全国初中数学竞赛辅导(初2)第32讲 自测题
初中数学竞赛辅导资料(二)
![初中数学竞赛辅导资料(二)](https://img.taocdn.com/s3/m/e384ad2179563c1ec5da716f.png)
初中数学竞赛辅导资料(二)(含答案)式子的整除甲内容提要1.定义:如果一个整式除以另一个整式所得的商式也是一个整式,并且余式是零,则称这个整式被另一个整式整除。
2.根据被除式=除式×商式+余式,设f(x),p(x),q(x)都是含x 的整式,那么式的整除的意义可以表示为:若f(x)=p(x)×q(x),则称f(x)能被 p(x)和q(x)整除例如∵x2-3x-4=(x-4)(x +1),∴x2-3x-4能被(x-4)和(x +1)整除。
显然当x=4或x=-1时x2-3x-4=0,3.一般地,若整式f(x)含有x –a的因式,则f(a)=0反过来也成立,若f(a)=0,则x-a能整除f(x)。
4.在二次三项式中若x2+px+q=(x+a)(x+b)=x2+(a+b)x+ab则p=a+b,q=ab在恒等式中,左右两边同类项的系数相等。
这可以推广到任意多项式。
乙例题例1己知x2-5x+m能被x-2整除,求m 的值。
x-3解法一:列竖式做除法(如右)x-2 x2-5x+m由余式m-6=0得m=6x2-2x解法二:∵x2-5x+m 含有x-2 的因式-3x+m∴以x=2代入x2-5x+m 得-3x+622-5×2 +m=0 得m=6 m-6解法三:设x2-5x+m 除以x-2 的商是x+a (a为待定系数)那么 x 2-5x+m =(x+a)(x -2)= x 2+(a-2)x-2a根据左右两边同类项的系数相等,得⎩⎨⎧=--=-m a a 252 解得⎩⎨⎧=-=63m a (本题解法叫待定系数法)例2 己知:x 4-5x 3+11x 2+mx+n 能被x 2-2x+1整除求:m 、n 的值及商式解:∵被除式=除式×商式 (整除时余式为0)∴商式可设为x 2+ax+b得x 4-5x 3+11x 2+mx+n =(x 2-2x+1)(x 2+ax+b )=x 4+(a-2)x 3+(b+1-2a)x 2+(a-2b)x+b根据恒等式中,左右两边同类项的系数相等,得⎪⎪⎩⎪⎪⎨⎧==-=-+-=-n b mb a a b a 12112152 解得⎪⎪⎩⎪⎪⎨⎧=-==-=4113n m n b a ∴m=-11, n=4, 商式是x 2-3x+4例3 m 取什么值时,x 3+y 3+z 3+mxyz (xyz ≠0)能被x+y+z 整除?解:当 x 3+y 3+z 3+mxyz 能被x+y+z 整除时,它含有x+y+z 因式令x+y+z =0,得x=-(y+z ),代入原式其值必为0即[-(y+z )]3+y 3+z 3-myz(y+z)=0把左边因式分解,得 -yz(y+z)(m+3)=0,∵yz ≠0, ∴当y+z=0或m+3=0时等式成立∴当x,y (或y,z 或x,z )互为相反数时,m 可取任何值 ,当m=-3时,x,y,z 不论取什么值,原式都能被x+y+z 整除。
32全国初中数学联赛(整理好)
![32全国初中数学联赛(整理好)](https://img.taocdn.com/s3/m/61d821316137ee06eef918cb.png)
全国初中数学联合竞赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题(本题满分42分,每小题7分)1.已知实数a ,b ,c 满足2a +13b +3c =90,3a +9b +c =72,则3b +c a +2b=( ) A .2 B .1 C .0 D .-12.已知△ABC 的三边长分别是a ,b ,c ,有以下三个结论:(1)以a ,b ,c 为边长的三角形一定存在;(2)以a 2,b 2,c 2为边长的三角形一定存在;(3)以|a -b |+1,|b -c |+1,|c -a |+1为边长的三角形一定存在.其中正确结论的个数为( )A .0B .1C .2D .33.若正整数a ,b ,c 满足a ≤b ≤c 且abc =2(a +b +c ),则称(a ,b ,c )为好数组.那么,好数组的个数为( )A .1B .2C .3D .44.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180︒,且BC =3,AD =4,AC =5,AB =6,则DO OB =( )A .109B .87C .65D .435.设A 是以BC 为直径的圆上的一点,AD ∞BC 于点D ,点E 在线段DC 上,点F 在CB 的延长线上,满足∠BAF =∠CAE .已知BC =15,BF =6,BD =3,则AE =( )A .43B .213C .214D .2156.对于正整数n ,设a n 是最接近n 的整数,则1a 1+1a 2+1a 3+…+1a 200=( ) A .1917 B .1927 C .1937 D .1947二、填空题(本题满分28分,每小题7分)1.使得等式1+1+a =3a 成立的实数a 的值为______. 2.如图,平行四边形ABCD 中,∠ABC =72︒,AF ∞BC 于点F ,AF 交BD 于点E ,若DE =2AB ,则∠AED =______.3.