,乙工艺每天可生产280个零件,一等品利润为30元/个,二等品利润为20元/个.视频率为概率,试根据抽样数据判断采用哪种工艺生产该零件每天获得的利润更高?2.我国是世界上严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(单位:吨),用水量不超过x的部分按平价收费,超过x的部分按议价收费,为了了解全市市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(单位:吨),估计x的值,并说明理由. 3.(2019届广西南宁、玉林、贵港等摸底考试,18)某地区某农产品近几年的产量统计如表:年份2012 2013 2014 2015 2016 2017年份代码t 1 2 3 4 5 6年产量y(万吨) 6.6 6.7 7 7.1 7.2 7.4(1)根据表中数据,建立y关于t的线性回归方程y=bt+a;(2)根据线性回归方程预测2019年该地区该农产品的年产量.附:对于一组数据(t1,y1),(t2,y2),…,(t n,y n),其回归直线y=bt+a的斜率和截距的最小二乘估计分别为:b=,a=-b.(参考数据:(t i-)(y i-)=2.8,计算结果保留小数点后两位)4.为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地开展,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24 000名中学生(其中男生14 000人,女生10 000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是)男生平均每天足球运动的时间分布情况:平均每天足球运动的时间[0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5)人数 2 3 28 22 10 x女生平均每天足球运动的时间分布情况:平均每天足球运动的时间[0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5)人数 5 12 18 10 3 y(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);(2)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”.低于2小时的学生为“非足球健将”.①请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?足球健将非足球健将总计男生女生总计②若在足球活动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.参考公式:χ2=,其中n=a+b+c+d.P(χ2>k0) 0.10 0.05 0.010k02.706 3.841 6.6355.(2019届湖南长沙雅礼中学一模,19)某校决定为本校上学所需时间不少于30分钟的学生提供校车接送服务.为了解学生上学所需时间,从全校600名学生中抽取50人统计上学所需时间(单位:分钟),将600人随机编号为001,002,…,600,抽取的50名学生上学所需时间均不超过60分钟,将上学所需时间按如下方式分成六组,第一组上学所需时间在,得到各组人数的频率分布直方图,如下图:(1)若抽取的50个样本是用系统抽样的方法得到,且第一个抽取的号码为006,则第五个抽取的号码是多少?(2)若从50个样本中属于第四组和第六组的所有人中随机抽取2人,设他们上学所需时间分别为a、b,求满足|a-b|>10的事件的概率;(3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?6.在国际风帆比赛中,成绩以低分为优胜,比赛共11场,并以最佳的9场成绩计算最终的名次.在一次国际风帆比赛中,前7场比赛结束后,排名前8位的选手积分如下表:运动员比赛场次总分1 2 3 4 5 6 7 8 9 10 11A 3 2 2 2 4 2 6 21B 1 3 5 1 10 4 4 28C 9 8 6 1 1 1 2 28D 7 8 4 4 3 1 8 35E 3 12 5 8 2 7 5 42F 4 11 6 9 3 6 8 47G 10 12 12 8 12 10 7 71H 12 12 6 12 7 12 12 73(1)根据表中的比赛数据,比较A与B的成绩及稳定情况;(2)从前7场平均分低于6.5的运动员中,随机抽取2个运动员进行兴奋剂检查,求至少1个运动员平均分不低于5分的概率;(3)请依据前7场比赛的数据,预测冠亚军选手,并说明理由.7.(2019届四川成都石室中学入学考试,19)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50件的概率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50件的天数; (2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1 200元,每售出一件利润为50元,求该门市一天获利不低于800元的概率;(3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01).8.(2019届贵州铜仁一中一联,19)贵州省铜仁第一中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动.现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者中选拔出节目主持人,现按身高分组,得到的频率分布表如图所示.频率分布直方图组号分组频数频率第1组[160,165) 5 0.05第2组[165,170) 0.35第3组[170,175)第4组[175,180) 20 0.20第5组[180,185) 10合计100 1.00(1)请补充频率分布表中空白位置相应数据,再完成下列频率分布直方图;(2)为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?(3)在(2)的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率.9.(2018宁夏银川一中二模,19)某水产品经销商销售某种鲜鱼,售价为每千克20元,成本为每千克15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每千克损失3元.根据以往的销售情况,按进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了300千克这种鲜鱼,假设当天的需求量为x千克(0≤x≤500),利润为Y元.求Y关于x的函数关系式,并结合频率分布直方图估计利润Y不小于700元的概率.答案1.解 (1)(217+218+222+225+226+227+228+231+233+234)=226.1;(218+219+221+224+224+225+226+228+230+232)=224.7.(2)由抽取的样本可知,应用甲工艺生产的产品为一等品的概率为,二等品的概率为,故采用甲工艺生产该零件每天获得的利润:w甲=300××30+300××20=7 200元;应用乙工艺生产的产品为一等品、二等品的概率均为,故采用乙工艺生产该零件每天获得的利润:w乙=280××30+280××20=7 000元.因为w甲>w乙,所以采用甲工艺生产该零件每天获得的利润更高.2.解 (1)由频率分布直方图,可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,解得a=0.30.(2)由频率分布直方图可知,100位居民每人月用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,由以上样本频率分布,可以估计全市80万居民中月均用水量不低于3吨的人数为800000×0.12=96 000.(3)∵前6组的频率之和为(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,而前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,∴2.5≤x<3.由0.3×(x-2.5)=0.85-0.73,解得x=2.9,因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.3.解 (1)由题意可知:=3.5,=7,(t i-)2=(-2.5)2+(-1.5)2+(-0.5)2+0.52+1.52+2.52=17.5,∴b==0.16.又a=-b=7-0.16×3.5=6.44,∴y关于t的线性回归方程为=0.16t+6.44.(2)由(1)可得,当年份为2019年时,年份代码t=8,此时y=0.16×8+6.44=7.72,所以可预测2019年该地区该农产品的年产量约为7.72万吨.4.解 (1)∵男生抽取的人数为120×=70,女生抽取人数为120-70=50,∴x=5,y=2,∴该校男生平均每天足球运动的时间约为≈1.6(小时).(2)①由表格可知足球健将非足球健将总计男生15 55 70女生 5 45 50总计20 100 120∴χ2=≈2.743>2.706,∴有90%的把握认为是否为“足球健将”与性别有关;②记不足半小时的两人为a,b,足球运动时间在=2;运动员B的平均分×28=4,方差=8,从平均分和积分的方差来看,运动员A的平均积分及积分的方差都比运动员B的小,也就是说,在前7场比赛过程中,运动员A的成绩较为优秀,且表现也较为稳定.(2)表中平均分低于6.5分的运动员共有5个,其中平均分低于5分的运动员有3个,平均分不低于5分且低于6.5分的运动员有2个,从这5个数据中任取2个,基本事件总数n=10,从3个运动员中任取2人的事件数为3,至少1个运动员平均分不低于5分的对立事件是取到的两人的平均分都低于5分,所以至少1个运动员平均分不低于5分的概率P=1-.(3)尽管此时还有4场比赛没有进行,但这里我们可以假设每位运动员在各自的11场比赛中发挥的水平大致相同,因而可以把前7场比赛的成绩看作总体的一个样本,并由此估计每位运动员最后的成绩,从已结束的7场比赛的积分来看,运动员A的成绩最为出色,而且表现最为稳定,故预测A运动员获得最后的冠军,而运动员B和C平均分相同,但运动员C得分整体呈下降趋势,所以预测运动员C将获得亚军.7.解 (1)由题意,网店销售量不低于50件共有(0.068+0.046+0.010+0.008)×5×100=66(天),实体店销售量不低于50件的天数为(0.032+0.020+0.012×2)×5×100=38(天),实体店和网店销售量都不低于50件的天数为100×0.24=24(天),故实体店和网店至少有一边销售量不低于50件的天数为66+38-24=80(天).(2)由题意,设该实体店一天售出x件,则获利为50x-1 700≥800⇒x≥50.设该实体店一天获利不低于800元为事件A,则P(A)=P(x≥50)=(0.032+0.020+0.012+0.012)×5=0.38.故该实体店一天获利不低于800元的概率为0.38.(3)因为网店销售量频率分布直方图中,销售量低于50件的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,销售量低于55件的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5,故网店销售量的中位数的估计值为50+×5≈52.35(件).8.解 (1)第二组的频数为100×0.35=35,故第三组的频数为100-5-35-20-10=30,故第三组的频率为0.3,第五组的频率为0.1,补全后的频率分布表为:组号分组频数频率第一组[160,165) 5 0.05第二组[165,170) 35 0.35第三组[170,175) 30 0.3第四组[175,180) 20 0.2第五组[180,185) 10 0.1合计100 1频率分布直方图为:频率分布直方图(2)第3组、第4组、第5组的频率之比为3∶2∶1,故第3组、第4组、第5组抽取的人数分别为3,2,1.(3)设第3组中抽取的三人为A1,A2,A3,第4组中抽取的两人为B1,B2,第5组中抽取的一人为C,则6人中任意抽取2人,所有的基本事件如下:A1A2,A1A3,A2A3,A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,B1B2,A1C,A2C,A3C,B1C,B2C,故第3组中至少有1人被抽取的概率为.9.解 (1)x=50×0.001 0×100+150×0.002 0×100+250×0.003 0×100+350×0.0025×100+450×0.001 5×100=265.(2)当日需求量不低于300千克时,利润Y=(20-15)×300=1 500(元);当日需求量不足300千克时,利润Y=(20-15)x-(300-x)×3=8x-900(元);故Y=由Y≥700,得200≤x≤500,所以P(Y≥700)=P(200≤x≤500)=0.003 0×100+0.002 5×100+0.001 5×100=0.7.。
高考数学(理)二轮专题练习:概率与统计(含答案)
