中考数学经典几何模型之轴对称最值模型(解析版)

合集下载

2024年中考数学复习 圆的对称性压轴题六种模型全攻略(原卷+答案解析)

2024年中考数学复习 圆的对称性压轴题六种模型全攻略(原卷+答案解析)

圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0B.1C.2D.3【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,AB =16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD 为⊙O 的半径,弦AB ⊥OD ,垂足为C ,CD =1寸,AB =1尺(1尺=10寸),则此圆材的直径长是寸.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°3(2023·全国·九年级专题练习)如图,线段CD是⊙O的直径,CD⊥AB于点E,若AB长为16,OE 长为6,则⊙O半径是()A.5B.6C.8D.104(2023秋·浙江台州·九年级统考期末)如图,CD是⊙O的直径,弦AB垂直CD于点E,连接AC,BC,AD,BD,则下列结论不一定成立的是()A.AE=BEB.CE=OEC.AC=BCD.AD=BD5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A,B,C,D四点,利用刻度尺量得该纸条宽为3.5cm,AB=3cm,CD=4cm.请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .三、解答题11(2023秋·河北邢台·九年级校联考期末)如图,AB 是⊙O 的直径,BC=CD,∠COD =50°,求∠AOD 的度数.12(2023·江苏·九年级假期作业)如图,OA=OB,AB交⊙O于点C,D,OE是半径,且OE⊥AB于点F.(1)求证:AC=BD.(2)若CD=8,EF=2,求⊙O的半径.13(2023春·全国·九年级专题练习)如图,⊙O的直径AB垂直于弦CD,垂足为E,AE=2,CD=8.(1)求⊙O的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.14(2023·河北衡水·校考模拟预测)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB的两端都在圆O上,A、B两端可沿圆形钢轨滑动,支撑杆CD的底端C固定在圆O上,另一端D是滑动杆AB的中点,(即当支架水平放置时直线AB平行于水平线,支撑杆CD垂直于水平线),通过滑动A、B可以调节CD的高度.当AB经过圆心O时,它的宽度达到最大值10cm,在支架水平放置的状态下:(1)当滑动杆AB的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE=AB),求该手机的宽度.15(2023春·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考阶段练习)如图1,AB 是⊙O 的弦,点C 在⊙O 外,连接AC 、BC 分别交⊙O 于D 、E ,AC =BC(1)求证:CD =CE .(2)如图2,过圆心O 作PQ ∥AB ,交⊙O 于P 、Q 两点,交AC 、BC 于M 、N 两点,求证:PM =QN .(3)如图3,在(2)的条件下,连接EO 、AO ,∠EON +∠CAO =120°,若CD =112,NQ =32,求弦BE 的长.圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】首先由AC=AD,∠AOD=70°可得∠AOC=∠AOD=70°,再由OB=OC可得出∠OBC=∠AOC=35°.∠OCB=12【详解】解:∵在⊙O中,AC=AD,∠AOD=70°∴∠AOC=∠AOD=70°,∵OB=OC,∠AOC=35°,∴∠OBC=∠OCB=12故选:B.【点睛】此题考查了弧与圆心角的关系、等腰三角形的性质及三角形外角的性质,掌握数形结合思想的应用是解题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°【答案】B【分析】根据同弧所对的圆周角等于圆心角的一半即可得出答案.【详解】解:∵∠BAC =40°,∴∠BOC =2∠BAC =2×40°=80°,故选:B .【点睛】本题考查了同弧所对的圆周角与圆心角的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0 B.1 C.2 D.3【答案】B【分析】根据圆心角、弧、弦的关系定理判断①,根据垂径定理的推论判断②;根据不共线的三点共圆可判断③;根据轴对称图形的定义判断④.【详解】解:①同圆或等圆中,相等的圆心角所对的弧相等,故错误;②平分弦不是直径的直径垂直于弦,故错误;③过直线上两点和直线外一点,可以确定一个圆,正确;④圆是轴对称图形,直径所在的直线是它的对称轴,故错误,正确的只有1个,故选:B .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理的推论,轴对称图形的对称轴,圆的性质,熟练掌握定义与性质是解题的关键.【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【答案】见解析【分析】根据角平分线的判定定理可得∠AOC =∠BOC ,然后根据弧、弦和圆心角的关系证明即可.【详解】证明:∵CD =CE ,CD ⊥OA ,CE ⊥OB ,∴∠AOC =∠BOC ,∴AC=BC.【点睛】本题主要考查了角平分线的判定定理以及弧、弦和圆心角的关系等知识,准确证明∠AOC =∠BOC 是解题关键.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .【答案】见解析【分析】根据∠ABD =∠CDB ,可知AD =BC ,则有AD +AC =BC +AC ,由此可得AB =CD,进而可证AB =CD .【详解】证明:∵∠ABD =∠CDB ,∴AD=BC,∴AD +AC=BC +AC,∴AB=CD,∴AB =CD .【点睛】本题考查圆心角、弧、弦之间的关系,即在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,能够熟练掌握圆心角、弧、弦之间的关系是解决本题的关键.2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【答案】见解析【分析】连接OC ,通过证明△AOC ≌△BOC (SAS )即可得结论.【详解】证明:如图,连接OC ,∵C 是AB的中点,∴AC=BC ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA =OB∠AOC =∠BOC OC =OC,∴△AOC ≌△BOC (SAS ),∴∠A =∠B .【点睛】本题考查弧、弦、圆心角的关系,全等三角形的判定和性质等知识,解题的关键是利用全等三角形的判定和性质解决问题,属于中考常考题型.【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【答案】310【分析】由题意易得DE =12CD =3,OD =5,根据勾股定理可求OE 的长,然后问题可求解.【详解】解:连接OD ,∵AB 是⊙O 的直径,AB =10,∴OD =OB =12AB =5,∵CD ⊥AB ,CD =6,∴DE =12CD =3,∠DEO =90°,∴OE=OD2-DE2=4,∴AE=OA+OE=5+4=9,∴AD=DE2+AE2=92+32=310,故答案为310.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.【答案】12【分析】过点O作OH⊥AB于点H,由垂径定理得到BH=12AB=5cm,在Rt△BOH中,利用勾股定理即可得到圆心O到AB的距离.【详解】解:如图,⊙O的半径为13cm,弦AB的长为10cm,过点O作OH⊥AB于点H,则BH=12AB=5cm,∠BHO=90°,∴OH=OB2-BH2=132-52=12cm,即圆心O到AB的距离为12cm,故答案为:12【点睛】此题考查了垂径定理、勾股定理等知识,熟练掌握垂径定理的内容是解题的关键.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【答案】26【分析】连接OC构成直角三角形,先根据垂径定理,由CD⊥AB得到点E为CD的中点,由CD=10可求出CE的长,再设出圆的半径OC为x,表示出OE,根据勾股定理建立关于x的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OC,∵AB⊥CD,且CD=10寸,∴CE=DE=5寸,设圆O的半径OC的长为x,则OC=OA=x,∵AE=1,∴OE=x-1,在Rt△COE中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴AB=26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【答案】C【分析】过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,由AB∥CD,得到OF⊥CD,根据垂径定理得AE=3,CF=4,再在Rt△OAE中和在Rt△OCF中分别利用勾股定理求出OE,OF,然后讨论:当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF;当圆O点不在AB、CD之间,AB与CD 之间的距离=OE-OF.【详解】解:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE,CF=DF,而AB=6,CD=8,∴AE=3,CF=4,在Rt△OAE中,OA=5,OE=OA2-AE2=52-32=4;在Rt△OCF中,OC=5,OF=OC2-CF2=52-42=3;当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF=7;当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF=1;所以AB与CD之间的距离为7或1.故选:C.【点睛】本题考查了垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论的思想的运用.【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=102-82=6,OF=102-62=8,∴EF=OF-OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO=102-82=6,OF=102-62=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【答案】7cm或17cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.【点睛】本题考查了勾股定理和垂径定理的应用,正确作出辅助线、灵活运用定理是解题的关键,注意掌握数形结合思想与分类讨论思想的应用.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【答案】6.5【分析】连接OA,设⊙O的半径为R,利用垂径定理以及勾股定理求解即可.【详解】解:连接OA,设⊙O的半径为R,则OC=R-4,由题意得,OD⊥AB,AB=6,∴AC=BC=12在Rt△AOC中,由勾股定理得R2=62+R-42,解得R=6.5,则⊙O的半径为6.5米.故答案为:6.5.【点睛】本题考查了垂径定理的应用,根据题意作出辅助线,由勾股定理得出方程是解题的关键.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.【答案】16【分析】连接OB,作OD⊥AB于点D,交优弧于点C,利用垂径定理求得AD=BD=8厘米.在Rt△OBD中,利用勾股定理求得OD的长,据此求解即可.【详解】解:连接OB,作OD⊥AB于点D,交优弧于点C,则AD=BD=8厘米.由题意得OB=OC=10厘米,在Rt△OBD中,OD=OB2-BD2=6厘米,∴CD=OD+OC=16厘米,则“图上”太阳从目前所处位置到完全跳出海平面,升起16厘米.故答案为:16.【点睛】本题考查了垂径定理的应用,利用垂径定理构造直角三角形是解题的关键.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD为⊙O的半径,弦AB⊥OD,垂足为C,CD=1寸,AB=1尺(1尺=10寸),则此圆材的直径长是寸.【答案】26【分析】连接AO,依题意,得出AC=5,设半径为r,则AO=r,在Rt△AOC中,AO2=AC2+CO2,解方程即可求解.【详解】解:如图所示,连接AO,∵CD=1,AB=10,AB⊥OD,OD为⊙O的半径,∴AC=5,设半径为r ,则AO =r ,在Rt △AOC 中,AO 2=AC 2+CO 2,∴r 2=52+r -1 2,解得:r =13,∴直径为26,故答案为:26.【点睛】本题考查了垂径定理的应用,勾股定理,掌握垂径定理是解题的关键.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【答案】B【分析】根据垂径定理及其推论判断即可.【详解】解:∵AB 是⊙O 的直径与弦CD 交于点E ,CE =DE ,∴根据垂径定理及其推论可得,点B 为劣弧CD的中点,点A 为优弧CD的中点,AB ⊥CD ∴CB=BD,AC=AD,∴CA =DA但不能证明OE =BE ,故B 选项说法错误,符合题意;故选:B .【点睛】本题考查的是垂径定理及其推论,解决本题的关键是熟练掌握垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③ B.①③C.②④D.①④【答案】D【详解】根据垂径定理及其推论进行判断.【解答】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.【点评】注意概念性质的语言叙述,有时是专门来混淆是非的,只是一字之差,所以学生一定要养成认真仔细的习惯.2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【答案】A【分析】根据矩形的判定方法、圆的性质、垂径定理、三角形的有关性质求解即可.【详解】解:①对角线相等的平行四边形是矩形,故错误;②在同圆或等圆中,同一条弦所对的圆周角不一定相等,∵同一条弦所对的圆周角有两种情况,故不正确;③在同圆或等圆中,相等的圆心角所对的弧相等,故错误;④平分非直径的弦的直径垂直于弦,并且平分弦所对的弧,故错误;⑤到三角形三边距离相等的点是三角形的内心,而内心是角平分线的交点,故正确;故选:A.【点睛】本题是对基础概念的考查,熟记概念是解题关键.【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴【答案】D【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:A、过不在同一直线上的三个点一定能作一个圆,故错误,不符合题意;B、同圆或等圆中,相等的圆心角所对的弧相等,故错误,不符合题意;C、平分弦(不是直径)的直径垂直于弦,故错误,不符合题意;D、圆的直径所在的直线是它的对称轴,正确,符合题意.故选:D.【点睛】本题考查了确定圆的条件及圆的有关性质,解题的关键是了解有关性质及定义,难度不大.2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°【答案】C【分析】分优弧,劣弧两种情况,求解即可.【详解】解:∵弦AB 把圆周分成1:3两部分,∴劣弧AB 的度数为:360°×14=90°,即:劣弧所对的圆心角的度数为90°,优弧AB 的度数为:360°×34=270°,即:优弧所对的圆心角的度数为270°,∴弦AB 所对圆心角的度数为90°或270°;故选C .【点睛】本题考查弦,弧,角之间的关系.注意弦分弧为优弧和劣弧两种情况.3(2023·全国·九年级专题练习)如图,线段CD 是⊙O 的直径,CD ⊥AB 于点E ,若AB 长为16,OE 长为6,则⊙O 半径是()A.5B.6C.8D.10【答案】D【分析】连接OB ,由垂径定理可得BE =AE =8,由勾股定理计算即可获得答案.【详解】解:如图,连接OB ,∵线段CD 是⊙O 的直径,CD ⊥AB 于点E ,AB =16,∴BE =AE =12AB =12×16=8,∴在Rt △OBE 中,可有OB =OE 2+BE 2=62+82=10,∴⊙O 半径是10.故选:D .【点睛】本题主要考查了垂径定理及勾股定理等知识,理解并掌握垂径定理是解题关键.4(2023秋·浙江台州·九年级统考期末)如图,CD 是⊙O 的直径,弦AB 垂直CD 于点E ,连接AC ,BC ,AD ,BD ,则下列结论不一定成立的是()A.AE =BEB.CE =OEC.AC =BCD.AD =BD【答案】B【分析】根据垂径定理对各选项进行逐一分析即可.【详解】解:∵CD 是⊙O 的直径,弦AB 垂直CD 于点E ,∴AE =BE ,AC=BC,AD=BD,∴AC =BC ,AD =BD ,而CE =OE 不一定成立,故选:B .【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为3.5cm ,AB =3cm ,CD =4cm .请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm【答案】B【分析】设圆心为O ,根据垂径定理可以得到CE =2,AF =1.5,再根据勾股定理构建方程解题即可.【详解】设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF ⊥CD ,EF ⊥AB ,∴CE =12CD =12×4=2,AF =12AB =12×3=1.5,设OE =x ,则OF =3.5-x ,又∵OC =OA ,∴CE 2+OE 2=AF 2+OF 2,即22+x 2=1.52+3.5-x 2,解得:x =1.5,∴半径OC =22+x 2=2.5,即直径为5cm ,故选B .【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.二、填空题6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.【答案】10cm【分析】由垂径定理可知CE =12CD =3cm ,在Rt △CEO 中由勾股定理可求得OC 即AB 的值.【详解】解:如图:依题意可知OA =OC =12AB ,∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴CE =12CD =3cm ,在Rt △CEO 中,OC =OE 2+CE 2=42+32=5cm ,∴AB =2OC =10cm ,故答案为:10cm .【点睛】本题考查了垂径定理,勾股定理解直角三角形;解题的关键是熟练掌握相关知识.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-【答案】34°/34度【分析】先由平角的定义求出∠BOE 的度数,由BC=CD=DE,根据相等的弧所对的圆心角相等可得∠BOC =∠EOD =∠COD =13∠BOE ,即可求解.【详解】∵∠AOE =78°,∴∠BOE =180°-∠AOE =180°-78°=102°,∵BC=CD=DE,∴∠BOC =∠EOD =∠COD =13∠BOE =34°,故答案为:34°.【点睛】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.【答案】 610【分析】过点P 的最短的弦是垂直于OP 的弦,过点P 的最长的弦是直径,利用勾股定理和垂径定理进行求解即可得到答案.【详解】解:如图,OP 在直径AB 上,AB ⊥CD 于点P ,过点P 的最短的弦是垂直于OP 的弦,即CD 的长∵OC =5,OP =4,由勾股定理得:PC =OC 2-OP 2=3,∴CD =2PC =6,∴过点P 的最短的弦长是6;过点P 的最长的弦是直径,即AB 的长,∵AB =5×2=10,.∴过点P 的最长的弦长是10,故答案为:6;10.【点睛】本题考查了垂径定理,勾股定理,解题关键是熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.【答案】2或8【分析】根据作图可知,MN 为AB 的中垂线,则MN 必过圆心O ,连接OA ,利用垂径定理求出OD 的长,分点C 在劣弧AB 上和点C 在优弧AB 上两种情况进行求解即可.【详解】解:由题意,得:MN 是弦AB 的中垂线,D 为AB 的中点,如图,连接OA ,OD ,OB ,则:OA =OB =5,AD =12AB =4,∴OD ⊥AB ,∵CD ⊥AB ,∴O ,C ,D 三点共线,∴OC =5,∴OD =OA 2-AD 2=3;①当点C 在劣弧AB 上时:CD =OC -OD =2;②当点C 在优弧AB 上时:CD =OC +OD =8;故答案为:2或8【点睛】本题考查中垂线的作图,垂径定理.根据作图方法得到MN 是AB 的中垂线,是解题的关键.注意分类讨论.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .。