设m ,n 是正整数,且m >n .若9m 与9n 的末两位数字相同,则m -n 的最小值为____.4.若实数x ,y 满足x 3+y 3+3xy =1,则x 2+ y 2的最小值为______.第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y =ax 2+bx +c (c ≠0)的图象与x 轴有唯一交点,则二次函数y =a 3x 2+b 3x +c 3的图象与x 轴的交点个数为( )A .0B .1C .2D .不确定2.题目与(A )卷第1题相同.3.题目与(A )卷第3题相同.4.已知正整数a ,b ,c 满足a 2-6b -3c +9=0,-6a +b 2+c =0,则a 2+b 2+c 2=( )A .424.B .430.C .441.D .460.5.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180,且BC =3,AD=4,AC =5,AB =6,DO OB =( ) A .43 B .65 C .87 D .1096.题目与(A )卷第5题相同.二、填空题(本题满分28分,每小题7分)1.题目与(A )卷第1题相同.2.设O 是锐角三角形ABC 的外心,D ,E 分别为线段BC ,OA 的中点,∠ACB =7∠OED ,∠ABC =5∠OED ,则∠OED =______.3.题目与(A )卷第3题相同.4.题目与(A )卷第4题相同.第二试(A)一、(本题满分20分)已知实数x ,y 满足x + y =3,1x +y 2+1x 2+y =12,求x 5+y 5的值.二、(本题满分25分)如图,△ABC 中,AB >AC ,∠BAC =45︒,E 是∠BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF ∞AB .已知AF =1,BF =5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a ,b ),使得a 3=49×3b +8.第二试(B)一、(本题满分20分)已知实数a ,b ,c 满足a ≤b ≤c ,a +b +c =16,a 2+b 2+c 2+14abc =128,求c 的值.二、(本题满分25分)求所有的正整数m ,使得22m -1-2m +1是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点, OAD = OCB ,OA ∞OD ,OB ∞OC .求2222二、填空1、学校有两个鸽棚,甲棚里有13只,乙棚里有27只,()棚里的鸽子送给()棚里()只,这样,两个棚里的鸽子同样多。
八年级数学竞赛测试题二及答案(K12教育文档)
![八年级数学竞赛测试题二及答案(K12教育文档)](https://img.taocdn.com/s3/m/f2de4b169e3143323868938a.png)
八年级数学竞赛测试题二及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛测试题二及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛测试题二及答案(word版可编辑修改)的全部内容。
A 1F GEA12008年路桥实验中学八年级数学竞赛模拟试题(考试时间:120分钟 满分:120分)命题时间:2008—5-19 一、选择题(共8小题,每小题5分,满分40分) 1、下面4种说法:(1)一个有理数与一个无理数的和一定是无理数 (2)一个有理数与一个无理数的积一定是无理数(3)两个无理数的和一定是无理数 (4)两个无理数的积一定是无理数 其中,正确的说法个数为( ). A .1B .2C .3D .42、已知一次函数y =kx +b ,其中kb 〉0。
则所有符合条件的一次函数的图象一定通过( )。
A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限3为整点,如图(1)所示的正方形内(包括边界)整点 的个数是( )A .13B .21C .17D .254.如果关于x 的不等式组⎪⎩⎪⎨⎧-<+--≥+-23)21(22)(3x b b x a x a x 的整数解仅为1、2、3,那末适合这个不等式组的整数对(a ,b)共有( )A .32对B .35对C .40对D .48对5、现有一列数1239899100,,,,,,a a a a a a ⋅⋅⋅,其中37989,7,1a a a ==-=-,且满足任意相邻三个数的和为常数,则1239899100a a a a a a +++⋅⋅⋅+++的值为( )A .0B .40C .32D .266、如图(2)将六边形ABCDEF 沿着直线GH 折叠,使点A 、B 落在六边形CDEFGH 的内部,则下列结论一定正确的是( ) A .∠1+∠2=900°-2(∠C+∠D+∠E+∠F) B .∠1+∠2=1080°-2(∠C+∠D+∠E+∠F ) C .∠1+∠2=720°-(∠C+∠D+∠E+∠F )D .