概率与统计1.随机抽样方法简单随机抽样、系统抽样、分层抽样的共同点是抽样过程中每个个体被抽取的机会相等,且是不放回抽样.[问题1] 某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福社区的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次抽取的总户数为________. 答案 24解析 由抽样比例可知6x =480-200-160480,则x =24.2.对于统计图表问题,求解时,最重要的就是认真观察图表,从中提取有用信息和数据.对于频率分布直方图,应注意的是图中的每一个小矩形的面积是数据落在该区间上的频率.茎叶图没有原始数据信息的损失,但数据很大或有多组数据时,茎叶图就不那么直观、清晰了. [问题2] 从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示.若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为________.答案 203.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数. 众数为频率分布直方图中最高矩形的底边中点的横坐标.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标. 平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ).平均数等于频率分布直方图中每个小矩形的面积乘以小距形底边中点的横坐标之和. 标准差的平方就是方差,方差的计算(1)基本公式s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)简化计算公式①s 2=1n [(x 21+x 22+…+x 2n )-n x 2],或写成s 2=1n (x 21+x 22+…+x 2n )-x 2,即方差等于原数据平方和的平均数减去平均数的平方.[问题3] 已知一个样本中的数据为0.12,0.15,0.13,0.15,0.14,0.17,0.15,0.16,0.13,0.14,则该样本的众数、中位数分别是________. 答案 0.15、0.145 4.变量间的相关关系假设我们有如下一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ).回归方程y ^=b ^x +a ^,其中⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n x y∑i =1n x 2i-n x2,a ^=y -b ^x .[问题4] 回归直线方程y ^=b ^x +a ^必经过点________. 答案 (x ,y )5.独立性检验的基本方法一般地,假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表如表:根据观测数据计算由公式k =n (ad -bc )(a +b )(a +c )(b +d )(c +d )所给出的检验随机变量K 2的观测值k ,并且k 的值越大,说明“X 与Y 有关系”成立的可能性越大,可以利用数据来确定“X 与Y 有关系”的可信程度.[问题5] 为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:则至少有________附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )答案 6.互斥事件有一个发生的概率P (A +B )=P (A )+P (B ) (1)公式适合范围:事件A 与B 互斥. (2)P (A )=1-P (A ).[问题6] 抛掷一枚骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________.答案 237.古典概型P (A )=mn (其中,n 为一次试验中可能出现的结果总数,m 为事件A 在试验中包含的基本事件个数)[问题7] 若将一枚质地均匀的骰子先后抛掷2次,则出现向上的点数之和为4的概率为________. 答案1128.几何概型一般地,在几何区域D 内随机地取一点,记事件“该点在其内部一个区域d 内”为事件A ,则事件A 发生的概率为P (A )=d 的度量D 的度量.此处D 的度量不为0,其中“度量”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的度量分别为长度、面积和体积等. 即P (A )=构成事件A 的区域长度(面积和体积)试验的全部结果所构成的区域长度(面积和体积)[问题8] 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12 B .1-π12C.π6 D .1-π6答案 B解析 记“点P 到点O 的距离大于1”为A , P (A )=23-12×43π×1323=1-π12. 9.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.解排列、组合问题的规律是:相邻问题捆绑法;不相邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配分步法;综合问题先选后排法;至多至少问题间接法. (1)排列数公式A m n =n (n -1)(n -2)…[n -(m -1)]=n !(n -m )!,其中m ,n ∈N *,m ≤n .当m =n 时,A n n =n ·(n -1)·……·2·1=n !,规定0!=1. (2)组合数公式C mn =A m n A m m =n (n -1)(n -2)…[n -(m -1)]m !=n !m !(n -m )!.(3)组合数性质C m n =C n-mn,C m n +C m -1n =C m n +1,规定C 0n =1,其中m ,n ∈N *,m ≤n .[问题9] (1)将5封信投入3个邮筒,不同的投法共有________种.(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有________种. 答案 (1)35 (2)70 10.二项式定理(1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n -1n ab n -1+C n n b n (n ∈N *).通项(展开式的第r +1项):T r +1=C rna n -r b r ,其中C r n (r =0,1,…,n )叫做二项式系数.(2)二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -r n .②二项式系数的和等于2n (组合数公式),即C 0n +C 1n +C 2n +…+C n n =2n .③二项式展开式中,偶数项的二项式系数和等于奇数项的二项式系数和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1. 特别提醒:二项式系数最大项与展开式系数最大项是两个不同的概念,在求法上也有很大的差别,往往因为概念不清导致出错.[问题10] 设⎝⎛⎭⎫x -2x 6的展开式中x 3的系数为A ,二项式系数为B ,则A ∶B =________. 答案 4∶1 解析T r +1=C r 6x6-r(-1)r ⎝⎛⎭⎫2x r =C r 6(-1)r 2r362r x-,6-32r =3,r =2,系数A =60,二项式系数B =C 26=15,所以A ∶B =4∶1.4∶1.11.要注意概率P (A |B )与P (AB )的区别:(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).[问题11] 设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.答案 3512.求分布列,要检验概率的和是否为1,如果不是,要重新检查修正.还要注意识别独立重复试验和二项分布,然后用公式.如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k ·(1-p )n -k . [问题12] 若随机变量ξ的分布列如下表,则E (ξ)的值为________.答案209解析 根据概率之和为1,求出x =118,则E (ξ)=0×2x +1×3x +…+5x =40x =209.13.一般地,如果对于任意实数a <b ,随机变量X 满足P (a <X ≤b )=ʃba φμ,σ(x )d x ,则称X 的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N (μ,σ2).如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是:①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.[问题13] 已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)等于( )A .0.6B .0.4C .0.3D .0.2 答案 C解析 ∵P (ξ<4)=0.8,∴P (ξ>4)=0.2,由题意知图象的对称轴为直线x =2, P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3.易错点1 统计图表识图不准致误例1 如图所示是某公司(共有员工300人)2012年员工年薪情况的频率分布直方图,由此可知,员工中年薪在1.4万元~1.6万元之间的大约有________人.错解 由频率分布直方图,员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.10+0.10+0.08)=0.62.∴估计年薪在1.4万元~1.6万元之间约有300×0.62=186(人).找准失分点 本题主要混淆频率分布直方图与条形图纵轴的意义,频率分布直方图中,纵轴(矩形高)表示“频率组距”,每个小矩形的面积才表示落在该区间上的频率,由于概念不清,识图不准导致计算错误.正解 由所给图形可知,员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.08+0.10+0.10)×2=0.24.所以员工中年薪在1.4万元~1.6万元之间的共有300×0.24=72(人). 答案 72易错点2 在几何概型中“测度”确定不准致误例2 如图所示,在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.错解 记AM <AC 为事件E ,设CA =CB =a ,因为△ABC 是直角三角形, 所以,AB =2a ,在AB 上取一点D ,使AD =AC =a ,那么对线段AD 上的任意一点M 都有AM <AD ,即AM <AC , 因此AM <AC 的概率为P (E )=AD AB =a 2a =22. 找准失分点 据题意,过直角顶点C 在∠ACB 内部作一条射线CM ,射线CM 在∠ACB 内部均匀分布,但是点M 在AB 上的分布不是均匀的.正解 在AB 上取一点D ,使AD =AC ,因为AD =AC =a ,∠A =π4,所以∠ACD =∠ADC =3π8,则P (E )=∠ACD ∠ACB =3π8π2=34.易错点3 分不清是排列还是组合致误例3 如图所示,A ,B ,C ,D 是海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有多少种?错解 对于有一个中心的结构形式有A 44,对于四个岛依次相连的形式有A 44,∴共有2A 44=48(种).找准失分点 没有分清是排列还是组合. 正解 由题意可能有两种结构,如图:第一种:,第二种:对于第一种结构,连接方式只需考虑中心位置的情况,共有C 14种方法.对于第二种结构,有C 24A 22种方法. ∴总共有C 14+C 24A 22=16(种).易错点4 均匀分组与非均匀分组混淆致误例4 4个不同的小球放入编号为1、2、3、4的4个盒中,则恰有1个空盒的放法共有________种.(用数字作答) 错解 288错误!未找到引用源。
2020年高考数学解答题核心:概率与统计综合问题(答题指导)(学生版)
专题11 概率与统计综合问题(答题指导)【题型解读】几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件、互斥事件常作为解答题的一问考查,也是进一步求分布列、期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】(2018·天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16,现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;②设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【素养解读】本题考查分层抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式,考查分析问题和解决问题的能力,体现了数学运算和数据分析等核心素养.试题难度:中.【突破训练1】 (2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.▶▶题型二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,常有解答题的考查,属于中档题.复习中应强化应用类习题的理解与掌握,弄清随机变量的所有取值,它是正确求随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中应强化解答题的规范性训练.【例2】(2018·北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢,“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.【素养解读】本题考查统计中的概率计算、随机变量的方差计算,考查运算求解能力,体现了数据分析、数学运算等核心素养.试题难度:中.【突破训练2】(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?▶▶题型三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下.(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面的列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;附:K2=.(a+b)(c+d)(a+c)(b+d)【素养解读】本题考查频率分布直方图、独立性检验、中位数、相互独立事件的概率,考查学生的阅读理解能力、数据处理能力.主要体现了数据分析,数学运算等核心素养.【突破训练3】(2017·北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小(只需写出结论).【例4】 (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t . (1)分析利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?请说明理由.【素养解读】本题以统计图为背景,考查线性回归方程,考查运算求解能力和数形结合思想,体现了数学运算的核心素养.【突破训练4】 下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2∑i =1n (y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .。