初中数学中利用轴对称性求最值问题例析_王水友

初中数学中利用轴对称性求最值问题例析_王水友

段两端的距离相等知,PA=PD,所以求 PC+PD 的最
小值就转化为求 PC+PA 的最小值,即求 AC 的长度
即可。
例 2 已知抛物线
y
y =ax2 + c 经 过 A (0,1), P(2姨 3 ,-3)。
(1) 求 抛 物 线 的 解 析 式 并 判 定 C( 姨 3 ,0) 是否在此抛物线上;
A
D
C
O
x
M
P
(2) 点 M 是 抛 物 线
对称轴上的动点,连 MP、MC,试 求△PCM 周 长 的 最
小值。
【分析】 此题第二问是二次函数中利用轴对称
性求三角形周长的最小值问题 。由于 PC 的长度 保
持不变,要使△PCM 的周长最小,只要使 CM+MP的
值最小即可,这样问题就转化成例 1 的类型。
和点 B(2,1)。 (1) 求 此 抛 物 线 解
析式; (2) 点 C、D 分别是
x 轴和 y 轴上的动点, 求 四 边 形 ABCD 的 周 长的最小值。
y A′(-1,3)
D
A(1,3)
B(2,1)
E
C
x
B′(2,-1)
(3) 过 点 B 作 x 轴 的 垂 线 ,垂 足 为 E 点 ,点 P
A
N
B 线 时 ,BN′ 的 长 就 是 BM + MN 的 最 小 值 ,而 BN′大 于
或等于 BH,所以 BH 的长就是 BM+MN 的最小值,
容易算出 BH=4。
(五) 两动两定型
已知两定点,分别在两条直线上找两点,使这
两点与已知两定点构成的四边形周长最小。
例 7 已知抛物线 y=ax2+bx+1 经过点 A(1,3),

专题02 特殊平行四边形中的四种最值问题(解析版)-2024年常考压轴题攻略(9年级上册人教版)

专题02 特殊平行四边形中的四种最值问题(解析版)-2024年常考压轴题攻略(9年级上册人教版)