∠1+∠2=360°-12(∠C+∠D+∠E+∠F)7、如图(3)菱形ABCD 中,∠ABC=120°,F 是DC AF 的延长线交BC 的延长线于E ,则直线BF 与直线的锐角的度数为( )A .30°B .40°C .50°D .60°8、将长、宽、高分别为a ,b ,c (a >b >c ,单位:cm ) 的三块相同的长方体按图所示的三种方式放入三个底面 面直径为d (d >),高为h 的相同圆柱形水 桶中,再向三个水桶内以相同的速度匀速注水, 直至注满水桶为止, 水桶内的水深y(cm )与注水时 间t(s )的函数关系如图(4)所示,则注水速度为 ( )A .302/cm sB .322/cm sC .342/cm sD .402/cm s二、填空题(共6小题,每小题5分,满分30分)9、小明在整个上学途中,他出发后t 分钟时,他所在的位置与家的距离为s 千米,且s 与t 之间的函数关系的图象如图中的折线段OA —OB 所示。
全国初中数学竞赛辅导(初二分册) - 副本
![全国初中数学竞赛辅导(初二分册) - 副本](https://img.taocdn.com/s3/m/57348af481c758f5f71f6705.png)
初二数学竞赛班讲义第一讲因式分解(一) (1)第二讲因式分解(二) (10)第三讲实数的若干性质和应用 (17)第四讲分式的化简与求值 (26)第五讲恒等式的证明 (34)第六讲代数式的求值 (44)第七讲根式及其运算 (52)第八讲非负数 (63)第九讲一元二次方程 (73)第十讲三角形的全等及其应用 (81)第十一讲勾股定理与应用 (90)第十二讲平行四边形 (101)第十三讲梯形 (108)第十四讲中位线及其应用 (116)第十五讲相似三角形(一) (124)第十六讲相似三角形(二) (132)第十八讲归纳与发现 (153)第十九讲特殊化与一般化 (162)第二十讲类比与联想 (171)第二十一讲分类与讨论 (180)第二十二讲面积问题与面积方法 (188)第二十三讲几何不等式 (197)第二十六讲含参数的一元二次方程的整数根问题 (222)第二十七讲列方程解应用问题中的量与等量 (230)第二十八讲怎样把实际问题化成数学问题(一) (239)第二十九讲生活中的数学(一) (247)第三十讲生活中的数学(二) (254)复习题 (260)自测题 (268)自测题一 (268)自测题二 (270)自测题三 (271)自测题四 (273)自测题五 (274)复习题解答 (276)自测题解答 (304)自测题一 (304)自测题二 (309)自测题三 (314)自测题四 (321)自测题五 (327)第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第二讲因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20 =52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.练习三1.下列各数中哪些是有理数,哪些是无理数?为什么?5.设α,β为有理数,γ为无理数,若α+βγ=0,求证:α=β=0.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:。
初中数学竞赛辅导资料及参考答案(初二下部分,共3份)-5
![初中数学竞赛辅导资料及参考答案(初二下部分,共3份)-5](https://img.taocdn.com/s3/m/44efcc0e2af90242a995e500.png)
初二下部分参考答案(1)练习29(返回目录)4.③三边相等和两边相等的三角形统称等腰三角形6. ①a ≤0.5 ②3 ③4,1④1,7⑤6 ⑥±1⑦-7,-53 ⑨-1,2177+ ⑩ ⎩⎨⎧<-≥-312012x x 或⎩⎨⎧<--<-3)12(012x x ∴21<x<2;x ≥211或x ≤-29 7. (C )∵当x<0, -x =ax+1, x=11+-a <0, a>-1 当x>0时,x=ax+1, x=a -11>0, a<1 ∵方程有负根,∴a>-1条件成立,而方程没有正根,a<1,不能成立 即a>-1且a ≮1,它们的交集是a ≥1练习30(返回目录)2. ax=b 解的分类⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧=≠==≠有无数多个解无解且,0,00,0b b a a b x a 3. ②方程⎩⎨⎧非整式方程整式方程 ⑤四边形⎩⎨⎧非平行四边形平行四边形 4.①有理数⎪⎩⎪⎨⎧负有理数零正有理数 ②垂直是相交的一种5. ①-1,3 ②当x ≥2时,x-2>1-2x ……当x<2时-(x-2)>1-2x …6. ①⎩⎨⎧<≤-+-=-<-=)01(2)1(3x x x x x x ②⎪⎪⎩⎪⎪⎨⎧≠--=)1(11)1(21a a a a 7. 30,30,120;75,75,30。