2020版高考数学二轮复习第二部分专题四概率与统计第1讲统计与统计案例练习文含解析
第1讲统计与统计案例A级基础通关一、选择题1.某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200人、nn=( 30,那么高三)人中抽取81人进行问卷调查,已知高二被抽取的人数为A.860 B.720 C.1 020 D.1 040 130解析:. 依题意,分层抽样比为=401 2001nn=1 040.),解得81=(1 000+1 200+所以40答案:D2.为规范学校办学,某省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A.13B.19C.20D.51解析:由系统抽样的原理知,抽样的间隔为52÷4=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号,20号,33号,46号.所以样本中还有一位同学的编号为20号.答案:C3.“关注夕阳、爱老敬老”——某爱心协会从2013年开始每年向敬老院捐赠物资和现xy(单位:万元与捐赠的现金)的对应数据,由此表金,下表记录了第年(2013年是第一年)^yxymx+0.35,则预测关于的线性回归方程2019=中的数据得到了年捐赠的现金大约是( )x 6 354 y4.542.53B.万元A.5 5.2万元D.5.55.25C.万元万元--xy=3.5,4.5,解析:由统计表格,知=mm=0.7,+0.35,则=所以3.54.5^yx0.35, +0.7=因此.^xy=0.7×7+0.35==7时,5.25(万元),当故2019年捐赠的现金大约是5.25万元.答案:Cnn块地块地作试验田.这4.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了xxx,下面给出的指标中可以用来评估这种农作物亩产分别为,…,,的亩产量(单位:kg)n21量稳定程度的是( )xxx的平均数,,…,A.n21xxx的标准差, B.,…,n21xxx的最大值, C.,…,n21xxx的中位数,…,D.,n21解析:刻画评估这种农作物亩产量稳定程度的指标是标准差.答案:B5.(2019·衡水中学检测)某超市从2019年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按(0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:22ss)则频率分布直方图(单位:箱)的方差分别为甲,,记甲种酸奶与乙种酸奶的日销售量(2122ssa)与的值及的大小关系分别是中的( 212222ssasas B.>=0.15A.=0.015,< ,21212222sasass,.C =0.015><D.=0.15,2211aa根据频率分布直方0.015.=,得1=10×0.025)++0.030+0.010+(0.020由解析:22ss.>图,乙中较稳定,则21C 答案:二、填空题我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车)6.(2019·全国卷Ⅱ个车次的正点率为10个车次的正点率为0.98,有中,有10个车次的正点率为0.97,有20 .0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________-0.99+10×+10×0.9720×0.98x0.98.==解析:1020+10+0.98. 则经停该站高铁列车所有车次的平均正点率的估计值为0.98答案:单位:分钟)的茎叶图如图所示:7.在一次马拉松比赛中,35名运动员的成绩(若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:依题意,可将编号为1~35号的35个数据分成7组,每组有5个数据.在区间[139,151]上共有20个数据,分在4个小组内,每组抽取1人,共抽取4人.答案:48.某新闻媒体为了了解观众对央视《开门大吉》节目的喜爱与性别是否有关系,随机调查了观看该节目的观众110名,得到如下的列联表:总计女男分类60 喜爱402050 20不喜爱301105060总计试根据样本估计总体的思想,估计在犯错误的概率不超过________的前提下(约有________的把握)认为“喜爱该节目与否和性别有关”.参考附表:2k PK 0.001 )(0.0500.010≥0 k 10.8283.8416.63502bcadn)-(2Knabcd)+(参考公式:=,其中+=+abcdacbd)+)(+)(+)(+(.2)×20×30-20110×(402kK≈观测值数据,可得=的列解析:根据联表中50×60×60×507.822>6.635,所以在犯错误的概率不超过0.01的前提下(约有99%的把握)认为“喜爱该节目与否和性别有关”.答案:0.01 99%三、解答题9.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(0,2],(2,4],(4,6],(6,8],(8,10]分别加以统计,得到如图所示的频率分布直方图.(1)根据女性频率分布直方图估计女性使用微信的平均时间;(2)若每天玩微信超过4小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“微信控”与“性别”有关?解:(1)女性平均使用微信的时间为:0.16×1+0.24×3+0.28×5+0.2×7+0.12×9=4.76(小时).a+0.14+2×0.12)由已知得:2(0.04+=1, (2)a=0.08. 解得由题设条件得列联表总计非微信控分类微信控50 38男性1250 女性2030100总计68322bcnad)(-2K==所以abcdacbd)+(++)()(+)(2)×3012×100(3820-2.941>2.706.≈3268×××5050 的把握认为“微信控”与“性别”有关.90%所以有.单位:天的日用水量数据10.(2018·全国卷Ⅰ)某家庭记录了未使用节水龙头50 天的日用3)m(水量数据,得到频数分布表如下:和使用了节水龙头50 天的日用水量频数分布表未使用节水龙头50使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m天计算,同一组中的365估计3的概率;该家庭使用节水龙头后,一年能节省多少水?(一年按(3) .数据以这组数据所在区间中点的值作代表) (1)所求的频率分布直方图如下:解:×0.35 m根据以上数据,该家庭使用节水龙头后,日用水量小于的频率为0.2(2)30.35 30.1m0.480.0520.12.60.11+×+×+×=,因此该家庭使用节水龙头后,日用水量小于0.48. 的概率的估计值为-1x(0.05×1+0.15×3+(3)该家庭未使用节水龙头50天的日用水量的平均数为=1500.48.0.65×5)=++0.25×2+0.35×40.45×9+0.55×26 该家庭使用了节水龙头后50天的日用水量的平均数为-1x0.35.=0.55×5)10+0.45×16++(0.05×1+0.15×50.25×13+0.35×=2503 365=47.45(m).估计使用节水龙头后,一年可节省水(0.48-0.35)× B级能力提升进行统计得到如下折线)(单位:分11.对某两名高三学生在连续9次数学测试中的成绩图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的结论,有________(填写正确的序号).解析:①甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩低于130分,①错误;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内,②正确;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.答案:②③12.(2019·天一大联考)某机构为了了解不同年龄的人对一款智能家电的评价,随机选名购买该家电的消费者,让他们根据实际使用体验进行评分.50取了.yx若根据统计数据,用最小二乘法.,对该款智能家电的评分为(1)设消费者的年龄为^2yyxxsyx 的方差为+40,且年龄14.4得到的方差为关于,评分的线性回归方程为1.2==x2ryxs=22.5.求的相关系数与,并据此判断对该款智能家电的评分与年龄的相关性强弱;y,评分划分为按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”(2)的把握认为对该智能家电的评价,整理得到如下数据,请判断是否有99%“好评”和“差评”与年龄有关.分类差评好评16 青年8^^^^bxaryb=+率:线性回归直线的=关;相系数斜=附.2bcadn)-(2dnabcK.=++=,其中+独立性检验中的dbdcabac)+++(+)()()(临界值表:2k PK 0.001 )≥0.050(0.0100 k 10.8283.8416.6350r=数=(1)相关系:解^2s1250x b0.96. ==·=1.2×152s50y故对该款智能家电的评分与年龄的相关性较强.(2)由2×2列联表得16-20×850×(×62K9.624>6.635.2)≈=22×282624××的把握认为对该智能家电的评价与年龄有关.99%故有.。
2024届新高考数学大题精选30题--概率统计(1)含答案
大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.2024届新高考数学大题精选30题--概率统计(1)3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO问界M7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望Eξ .5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a 中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i=1,第i局乙当裁判0,第i局甲或丙当裁判,i=1,2,⋅⋅⋅,n,p i=P X i=1,X表示前n局中乙当裁判的次数.(1)求事件“n=3且X=1”的概率;(2)求p i;(3)求E X ,并根据你的理解,说明当n充分大时E X 的实际含义.附:设X,Y都是离散型随机变量,则E X+Y=E X+E Y.8(2024·安徽池州·二模)学校组织某项劳动技能测试,每位学生最多有3次测试机会.一旦某次测试通过,便可获得证书,不再参加以后的测试,否则就继续参加测试,直到用完3次机会.如果每位学生在3次测试中通过的概率依次为0.5,0.6,0.8,且每次测试是否通过相互独立.现某小组有3位学生参加测试,回答下列问题:(1)求该小组学生甲参加考试次数X的分布列及数学期望E X ;(2)规定:在2次以内测试通过(包含2次)获得优秀证书,超过2次测试通过获得合格证书,记该小组3位学生中获得优秀证书的人数为Y,求使得P Y=k取最大值时的整数k.9(2024·辽宁·二模)一枚棋子在数轴上可以左右移动,移动的方式以投掷一个均匀的骰子来决定,规则如下:当所掷点数为1点时,棋子不动;当所掷点数为3或5时,棋子在数轴上向左(数轴的负方向)移动“该点数减1”个单位;当所掷的点数为偶数时,棋子在数轴上向右(数轴的正方向)移动“该点数的一半”个单位;第一次投骰子时,棋子以坐标原点为起点,第二次开始,棋子以前一次棋子所在位置为该次的起点.(1)投掷骰子一次,求棋子的坐标的分布列和数学期望;(2)投掷骰子两次,求棋子的坐标为-2的概率;(3)投掷股子两次,在所掷两次点数和为奇数的条件下,求棋子的坐标为正的概率.10(2024·广东湛江·一模)甲进行摸球跳格游戏.图上标有第1格,第2格,⋯,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第n格的概率为P n n=1,2,3,⋅⋅⋅,25.(1)甲在一次摸球中摸出红球的个数记为X,求X的分布列和期望;(2)证明:数列P n-P n-1n=2,3,⋅⋅⋅,24为等比数列.11(2024·广东韶关·二模)小明参加社区组织的射击比赛活动,已知小明射击一次、击中区域甲的概率是13,击中区域乙的概率是14,击中区域丙的概率是18,区域甲,乙、丙均没有重复的部分.这次射击比赛获奖规则是:若击中区域甲则获一等奖;若击中区域乙则有一半的机会获得二等奖,有一半的机会获得三等奖;若击中区域丙则获得三等奖;若击中上述三个区域以外的区域则不获奖.获得一等奖和二等奖的选手被评为“优秀射击手”称号.(1)求小明射击1次获得“优秀射击手”称号的概率;(2)小明在比赛中射击4次,每次射击的结果相互独立,设获三等奖的次数为X,求X分布列和数学期望.12(2024·河北邢台·一模)小张参加某知识竞赛,题目按照难度不同分为A类题和B类题,小张回答A类题正确的概率为0.9,小张回答B类题正确的概率为0.45.已知题库中B类题的数量是A类题的两倍.