专题02特殊平行四边形中的四种最值问题类型一、将军饮马(轴对称)型最值问题A .5B .【答案】B 【分析】作点E 关于BD 的对称点为∵E 关于BD 的对称点为'E ,∴'PE PE =,'BE BE =,∵正方形ABCD 的边长为2,点A.0B.3【答案】C【分析】要使四边形APQE的周长最小,由于在BC边上确定点P、Q的位置,可在与BC交于一点即为Q点,过A点作后过G点作BC的平行线交DC的延长线于长度.∵四边形ABCD 是矩形,∴8BC AD ==,90D Ð=°,∠QCE =90°,∵2PQ =,∴6DF AD AF =-=,∵点F 点关于BC 的对称点G ,∴FG AD⊥∴90DFG ∠=︒∴四边形FGHD 是矩形,∴GH =DF =6,∠H =90°,∵点E 是CD 中点,∴CE =2,∴EH =2+4=6,∴∠GEH =45°,∴∠CEQ =45°,设BP =x ,则CQ =BC ﹣BP ﹣PQ =8﹣x ﹣2=6﹣x ,在△CQE 中,∵∠QCE =90°,∠CEQ =45°,∴CQ =EC ,∴6﹣x =2,解得x =4.故选:C .【点睛】本题考查了矩形的性质,轴对称﹣最短路线问题的应用,题目具有一定的代表性,是一道难度较大的题目,对学生提出了较高的要求.例3.如图,在矩形ABCD 中,26AB AD ==,,O 为对角线AC 的中点,点P 在AD 边上,且2AP =,点Q【答案】210【分析】①连接PO并延长交BC 明四边形APHB是矩形可得AB②过点O作关于BC的对称点PQ OQ+的最小值为PO'的长度,延长∵GO AD'⊥,点O是AC的中点,∴132AG AD==,【点睛】本题考查矩形的性质、全等三角形的判定与性质、勾股定理及轴对称识是解题的关键.【变式训练1】如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,E是CD的中点,则PE PD+的最小值为()A .35B .32C .6D .5【答案】A 【详解】解:如图,连接BE ,设BE 与AC 交于点P',∵四边形ABCD 是正方形,∴点B 与D 关于AC 对称,∴P'D =P'B ,∴P'D +P'E =P'B +P'E =BE 最小.即P 在AC 与BE 的交点上时,PD +PE 最小,即为BE 的长度.∵正方形ABCD 的周长为24,∴直角△CBE 中,∠BCE =90°,BC =6,CE =12CD =3,∴226335BE =+=故选A.【变式训练2】如图,在矩形ABCD 中,AB =2,AD =3,动点P 满足S △PBC =14S 矩形ABCD ,则点P 到B ,C 两点距离之和PB +PC 的最小值为()A 10B 13C 15D .3【答案】B 【详解】解:设△PBC 中BC 边上的高是h .∵S △PBC =14S 矩形ABCD .∴12BC •h =14AB •AD ,∴h =12AB =1,∴动点P 在与BC 平行且与BC 的距离是1的直线l 上,如图,作B 关于直线l 的对称点E ,连接CE ,则CE 的长就是所求的最短距离.在Rt △BCE 中,∵BC =3,BE =BA =2,∴CE 2213+AB BC 即PB +PC 13故选:B .【变式训练3】如图,在正方形ABCD 中,4AB =,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且3BM =,P 为对角线BD 上一点,则PM PN -的最大值为_____________.【答案】1【分析】作N 关于BD 的对称点E ,连接PE ,ME ,过点M 作MQ ⊥AC ,垂足为Q ,可判定当点P ,E ,M 三点共线时,PM -PE 的值最大,为ME 的长,求出CE ,CQ ,得到EQ ,利用垂直平分线的性质得到EM =CM =1即可.【详解】解:如图:作N 关于BD 的对称点E ,连接PE ,ME ,过点M 作MQ ⊥AC ,垂足为Q ,∴PN =PE ,则PM -PN =PM -PE ,【答案】13【分析】连接CF、AF+=+,故当EF MN EF AF类型二、翻折型最值问题例1.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A'MN,连接A'C,则A'C长度的最小值是()【变式训练1】如图,在矩形ABCD 中,3AB =,4=AD ,E 在AB 上,1BE =,F 是线段BC 上的动点,将EBF △沿EF 所在的直线折叠得到'EB F △,连接'B D ,则'B D 的最小值是()A .6B .4C .2D .1-【答案】D 【详解】解:如图,'B 的运动轨迹是以E 为圆心,以BE 的长为半径的圆.所以,当'B 点落在DE 上时,'B D 取得最小值.根据折叠的性质,△EBF ≌△EB’F ,∴E 'B ⊥'B F ,∴E 'B =EB ,∵1BE =∴E 'B =1,∵3AB =,4=AD ,∴AE =3-1=2,∴DE =D 'B =.故选:D .【变式训练2】如图,在正方形ABCD 中,AB =6,E 是CD 边上的中点,F 是线段BC 上的动点,将△ECF 沿EF 所在的直线折叠得到EC F '△,连接AC ',则的最小值是AC '_______.【答案】3【详解】解:∵四边形ABCD 是正方形,∴6CD AB AD ===,∵E 是CD 边上的中点,∴132EC CD ==∵△ECF 沿EF 所在的直线折叠得到EC F '△,∴3EC EC '==,∴当点A ,C ',E 三点共线时,AC '最小,如图,在Rt ADE △中,由勾股定理得:AE ==3AE EC '-=-,∴AC '的最小值为3.类型三、旋转型最值问题【答案】353-【分析】过点M 作MP CD ⊥,垂足为P ,连接CM ,根据正方形的性质求出CE ,证明EDC DMP △≌△股定理求出CM ,根据CN MN CM +≥即可求出CN 【详解】解:过点M 作MP CD ⊥,垂足为P ,连接由旋转可得:DE DM =,3EF MN ==,90EDM ∠=例2.如图,长方形ABCD 中,6AB =,8BC =,E 为BC 上一点,且2BE =,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转30°到EG 的位置,连接FG 和CG ,则CG 的最小值为______.【答案】2+【详解】解:如图,将线段BE 绕点E 顺时针旋转30°得到线段ET ,连接GT ,过E 作EJ CG ⊥,垂足为J ,∵四边形ABCD 是矩形,∴AB =CD =6,∠B =∠BCD =90°,∵∠BET =∠FEG =30°,∴∠BEF =∠TEG ,在△EBF 和△TEG 中,EB ET BEF TEG EF EG =⎧⎪∠=∠⎨⎪=⎩,∴△EBF ≌△ETG (SAS ),∴∠B =∠ETG =90°,∴点G 的在射线TG 上运动,∴当CG ⊥TG 时,CG 的值最小,∵∠EJG =∠ETG =∠JGT =90°,∴四边形ETGJ 是矩形,∴∠JET =90°,GJ =TE =BE =2,∵∠BET =30°,∴∠JEC =180°-∠JET -∠BET =60°,∵8BC =,∴226,3,3EC BC BE EJ CJ EC EJ =-===-=,∴CG =CJ +GJ =332+.∴CG 的最小值为332+.故答案为:332.【变式训练1】如图,已知正方形ABCD 的边长为a ,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90︒到EF ,连接DF ,CF ,则当DF CF +之和取最小值时,DCF 的周长为______.(用含a 的代数式表示)【答案】()51a +【分析】连接BF ,过点F 作FG AB ⊥交AB 延长线于点G ,先证明AED GFE △≌△,即可得到点F 在CBG ∠的角平分线上运动,作点C 关于BF 的对称点C ',当点D ,F ,C 三点共线时,DF CF DC +='最小,根据勾股定理求出DC DF CF '=+的最小值为35,即可求出此时DCF 的周长为353+.将ED绕点E顺时针旋转90︒到EF,=,∴⊥,EF DEEF DEDEA FEG DEA ADE∴∠+∠=∠+∠=︒,90∴∠=∠,ADE FEG又90,∠=∠=︒DAE FGE(1)试猜想线段BG 和AE 的数量关系,并证明你得到的结论;(2)将正方形DEFG 绕点D 逆时针方向旋转一定角度后(旋转角度大于过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若2BC DE ==,在(2)的旋转过程中,①当AE 为最大值时,则AF =___________.ABC 是等腰直角三角形,AD BC ∴⊥,BD CD =,90ADB ADC ∴∠=∠=︒.四边形DEFG 是正方形,DE DG ∴=.在BDG 和ADE V 中,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩,(SAS)ADE BDG ∴△≌△,BG AE ∴=;(2)(1)中的结论仍然成立,BG AE =,BG AE ⊥.理由如下:如图②,连接AD ,延长EA 交BG 于K ,交DG 于O .在Rt BAC 中,D 为斜边BC 中点,AD BD ∴=,AD BC ⊥,90ADG GDB ∴∠+∠=︒.四边形EFGD 为正方形,DE DG ∴=,且90GDE ∠=︒,90ADG ADE ∴∠+∠=︒,BDG ADE ∴∠=∠.在BDG 和ADE V 中,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩,(SAS)BDG ADE ∴△≌△,BG AE ∴=,BGD AED ∠=∠,2,==BC DEBG∴=+=.213AE∴=.3在Rt AEF中,由勾股定理,得222=+=+3AF AE EF中,如图②中,在BDGBG∴-≤≤+,2112∴的最小值为1,此时如图④中,AE在Rt AEF中,2=AF EF【点睛】本题属于四边形综合题,考查了旋转的性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,正方形的性质的运用,解答时证明三角形全等是关键.类型四、PA+KPB型最值问题3A.27B.23【答案】C【分析】连接AC与EF相交于∵四边形ABCD是菱形,∠=∠,∴OAE OCFA.3B.22【答案】D【分析】连接AF,利用三角形中位线定理,可知四边形ABCD是菱形,∴==,AB BC23,H分别为AE,EF的中点,GGH∴是AEF△的中位线,【答案】51-【分析】连接BD交EF的中点,求出OB的长,得到AH AM MH>=-–51直线l平分正方形∴O是BD的中点,四边形ABCD是正方形,∴==,BD AB24【答案】26【分析】利用轴对称的性质作出如图的辅助线,在【详解】解:延长DC '''∴E F G H E '''、、、、在同一直线上时,四边形EFCH 作E K AB '⊥交AB 延长于点K ,则23EK BE CD A E AB CD '''=++=+=,E K BC '=+在△ABH中,∠AHB=90°,∠ABH过点D作DE∥AC交BC延长线于点E,作点C【点睛】本题考查了对称的性质,勾股定理,等边三角形的判定和性质,最值问题,直角三角形的性质,多边形的面积,知识点较多,难度较大,解题的关键是作出辅助线,得出当且仅当B,D,F三点共线时,BD+CD取得最小值.。

中考数学几何模型专题专题五—轴对称

中考数学几何模型专题专题五—轴对称

专题五轴对称模型21 将军饮马之“两点一线”模型模型故事唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题.如图,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问怎样走才能使总的路程最短?模型展现基础模型怎么用?1.找模型遇到两个定点和一条定直线,求定直线上一点,与两点的连线和最小,考虑“两点一线”求最值模型2.用模型异侧两点则直接连接,同侧两点,则需要通过轴对称性质转化为异侧,利用“两点之间线段最短”求最值结论分析结论1:连接AB交直线l于点P,此时P A+PB值最小,最小值为AB的长证明:当点A,B,P共线时,P A+PB=AB,当点A,B,P不共线时,P A+PB>AB,∴P A+PB≥AB,∴当点A,B,P共线时,P A+PB的值最小,最小值是线段AB的长.结论2:作点B关于直线∴的对称点B',连接AB',交直线l于点P,此时P A+PB值最小,最小值为AB'的长证明:由轴对称性质可知,PB=PB',∴P A+PB=P A+PB'≥AB',∴当点A,B' ,P共线时,P A+PB的值最小,最小值是线段AB'的长.(也可以作点A关于直线l的对称点A',同理也可求出P A+PB的最小值)满分技法1.两点之间,线段最短.如图,点A和点B之间的3条线中,线段AB的距离最短,是线路∴.2.对称的性质.如图,若点A,A’关于直线l对称,P是直线l上一点,则P A= P A'.模型拓展模型拓展巧学巧记“两点一线”型问题简记为:线段和最小时,异侧直接连,同侧找对称;线段差最大时,同侧直接连,异侧找对称.典例小试例1 (2020贺州)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=6√3,BD=6,点P是AC上一动点(点拨:一动点P),点E是AB的中点,则PD+PE(点拨:两定点D,E,一定线AC,求线段和最小值)的最小值为_________.考什么?轴对称的性质,两点之间线段最短(三角形三边关系),菱形的性质,勾股定理,等边三角形的判断与性质思路点拨线段和最值问题,先根据已知条件判断定点、动点的个数及定点与定线的位置关系,确定模型,再按照模型结论确定最值点。