8. -1,09.当m=1时,调3人;m=2, 调2人;m=3,调1人10. x<0或x>3,11. 把n 按奇数、偶数分类讨论,证明a 1a 2a 3… a n 中至少有2个偶数12. a,b 中若有一个是3的倍数,则ab 能被3整除;若除3有同余数则a-b 能被3整除;若除3余数分别为1和2,则a+b 能被3整除.13. a ≥1 (见练习29第7题)14. 按奇数、偶数分类讨论① 当n 为奇数时,设n=2k+1,k>2的整数,n=k+(k+1), k 和k+1互质; ② 当n 为偶数时,设n=4k 或4k+2, k>1的整数若n=4k=(2k+1)+(2k-1), 而2k+1和2k-1是互质的若n=4k+2=(2k-1)+(2k+3), 易知2k-1和2k+3也是互质的,如果它们有公因子d(d ≥2 ), 可设2k-1=md 2k+3=pd, (m,p 是正整数), 则(m-p )d=4,则4d ,这是不可能的。
全国初中数学竞赛试题(含答案)-20220207144625
![全国初中数学竞赛试题(含答案)-20220207144625](https://img.taocdn.com/s3/m/639e51756d175f0e7cd184254b35eefdc8d31529.png)
全国初中数学竞赛试题(含答案)20220207144625一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 2B. 3C. 4D. 52. 如果一个三角形的两边长分别为3和4,那么这个三角形的周长可能是多少?A. 7B. 10C. 11D. 123. 下列哪个分数可以化简为最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个正方形的面积是36平方厘米,那么这个正方形的边长是多少厘米?A. 6B. 7C. 8D. 9二、填空题(每题5分,共20分)1. 7的平方根是______。
2. 0.25的小数点向右移动两位后是______。
3. 一个等边三角形的边长是10厘米,那么这个等边三角形的周长是______厘米。
4. 下列哪个数是立方数?A. 2B. 3C. 4D. 5三、解答题(每题10分,共30分)1. 解方程:2x 5 = 11。
2. 计算下列表达式的值:3(2 + 4) 7。
3. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
四、答案部分一、选择题1. A2. B3. A4. D二、填空题1. ±√72. 253. 304. C三、解答题1. x = 82. 133. 32平方厘米全国初中数学竞赛试题(含答案)20220207144625四、应用题(每题15分,共30分)1. 小明家有一块长方形的地,长是12米,宽是8米。
小明计划将这块地分成两个相同大小的正方形区域。
请问每个正方形的边长是多少米?2. 小红有一笔钱,她将其中的1/3用于购买书,剩下的钱再将其中的1/2用于购买文具。
她剩下的钱是100元。
请问小红最初有多少钱?五、证明题(每题15分,共30分)1. 证明:对于任意实数a和b,如果a < b,那么a² < b²。
2. 证明:等腰三角形的底角相等。
六、答案部分四、应用题1. 每个正方形的边长是6米。
2. 小红最初有300元。
初2数学竞赛试题及答案
![初2数学竞赛试题及答案](https://img.taocdn.com/s3/m/625128b30875f46527d3240c844769eae109a375.png)
初2数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于81,那么这个数是多少?A. 9B. -9C. 81D. ±93. 以下哪个图形的周长最大?A. 边长为4的正方形B. 半径为3的圆C. 边长为5的等边三角形D. 长为6,宽为4的矩形4. 下列哪个代数式是二次的?A. \( x + 2 \)B. \( 3x^2 - 5x + 7 \)C. \( x^3 - 2 \)D. \( 4x^2 \)5. 一个数的立方根等于它本身,这个数可能是?A. 1B. -1C. 0D. 以上都是二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是______。
7. 一个直角三角形的两个直角边长分别为3和4,斜边长为______。
8. 一个数的平方等于36,这个数可能是______。
9. 一个数的倒数是2,这个数是______。
10. 如果\( a \)和\( b \)互为相反数,那么\( a + b = ______\)。
三、解答题(每题5分,共20分)11. 证明:对于任意正整数\( n \),\( 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6} \)。
12. 解一元二次方程:\( x^2 - 5x + 6 = 0 \)。
13. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,求它的体积。
14. 一个圆的半径是7厘米,求它的面积。
初2数学竞赛试题答案一、选择题答案1. B2. D3. B4. B5. D二、填空题答案6. ±57. 58. ±69. 1/210. 0三、解答题答案11. 证明:根据数学归纳法,可以证明这个等式对于\( n = 1 \)成立。