(1)求小张在题库中任选一题,回答正确的概率;(2)已知题库中的题目数量足够多,该知识竞赛需要小张从题库中连续回答10个题目,若小张在这10个题目中恰好回答正确k个(k=0,1,2,⋯,10)的概率为P k,则当k为何值时,P k最大?13(2024·湖南衡阳·模拟预测)某电竞平台开发了A、B两款训练手脑协同能力的游戏,A款游戏规则是:五关竞击有奖闯关,每位玩家上一关通过才能进入下一关,上一关没有通过则不能进入下一关,且每关第一次没有通过都有再挑战一次的机会,两次均未通过,则闯关失败,各关和同一关的两次挑战能否通过相互独立,竞击的五关分别依据其难度赋分.B款游戏规则是:共设计了n(n∈N*且n≥2)关,每位玩家都有n次闯关机会,每关闯关成功的概率为13,不成功的概率为23,每关闯关成功与否相互独立;第1次闯关时,若闯关成功则得10分,否则得5分.从第2次闯关开始,若闯关成功则获得上一次闯关得分的两倍,否则得5分.电竞游戏玩家甲先后玩A、B两款游戏.(1)电竞游戏玩家甲玩A款游戏,若第一关通过的概率为34,第二关通过的概率为23,求甲可以进入第三关的概率;(2)电竞游戏玩家甲玩B款游戏,记玩家甲第i次闯关获得的分数为X i i=1,2,⋯,n,求E X i关于i的解析式,并求E X8的值.(精确到0.1,参考数据:2 37≈0.059.)14(2024·湖南邵阳·模拟预测)2023年8月3日,公安部召开的新闻发布会公布了“提高道路资源利用率”和“便利交通物流货运车辆通行”优化措施,其中第二条提出推动缓解停车难问题.在持续推进缓解城镇老旧小区居民停车难改革措施的基础上,因地制宜在学校、医院门口设置限时停车位,支持鼓励住宅小区和机构停车位错时共享.某医院门口设置了限时停车场(停车时间不超过60分钟),制定收费标准如下:停车时间不超过15分钟的免费,超过15分钟但不超过30分钟收费3元,超过30分钟但不超过45分钟收费9元,超过45分钟但不超过60分钟收费18元,超过60分钟必须立刻离开停车场.甲、乙两人相互独立地来该停车场停车,且甲、乙的停车时间的概率如下表所示:停车时间/分钟0,1515,30 30,45 45,60甲143a14a 乙162b13b设此次停车中,甲所付停车费用为X ,乙所付停车费用为Y .(1)在X +Y =18的条件下,求X ≥Y 的概率;(2)若ξ=X -Y ,求随机变量ξ的分布列与数学期望.15(2024·湖北·一模)2023年12月30号,长征二号丙/远征一号S运载火箭在酒泉卫星发射中心点火起飞,随后成功将卫星互联网技术实验卫星送入预定轨道,发射任务获得圆满完成,此次任务是长征系列运载火箭的第505次飞行,也代表着中国航天2023年完美收官.某市一调研机构为了了解当地学生对我国航天事业发展的关注度,随机的从本市大学生和高中生中抽取一个容量为n的样本进行调查,调查结果如下表:学生群体关注度合计关注不关注大学生12n710n高中生合计3 5 n附:α0.10.050.00250.010.001χα 2.706 3.841 5.024 6.63510.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.(1)完成上述列联表,依据小概率值α=0.05的独立性检验,认为关注航天事业发展与学生群体有关,求样本容量n的最小值;(2)该市为了提高本市学生对航天事业的关注,举办了一次航天知识闯关比赛,包含三个问题,有两种答题方案选择:方案一:回答三个问题,至少答出两个可以晋级;方案二:在三个问题中,随机选择两个问题,都答对可以晋级.已知小华同学答出三个问题的概率分别是34,23,12,小华回答三个问题正确与否相互独立,则小华应该选择哪种方案晋级的可能性更大?(说明理由)16(2024·湖北·二模)吸烟有害健康,现统计4名吸烟者的吸烟量x 与损伤度y ,数据如下表:吸烟量x 1456损伤度y3867(1)从这4名吸烟者中任取2名,其中有1名吸烟者的损伤度为8,求另1吸烟者的吸烟量为6的概率;(2)在实际应用中,通常用各散点(r ,y )到直线y =bx +a 的距离的平方和S =ni =1(bx i +a -y i )2 来刻画“整体接近程度”.S 越小,表示拟合效果越好.试根据统计数据,求出经验回归直线方程y =b x +a.并根据所求经验回归直线估计损伤度为10时的吸烟量.附:b =ni =1(x i -x )(y i -y)ni =1(x i -x)2,a =y -b x.17(2024·山东枣庄·一模)有甲、乙两个不透明的罐子,甲罐有3个红球,2个黑球,球除颜色外大小完全相同.某人做摸球答题游戏.规则如下:每次答题前先从甲罐内随机摸出一球,然后答题.若答题正确,则将该球放入乙罐;若答题错误,则将该球放回甲罐.此人答对每一道题目的概率均为12.当甲罐内无球时,游戏停止.假设开始时乙罐无球.(1)求此人三次答题后,乙罐内恰有红球、黑球各1个的概率;(2)设第n n ∈N *,n ≥5 次答题后游戏停止的概率为a n .①求a n ;②a n 是否存在最大值?若存在,求出最大值;若不存在,试说明理由.18(2024·安徽合肥·二模)树人中学高三(1)班某次数学质量检测(满分150分)的统计数据如下表:性别参加考试人数平均成绩标准差男3010016女209019在按比例分配分层随机抽样中,已知总体划分为2层,把第一层样本记为x 1,x 2,x 3,⋯,x n ,其平均数记为x,方差记为s 21;把第二层样本记为y 1,y 2,y 3,⋯,y m ,其平均数记为y,方差记为s 22;把总样本数据的平均数记为z ,方差记为s 2.(1)证明:s 2=1m +nn s 21+x -z 2 +m s 22+y -z 2 ;(2)求该班参加考试学生成绩的平均数和标准差(精确到1);(3)假设全年级学生的考试成绩服从正态分布N μ,σ2 ,以该班参加考试学生成绩的平均数和标准差分别作为μ和σ的估计值.如果按照16%,34%,34%,16%的比例将考试成绩从高分到低分依次划分为A ,B ,C ,D 四个等级,试确定各等级的分数线(精确到1).附:P μ-σ≤X ≤μ+σ ≈0.68,302≈17,322≈18,352≈19.19(2024·福建福州·模拟预测)甲企业生产线上生产的零件尺寸的误差X服从正态分布N0,0.22,规定X∈-0.2,0.2的零件为合格品.的零件为优等品,X∈-0.6,0.6(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数);(2)乙企业拟向甲企业购买这批零件,先对该批零件进行质量抽检,检测的方案是:从这批零件中任取2个作检测,若这2个零件都是优等品,则通过检测;若这2个零件中恰有1个为优等品,1个为合格品但非优等品,则再从这批零件中任取1个作检测,若为优等品,则通过检测;其余情况都不通过检测.求这批零件通过检测时,检测了2个零件的概率(精确到0.01).(附:若随机变量ξ∼Nμ,σ2,则Pμ-σ<ξ<μ+σ=0.9545,=0.6827,Pμ-2σ<ξ<μ+2σPμ-3σ<ξ<μ+3σ=0.9973)20(2024·河北保定·二模)某兴趣小组调查并统计了某班级学生期末统考中的数学成绩和建立个性化错题本的情况,用来研究这两者是否有关.若从该班级中随机抽取1名学生,设A =“抽取的学生期末统考中的数学成绩不及格”,B =“抽取的学生建立了个性化错题本”,且P (A |B )=23,P (B |A )=56,P B =23.(1)求P A 和P A B .(2)若该班级共有36名学生,请完成列联表,并依据小概率值α=0.005的独立性检验,分析学生期末统考中的数学成绩与建立个性化错题本是否有关,个性化错题本期末统考中的数学成绩合计及格不及格建立未建立合计(3)为进一步验证(2)中的判断,该兴趣小组准备在其他班级中抽取一个容量为36k 的样本(假设根据新样本数据建立的列联表中,所有的数据都扩大为(2)中列联表中数据的k 倍,且新列联表中的数据都为整数).若要使得依据α=0.001的独立性检验可以肯定(2)中的判断,试确定k 的最小值参考公式及数据:χ2=n ad -bc 2a +b c +d a +c b +d,n =a +b +c +d .α0.010.0050.001x a6.6357.87910.82821(2024·浙江绍兴·模拟预测)书接上回.麻将学习小组中的炎俊同学在探究完问题后返回家中观看了《天才麻将少女》,发现超能力麻将和现实麻将存在着诸多不同.为了研究超能力麻将,他使用了一些”雀力值”和”能力值”来确定每位角色的超能力麻将水平,发现每位角色在一局麻将中的得分与个人值和该桌平均值之差存在着较大的关系.(注:平均值指的是该桌内四个人各自的“雀力值”和“能力值”之和的平均值,个人值类似.)为深入研究这两者的关系,他列出了以下表格:个人值与平均值之差x-9-6-30369得分y-38600-23100-10900+11800+24100+36700(1)①计算x ,y 的相关系数r ,并判断x ,y 之间是否基本上满足线性关系,注意:保留至第一位非9的数.②求出y 与x 的经验回归方程.③以下为《天才麻将少女》中几位角色的”雀力值”和”能力值”:角色宫永照园城寺怜花田煌松实玄雀力值249104能力值241636试估计此四位角色坐在一桌打麻将每一位的得分(近似至百位)(2)在分析了更多的数据后,炎俊发现麻将中存在着很多运气的成分.为衡量运气对于麻将对局的影响,炎俊建立了以下模型,其中他指出:实际上的得分并不是一个固定值,而是具有一定分布的,存在着一个标准差.运气实际上体现在这一分布当中取值的细微差别.接下去他便需要得出得分的标准差.他发现这一标准差来源自两个方面:一方面是在(1)②问当中方程斜率b 存在的标准差Δb ;另一方面则是在不影响平均值的情况下,实际表现“个人值”X 符合正态分布规律X ~N μ,σ2 .(μ为评估得出的个人值.)已知松实玄实际表现个人值满足P X >10.5 =0.02275,求(1)③中其得分的标准差.(四舍五入到百位)(3)现在新提出了一种赛制:参赛者从平均值为10开始进行第一轮挑战,之后每一轮对手的”雀力值”和”能力值”均会提升至原来的43.我们设进行了i 轮之后,在前i 轮内该参赛者的总得分为E X i ;若园城寺怜参加了此比赛,求ni =1E X i2i参考数据和公式:①7i =1x i y i =1029000;7i =1y 2i =4209320000.②相关系数r =ni =1x i -x y i -yni =1x i -x2ni =1y i -y2;经验回归方程y =b x +a ,b =ni =1x i -x y i -yni =1x i -x2,a =y -b ⋅x;Δbb=1r 2-1n -2,其中n 为回归数据组数.③对于随机变量X~Nμ,σ2,Pμ-σ≤X≤μ+σ≈0.6827,Pμ-2σ≤X≤μ+2σ≈0.9545,Pμ-3σ≤X≤μ+3σ≈0.9973.④x <<1时,1+xα≈1+αx,α∈R;⑤对间接计算得出的值f=xy有标准差Δf满足Δff=Δx x 2+Δy y 2.⑥13136≈3.2×10-4;6.8≈2.6;2946524≈1715×1+9×10-422(2024·江苏南通·模拟预测)“踩高跷,猜灯谜”是我国元宵节传统的文化活动. 某地为了弘扬文化传统,发展“地摊经济”,在元宵节举办形式多样的猜灯谜活动.(1)某商户借“灯谜”活动促销,将灯谜按难易度分为B、C两类,抽到较易的B类并答对购物打八折优惠,抽到稍难的C类并答对购物打七折优惠,抽取灯谜规则如下:在一不透明的纸箱中有8张完全相同的卡片,其中3张写有A字母,3张写有B字母,2张写有C字母,顾客每次不放回从箱中随机取出1张卡片,若抽到写有A的卡片,则再抽1次,直至取到写有B或C卡片为止,求该顾客取到写有B卡片的概率.(2)小明尝试去找全街最适合他的灯谜,规定只能取一次,并且只可以向前走,不能回头,他在街道上一共会遇到n条灯谜(不妨设每条灯谜的适合度各不相同),最适合的灯谜出现在各个位置上的概率相等,小明准备采用如下策略:不摘前k1≤k<n条灯谜,自第k+1条开始,只要发现比他前面见过的灯谜适合的,就摘这条灯谜,否则就摘最后一条,设k=tn,记小明摘到那条最适合的灯谜的概率为P.①若n=4,k=2,求P;②当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k+1k+1+⋯+1n-1=ln nk)23(2024·安徽·模拟预测)某校在90周年校庆到来之际,为了丰富教师的学习和生活,特举行了答题竞赛.在竞赛中,每位参赛教师答题若干次,每一次答题的赋分方法如下:第1次答题,答对得20分,答错得10分,从第2次答题开始,答对则获得上一次答题所得分数两倍的得分,答错得10分,教师甲参加答题竞赛,每次答对的概率均为12,每次答题是否答对互不影响.(1)求甲前3次答题的得分之和为70分的概率.(2)记甲第i次答题所得分数X i i∈N*的数学期望为E X i.(ⅰ)求E X1,E X2,E X3,并猜想当i≥2时,E X i与E X i-1之间的关系式;(ⅱ)若ni=1E X i>320,求n的最小值.24(2024·辽宁·模拟预测)某自然保护区经过几十年的发展,某种濒临灭绝动物数量有大幅度的增加.已知这种动物P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某动物研究小组计划在该区域中捕捉100个动物P ,统计其中A 种的数目后,将捕获的动物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i i =1,2,⋯,20 .设该区域中A 种的数目为M ,B 种的数目为N (M ,N 均大于100),每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E X i +X j =E X i +E X j ,D X i +X j =D X i +D X j (i )证明:E X =E X 1 ,D X =120D X 1 ;(ii )该小组完成所有试验后,得到X i 的实际取值分别为x i i =1,2,⋯,20 .数据x i i =1,2,⋯,20 的平均值x =30,方差s 2=1.采用x和s 2分别代替E X 和D X ,给出M ,N 的估计值.