初中几何利用“轴对称变换”解决最值问题

初中几何利用“轴对称变换”解决最值问题

初中几何利用“轴对称变换”解决最值问题
初中数学动点最值思路方法大汇总
【典型例题1】难度★★
【思路分析】构造包含所求线段的兰角形,通过三边关系求解;解直角三角形求出AB 、BC ,再求出CD ,连接CG ,根据直角三角形斜边上的中线等于斜边的一半求出CG ,然后根据三角形的任意两边之和大于第三边判断出DC 有最大值再代人数据进行计算即可得【答案解析】
【典型例题2】难度★★★
【思路分析】本题是轴对称一一最短路线问题在坐标系中的应用.一个动点到两个定点距离和最小的问题,首先要明确对称轴是什么,然后根据轴对称作出最短路线,即可得出△ABC的周长最小时C 点的坐标.【答案解析】解:。

初中几何模型轴对称最值模型

初中几何模型轴对称最值模型

中考数学几何模型:轴对称最值模型名师点睛拨开云雾开门见山B'QDA'AP B C典题探究启迪思维探究重点例题1. 如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为2.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.故答案为:2.变式练习>>>1.如图Rt△ABC和等腰△ACD以AC为公共边,其中∠ACB=90°,AD=CD,且满足AD⊥AB,过点D 作DE⊥AC于点F,DE交AB于点E,已知AB=5,BC=3,P是射线DE上的动点,当△PBC的周长取得最小值时,DP的值为()A.B.C.D.【解答】解:连接PB、PC、P A,要使得△PBC的周长最小,只要PB+PC最小即可,∵PB+PC=P A+PB≥AB,∴当P与E重合时,P A+PB最小,∵AD=CD,DE⊥AC,∴AF=CF,∵∠ACB=90°,∴EF∥BC,∴AE=BE=AB=2.5,∴EF=BC=1.5,∵AD⊥AB,∴△AEF∽△DEA,∴=,∴DE==,故选:B.例题2. 如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,求△BMN的周长的最小值.【解答】解:作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,DB,连接MB、NB;再DC和AD上分别取一动点M'和N'(不同于点M和N),连接M'B,M'B',N'B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B'',B'M'=BM',B''N'=BN',∴BM'+M'N'+BN'>B'B'',又∵B'B''=B'M+MN+NB'',MB=MB',NB=NB'',∴NB+NM+BM<BM'+M'N'+BN',∴C△BMN=NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B''D的延长线于点H,如图示2所示:∵在Rt△ABD中,AD=3,AB=,∴==2,∴∠2=30°,∴∠5=30°,DB=DB'',又∵∠ADC=∠1+∠2=60°,∴∠1=30°,∴∠7=30°,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120°,DB'=DB''=DB=2,又∵∠B'DB''+∠6=180°,∴∠6=60°,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:===6.∴C△BMN=NB+NM+BM=6,2.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.例题3. 如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC 和AD上的动点,则CQ+PQ的最小值是2.【解答】解:如图,作点P关于直线AD的对称点P′,连接CP′交AD于点Q,则CQ+PQ=CQ+P′Q=CP′.∵根据对称的性质知△APQ≌△AP′Q,∴∠P AQ=∠P′AQ.又∵AD是∠A的平分线,点P在AC边上,点Q在直线AD上,∴∠P AQ=∠BAQ,∴∠P′AQ=∠BAQ,∴点P′在边AB上.∵当CP′⊥AB时,线段CP′最短.∵在△ABC中,∠C=90°,CB=CA=4,∴AB=4,且当点P′是斜边AB的中点时,CP′⊥AB,此时CP′=AB=2,即CQ+PQ的最小值是2.故填:2.3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.2C.D.4【解答】解:如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PR+QR的最小值是PE的长,设等边△ABC的边长为x,则高为x,∵等边△ABC的面积为4,∴x×x=4,解得x=4,∴等边△ABC的高为x=2,即PE=2,故选:B.例题4. 如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ=时,四边形APQE的周长最小.【解答】解:点A向右平移3个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE==2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,设CQ=x,则NQ=8﹣3﹣x=5﹣x,∵△MNQ∽△FCQ,∴=,∵MN=AB=4,CF=CE=2,CQ=x,QN=5﹣x,解得:x=,则CQ=故答案为:.4.如图,已知A(3,1)与B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为()A.(,)B.(,)C.(0,0)D.(1,1)【解答】解:作点B关于直线y=x的对称点B'(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后得A'(2,0)连接A'B'交直线y=x于点Q,如图理由如下:∵AA'=PQ=,AA'∥PQ∴四边形APQA'是平行四边形∴AP=A'Q∵AP+PQ+QB=B'Q+A'Q+PQ且PQ=∴当A'Q+B'Q值最小时,AP+PQ+QB值最小根据两点之间线段最短,即A',Q,B'三点共线时A'Q+B'Q值最小∵B'(0,1),A'(2,0)∴直线A'B'的解析式y=﹣x+1∴x=﹣x+1,即x=∴Q点坐标(,)故选:A.例题5. 如图,点E、F是正方形ABCD的边BC上的两点(不与B、C两点重合),过点B作BG⊥AE于点G,连接FG、DF,若AB=2,求DF+GF的最小值为.【解答】解:取AB的中点O,点O、G关于BC的对称点分别为O'、G',∵G与G'关于BC对称,∴FG=FG',∴FG+DF=FG'+DF,∴当G(也就是G')固定时,取DG'与BC的交点F,此时能够使得FG+FD最小,且此时FG+DF的最小值是DG',现在再移动点E(也就是移动G),∵BG⊥AE,∴∠AGB=90°,∴当点E在BC上运动时,点G随着运动的轨迹是以O为圆心,OA为半径的90°的圆弧,点G'随着运动的轨迹是以O'为圆心,O'B为半径的90°的圆弧,∴当取DO'与交点为G'时,能够使得DG'达到最小值,且DG'的最小值=DO'﹣O'G'=﹣1=﹣1,即DF+GF的最小值为﹣1.故选:A.变式练习>>>5.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为()A.5﹣4B.﹣1C.6﹣2D.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(2,3),∴点A′坐标(2,﹣3),∵点B(3,4),∴A′B==5,∴MN=A′B﹣BN﹣A′M=5﹣3﹣1=5﹣4,∴PM+PN的最小值为5﹣4.故选:A.例题7. 如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=()A.112.5°B.105°C.90°D.82.5°【解答】解:如图,作CH⊥BC,且CH=BC,连接BH交AD于M,连接FH,∵△ABC是等边三角形,AD⊥BC,∴AC=BC,∠DAC=30°,∴AC=CH,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°﹣60°=30°,∴∠DAC=∠ACH=30°,∵AE=CF,∴△AEC≌△CFH,∴CE=FH,BF+CE=BF+FH,∴当F为AC与BH的交点时,如图2,BF+CE的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105°,故选:B.变式练习>>>6.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=30度.【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故答案为30.达标检测领悟提升强化落实1. 如图,矩形ABCD中,AB=5,AD=10,点E,F,G,H分别在矩形各边上,点F,H为不动点,点E,G为动点,若要使得AF=CH,BE=DG,则四边形EFGH周长的最小值为()A.5B.10C.15D.10【解答】解:作点F关于CD的对称点F′,连接F′H交CD于点G,此时四边形EFGH周长取最小值,过点H作HH′⊥AD于点H′,如图所示.∵AF=CH,DF=DF′,∴H′F′=AD=10,∵HH′=AB=5,∴F′H==5,∴C四边形EFGH=2F′H=10.故选:D.2. 如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于﹣3.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣A′M=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为﹣3.3. 如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为(2,0),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是8﹣2和8+2.【解答】解:y=x+4,∵当x=0时,y=4,当y=0时,x=﹣4,∴OA=4,OB=4,∵△ABE的边BE上的高是OA,∴△ABE的边BE上的高是4,∴要使△ABE的面积最大或最小,只要BE取最大值或最小值即可,过A作⊙C的两条切线,如图,当在D点时,BE最小,即△ABE面积最小;当在D′点时,BE最大,即△ABE面积最大;∵x轴⊥y轴,OC为半径,∴EE′是⊙C切线,∵AD′是⊙C切线,∴OE′=E′D′,设E′O=E′D′=x,∵AC=4+2=6,CD′=2,AD′是切线,∴∠AD′C=90°,由勾股定理得:AD′=4,∴sin∠CAD′==,∴=,解得:x=,∴BE′=4+,BE=4﹣,∴△ABE的最小值是×(4﹣)×4=8﹣2,最大值是:×(4+)×4=8+2,故答案为:8﹣2和8+2.4. 正方形ABCD,AB=4,E是CD中点,BF=3CF,点M,N为线段BD上的动点,MN=,求四边形EMNF周长的最小值++.【解答】解:作点E关于BD的对称点G,则点G在AD上,连接GM,过G作BD的平行线,截取GH=MN=,连接HN,则四边形GHNM是平行四边形,∴HN=GM=EM,过H作PQ⊥BC,交AD于P,交BC于Q,则∠HPG=∠HQF=90°,PQ=AB=4,∵∠PGH=∠ADB=45°,∴HP=PG==1,HQ=4﹣1=3,由轴对称的性质,可得DG=ED=2,∴AP=4﹣2﹣1=1,∴BQ=1,又∵BF=3CF,BC=4,∴CF=1,∴QF=4﹣1﹣1=2,∵当点H、N、F在同一直线上时,HN+NF=HF(最短),此时ME+NF最短,∴Rt△HQF中,FH===,即ME+NF最短为,又∵Rt△CEF中,EF===,∴ME+NF+MN+EF=++,∴四边形EMNF周长的最小值为++.故答案为:++.5. 如图,已知点D,E分别是等边三角形ABC中BC,AB边的中点,BC=6,点F是AD边上的动点,则BF+EF的最小值为3.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD,∵BC=6,∴BD=3,∴AD=3,即BF+EF=3.故答案为:3.6. 如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回到E点,则蚂蚁所走的最小路程是.【解答】解:延长DC到D',使CD=CD',G对应位置为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===27. 如图,在△ABC中,AC⊥BC,∠B=30°,点E,F是线段AC的三等分点,点P是线段BC上的动点,点Q是线段AC上的动点,若AC=3,则四边形EPQF周长的最小值是8.【解答】解:过E点作E点关于BC的对称点E′,过F点作F点关于AC的对称点F′,∵在△ABC中,AC⊥BC,∠B=30°,AC=3,∴AB=6,∵点E,F是线段AC的三等分点,∴EF=2,∵E′F′=AB=6,∴四边形EPQF周长的最小值是6+2=8.8. 如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD的最小值是.【解答】解:如图所示,以AB,BD为边构造平行四边形ABDE,作点C关于x轴的对称点F,连接AF,则DE⊥y轴,OF=OC=1,∵四边形ABDE是平行四边形,∴BD=AE,DE=AB=1,∵AB垂直平分线CF,∴AC=AF,∴AC+BD=AE+AF,如图,当点E,A,F在同一直线上时,AE+AF=EF(最短),此时,∵Rt△DEF中,DE=1,DF=2+1=3,∴EF===,∴AC+BD的最小值是.故答案为:.9. 在矩形ABCD中,AB=8,BC=10,G为AD边的中点.如图,若E、F为边AB上的两个动点,且EF=4,当四边形CGEF的周长最小时,则求AF的长为.【解答】解:∵E为AB上的一个动点,∴如图,作G关于AB的对称点M,在CD上截取CH=4,然后连接HM交AB于E,接着在EB上截取EF=4,那么E、F两点即可满足使四边形CGEF的周长最小.∵在矩形ABCD中,AB=8,BC=10,G为边AD的中点,∴AG=AM=5,MD=15,而CH=4,∴DH=4,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE===,∴AF=4+=.故答案为:.10. 如图,矩形ABCO的边OC在x轴上,边OA在y轴上,且点C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,点M,N分别是线段OA、AB上的动点(不与端点重合),则当四边形EFNM的周长最小时,点N的坐标为(4,6).【解答】解:如图所示:作点F关于AB的对称点F′,作点E关于y轴的对称点E′,连接E′F′交AB与点N.∵C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,∴OE=OE′=4,FB=CF=3,∴E′C=12,CF′=9.∵AB∥CE′,∴△F′NB∽△F′E′C.∴==,即=,解得BN=4,∴AN=4.∴N(4,6).故答案为:(4,6).11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.【解答】解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.12. 如图,两点A、B在直线MN外的同侧,A到MN的距离AC=16,B到MN的距离BD=10,CD=8,点P在直线MN上运动,则|P A﹣PB|的最大值等于10.【解答】解:延长AB交MN于点P′,∵P′A﹣P′B=AB,AB>|P A﹣PB|,∴当点P运动到P′点时,|P A﹣PB|最大,∵BD=10,CD=8,AC=16,过点B作BE⊥AC,则BE=CD=8,AE=AC﹣BD=16﹣10=6,∴AB===10,∴|P A﹣PB|的最大值等于10,故答案为:10.。