假设对于\( n = k \)成立,即\( 1^2 + 2^2 + 3^2 + ... + k^2 =\frac{k(k+1)(2k+1)}{6} \),那么对于\( n = k+1 \),有\( 1^2 +2^2 + 3^2 + ... + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} +(k+1)^2 \)。
初中数学竞赛初二下部分32-34参考答案
![初中数学竞赛初二下部分32-34参考答案](https://img.taocdn.com/s3/m/13539fe2d5bbfd0a795673b3.png)
初二下部分参考答案(2)练习321. ①平行四边形②菱形③矩形④相等且互相垂直2. 取一条对角线的中点,利用三角形两边差小于第三边3. DG =EF =21AB 4.过点M 作a 的垂线,必平分B ,C , 5.△ABC 的中位线也是梯形BCD ,D 中位线 6.同上,有公共中位线 7.取BC 中点G ,连结DG 8.连结BD 交AC 于O ,易证四边形MCNO 是平行四边形 9. 证四边形MPNS 是平行四边形10. ∵△COD 是等边三角形,CR ⊥DO ,RQ =21BC ,…… 11. 作EF ⊥AC ,EF =ED =21EC ,∠C =30 ,…… 12. 作EF ⊥BC 于F ,AD ,BE 都等于2EF13. 过AC 的中点O 作MN 的平行线,则OE =OF ,…… 练习331. 过一边中点作底边的平行线,证它经过另一边中点2. 以CD 为一边向形内作等边△E 1CD ,证∠E 1AB =∠E 1BA =153.作∠ABC 的平分线,证它与BD 重合 4.取另一腰的中点,…… 5.同3,作∠ABC 的平分线,证它与BD 重合 6.延长DE 交BC 于N ,,证明N ,是BC 的中点 7. ①取EH 的中点P ,FG 的中点Q ,则PFMG 和QHNE 都是平行四边形,PM 过FG 中点,QN 过EH 中点,……M ,Q ,P ,N 是同一直线8. 作等腰三角形ABE 1交CD 于E 1,证明E 1和E 是同一点。
9. 过点A 作⊙O 的切线交CB 于P 1,证明这P 1B =2BC 设AD =2R ,可得AC =3R ,AB =2R ,…… ∵△P 1AB ∽△这P 1CA ,∴A P B P 11=C P A P 11=32……10. 延长AM 到D ,,使MD ,=AM ,证明点D ,在圆上。
即B ,H ,C ,D,四点共圆。
练习341. ① a 和b 相交 ②m>n 或m<n ④∠A 是直角或钝角⑤点A 在⊙O 外或在⊙O 内 ⑥∠A ,∠B ,∠C 都小于60 ⑦m=5k ±1,5k ±2(k 是整数) ⑧方程有理数根ab (a 是整数,b 是正整数,a,b 互质) ⑨没有一个方程是两根不相等2. 设A ,B ,C 三点不在同一直线上,证明AB +BC >AC4.设有两个圆心O 和O 1,经过O 和O 1的直线和圆交于A ,B 则……5.5. ①设3个都是奇数 ②设3个都不是3的倍数,可表示为3k ±16. 设有正整数解x=m, y=n 那么 m=81550n -, ∵ m>0, ∴n=1,2,3 但这时m 都不是整数,∴……7. 设有整数解x=a, y=b按奇数、偶数分类讨论∵右边=1991是奇数,显然,a,b 不能同偶数,也不能同奇数, 设a,b 一奇一偶,a=2m, b=2n+1 (m,n 都是整数)那么左边=(2m )2+(2n+1)2=4(m 2+n 2+n)+1即左边是除以4余1,而右边是除以4余3,………11.反设:最多只有3只猴子分得一样多,……13.设两个交点(x 1,0),(x 2,0)都在X 轴的正半轴上,即x 1>0, x 2>0 那么x 1+x 2>0,且x 1x 2>0∴ ⎩⎨⎧>-003m m >- 这个不等式组无解,即这个假设不能成立,……14. 设有有理数根m n (n 是整数,m 是正整数且m,n 是互质的) 即a(m n )2+b(mn )+c=0, m,n 不能同偶数外,按奇数、偶数分3类讨论,逐一否定。
【初中数学思维训练】第32题——全等是初中几何的根基
![【初中数学思维训练】第32题——全等是初中几何的根基](https://img.taocdn.com/s3/m/639a3ee8a48da0116c175f0e7cd184254b351bb6.png)
【初中数学思维训练】第32题——全等是初中几何的根基
1
前言
本专题以新课程标准的初中数学知识为网络,以初中数学题的一题多解为主线,以解题后的反思为枢纽,试图全面系统地培养、训练中学生的发散思维能力、综合解题能力以及积极主动的创新精神,提高中学生的思维品质。
本专题选题适中,无难题、偏题、怪题,可作为初中数学学习的辅导教材。
本专题将选择500多道题,平均每题有4种以上不同的解法,最多的一题有30多种解法。
本专题的最大亮点是通过追求一题多解开启学生多角度的思路,打开学生的数学智慧之门。
本专题面向全体初中学生,而不是仅仅针对部分学习尖子生,本专题可使学生通过纵横发散、知识串联、综合沟通,达到举一反三、融会贯通的目的。
本专题选题虽少,但是做一道题等于做多道题,从而可以减轻学习负担,提高学习效率。