(已知随机变量x 服从超几何分布记为:x ∼H P ,n ,Q (其中P 为总数,Q 为某类元素的个数,n 为抽取的个数),则D x =nQ P 1-QPP -nP -1 )25(2024·广东广州·一模)某校开展科普知识团队接力闯关活动,该活动共有两关,每个团队由n (n ≥3,n ∈N *)位成员组成,成员按预先安排的顺序依次上场,具体规则如下:若某成员第一关闯关成功,则该成员继续闯第二关,否则该成员结束闯关并由下一位成员接力去闯第一关;若某成员第二关闯关成功,则该团队接力闯关活动结束,否则该成员结束闯关并由下一位成员接力去闯第二关;当第二关闯关成功或所有成员全部上场参加了闯关,该团队接力闯关活动结束.已知A 团队每位成员闯过第一关和第二关的概率分别为34和12,且每位成员闯关是否成功互不影响,每关结果也互不影响.(1)若n =3,用X 表示A 团队闯关活动结束时上场闯关的成员人数,求X 的均值;(2)记A 团队第k (1≤k ≤n -1,k ∈N *)位成员上场且闯过第二关的概率为p k ,集合k ∈N *p k <3128中元素的最小值为k 0,规定团队人数n =k 0+1,求n .26(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X ,求X 的分布列和数学期望;(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件A =“甲工厂提高了生产该零件的质量指标”,事件B =“该大型企业把零件交给甲工厂生产”、已知0<P B <1,证明:P A B >P A B.27(2024·湖南·二模)某大学有甲、乙两个运动场.假设同学们可以任意选择其中一个运动场锻炼,也可选择不锻炼,一天最多锻炼一次,一次只能选择一个运动场.若同学们每次锻炼选择去甲或乙运动场的概率均为12,每次选择相互独立.设王同学在某个假期的三天内去运动场锻炼的次数为X ,已知X 的分布列如下:(其中a >0,0<p <1)X0123Pa (1-p )2apa a 1-p(1)记事件A i 表示王同学假期三天内去运动场锻炼i 次i =0,1,2,3 ,事件B 表示王同学在这三天内去甲运动场锻炼的次数大于去乙运动场锻炼的次数.当p =12时,试根据全概率公式求P B 的值;(2)是否存在实数p ,使得E X =53若存在,求p 的值:若不存在,请说明理由;(3)记M 表示事件“甲运动场举办锻炼有奖的抽奖活动”,N 表示事件“王同学去甲运动场锻炼”,0<P M <1.已知王同学在甲运动场举办锻炼有奖的抽奖活动的情况下去甲运动场锻炼的概率,比不举办抽奖活动的情况下去甲运动场锻炼的概率大,证明:P M ∣N >P M ∣N.28(2024·山东济南·二模)随机游走在空气中的烟雾扩散、股票市场的价格波动等动态随机现象中有重要应用.在平面直角坐标系中,粒子从原点出发,每秒向左、向右、向上或向下移动一个单位,且向四个方向移动的概率均为14.例如在1秒末,粒子会等可能地出现在1,0,-1,0,0,1,0,-1四点处.(1)设粒子在第2秒末移动到点x,y,记x+y的取值为随机变量X,求X的分布列和数学期望E X ;(2)记第n秒末粒子回到原点的概率为p n.(i)已知nk=0(C k n)2=C n2n求p3,p4以及p2n;(ii)令b n=p2n,记S n为数列b n的前n项和,若对任意实数M>0,存在n∈N*,使得S n>M,则称粒子是常返的.已知2πnnen<n!<6π 142πn n e n,证明:该粒子是常返的.29(2024·山东潍坊·二模)数列a n 中,从第二项起,每一项与其前一项的差组成的数列a n +1-a n 称为a n 的一阶差数列,记为a 1 n ,依此类推,a 1 n 的一阶差数列称为a n 的二阶差数列,记为a 2n ,⋯.如果一个数列a n 的p 阶差数列a pn 是等比数列,则称数列a n 为p 阶等比数列p ∈N * .(1)已知数列a n 满足a 1=1,a n +1=2a n +1.(ⅰ)求a 1 1,a 1 2,a 13;(ⅱ)证明:a n 是一阶等比数列;(2)已知数列b n 为二阶等比数列,其前5项分别为1,209,379,789,2159,求b n 及满足b n 为整数的所有n 值.。
专题63 统计与概率专题训练(新高考地区专用)(解析版)
专题63 统计与概率专题训练一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.小笼包在生活中非常常见,不同地方做出来的小笼包有不同的特色,无锡有一家商铺制作一种一笼有8个且是8种口味的小笼包,这8种口味分别为蟹粉味、鹅肝味、墨鱼味、芝士味、麻辣味,蒜香味、人参味,酱香味,将这样的一笼小包取出,排成一排,则人参味小笼包既与蟹粉味小包相邻又与墨鱼味小笼包相邻的概率为( )。
A 、281B 、161C 、81 D 、72 【答案】A【解析】将这8种口味的小笼包排成一排有88A 种排法,人参味小笼包既与蟹粉味小包相邻又与墨鱼味小笼包相邻有6622A A ⋅种排法,故所求概率为281886622=⋅A A A ,故选A 。
2.组数1a 、2a 、3a 、…、n a 的平均数是x ,方差是2s ,则另一组数121-a 、122-a 、123-a 、…、12-n a 的平均数和方差分别是( )。
A 、12-x ,2sB 、12-x ,22sC 、x 2,2sD 、12-x ,12222++s s 【答案】C【解析】由题意可知,x a E n =)(,2)(s a D n =,+∈N n ,根据数学期望与方差的公式得:121)(2)12(-=-=-x a E a E n n ,222)()2()12(s a D a D n n ==-,故选C 。
3.某校欲从高三年级学生编排的4个歌舞节目和2个小品节目中随机选出3个节目,参加学校举行的”迎新春”文艺汇演,则所选的3个节目中至少有1个是小品节目的概率为( )。
A 、51B 、52 C 、53 D 、54 【答案】D【解析】从6个节目中任选3个共有2036=C 种选法, 至少含有1个小品节目的共有1614222412=⋅+⋅C C C C 种选法, 故所选的3个节目中至少有1个是小品节目的概率为542016=,故选D 。
压轴题07 统计与概率压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)
压轴题07统计与概率压轴题题型/考向一:统计与概率题型/考向二:统计案例一、统计与概率热点一用样本估计总体1.频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.在频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数.(1)最高的小长方形底边中点的横坐标即众数.(2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.热点二概率1.古典概型的概率公式P(A)=事件A中包含的样本点数试验的样本点总数.2.条件概率公式设A,B为随机事件,且P(A)>0,则P(B|A)=P(AB)P(A).3.全概率公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑ni =1P (A i )P (B |A i ).○热○点○题○型一统计与概率一、单选题1.对某校中学学生的身高进行统计,并将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),则该校学生身高数据的中位数为()A .165B .165.75C .166D .166.252.如图,一组数据123910,,,,,x x x x x ⋅⋅⋅,的平均数为5,方差为21s ,去除9x ,10x 这两个数据后,平均数为x ,方差为22s ,则()A .5x >,2212s s >B .5x <,2212s s <C .5x =,2212s s <D .5x =,2212s s >3.已知数据12,,,n x x x 是某市()*5,n n n ≥∈N 个普通职工的年收入,如果再加上世界首富的年收入1n x +,组成1n +个数据,则下列说法正确的是()A .年收入的平均数可能不变,中位数可能不变,方差可能不变B .年收入的平均数大大增加,中位数可能不变,方差变大C .年收入的平均数大大增加,中位数可能不变,方差变小D .年收入的平均数大大增加,中位数一定变大,方差可能不变4.甲、乙两名篮球运动员在8场比赛中的单场得分用茎叶图表示(图1),茎叶图中甲的得分有部分数据丢失,但甲得分的折线图(图2)完好,则()A .甲的单场平均得分比乙低B .乙的60%分位数为19C .甲、乙的极差均为11D .乙得分的中位数是16.55.某省普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为,,,,A B C D E 五个等级.某高中2022年参加“选择考”总人数是2020年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平,统计了该校2020年和2022年“选择考”成绩等级结果,得到如下统计图.针对该校“选择考”情况,2022年与2020年比较,下列说法正确的是()A .获得A 等级的人数减少了B .获得B 等级的人数增加了1.5倍C .获得D 等级的人数减少了一半D .获得E 等级的人数相同6.在“2,3,5,7,11,13,17,19”这8个素数中,任取2个不同的数,则这两个数之和仍为素数的概率是()A .328B .528C .17D .3147.2022年11月30日,神舟十五号、神舟十四号乘组在太空“胜利会师”,在中国人自己的“太空家园”里留下了一张足以载入史册的太空合影.某班级开展了关于太空知识的分享交流活动,活动中有2名男生、3名女生发言,活动后从这5人中任选2人进行采访,则这2人中至少有1名男生的概率为()A .310B .25C .35D .7108.不透明箱子中装有大小相同标号为1,2,3,4,5的5个冰墩墩(北京冬奥会吉祥物),随机抽取2个冰墩墩,则被抽到的2个冰墩墩标号相邻的概率是()A .15B .25C .35D .45二、多选题9.如图是国家统计局公布的2021年5月至2021年12月的规模以上工业日均发电量的月度走势情况,则().A .2021年7月至2021年10月,规模以上工业月度日均发电量呈现下降趋势B .2021年5月至2021年12月,规模以上工业月度日均发电量的中位数为228C .2021年11月,规模以上工业发电总量约为6758亿千瓦时D .从2021年5月至2021年12月中随机抽取2个月份,规模以上工业月度日均发电量都超过230亿千瓦时的概率为32810.树人中学2006班某科研小组,持续跟踪调查了他们班全体同学一学期中16周锻炼身体的时长,经过整理得到男生、女生各周锻炼身体的平均时长(单位:h )的数据如下:男生:6.3、7.4、7.6、8.1、8.2、8.2、8.5、8.6、8.6、8.6、8.6、9.0、9.2、9.3、9.8、10.1;女生:5.1、5.6、6.0、6.3、6.5、6.8、7.2、7.3、7.5、7.7、8.1、8.2、8.4、8.6、9.2、9.4.以下判断中正确的是()A .女生每周锻炼身体的平均时长的平均值等于8B .男生每周锻炼身体的平均时长的80%分位数是9.2C .男生每周锻炼身体的平均时长大于9h 的概率的估计值为0.3125D .与男生相比,女生每周锻炼身体的平均时长波动性比较大11.已知甲袋内有a 个红球,b 个黑球,乙袋内有b 个红球,a 个黑球(),a b *∈N ,从甲、乙两袋内各随机取出1个球,记事件A =“取出的2个球中恰有1个红球”,B =“取出的2个球都是红球”,C =“取出的2个球都是黑球”,则()A .()0.75P AB +≤B .()()P A P B >C .()()P B P C <D .()()P A B P A C +=+12.某中学为了能充分调动学生对学术科技的积极性,鼓励更多的学生参与到学术科技之中,提升学生的创新意识,该学校决定邀请知名教授于9月2日和9月9日到学校做两场专题讲座.学校有东、西两个礼堂,第一次讲座地点的安排不影响下一次讲座的安排,假设选择东、西两个礼堂作为讲座地点是等可能的,则下列叙述正确的是()A .两次讲座都在东礼堂的概率是14B .两次讲座安排在东、西礼堂各一场的概率是12C .两次讲座中至少有一次安排在东礼堂的概率是34D .若第一次讲座安排在东礼堂,下一次讲座安排在西礼堂的概率是13三、解答题13.春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为了解春节期间车辆出行的高峰情况,在某高速收费点发现大年初三上午9:20~10:40这一时间段内有600辆车通过,将其通过该收费点的时刻绘成频率分布直方图.其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[]80,100,例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取5辆,再从这5辆车中随机抽取3辆,则恰有1辆为9:20~10:00之间通过的概率是多少?14.我国某医药研究所在针对某种世界疾病难题的解决方案中提到了中医疗法,为证实此方法的效用,该研究所购进若干副某种中草药,现按照每副该中草药的重量大小(单位:克)分为4组:[)0,20,[)20,40,[)40,60,[]60,80,并绘制频率分布直方图如下所示:(1)估计每副该中草药的平均重量(同一组中的数据用该区间的中点值作代表);(2)现从每副重量在[)20,40,[]60,80内的中草药中按照分层抽样的方式一共抽取6副该中草药,再从这6副中草药中随机取出2副进行分析,求取出的2副中仅有1副重量在[]60,80中的概率.二、统计案例热点一回归分析求经验回归方程的步骤(1)依据成对样本数据画出散点图,确定两个变量具有线性相关关系(有时可省略).(2)计算出x -,y -,∑n i =1x 2i ,∑ni =1x i y i 的值.(3)计算a ^,b ^.(4)写出经验回归方程.热点二独立性检验独立性检验的一般步骤(1)根据样本数据列2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.χ2越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.