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。

中考数学题型专题解析1---对称模型的最值问题

中考数学题型专题解析1---对称模型的最值问题

A.6
Bห้องสมุดไป่ตู้8
C.10
D.12
2.如图,在边长为 2 的等边△ABC 中,D 为 BC 的中点,E 是 AC 边上一点,则
BE+DE 的最小值为 .
3.如图,在 Rt△ABC 中,∠ACB=90°,∠BAC=30°,E 为 AB 边的中点,以
BE 为边作等边△BDE,连接 AD,CD.
(1)求证:△ADE≌△CDB;
5/9
参考答案
【核心母题剖析】
解:如解图,连接 BD,PD.
∵四边形 ABCD 是正方形,AC 是对角线,
∴AC 垂直平分 BD,
∵点 P 在 AC 上,∴PB=PD,
∴PB+PE=PD+PE,
∴当点 P 为 ED 与 AC 的交点时,PE+PB 最小,最小值为 DE.
∵四边形 ABCD 是正方形,且 AD=2,点 E 是 AB 的中点,
6/9
∵△DEB 是等边三角形,
∴DB=DE,∠DEB=∠DBE=60°,
∴∠DEA=∠DBC=120°,
∴△ADE≌△CDB.
(2)解:如解图,作点 B 关于 AC 的对称点 B′,连接 EB′交 AC 于点 H,连接 BH,则点
H 即为满足题意的点.
连接 CE,则△CBE 是等边三角形,
∴CE=CB=CB′,∴∠BEB′=90°,
1/9
利用轴对称图形中的“已知”的对称点.涉及的知识点有“两点之间线段最短”“垂 线段最短”“三角形三边关系”“轴对称”“平移”等.
模型一 同侧和的最小值模型
【模型解读】两定点(A、B)在一条直线(l)的同侧,求直线(l)上一动点(P)到两定点距
离和(PA+PB)的最小值.常作其中一定点(如 A)关于直线(l)的对称点(如 A′),再连

专题2.2轴对称---线段的最值-中考数学二轮复习必会几何模型剖析(全国通用)

专题2.2轴对称---线段的最值-中考数学二轮复习必会几何模型剖析(全国通用)
4.如图,在直线l两侧有A,B两点,在l上找一点P,使PA-PB最大.
B
B
A
A
B
A
l
l
P
图1

A
P
P
图2
图3
l
l
P
图4
B
两点之间线段最短
模型分析
考点2-1
派生知识
核心知识
C
A
B
AB最短
①两点之间,线段最短;
A
B
AC+BC>AB
②三角形两边之和大于第三边.
线段差的最值
典例精讲
考点2-1
【例1】如图,已知二次函数y=x2+4x-5的图象及对称轴,请用无刻度直尺
易得CD= 4 3 ∠ADD´=60º,DD´=4,
3
∴D´E=2 3.
E
A
D
P
P
B
C

线段最值问题
强化训练
提升能力
6.如图,在矩形ABCD中,AB=3,AD=4,连接AC,O是AC的中点,M是AD上一 点,
且MD=1,P是BC上一动点,则PM-PO的最大值为( A )
A.


B.
C.
∴MN=2,NQ=MN·cosN=2× 3 = 3
2
N
B
PP
A
QQ
M
C
强化训练
线段最值问题
提升能力
5.如图,在矩形ABCD中,AD=4,∠DAC=30º,点P,E分别在AC,AD上,则PE+PD的
2 3
最小值是_______.
【解析】如图,作点D关于直线AC的对称点D´
当D´,P,E三点共线,且D´E⊥AD时,PE+PD最小.

专题02求最值中的几何模型-2024年中考数学答题技巧与模板构建(解析版)

专题02求最值中的几何模型-2024年中考数学答题技巧与模板构建(解析版)