2
正文
【第32题】
已知△ABC,EF是它的一条中位线,AD是第三边BC上的中线,交EF于O.
求证:EF和AD互相平分.
证法1(思路)
证法2(思路)
证法3(思路)
反思证法1没有添加辅助线,它主要运用了中位线的知识;证法2添加了一条辅助线,它主要运用了全等的知识;证法3添加了两条辅助线,运用了平行四边形的判定和性质,显得简单快捷。
其实细思品
味,无论中位线还是平行四边形,它们的性质都来自于全等三角形,所以全等是根基。
3。
全国数学竞赛初二试题及答案
![全国数学竞赛初二试题及答案](https://img.taocdn.com/s3/m/746fd255ba68a98271fe910ef12d2af90242a8a2.png)
全国数学竞赛初二试题及答案一、选择题(每题5分,共20分)1. 已知a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形2. 一个数的平方根是4,这个数是:A. 16B. -16C. 正负16D. 正负43. 一个正数的倒数是1/5,这个正数是:A. 5B. 1/5C. 5/1D. 14. 一个数的绝对值是3,这个数可能是:A. 3B. -3C. 3或-3D. 不能确定二、填空题(每题4分,共16分)1. 已知一个等差数列的首项是2,公差是3,那么第5项的值是________。
2. 一个圆的半径是5厘米,那么它的周长是________厘米。
3. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,那么它的体积是________立方厘米。
4. 一个分数的分子是8,分母是15,化简后是________。
三、解答题(每题8分,共24分)1. 解方程:2x + 5 = 13。
2. 已知一个长方体的长、宽、高分别是a、b、c,求证:长方体的对角线长度为√(a^2 + b^2 + c^2)。
3. 一个直角三角形的两条直角边分别是6厘米和8厘米,求斜边的长度。
四、证明题(每题10分,共20分)1. 证明:在直角三角形中,斜边的中线等于斜边的一半。
2. 证明:勾股定理的逆定理:如果三角形的三边长a、b、c满足a^2 + b^2 = c^2,则这个三角形是直角三角形。
五、综合题(每题20分,共20分)1. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,求这个长方体的表面积和体积。
答案:一、选择题1. B2. A3. A4. C二、填空题1. 2 + 4 * (5-1) = 142. 2πr = 2 *3.14 * 5 = 31.43. 长 * 宽 * 高 = 2 * 3 * 4 = 244. 8/15三、解答题1. 2x = 13 - 5 => x = 42. 证明略3. 根据勾股定理,斜边长度= √(6^2 + 8^2) = √(36 + 64) = √100 = 10厘米四、证明题1. 证明略2. 证明略五、综合题1. 表面积 = 2(5*4 + 4*3 + 5*3) = 2(20 + 12 + 15) = 2 * 47 = 94平方厘米体积 = 5 * 4 * 3 = 60立方厘米结束语:本次全国数学竞赛初二试题涵盖了基础数学知识与应用,旨在考察学生的数学思维和解决问题的能力。
(完整word版)初中数学竞赛辅导资料(七年级用)
![(完整word版)初中数学竞赛辅导资料(七年级用)](https://img.taocdn.com/s3/m/3993caac336c1eb91b375dcb.png)
初中数学竞赛辅导资料第一讲数的整除一、内容提要:如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除。
0能被所有非零的整数整除.一些数的整除特征能被7整除的数的特征:①抹去个位数②减去原个位数的2倍③其差能被7整除。
如1001 100-2=98(能被7整除)又如7007 700-14=686,68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6。
∵328+92x =567,∴x=3例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8 ∴x =8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756 ②1859 ③1287 ④3276 ⑤10101 ⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页
![初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页](https://img.taocdn.com/s3/m/8a55f8ff9f3143323968011ca300a6c30c22f17f.png)
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足(n2n1)n21的整数n有个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。