○热○点○题○型二统计案例一、单选题1.以模型()e 0kxy c c =>去拟合一组数据时,设ln z y =,将其变换后得到线性回归方程21z x =-,则c =()A .12B .2e -C .1e -D .e2.下列说法正确的有()①对于分类变量X 与Y ,它们的随机变量2K 的观测值k 越大,说明“X 与Y 有关系”的把握越大;②我校高一、高二、高三共有学生4800人,其中高三有1200人.为调查需要,用分层抽样的方法从全校学生中抽取一个容量为200的样本,那么应从高三年级抽取40人;③若数据1x 、2x 、L 、n x 的方差为5,则另一组数据11x +、21x +、L 、1n x +的方差为6;④把六进制数()6210转换成十进制数为:()012621006162678⨯⨯⨯=++=.A .①④B .①②C .③④D .①③3.给出以下四个命题:①在回归分析中,可用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好;②回归模型中离差是实际值i y 与估计值ˆy的差,离差点所在的带状区域宽度越窄,说明模型拟合精度越高;③在一组样本数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅(2n ≥,12,,,n x x x ⋅⋅⋅不全相等)的散点图中,若所有样本点()(),1,2,,i i x y i n =⋅⋅⋅都在直线112y x =-+上,则这组样本数据的线性相关系数为12-;④对分类变量x 与y 的统计量2χ来说,2χ值越小,判断“x 与y 有关系”的把握程度越大.其中,真命题的个数为()A .1B .2C .3D .44.如图是近十年来全国城镇人口、乡村人口的折线图(数据来自国家统计局).根据该折线图,下列说法错误的是()A .城镇人口与年份呈现正相关B .乡村人口与年份的相关系数r 接近1C .城镇人口逐年增长率大致相同D .可预测乡村人口仍呈现下降趋势5.已知变量,x y 之间的线性回归方程为ˆ0.47.6yx =-+,且变量,x y 之间的一组相关数据如表所示,x681012y6m32则下列说法中错误的有()A .变量,x y 之间呈现负相关关系B .变量,x y 之间的相关系数0.4r =-C .m 的值为5D .该回归直线必过点(9,4)6.设两个相关变量x 和y 分别满足下表:x12345y128816若相关变量x 和y 可拟合为非线性回归方程ˆ2bx a y+=,则当6x =时,y 的估计值为()(参考公式:对于一组数据()11u v ,,()22u v ,,⋯,()n n u v ,,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii u v nu vunu β==-⋅=-∑∑,ˆˆav u β=-;51.152≈)A .33B .37C .65D .737.通过随机询问相同数量的不同性别大学生在购买食物时是否看营养说明,得知有16的男大学生“不看”,有13的女大学生“不看”,若有99%的把握认为性别与是否看营养说明之间有关,则调查的总人数可能为()A .150B .170C .240D .1758.已知一组样本数据()()()1122,,,,,,n n x y x y x y ,根据这组数据的散点图分析x 与y 之间的线性相关关系,若求得其线性回归方程为0.8587ˆ 5.yx =-,则在样本点(165,57)处的残差为()A . 2.45-B .2.45C .3.45D .54.55二、多选题9.下列关于成对数据的统计说法正确的有()A .若当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关B .样本相关系数r 的绝对值大小可以反映成对样本数据之间线性相关的程度C .通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据D .决定系数2R 越大,模型的拟合效果越差10.某服装生产商为了解青少年的身高和体重的关系,在15岁的男生中随机抽测了10人的身高和体重,数据如下表所示:编号12345678910身高/cm 165168170172173174175177179182体重/kg55896165677075757880由表中数据制作成如下所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为 11y bx a =+ ,相关系数为1r ,决定系数为21R ;经过残差分析确定()168,89为离群点(对应残差过大),把它去掉后,再用剩下的9组数据计算得到经验回归直线2l 的方程为 22y bx a =+ ,相关系数为2r ,决定系数为22R .则以下结论中正确的有()A . 12a a >B .12bb > C .12r r <D .2212R R >11.下列命题中为真命题的是()A .用最小二乘法求得的一元线性回归模型的残差和一定是0.B .一组数按照从小到大排列后为:1x ,2x ,…,n x ,计算得:25%17n ⨯=,则这组数的25%分位数是17x .C .在分层抽样时,如果知道各层的样本量、各层的样本均值及各层的样本方差,可以计算得出所有数据的样本均值和方差.D .从统计量中得知有97%的把握认为吸烟与患肺病有关系,是指推断有3%的可能性出现错误.12.给出下列说法,其中正确的是()A .某病8位患者的潜伏期(天)分别为3,3,8,4,2,7,10,18,则它们的第50百分位数为5.5B .已知数据12,,x x 的平均数为2,方差为3,那么数据121x +,221x +,L 的平均数和方差分别为5,13C .在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定D .样本相关系数()1,1r ∈-三、解答题13.国家发改委和住建部等六部门发布通知,提到:2025年,农村生活垃圾无害化处理水平将明显提升.现阶段我国生活垃圾有填埋、焚烧、堆肥等三种处理方式,随着我国生态文明建设的不断深入,焚烧处理已逐渐成为主要方式.根据国家统计局公布的数据,对2013-2020年全国生活垃圾焚烧无害化处理厂的个数y (单位:座)进行统计,得到如下表格:年份20132014201520162017201820192020年份代码x 12345678垃圾焚烧无害化处理厂的个数y166188220249286331389463(1)根据表格中的数据,可用一元线性回归模型刻画变量y 与变量x 之间的线性相关关系,请用相关系数加以说明(精确到0.01);(2)求出y 关于x 的经验回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用(2)所求的经验回归方程预测吗?请简要说明理由.参考公式:相关系数()()ni i x x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,n ii i ni i x x yy b a y bx x x ==--==-∑∑参考数据:88882211112292,204,730348,12041i i i i i i i i i y x y x y ========∑∑∑∑,257385.84=≈≈14.为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免,全省国有A 级旅游景区免首道门票,鼓励非国有A 级旅游景区首道门票至少半价优惠.本次门票优惠几乎涵盖了全省所有知名的重点景区,据统计,活动开展以来游客至少去过两个及以上景区的人数占比约为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的22⨯列联表:不满意满意总计50周岁及以下5550周岁以上15总计100(1)根据统计数据完成以上22⨯列联表,并根据小概率值0.001α=的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联?(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为X ,若以本次活动中至少去过两个及以上景区的人数的频率为概率.①求X 的分布列和数学期望;②求()11P X -≤.参考公式及数据:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.()2P k αχ=≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828。
2020年高考理科数学通用版3维专题复习专题检测:(18)概率与统计、随机变量及其分
本资源的初衷 ,是希望通过网络分享 ,能够为广阔读者提供更好的效劳 ,为您水平的提高提供坚强的动力和保证 .内容由一线名师原创 ,立意新 ,图片精 ,是非常强的一手资料 .专题检测 (十八 ) 概率与统计、随机变量及其分布列A 卷 - -夯基保分专练一、选择题1.某一随机变量ξ的分布列如下表所示 ,假设E (ξ)=6.3 ,那么a 的值为( )ξ a 7 9 PbA .4B .5C .6D .7解析:选A 根据随机变量ξ的分布列可知b +0.1+0.4=1 ,所以bE (ξ×a +7×0.1+9×0.4=6.3 ,所以a =4.2.投篮测试中 ,每人投3次 ,至||少投中2次才能通过测试.某同学每次投篮投中的概率为0.6 ,且各次投篮是否投中相互独立 ,那么该同学通过测试的概率为( )A .0.648 C .0.36解析:选A 3次投篮投中2次的概率为P (k =2)=C 23×2×(1-0.6) ,投中3次的概率为P (k 3 ,所以通过测试的概率为P (k =2)+P (k =3)=C 23×2×3=0.648.3.(2021·武汉调研)小赵、小钱、小孙、小李到4个景点旅游 ,每人只去一个景点 ,设事件A = "4个人去的景点不相同〞 ,事件B = "小赵单独去一个景点〞 ,那么P (A |B )=( )A.29 B.13 C.49D.59解析:选A 小赵单独去一个景点共有4×3×3×3=108种可能性 ,4个人去的景点不同的可能性有A 44=4×3×2×1=24种 ,∴P (A |B )=24108=29. 4.(2021·惠州三调)齐||王与田忌赛马 ,田忌的上等马优于齐||王的中等马 ,劣于齐||王的上等马 ,田忌的中等马优于齐||王的下等马 ,劣于齐||王的中等马 ,田忌的下等马劣于齐||王的下等马 ,现从双方的马匹中各随机选一匹进行一场比赛 ,那么田忌获胜的概率为( )A.13 B.14 C.15D.16解析:选A 设田忌的上、中、下三个等次的马分别为A ,B ,C ,齐||王的上、中、下三个等次的马分别为a ,b ,c ,从双方的马匹中各随机选一匹进行一场比赛的所有可能结果有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共9种 ,田忌获胜有Ab ,Ac ,Bc ,共3种 ,所以田忌获胜的概率为13.5.(2021·西安八校联考)在平面区域{(x ,y )|0≤x ≤2 ,0≤y ≤4}内随机投入一点P ,那么点P 的坐标(x ,y )满足y ≤x 2的概率为( )A.12B.13C.23D.34解析:选B 不等式组⎩⎨⎧0≤x ≤20≤y ≤4表示的平面区域的面积为2×4=8 ,不等式组⎩⎨⎧0≤x ≤2 0≤y ≤4 y ≤x2表示的平面区域的面积为⎠⎛02x 2d x =13⎪⎪20=83 ,因此所求的概率P =838=13.6.甲、乙两人进行围棋比赛 ,约定先连胜2局者直接赢得比赛 ,假设赛完5局仍未出现连胜 ,那么判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23 ,乙获胜的概率为13 ,各局比赛结果相互独立.记X 为比赛决出胜负时的总局数 ,那么X 的数学期望是( )A.20183 B.21483 C.22481D.23981解析:选C 用A k 表示 "第k 局甲获胜〞 ,B k 表示 "第k 局乙获胜〞 , 那么P (A k )=23 ,P (B k )=13,k =1,2,3,4,5.X 的所有可能取值为2,3,4,5 ,且P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)·P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)·P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为:X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.二、填空题7.(2021·江苏 (高|考 ))记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,那么x ∈D 的概率是________.解析:由6+x -x 2≥0 ,解得-2≤x ≤3 ,那么D =[-2,3] ,那么所求概率P =3-(-2)5-(-4)=59.答案:598.某车间共有6名工人 ,他们某日加工零件个数的茎叶图如下列图 ,其中茎为十位数 ,叶为个位数 ,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中 ,任取2人 ,那么至||少有1名优秀工人的概率为________.解析:由茎叶图可知6名工人加工零件数分别为17,19,20,21,25,30 ,平均值为16×(17+19+20+21+25+30)=22 ,那么优秀工人有2名 ,从该车间6名工人中 ,任取2人共有C 26=15种取法 ,其中至||少有1名优秀工人的共有C 14C 12+C 22=9种取法 ,由概率公式可得P =915=35. 答案:359.某商场在儿童节举行回馈顾客活动 ,凡在商场消费满100元者即可参加射击赢玩具活动 ,具体规那么如下:每人最||多可射击3次 ,一旦击中 ,那么可获奖且不再继续射击 ,否那么一直射满3次为止.设甲每次击中的概率为p (p ≠0) ,射击次数为η ,假设η的均值E (η)>74,那么p 的取值范围是________.