专题02求最值中的几何模型题型解读|模型构建|通关试练模型01将军饮马模型将军饮马模型在考试中主要考查转化与化归等的数学思想,该题型综合考查学生的理解和数形结合能力具有一定的难度,也是学生感觉有难度的题型.在解决几何最值问题主要依据是:①将军饮马作对称点;②两点之间,线段最短;③垂线段最短,涉及的基本知识点还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等;希望通过本专题的讲解让大家对这类问题有比较清晰的认识.模型02建桥选址模型建桥选址模型,即沿一个方向平移的定长线段两端到两个定点距离和最小,解题时需要理清楚是否含有定长平移线段,且利用平移求出最短路径位置.求解长度时若有特殊角,通常采用构造直角三角形利用勾股定理求解的方法.该题型主要考查了在最短路径问题中的应用,涉及到的主要知识点有矩形的性质、平行四边形的性质、等腰直角三角形的性质、勾股定理,解题的关键在于如何利用轴对称找到最短路径.模型03胡不归模型胡不归PA+k·PB”型的最值问题:当k等于1时,即为“PA+PB”之和最短问题,可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k不等于1时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路.此类问题的处理通常以动点P所在图象的不同来分类,一般分为两类研究.即点P在直线上运动和点P在圆上运动.其中点P在直线上运动的类型通常为“胡不归”问题.模型01将军饮马模型考|向|预|测将军饮马模型问题该题型主要以选择、填空形式出现,综合性大题中的其中一问,难度系数较大,在各类考试中都以中高档题为主.本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段,属于中考选择或填空题中的压轴题.|||(1)点A、B在直线m两侧两点连线,线段最短∵E是等边△ABC的边AC的中点,AD是中线∴BE=AD=6,∴EM+CM的最小值为6,故答案为:6.(2)点A、B在直线同侧例2.(2022·安徽)如图,在锐角△ABC中,AB=6,∠ABC=60°,∠ABC的平分线交AC于点D,点P,Q 分别是BD,AB上的动点,则AP+PQ的最小值为()A.6B.C.3D.【答案】D【详解】解:如图,在BC上取E,使BE=BQ,连接PE,过A作AH⊥BC于H,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,∵BP=BP,BE=BQ,∴△BPQ≌△BPE(SAS),∴PE=PQ,∴AP+PQ的最小即是AP+PE最小,当AP+PE=AH时最小,在Rt△ABH中,AB=6,∠ABC=60°,模型02建桥选址模型考|向|预|测建桥选址模型该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查轴对称---最短路径问题、勾股定理、三角形及平行四边形的判定与性质,要利用“两点之间线段最短”等,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化.|||(1)两个点都在直线外侧:辅助线:连接AB交直线m、n于点P、Q,则PA+PQ+QB的最小值为AB.例1.(2022·湖北)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,以BC为边向左作等边△BCE,点D为AB中点,连接CD,点P、Q分别为CE、CD上的动点.求PD+PQ+QE的最小值为.【答案】4.【详解】如图,连接,PA QB ,BCE Q V 和ADC 都是等边三角形,60BCE ∴∠=︒,60ACD ∠=︒,1302ACE ACB BCE ACD ∴∠=∠-∠=︒=∠,CE ∴垂直平分AD ,PA PD ∴=,同理可得:CD 垂直平分BE ,QB QE ∴=,PD PQ QE PA PQ QB ∴++=++,由两点之间线段最短可知,当点,,,A P Q B 共线时,PA PQ QB ++取得最小值AB ,故PD PQ QE ++的最小值为4.(2)一个点在内侧,一个点在外侧:辅助线:过点B 作关于定直线n 的对称点B’,连接AB’交直线m 、n 于点P 、Q ,则PA +PQ +QB 的最小值为AB’.例2.(2023·山东)如图,在ABC 中,6AB =,7BC =,4AC =,直线m 是ABC 中BC 边的垂直平分线,P 是直线m 上的一动点,则APC △的周长的最小值为_________.【答案】10【详解】解:∵直线m垂直平分BC,∴B、C关于直线m对称,设直线m交AB于D,∴当P和D重合时,AP+CP的值最小,最小值等于AB的长,∴△APC周长的最小值是6+4=10.故答案为:10.(3)如图3,两个点都在内侧:辅助线:过点A、B作关于定直线m、n的对称点A’、B’,连接A’B’交直线m、n于点P、Q,则PA+PQ+QA 的最小值为A’B’.例3.(2023.浙江)如图所示,∠AOB=50°,∠BOC=30°,OM=12,ON=4.点P、Q分别是OA、OB 上动点,则MQ+PQ+NP的最小值是.【答案】4【详解】解:如图,作点N关于OA的对称点N′,则NP=N′P,作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P,当N′M′在同一条直线上时取最小值,连接ON′,OM′,∵∠AOB=50°,∠BOC=30°则∠N′OA=∠AOC=∠AOB﹣∠BOC=20°,∠BOM′=∠BOA=50°,∴∠N′OM′=2×20°+30°+50°=120°,∵ON′=ON=4,OM′=OM=12,∴∠AON=∠AOB﹣∠BOC=50°﹣30°=20°,先作射线ON'与射线ON关于OA对称,由对称的性质可知∠AON'=20°,PN=PN',同理作射线OM'与射线OM关于OB对称,同理∠BOM'=50°,QM=QM′,当N'、P、Q、M'四点共线时,MQ+PQ+NP最小,则∠N′OM′=∠N′OP+∠AOB+∠BPM′=20°+50°+50°=120°,作N'垂直OM'的延长线交于点E,∴∠EON'=60°,∴ON'=ON=4,在Rt△N'OE中,∠EN'O=30°,根据30°角所对的直角边是斜边的一半可知OE=2,则EN'=2,OM=OM'=12,∴EM′=OE+OM′=12+2=14,则N′M===4.故答案为:4.模型03胡不归模型考|向|预|测胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握.在解决胡不归问题主要依据是:点到线的距离垂线段最短.|||第一步:构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型;第二步:借助三角函数,构造锐角α,将另一个系数也化为1;第三步:利用“垂线段最短”原理构造最短距离;第四步:数形结合解题例1.(2023·江苏)如图,ABCD Y 中,45DAB ∠=︒,8AB =,3BC =,P 为边CD 上一动点,则22PB PD +的最小值等于.【答案】42【详解】解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB CD ∥,∴∠EDP =∠DAB =45°,∴2sin 2EP EDP DP ∠==,∴22EP PD =,∴22PB PD PB PE +=+,∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB +PE 有最小值,即最小值为BE ,∵2sin 2BE A AB ∠==,∴22=8=4222BE AB =⨯,故答案为:42.1.(2023·江苏扬州)如图所示,军官从军营C 出发先到河边(河流用AB 表示)饮马,再去同侧的D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将军饮马”问题吗?下列给出了四个图形,你认为符合要求的图形是()A .B .C .D .【答案】D【详解】解:由选项D 中图可知:作D 点关于直线AB 的对称点D ¢,连接CD '交AB 于点N ,由对称性可知,DN D N '=,CN DN CN D N CD ∴+=≥''+,当C 、N 、D ¢三点共线时,CN DN +的距离最短,故选:D2.(2023.浙江)如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF +CF 取得最小值时,则∠ECF=.【答案】∠ECF =30º【详解】过E 作EM ∥BC ,交AD 于N ,如图所示:∵AC =4,AE =2,∴EC =2=AE ,∴AM =BM =2,∴AM =AE ,∵AD 是BC 边上的中线,△ABC 是等边三角形,∴AD ⊥BC ,∵EM ∥BC ,∴AD ⊥EM ,∵AM =AE ,∴E 和M 关于AD 对称,连接CM 交AD 于F ,连接EF ,则此时EF +CF 的值最小,∵△ABC 是等边三角形,∴∠ACB =60º,AC =BC ,∵AM =BM ,∴∠ECF =∠ACB =30º.故答案为30°3.(2022·安徽)如图,在平面直角坐标系中,∠AOB =30°,P (5,0),在OB 上找一点M ,在OA 上找一点N ,使△PMN 周长最小,则此时△PMN 的周长为.【答案】5【详解】作点P 关于OB 的对称点C ,作P 点关于AO 的对称点D ,连接CD 交OA 于N ,交OB 于M ,连接MP ,NP ,OC ,OD ,∴CM =MP ,NP =DN ,∴PM +PN +MN =CM +MN +DN ≥CD ,∴当C 、M 、N 、D 点共线时,△PMN 的周长最小,∵∠BOA =30°,OP =OC =OB ,∴∠COD =60°,∴△OCD 是等边三角形,∴CD =OP ,∵P (5,0),∴OP =5,∴CD =5,∴△PMN 的周长最小值为5,故答案为:5.4.(2023·广东)如图,在Rt ABC 中,ACB 90∠=︒,AC 9=,BC 12=,15AB =,AD 是BAC ∠的平分线,若点P 、Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是.【答案】365【详解】解:如图,作Q 关于AP 的对称点O ,则PQ=PO ,所以O 、P 、C 三点共线时,CO=PC+PO=PC+PQ ,此时PC+PQ 有可能取得最小值,∵当CO 垂直于AB 即CO 移到CM 位置时,CO ∴PC+PQ 的最小值即为CM 的长度,∵1115922ABC S AB CM AC CB CM =⨯=⨯∴=⨯ ,∴CM=91236155⨯=,即PC+PQ 的最小值为3655.(2023·江苏)如图,高速公路的同一侧有A ,B 两城镇,它们到高速公路所在直线MN 的距离分别为2km AC =,4km BD =,8km CD =.要在高速公路上C ,D 之间建一个出口P ,使A ,B 两城镇到P 的距离之和最小,则这个最短距离为.【答案】10km【详解】解:如图所示:作A 点关于直线MN 的对称点A ',再连接A B ',交直线MN 于点P ,则此时AP PB +最小,过点B 作BE CA ⊥交延长线于点E ,∵2km AC =,4km BD =,8km CD =.∴m 422k AE =-=,4km AA '=,A.42B8.(2023·四川)如图,在的最小值是()A .6B 【答案】D 【详解】解:过点C 作射线在t R DFC △中,DCF ∠∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=在t R ABC 中,90A ∠=9.(2023·湖南)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作A 点关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC 中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC 中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.由勾股定理得,BA BA '=∵E 是AB 的中点,∴122BE BA ===,∵90C ∠=︒,2AC BC ==则2C A CA '==,C AB '∠60C AC '∴∠=︒∴C AC '△为等边三角形,∴30AC N '∠=︒,11AN C A '==10.(2023·陕西)在学习对称的知识点时,我们认识了如下图所示的“将军饮马”模型求最短距离.问题提出:(1)如图1所示,已知A ,B 是直线l 同旁的两个定点.在直线l 上确定一点P ,并连接AP 与BP ,使PA PB +的值最小.问题探究:(2)如图2所示,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连接EP 和BP ,则PB PE +的最小值是___________;问题解决:(3)某地有一如图3所示的三角形空地AOB ,已知45AOB ∠=︒,P 是AOB 内一点,连接PO 后测得10PO =米,现当地政府欲在三角形空地AOB 中修一个三角形花坛PQR ,点Q R ,分别是OA OB ,边上的任意一点(不与各边顶点重合),求PQR 周长的最小值.(2)解:如下图所示,∵四边形ABCD 是正方形,∴AC 垂直平分BD ,∴PB PD =,由题意易得:PB PE +当D 、P 、E 共线时,在由轴对称性质可得,OM ∴2MON AOB ∠=∠=在Rt MON △中,MN 即PQR 周长的最小值等于A .22B .4【答案】A 【详解】解:连接CD ,设,CD∵四边形ABCD 是平行四边形,∴∴当CG 取得最小值时,CD ∵()05E ,,()5,0F -,∴OE ∴此时CGE 是直角三角形,且∵2EG =,∴2CG =,∴ 故选:A .2.(2023·上虞市)如图,点P 是∠AOB 内任意一点,OP =6cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,若△PMN 周长的最小值是6cm ,则∠AOB 的度数是()A .15B .30C .45D .60【答案】B 【详解】分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,∴PM=DM ,OP=OD ,∠DOA=∠POA ;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:B.115.(2023·湖北)如图,将△ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,D在BC上,点P在线段AD上移动,若AC=6,CD=3,BD=7,则△PMB周长的最小值为.【答案】18【详解】解:由翻折的性质可知,AM=AC,PM=PC,∴M点为AB上一个固定点,则BM长度固定,∵△PMB周长=PM+PB+BM,∴要使得△PMB周长最小,即使得PM+PB最小,∵PM =PC ,∴满足PC +PB 最小即可,显然,当P 、B 、C 三点共线时,满足PC +PB 最小,如图所示,此时,P 点与D 点重合,PC +PB =BC ,∴△PMB 周长最小值即为BC +BM ,此时,作DS ⊥AB 于S 点,DT ⊥AC 延长线于T 点,AQ ⊥BC 延长线于Q 点,由题意,AD 为∠BAC 的角平分线,∴DS =DT ,∵1122ACD S AC DT CD AQ == ,1122ABD S AB DS BD AQ == ,∴11221122ABD ACD AB DS BD AQ S S AC DT CD AQ == ,即:AB BD AC CD =,∴763AB =,解得:AB =14,∵AM =AC =6,∴BM =14-6=8,∴△PMB 周长最小值为BC +BM =3+7+8=18,故答案为:18.PMN【答案】3【详解】如图,作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.∵点P 关于OA 的对称点为C ,∴PM=CM ,OP=OC ,∠COA=∠POA ;∵点P 关于OB 的对称点为D ,∴PN=DN ,OP=OD ,∠DOB=∠POB ,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=3.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【答案】229Rt Rt CEF ADC ∽ ,且CE 282,CF AC EF DC ∴===,∴BE EF BF +≥ ,∴当B 、E 、90FCA ∠=︒ ,90ACG ∴∠=︒4BG AC ∴==,2GC AB ==,2222410BF BG FG ∴=+=+【答案】18【详解】作BB '垂直于河岸,使河岸,过点A 作⊥AC 则MN BB '∥且MN BB =当AM MB AB '+=时,∵12AC =(米),BC ∴在Rt AB C '△中,AB ∴AM MN NB ++的最小值为:11.(2023·广东)如图所示,已知O 为坐标原点,矩形ABCD (点A 与坐标原点重合)的顶点D 、B 分别在x 轴、y 轴上,且点C 的坐标为()4,8-,连接BD ,将ABD △沿直线BD 翻折至A BD ' ,交CD 于点E .(1)求点A '坐标.(2)试在x 轴上找点P ,使A P PB '+的长度最短,请求出这个最短距离.由折叠知,8A B OA '==,OG ∴11··22OBD S BD OG OD OB == ∴22·4848OD OB OG BD ⨯===+1653216,55A ⎛⎫∴--' ⎝'⎪⎭,(0,8)B ,∴2232168855A B ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭''故A P PB '+的长度的最短距离为12.(2023·吉林)数学兴趣活动课上,小致将等腰∵4,120AB AC BAC ==∠=︒,30ABC ∴∠=︒,122AP AB ∴==,故答案为:(2)根据小致的思路作出图形,可知当PN AB ⊥时PE EF +的值最小,如图:∵30ABC ∠=︒,122AP AB ==,∴23BP =,∵1122BP AP AB PN ⋅=⋅,∴AC =,连接CK ,DK .13.(2023·河南)唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A 点出发,走到河旁边的P 点饮马后再到B 点宿营.请问怎样走才能使总的路程最短?作法如下:如图1,从B 出发向河岸引垂线,垂足为D ,在BD 的延长线上,取B 关于河岸的对称点B ',连接AB ',与河岸线相交于P ,则P 点就是饮马的地方,将军只要从A 出发,沿直线走到P ,饮马之后,再由P 沿直线走到B ,所走的路程就是最短的.(1)观察发现如图2,在等腰梯形ABCD 中,2,120AB CD AD D ===∠=︒,点E 、F 是底边AD 与BC 的中点,连接EF ,在线段EF 上找一点P ,使BP AP +最短.作点B 关于EF 的对称点,恰好与点C 重合,连接AC 交EF 于一点,则这点就是所求的点P ,故BP AP +的最小值为_______.(2)实践运用如图3,已知O 的直径1MN =,点A 在圆上,且AMN ∠的度数为30︒,点B 是弧AN 的中点,点P 在直径MN 上运动,求BP AP +的最小值.(3)拓展迁移如图,已知抛物线()20y ax bx c a =++≠的对称轴为1x =,且抛物线经过()()1,00,3A C --、两点,与x 轴交于另一点B .①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线1x =上找到一点M ,使ACM △周长最小,请求出此时点M 的坐标与ACM △周长最小值.则AM DN ∥,∵四边形ABCD 为等腰梯形,∴AD BC ∥,BAD ADC ∠=∠∵A 关于MN 的对称点A ∴点A '在O 上,∵30AMN ∠=︒,∴260AON AMN ∠=∠=∵点A 关于MN 的对称点∵点A 、B 关于直线1x =对称,∴AM BM =,∴AM CM CM BM +=+,∵两点之间线段最短,∴CM BM +最小,即AM CM +∴点M 的坐标为()12-,.。