八年级数学竞赛辅导训练题二试题
![八年级数学竞赛辅导训练题二试题](https://img.taocdn.com/s3/m/02435daadc3383c4bb4cf7ec4afe04a1b071b077.png)
八年级 数 学 竞 赛 辅 导 训 练 题(二)一、填空题(每一小题4分,一共40分)1、实数包括______和________;一个正实数的绝对值是_______, 一个非正实数的绝对值是_______。
2________;23-的算术平方根是__________。
3、甲、乙两位探险者到沙漠进展探险。
某日早晨7∶00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进。
上午10∶00,甲、乙二人的间隔 的平方是_____。
4、一个等腰三角形的周长为16,底边上的高是4,那么这个三角形的三边长分别是________,________,_________。
5、:如图1,E 、F 分别是正方形ABCD 的边BC 、 CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N , 假设∠EAF=500,那么∠CME +∠CNF =________。
6、在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需的条件是__________________。
7、如图2,将面积为2a 的正方形与面积为2b 的正方形 (b>a)放在一起,那么△ABC 的面积是__________。
8、假设菱形两条对角线长分别为6cm 和8cm ,那么它的周长为_______,面积是________。
9、矩形的周长是72cm ,一边中点与对边的两个端点连线的夹角为直角,那么此矩形的长边长为_______cm ,短边长为________cm 。
10、如图3,在矩形ABCD 中,DC=5cm,在DC 上存在一点E ,沿直线AE 把△AED 折叠, 使点D 恰好落在BC 边上,设此点为F,假设△ABF 的面积为30cm 2,那么折叠的△AED 的面积为_______。
二、选择题(每一小题3分,一共24分) 11、以下说法中正确的选项是( ) A 、三角形一边的平方等于其它两边的平方和B 、直角三角形中斜边的平方等于两直角边的平方和C 、直角三角形一边的平方等于其它两边的平方D 、直角三角形一边等于等于其它两边的和12、如图4,正方形ABCD 的边长为1cm ,以对角线AC 为边长再作一个正方形,那么正方形ACEF 的面积是( )A 、3cm 2B 、4cm 2C 、5cm 2D 、2cm 213、以线段16,13,10,6a b c d ====为边,且使a ∥c 作四边形,这样的四边形( ) A 、能作一个 B 、能作两个 C 、能作三个AEGDB FC图2ABCD E F图3ABCD FE图4ABC D FE NM图1D、能作无数个E、不能作14、如图5,正方形的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,那么BE的值是( )A、10B、11C、12D、15153====对于他们的解法,正确的选项是( )A、甲、乙的解法都正确B、甲的解法正确,乙的解法不正确C、乙的解法正确,甲的解法不正确D、甲、乙的解法都不正确16、实数a、b满足ab=1,假设11,1111a bM Na b a b=+=+++++,那么M、N的关系为( )A、M>NB、M=NC、M<ND、不确定17、在图形旋转中,以下说法中错误的选项是( )A、图形上的每一点到旋转中心的间隔相等B、图形上的每一点挪动的角度一样C、图形上可能存在不动点D、图形上任意两点的连线与其对应两点的连线相等18、根据以下条件,能作出平行四边形的是( )A、两组对边的长分别是3和5B、相邻两边的长分别是3和5,且一条对角线长为9C、一边的长为7,两条对角线的长分别为6和8D、一边的长为7,两条对角线的长分别为6和5三、解答题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自测题
自测题一
1.分解因式:x4-x3+6x2-x+15.
2.已知a,b,c为三角形的三边长,且满足
a2+b2+c2+338=10a+24b+26c,
试确定这个三角形的形状.
3.已知a,b,c,d均为自然数,且
a5=b4,c3=d2,c-a=19,
求d-b的值.
4. a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a和b,求a+b+c 的值.
5.设E,F分别为AC,AB的中点,D为BC上的任一点, P在BF上,DP∥CF,Q
在CE上,DQ∥BE,PQ交BE于R,交
6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)
的平分线存在什么关系?
7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如
果△ABC,△
8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC 上一点,使得CN=BM,连AN,CM交于P点.求∠APM的度数.