解析:由得P (η=1)=p ,P (η=2)=(1-p )p ,P (η=3)=(1-p )2 , 那么E (η)=p +2(1-p )p +3(1-p )2=p 2-3p +3>74 ,解得p >52或p <12,又p ∈(0,1) ,所以p ∈⎝ ⎛⎭⎪⎪⎫0 12.答案:⎝ ⎛⎭⎪⎪⎫0 12三、解答题10.某市教育局为了解高三学生体育达标情况 ,对全市高三学生进行了体能测试 ,经分析 ,全市高三学生的体能测试成绩X 服从正态分布N (80 ,σ2)(总分值为100分).P (X ≤75)=0.3 ,P (X ≥95)=0.1 ,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学在该次体能测试中的成绩在区间[80,85) ,[85,95) ,[95,100]内各有1位的概率;(2)记抽到的3位同学在该次体能测试中的成绩在区间(75,85)内的人数为ξ ,求随机变量ξ的分布列和数学期望E (ξ).解:(1)由题意知 ,P (80≤X <85)=0.5-P (X ≤75)=0.2 ,P (85≤X <95)=0.3-0.1=0.2 , 所以所求概率P =A 33×××0.1=0.024. (2)P (75<X <85)=1-2P (X ≤75)=0.4 , 所以ξ服从二项分布B (3,0.4) , P (ξ3=0.216 ,P (ξ=1)=C 13××2=0.432 , P (ξ=2)=C 23×2×0.6=0.288 , P (ξ3=0.064 ,所以随机变量ξ的分布列为:数学期望E (ξ)=311.(2021届高三·云南11校跨区调研)为了解一种植物果实的情况 ,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5) ,[32.5,37.5) ,[37.5,42.5) ,[42.5,47.5) ,[47.5,52.5]分为5组 ,其频率分布直方图如下列图.(1)求图中a的值;(2)估计这种植物果实重量的平均数x和方差s2(同一组中的数据用该组区间的中点值作代表);(3)这种植物果实重量不低于32.5克的即为优质果实,用样本估计总体.假设从这种植物果实中随机抽取3个,其中优质果实的个数为X ,求X的分布列和数学期望E(X).解:(1)组距d=5 ,由5×(0.02+0.04+0.075+a+0.015)=1 ,得a=0.05.(2)各组中点值和相应的频率依次为中点值3035404550频率x=30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40 ,s2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.(3)由,这种植物果实的优质率p=0.9 ,且X服从二项分布B(3,0.9) ,P(X3=0.001 ,P(X=1)=C13××2=0.027 ,P(X=2)=C23×2×0.1=0.243 ,P(X3=0.729 ,所以X的分布列为:X 012 3P故数学期望E(X)=np=2.7.12.班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学、物理成绩(单位:分)对应如下表:学生序号i 1234567,记3名同学中数学和物理成绩均为优秀的人数为ξ ,求ξ的分布列和数学期望;②根据上表数据 ,求物理成绩y 关于数学成绩x 的线性回归方程(系数精确到0.01) ,假设班上某位同学的数学成绩为96分 ,预测该同学的物理成绩为多少分 ?附:线性回归方程y ^=b ^x +a ^ ,其中b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ^=y -b ^x .解:(1)依据分层抽样的方法 ,24名女同学中应抽取的人数为742×24=4,18名男同学中应抽取的人数为742×18=3 ,故不同的样本的个数为C 424C 318. (2)①∵7名同学中数学和物理成绩均为优秀的人数为3 , ∴ξ的取值为0,1,2,3.∴P (ξ=0)=C 34C 37=435 ,P (ξ=1)=C 24C 13C 37=1835 ,P (ξ=2)=C 14C 23C 37=1235 ,P (ξ=3)=C 33C 37=135.∴ξ的分布列为:∴E (ξ)=0×435+1×1835+2×1235+3×135=97. ②∵b ^=526812≈0.65 ,a ^=y -b ^x ×76=33.60.∴线性回归方程为y ^x +33.60. 当x =96时 ,y ^×96+33.60=96.∴可预测该同学的物理成绩为96分.B 卷 - -大题增分专练1.(2021届高三·湖南十校联考)为响应国|家 "精准扶贫 ,产业扶贫〞的战略 ,进一步优化能源消费结构 ,某市决定在地处山区的A 县推进光伏发电工程.在该县山区居民中随机抽取50户 ,统计其年用电量得到以下统计表.以样本的频率作为概率.的数学期望;(2)该县某山区自然村有居民300户.假设方案在该村安装总装机容量为300千瓦的光伏发电机组 ,该机组所发电量除保证该村正常用电外 ,剩余电量国|家电网以0.8元/度的价格进行收购.经测算每千瓦装机容量的发电机组年平均发电1 000度 ,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元 ?解:(1)记在抽取的50户居民中随机抽取1户 ,其年用电量不超过600度为事件A ,那么P (A )=35.由可得从该县山区居民中随机抽取10户 ,记其中年用电量不超过600度的户数为X ,X服从二项分布 ,即X ~B ⎝ ⎛⎭⎪⎪⎫10 35 ,故E (X )=10×35=6.(2)设该县山区居民户年均用电量为E (Y ) ,由抽样可得E (Y )=100×550+300×1550+500×1050+700×1550+900×550=500(度).那么该自然村年均用电量约150 000度.又该村所装发电机组年预计发电量为300 000度 ,故该机组每年所发电量除保证正常用电外还能剩余电量约150 000度 ,能为该村创造直接收益150 000×0.8=120 000 元.2.?最||强大脑?是江苏卫视借鉴德国节目?Super Brain?推出的大型科学竞技类真人秀节目 ,是专注于传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢?最||强大脑?是否与性别有关 ,对某校的100名大学生进行了问卷调查 ,得到如以下联表:在这100人中随机抽取1人抽到不喜欢?最||强大脑?的大学生的概率为0.4. (1)请将上述列联表补充完整;(2)判断在犯错误的概率不超过0.001的前提下能否认为喜欢?最||强大脑?与性别有关 ,并说明你的理由;(3)在被调查的大学生中有5名是大一学生 ,其中3名喜欢?最||强大脑? ,现从这5名大一学生中随机抽取2人 ,抽到喜欢?最||强大脑?的人数为X ,求X 的分布列与数学期望.下面的临界值表仅供参考:⎝⎛参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )其中n =)a +b +c +d解:(1)因为在100人中随机抽取1人抽到不喜欢?最||强大脑?的大学生的概率为0.4 ,所以不喜欢?最||强大脑?的大学生人数为100×0.4=40 ,其中男生有10人 ,那么女生有30人 ,列联表补充如下:(2)由表中数据得K 2=100×(40×30-20×10)260×40×50×50≈16.667>10.828 ,所以在犯错误的概率不超过0.001的前提下能认为喜欢?最||强大脑?与性别有关.(3)X 的所有可能取值为0,1,2. 依题意知 ,X 服从超几何分布 ,所以P (X =0)=C 03C 22C 25=110 ,P (X =1)=C 13C 12C 25=610=35 ,P (X =2)=C 23C 02C 25=310.所以X 的分布列为故数学期望E (X )=0×110+1×35+2×310=65.3.甲、乙两人组成 "星队〞参加猜成语活动 ,每轮活动由甲、乙各猜一个成语.在一轮活动中 ,如果两人都猜对 ,那么 "星队〞得3分;如果只有一人猜对 ,那么 "星队〞得1分;如果两人都没猜对 ,那么 "星队〞得0分.甲每轮猜对的概率是34 ,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响 ,各轮结果亦互不影响.假设 "星队〞参加两轮活动 ,求:(1) "星队〞至||少猜对3个成语的概率;(2) "星队〞两轮得分之和X 的分布列和数学期望E (X ). 解:(1)记事件A : "甲第|一轮猜对〞 , 记事件B : "乙第|一轮猜对〞 , 记事件C : "甲第二轮猜对〞 , 记事件D : "乙第二轮猜对〞 ,记事件E : "‘星队 ,至||少猜对3个成语〞.由题意 ,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性 ,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )·P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝⎛⎭⎫14×23×34×23+34×13×34×23=23 , 所以 "星队〞至||少猜对3个成语的概率为23.(2)由题意 ,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性 ,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝⎛⎭⎫34×13×14×13+14×23×14×13=10144=572 ,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144 ,P (X =3)=34×23×14×13+14×13×34×23=12144=112 ,P (X =4)=2×⎝⎛⎭⎫34×23×34×13+34×23×14×23=60144=512 , P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 4.(2021·昆明模拟)某火锅店为了了解气温对营业额的影响 ,随机记录了该店1月份其中5天的日营业额y (单位:万元)与该地当日最||低气温x (单位:℃)的数据 ,如下表:(1)求y 关于x 的线性回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关 ,假设该地1月份某天的最||低气温为6 ℃ ,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最||低气温X ~N (μ ,σ2) ,其中μ近似为样本平均数x ,σ2近似为样本方差s 2 ,求P (3.8<X ≤13.4).附:①回归方程y ^=b ^x +a ^中 ,b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .②10≈3.2 , 3.2≈X ~N (μ ,σ2) ,那么P (μ-σ<X ≤μ+σ)=0.682 7 ,P (μ-2σ<X ≤μ+2σ)=0.954 5.解:(1)x =15×(2+5+8+9+11)=7 ,y =15×(1.2+1+0.8+0.8+0.7)=0.9.∑i =15x 2i =4+25+64+81+121=295 ,∑i =15x i y i =2.4+5+6.4+7.2+7.7=28.7 ,∴b ^=∑i =15x i y i -5x y∑i =15x 2i -5x2=28.7-5×7×295-5×72=,50)=-0.056 ,a ^=y -b ^x =0.9-(-0.056)×7=1.292.公众号:惟微小筑∴线性回归方程为y ^x +1.292.(2)∵b ^=-0.056<0 ,∴y 与x 之间是负相关.当x =6时 ,y ^×6+1.292=0.956.∴该店当日的营业额约为9 560元.(3)样本方差s 2=15×(25+4+1+4+16)=10 , ∴最||低气温X ~N 2) ,∴P (3.8<X ≤10.2)=0.682 7 ,P (0.6<X ≤13.4)=0.954 5 ,∴P (10.2<X ≤13.4)=12×(0.954 5-0.682 7)=0.135 9. ∴P (3.8<X ≤13.4)=P (3.8<X ≤10.2)+P (10.2<X ≤13.4)=0.682 7+0.135 9=0.818 6.。
(完整版)新高考概率与统计 大题专题训练最新