2024专题2.1轴对称---将军饮马模型-中考数学二轮复习必会几何模型剖析(全国通用)

2024专题2.1轴对称---将军饮马模型-中考数学二轮复习必会几何模型剖析(全国通用)

考点3-3
D
【例3-2】如图,菱形ABCD中,AB=4,∠BAD=60º,M,N
2 5
是AC上两动点,且MN=2,则BM+BN的最小值为_____.
M
A
C
M
N
N
B

课堂小结
将军饮马
知识梳理
将军饮马:这个将军饮的不是马,是数学!
解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,对称.
解题策略:对称、翻折→化同为异;化异为同;化折为直.
的最小值为_____.
D
A
H
B
E

G
F C
M
强化训练
将军饮马
提升能力
5.如图,在边长为1的菱形ABCD中,∠ABC=60º,将△ABD沿射线BD的方向平移
得到△A´B´D´,分别连接A´C,A´D,B´C,则A´C+B´C的最小值为_____.
3
A´´
造桥选址---一定两动(定长)

A
B


B'
将军沿A-P-B走路程最短.
P1A+P1B=_______
P1A+P1B´ >AB´
图形特征: 两定一动;
适用模型:将军饮马;
N 基本策略: 同侧化异侧、折线化直线;
基本方法: 一个动点一条河,一次对称跑不脱;
基本原理: 两点之间线段最短.
两点之间线段最短
模型分析
考点3-1
派生知识
核心知识
C
A
10
M(8/3,0)N(4,1)
A.如果动点G走过的路程最短为____,则点M、N的坐标为______________.

专题09 轴对称中的最值模型问题(将军饮马)专训(解析版)

专题09 轴对称中的最值模型问题(将军饮马)专训(解析版)