9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?
自测题二
1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.
2.对于集合
p={x丨x是1到100的整数}
中的元素a,b,如果a除以b的余数用符号<a,b>表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:
(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;
(2)用列举法表示集合
{x丨<x,6>=<x,8>=5,x∈P}.
3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.
4.已知方程x2-3x+a+4=0有两个整数根.
(1)求证:这两个整数根一个是奇数,一个是偶数;
(2)求证:a是负偶数;
(3)当方程的两整数根同号时,求a的值及这两个根.
5.证明:形如8n+7的数不可能是三个整数的平方和.
7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:
8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.
9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?
自测题三
2.对于任意实数k,方程
(k2+1)x2-2(a+k)2x+k2+4k+b=0
总有一个根是1,试求实数a,b的值及另一个根的范围.
4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q, R.求证:
5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D 点,过D引AB的平行线交BC于F.求证:BF=EC.
6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠
ECB=
7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周
8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.
9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.
(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?
(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?
(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?
自测题四
1.求多项式2x2-4xy+5y2-12y+13的最小值.
2.设
试求:f(1)+f(3)+f(5)+…+f(1999).
3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.
4.若a,b,c为有理数,且等式成立,则a=b=c=0 .
5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.
6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.7.设x1,x2,…,x9均为正整数,且
x1<x2<…<x9,x1+x2+…+x9=220.
当x1+x2+…+x5的值最大时,求x9-x1的值.
8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?
9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:
FA·BC=AE·CD.
(2)当E点移动到D点时,命题(1)将会怎样?
(3)当E点在AD的延长线上时又会怎样?
自测题五
2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根
3.设x+y=1,x2+y2=2,求x7+y7的值.
4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.
5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.
6.a,b,c是三个自然数,且满足
abc=a+b+c,
求证:a,b,c只能是1,2,3中的一个.
7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.
8.设AD是△ABC的中线,
(1)求证:AB2+AC2=2(AD2+BD2);
(2)当A点在BC上时,将怎样?
按沿河距
离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?。