概率与统计(解答题)1.【2021·全国高考真题(理)】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥高,否则不认为有显著提高).2.【2021·北京高考真题】为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);(2)若采用“5合1检测法”,检测次数Y的期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果).3.【2021·全国高考真题】某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.4.【2021·全国高考真题】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义.5.【2020年高考全国Ⅰ卷理数】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为1 2,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.6.【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)8(0ii x x =-=∑,2021)9000(i i y y =-=∑,201)(800(i i i y y x x =--=∑.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数)((iinx y r x y --=∑1.414≈7.【2020年高考全国III卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:K2=()()()()2)n ad bca b c d a c b d-++++,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828.8.【2020年高考山东】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:2SO PM 2.5[0,50](50,150](150,475][0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:2SO PM 2.5[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥0.0500.0100.001k3.841 6.63510.8289.【2020年高考北京】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)10.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).11.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.12.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.13.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.14.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2020高考数学】 统计与概率专题强化训练1.汽车尾气中含有一氧化碳(CO),碳氢化合物(HC)等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表: (1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为35,问是否有95%的把握认为“对机动车强制报废标准是否了解与性别有关”?(2) 该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中CO 浓度的数据,并制成如图7所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中CO 浓度y %与使用年限t 线性相关,试确定y 关于t 的回归方程,并预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的多少倍. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(n =a +b +c +d )参考公式: 用最小二乘法求线性回归方程系数公式: 12211ˆˆˆni ii ni x y nx ybay bx x nx==-==--∑∑,.不了解 了解 总计 女性 a b 50 男性 15 35 50 总计 pq100P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.8282. 某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛,经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分,假设甲队中每人答对的概率均为34,乙队中3人答对的概率分別为432,,543,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分.(1)求ξ的分布列;(2)求甲、乙两队总得分之和等于30分且甲队获胜的概率.3.某单位从一所学校招收某类特殊人才,对20位已经选拨入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:逻辑思维能力运动协调能力一般良好优秀一般 2 2 1良好 4 b 1优秀 1 3 a例如,表中运动协调能力良好且逻辑思维能力一般的学生有4人.由于部分数据丢失,只知道从这20位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为25.(1)求a,b的值.(2)从参加测试的20位学生中任意抽取2位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率.(3)从参加测试的20位学生中任意抽取2位,设运动协调能力或逻辑思维能力优秀的学生人数为ξ,求随机变量ξ的分布列.4.英语老师要求学生从星期一到星期四每天学习3个英语单词:每周五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同)(1)英语老师随机抽了4个单词进行检测,求至少有3个是后两天学习过的单词的概率; (2)某学生对后两天所学过的单词每个能默写对的概率为45,对前两天所学过的单词每个能默写对的概率为35,若老师从后三天所学单词中各抽取一个进行检测,求该学生能默写对的单词的个数ξ的分布列和期望。
5.世界那么大,我想去看看,处在具有时尚文化代表的大学生们旅游动机强烈,旅游可支配收入日益增多,可见大学生旅游是一个巨大的市场.为了解大学生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某大学的1000名学生进行问卷调查,并把所得数据列成如下所示的频数分布表:组别 [0,20) [20,40) [40,60) [60,80) [80,100)频数22504502908(Ⅰ)求所得样本的中位数(精确到百元);(Ⅱ)根据样本数据,可近似地认为学生的旅游费用支出X 服从正态分布2(51,15)N ,若该所大学共有学生65000人,试估计有多少位同学旅游费用支出在8100元以上;(Ⅲ)已知样本数据中旅游费用支出在[80,100]范围内的8名学生中有5名女生,3名男生,现想选其中3名学生回访,记选出的男生人数为Y ,求Y 的分布列与数学期望. 附:若2(,)X N ϕσ:,则()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=,(33)0.9973P X μσμσ-<<+=.6. PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区2017年全年每天的PM2.5监测数据中,随机抽取15天的数据作为标本,监测值如茎叶图所示(十位为茎,个位为叶).(1)从这15天的数据中任取一天,求这天空气质量达到一级的概率;(2)从这15天的数据中任取3天的数据,记ξ表示其中空气质量达到一级的天数,求ξ的分布列;(3)以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.7. 某大型商场今年国庆期间累计生成万张购物单,从中随机抽出张,对每单消费金额进行统计得到下表:消费金额(单位:元)购物单张数25 25 30由于工作人员失误,后两栏数据无法辨识,但当时记录表明,根据以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:(1)估计今年国庆期间该商场累计生成的购物单中,单笔消费额超过元的概率;(2)为鼓励顾客消费,该商场计划在今年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次.抽奖规则为:从装有大小、材质完全相同的个红球和个黑球的不透明口袋中,随机摸出个小球,并记录两种颜色小球的数量差的绝对值,当时,消费者可分别获得价值元、元和元的购物券,求参与抽奖的消费者获得购物券的价值的数学期望.【2020高考数学】 统计与概率专题强化训练1.汽车尾气中含有一氧化碳(CO),碳氢化合物(HC)等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表: (1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为35,问是否有95%的把握认为“对机动车强制报废标准是否了解与性别有关”?(3) 该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中CO 浓度的数据,并制成如图7所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中CO 浓度y %与使用年限t 线性相关,试确定y 关于t 的回归方程,并预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的多少倍. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(n =a +b +c +d )参考公式: 用最小二乘法求线性回归方程系数公式: 12211ˆˆˆni ii ni x y nx ybay bx x nx==-==--∑∑,. 【解析】(1)设“从100人中任选1人,选到了解机动车强制报废标准的人”为事件A , 由已知得P (A )=b +35100=35,所以a =25,b =25,p =40,q =60.K 2的观测值k =100×(25×35-25×15)240×60×50×50≈4.167>3.841,故有95%的把握认为“对机动车强制报废标准是否了解与性别有关”.(2)由折线图中所给数据计算,得t =15×(2+4+6+8+10)=6,y =15×(0.2+0.2+0.4+0.6+0.7)=0.42,不了解 了解 总计 女性 a b 50 男性 15 35 50 总计 pq100P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828故b ^=2.840=0.07,a ^=0.42-0.07×6=0, 所以所求回归方程为y ^=0.07t.故预测该型号的汽车使用12年排放尾气中的CO 浓度为0.84%,因为使用4年排放尾气中的CO 浓度为0.2%,所以预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的4.2倍.2. 某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛,经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分,假设甲队中每人答对的概率均为34,乙队中3人答对的概率分別为432,,543,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分.(1)求ξ的分布列;(2)求甲、乙两队总得分之和等于30分且甲队获胜的概率. 【解析】(1)由题意知,ξ的可能取值为0,10,20,30,因为乙队3人答对的概率分别为432,,543, 所以601)321()431()541()0(=-⨯-⨯-==ξP ,4324324323(10)(1)(1)(1)(1)(1)(1)54354354320P ξ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,43243243213(20)(1)(1)(1)54354354330P ξ==⨯⨯-+-⨯⨯+⨯-⨯=,52324354)30(=⨯⨯==ξP .所以ξ的分布列为ξ102030P601 203 3013 52 (2)设A 表示“甲队得分等于30,乙队得分等于0”,B 表示“甲队得分等于20,乙队得分等于10”,易知A ,B 互斥,又3319()()4601280P A =⨯=,22331381()C ()44201280P B =⨯⨯=, 所以甲、乙两队总得分之和等于30分且甲队获胜的概率为1289128090)()()(==+=+B P A P B A P . 3.某单位从一所学校招收某类特殊人才,对20位已经选拨入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表: 逻辑思维能力 运动协调能力一般 良好 优秀 一般 2 2 1 良好 4 b 1 优秀13a例如,表中运动协调能力良好且逻辑思维能力一般的学生有4人.由于部分数据丢失,只知道从这20位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为25. (1)求a ,b 的值.(2)从参加测试的20位学生中任意抽取2位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率.(3)从参加测试的20位学生中任意抽取2位,设运动协调能力或逻辑思维能力优秀的学生人数为ξ,求随机变量ξ的分布列.【解析】(1)设事件A :从20位学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生.由题意可知,运动协调能力或逻辑思维能力优秀的学生共有(6)a +人. 则62()205a P A +==.解得2a =.所以4b =. (2)设事件B :从20人中任意抽取2人,至少有一位运动协调能力或逻辑思维能力优秀的学生.由题意可知,至少有一项能力测试优秀的学生共有8人.则21222062()1()195C P B P B C =-=-=. (3)ξ的可能取值为0,1,2.20位学生中运动协调能力或逻辑思维能力优秀的学生人数为8人.所以21222033(0)95C P C ξ===,1112822048(1)95C C P C ξ===,2822014(2)95C P C ξ===.所以ξ的分布列为ξ0 1 2 P339548951495所以,0E ξ=⨯33951+⨯48952+⨯1495764955==. 4.英语老师要求学生从星期一到星期四每天学习3个英语单词:每周五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同)(1)英语老师随机抽了4个单词进行检测,求至少有3个是后两天学习过的单词的概率; (2)某学生对后两天所学过的单词每个能默写对的概率为45,对前两天所学过的单词每个能默写对的概率为35,若老师从后三天所学单词中各抽取一个进行检测,求该学生能默写对的单词的个数ξ的分布列和期望。