【题型目录】题型一题型二在直线l上找一点P,使得PA+PB的和最小。

三两动点一定点问题点P在锐角∠AOB的内部,在OA 边上找一点C,在OB边上找一点D,,使得PC+PD+CD的和最小。

直线m∥n,在m,n上分别求点M、N,使MN⊥m,MN⊥n,且AM+MN+BN的和最小。

【经典例题一【例1∵EF 垂直平分AB ,∴点A ,B 关于直线EF 对称,【变式训练】1.(2023CF 平分A .6B .7【答案】B【分析】连接BP ,由ECP BCP V V ≌得AB 上时,EP AP +的最小值是AB ,问题得解.【详解】解:连接BP ,CF Q 平分BCE Ð交AD 于点F ,ECP BCP\Ð=ÐCE CB =Q ,CP CP =,\()ECP BCP SAS V V ≌,\BP EP =,EP AP BP AP =+Q +且BP AP AB +³,\当点P 在线段AB 上时,EP AP +的最小值是AB ,7AB =Q ,EP AP \+的最小值为7.故选:B【点睛】本题考查了轴对称图形的性质,两点之间线段最短,其中准确作出点关于对称轴对称的对称点是解题的关键.2.(2023秋·八年级课时练习)如图,在ABC V 中,BA BC =,BP ,CQ 是ABC V 的两条中线,M 是线段BP 上的一个动点,则下列线段的长等于AM QM +最小值的是( )A .ACB .BC C .BPD .CQ【答案】D【分析】如图,连接CM ,只要证明AM CM =,即可推出AM QM CM QM +=+,由QM CM CQ +³,推出Q 、M 、C 共线时,AM QM +的值最小,最小值为CQ 的长度.Q BP,CQ是V AP CP\=Q BA BC=BP AC\^【答案】7 2【分析】作点A关于BC的对称点Q AB AC =,7BC =,AD BC ^72BD CD \==,Q 12AD AB =,30B \Ð=°,【答案】3【分析】作CG AB ∥构造GCA Ð12OD CD OD DF OF +=+=最小,根据含∴90AOD CFD Ð=Ð=°,∵CG AB ∥,30A Ð=°,∴30GCA A Ð=Ð=°11(1)在运动过程中,CD 与BE 始终相等吗?请说明理由;(2)连接DE ,求t 为何值时,DE BC ∥;(3)若BM AC ^于点M ,点P 为BM 上的点,且使PD 直接写出这个最小值,无需说明理由.【答案】(1)CD 与BE 始终相等(3)7【分析】(1)证明(SAS)ADC CEB ≌V V 即可;(2)根据DE BC ∥,得到AD AE =,即10t t =-,求出t 即可;(3)作D 点关于BM 的对称点D ¢交BC 于点D ¢,连接D E ¢,交BM 于点P ,则DP PE D P PE D E ¢¢+=+=,证明CD E ¢V 为等边三角形,即可求D E ¢的值.【详解】(1)解:由已知可得AD t =,EC t =,∴AD CE =,∵ABC V 是等边三角形∴60A ACB Ð=Ð=°,BC AC =,∴(SAS)ADC CEB ≌V V ,∴BE CD =,∴CD 与BE 始终相等;(2)解:∵ABC V 是等边三角形∴60ABC ACB Ð=Ð=°,∵DE BC ∥,60ADE ABC AED ACB \Ð=Ð=Ð=Ð=°,∴AD AE =,∵10AB AC ==,∴10t t =-,∴5t =;(3)∵BM AC ^,∴BM 平分ABC Ð,作D 点关于BM 的对称点D ¢交BC 于点D ¢,连接D E ¢,交BM 于点P ,∵DP D P ¢=,当点,,D P E ¢三点共线时,PD PE +有最小值,∴DP PE D P PE D E ¢¢+=+=,∵7t =,∴3AE BD BD ¢===,7AD CE ==,∴7CD ¢=,又60C Ð=°,∴CD E ¢V 为等边三角形,∴7D E CD ¢¢==,∴PD PE +的最小值为7.【点睛】本题考查动点及等边三角形的性质,利用轴对称性确定线段DP PE D E ¢+=,再由等边三角形的性质求解D E ¢的长是解题的关键.6.(2022秋·广东广州·八年级校考期末)如图,在ABC V 中,AB AC =.(1)作AB 的垂直平分线交AB 于点N ,交AC 于点M (保留作图痕迹).(2)连接MB ,若8cm AB =,MBC V 的周长是14cm .①求BC 的长;②在直线MN 上是否存在点P ,使PB CP +的值最小,若存在,标出点P 的位置并求PB CP +的最小值,若不存在,说明理由.【答案】(1)见解析(2)①6cm;②存在,8cm【分析】(1)根据垂直平分线的作法作图即可;(2)①利用线段垂直平分线的性质得AM BM=,可得答案;+的值最小,则连接AC与直线②根据垂直平分线的性质得点B关于直线MN的对称点为点A,要使PB PC+的最小值即可AC的长.MN的交点即为点P,即PB PC【详解】(1)解:如图所示:(2)①MNQ垂直平分AB,\=,AM BMQV的周长BM BC CMMBC=++=++AM MC BCAC BC=+=,14cm又8cm==Q,AB AC\=-=;1486(cm)BC②如图,Q垂直平分AB,MN\点B关于直线MN的对称点为点A,【经典例题二【例2CD=【变式训练】1.如图,在等边最大值是∵在等边ABC V 中,6AB =,P 是ABC V 的中线AD 上的动点,∴AD 是BC 的中垂线,∴BP =CP ,∴BP PE -=CP-PE ,∵在CPE △中,CP -PE <CE ,∴当点P 与点A 重合时,CP -PE =CE ,∵E 是AC 边的中点,∴BP PE -的最大值=6÷2=3.故答案是:3.【点睛】本题主要考查等边三角形的性质,三角形三边长关系,连接CP ,得到BP PE -=CP-PE ,是解题的关键.【经典例题三 求三条线段和的最小值(双动点问题)】【例3】(2021秋·重庆荣昌·八年级校考阶段练习)如图,∠AOB =30º,∠AOB 内有一定点P ,且OP =12,在OA 上有一动点Q ,OB 上有一动点R .若△PQR 周长最小,则最小周长是( )A .6B .12C .16D .20【答案】B【详解】作点P 关于OA 的对称点点E ,点P 关于OB 的对称点点F ,连接EF 分别交OA 于点Q ,交OB 于点R ,连接OE 、OF ,∵P 、E 关于OA 对称,∴OE =OP =12,∠EOA =∠AOP ,QE =QP ,【变式训练】1.(2022AD^故选D .【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.2.(2021秋·浙江·八年级期中)如图,30AOB Ð=°,AOB Ð内有一定点P ,且8OP =.在OA 上有一动点Q ,OB 上有一动点R .若PQR V 周长最小,则最小周长是________.【答案】8【分析】先画出图形,作PM ⊥OA 与OA 相交于M ,并将PM 延长一倍到E ,即ME =PM .作PN ⊥OB 与OB 相交于N ,并将PN 延长一倍到F ,即NF =PN .连接EF 与OA 相交于Q ,与OB 相交于R ,再连接PQ ,PR ,则△PQR 即为周长最短的三角形.再根据线段垂直平分线的性质得出△PQR 的周长=EF ,再根据三角形各角之间的关系判断出△EOF 的形状即可求解.【详解】解:设∠POA =θ,则∠POB =30°-θ,作PM ⊥OA 与OA 相交于M ,并将PM 延长一倍到E ,即ME =PM ,作PN ⊥OB 与OB 相交于N ,并将PN 延长一倍到F ,即NF =PN ,连接EF 与OA 相交于Q ,与OB 相交于R ,再连接PQ ,PR ,则△PQR 即为周长最短的三角形,∵OA 是PE 的垂直平分线,∴EQ =QP ;同理,OB 是PF 的垂直平分线,∴FR =RP ,∴△PQR 的周长=EF ,∵OE =OF =OP =10,且∠EOF =∠EOP +∠POF =2θ+2(30°-θ)=60°,∴△EOF 是正三角形,∴EF =8,即在保持OP =8的条件下△PQR 的最小周长为8.故答案为:8..【点睛】本题考查的是最短距离问题,解答此类题目的关键根据轴对称的性质作出各点的对称点,即把求三角形周长的问题转化为求线段的长解答.3.(2020秋·江苏苏州·八年级校考阶段练习)最短路径问题:例:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.应用:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(1)借助直角三角板在下图中找出符合条件的点B和C.(2)若∠MON=30°,OA=10,求三角形的最小周长.【答案】(1)见解析;(2)10、相交于【详解】试题分析:()1作点A关于OM的对称点'A,关于ON的对称点''A,连接A A¢¢¢,与OM ON,B C 两点,连接,AB AC ,ABC V 即为所求.()2试题解析:()1作点A 关于OM 的对称点'A ,关于ON 的对称点''A ,连接A A ¢¢¢,与OM ON 、相交于,B C 两点,连接,AB AC ,ABC V 即为所求.()2此时线段A A ¢¢¢的长度即为周长的最小值连接,,.OA OA OA ¢¢¢由对称性知:23060.A OA MON Ð=Ð=°=¢¢°¢10.OA OA OA ¢¢==¢=OA A \¢¢¢V 为等边三角形10.AA OA OA =¢¢=¢=¢所以三角形的最小周长为10.点睛:属于将军饮马问题,依据是:两点之间,线段最短.【经典例题四 最值问题的实际应用】【例4】(2023春·四川成都·七年级统考期末)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,ABC V 的三个顶点都在格点上.(1)求出ABC V 的面积;(2)画出ABC V 关于直线MN 对称的(3)在直线MN 上画出点P ,使得【答案】(1)2(2)作图见解析(3)作图见解析111A B C \V 即为所求;(3)解:如图所示:BC,与直线MN的交点\连接1【点睛】本题考查网格中求三角形面积、复杂作图法及对称作图是解决问题的关键.【变式训练】1.(2023·浙江·八年级假期作业)如图,已知(1)在(图①)直线l上找出一点P,使PA PB=;(2)在(图②)直线l上找出一点P,使PA PB+的值最小;-的值最大.(3)在(图③)直线l上找出一点P,使PA PB此时PA PB=;(2)如图②,点P即为所求此时PA PB+的值最小;(3)如图③,点P即为所求-最大.此时PA PB【点睛】本题考查了轴对称2.(2023春·全国·八年级专题练习)如图,在(1)若65Ð=°,则ABCV(2)若9cmAB=.MBC①求BC的长度;②若点P为直线MN(2)①7cm ;②16cm【分析】(1)根据垂直平分线上的点到线段两个端点距离相等得AM BM =,再根据等腰三角形的性质即可求解;(2)①根据垂直平分线的性质得AM BM =,MBC V 的周长是18cm .9cm AC AB ==,即可求BC 的长度;②依据PB PC PA PC +=+,PA PC AC +³,即可得到当P 与M 重合时,PA PC AC +=,此时PB PC +最小,进而得出PBC V 的周长最小值.【详解】(1)解:AB AC =Q ,ABC C\Ð=Ð65ABC Ð=°Q ,65C \Ð=°,50A \Ð=°,∵MN 是AB 的垂直平分线,AM BM \=,50A ABM \Ð=Ð=°,15MBC ABC ABM \Ð=Ð-Ð=°,80AMB MBC C \Ð=Ð+Ð=°,1402NMA AMB \Ð=Ð=°.(2)①9AB AC ==Q ,MBC V 的周长是16cm ,即16BM MC BC ++=AM BM =Q ,16AM MC BC \++=,16AC BC \+=,7BC \=.∴BC 的长度为7cm .②当P 与M 重合时,PBC V 的周长最小.理由:∵PB PC PA PC +=+,PA PC AC +³,∴当P 与M 重合时,PA PC AC +=,此时PB PC +最小值等于AC 的长,∴PBC V 的周长最小值9716cm AC BC =+=+=.【点睛】本题考查了轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.3.(2023秋·重庆沙坪坝·七年级重庆八中校考期末)如图,已知点A ,B ,C ,D 是不在同一直线上的四个点,请按要求画出图形.(1)作线段BD 和射线CB ;(2)用无刻度的直尺和圆规在射线CB 上作3CM BD =;(3)在平面内作一点P ,使得PC PD PA PB +++的和最短.【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据几何语言画出对应的几何图形;(2)根据几何语言画出对应的几何图形;(3)连接CD 交AB 于P ,根据两点之间线段最短可判断P 点满足条件.【详解】(1)解:如图:(2)解:如图:(3)解:点P 即为所求.Q 两点之间线段最短,\要使得PC PD PA PB +++的和最短,则点P 应为线段AB 和线段CD 的交点.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了直线、射线、线段.【重难点训练】1.(2023春·辽宁阜新·七年级校考阶段练习)如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDMV 周长的最小值为( )A .12B .8C .10D .20【答案】C 【分析】连接AD ,由于ABC V 是等腰三角形,点D 是BC 边的中点,故AD BC ^,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM MD +的最小值,由此即可得出结论.【详解】解:连接AD ,∵ABC V 是等腰三角形,点∴AD BC ^,12CD BC =∴1122ABC S BC AD =×=´△A .1223a b +B .【答案】B 【分析】由题意等边三角形性质和全等三角形判定得出对称点M ,连接FM 交CE 于∵ABC ADE △,△都是等边三角形,∴AB AC a AD AE BAC ===Ð=Ð,,∴BAD CAEÐ=Ð∴()SAS BAD CAE ≌△△∴ABD ACEÐ=ÐA.3B.【答案】C【分析】过点P作直线MNQ ABCV是等腰直角三角形,且\42BC=,22AD=,Q122=,S S4.(2023春·全国·七年级专题练习)如图,20AOB Ð=°,M ,N 分别是边OA ,OB 上的定点,P ,Q 分别是边OB ,OA 上的动点,记OPM a Ð=,OQN b Ð=,当MP PQ QN ++最小时,则关于a ,b 的数量关系正确的是( )A .30b a -=°B .210b a +=°C .230b a -=°D .200b a +=°【答案】D 【分析】如图,作M 关于OB 的对称点M ¢,N 关于OA 的对称点N ¢,连接M N ¢¢交OA 于Q ,交OB 于P ,则MP PQ QN ++最小,易知OPM OPM NPQ Ð=Т=Ð,OQP AQN AQN Ð=Т=Ð,18020OQN ONQ Ð=°-°-Ð,20OPM NPQ OQP Ð=Ð=°+Ð,20OQP AQN ONQ Ð=Ð=°+Ð,由此即可解决问题.【详解】解:如图,作M 关于OB 的对称点M ¢,N 关于OA 的对称点N ¢,连接M N ¢¢交OA 于Q ,交OB 于P ,则MP PQ QN ++最小,由轴对称的性质得OPM OPM NPQ Ð=Т=Ð,OQP AQN AQN Ð=Т=Ð,18020OQN ONQ Ð=°-°-Ð,20OPM NPQ OQP Ð=Ð=°+Ð,20OQP AQN ONQ Ð=Ð=°+Ð,∴180202020200ONQ ONQ a b +=°-°-Ð+°+°+Ð=°.故选:D .【点睛】本题考查轴对称-最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.(2022秋·江苏无锡·八年级校考阶段练习)如图.在五边形ABCDE 中,∠AMN +∠ANM =88°,∠B =∠E =90°, 在BC 、DE 上分别找一点M 、N ,使得AMN V 的周长最小时,则∠BAE 的度数为( )A.136°B.96°【答案】A【分析】取点A关于BC的对称点N,根据轴对称的性质可得AMV的周长最小值,PQ的长度即为AMN则AM=PM,AN=QN,∴∠P=∠PAM,∠Q=∠QAN,V周长=AM+MN+AN=PM+MN+QN=PQ,∴AMNV的周长最小值,由轴对称确定最短路线,PQ的长度即为AMNA .3B .【答案】C 【分析】在BA 上截取BE 小值.【详解】解:如图,在BA 因为∠ABC 的平分线交AC 所以∠EBM =∠NBM ,在△BME 与△BMN 中,===BE BN EBM NBMBM BM ÐÐìïíïîA.1B.2【答案】A【分析】分别作点P关于OB和N¢,P P¢¢¢与OA的交点为点M 作OC⊥P P¢¢¢于点C,求得∠O P由对称性可知OP=O P¢=O P¢¢∵∠AOB=60°,∴∠P O¢P¢¢=2×60°=120°,∴∠''OP P¢=30°,OP P¢=∠''∵OP=2,OC⊥P P¢¢¢,O P¢=1;∴OC=12故选:A.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质、等腰三角形的性质及含【答案】7V【分析】连接AD,由于ABC式求出AD的长,再再根据EF+的最小值,由此即可得出结论.长为CM MDABC QV 是等腰三角形,点D 是BC AD BC \^,112622ABC S BC AD AD \=×=´´=△,解得6AD =,AC 【答案】 23; 31-.【分析】①根据ABC Ð的正切值即可求得点到直线的距离得到点E 的运动轨迹即可求得【详解】解:①∵90ACB ABC Ð=°Ð,【点睛】本题考查了锐角三角形函数,点到直线的最短距离,中点的定义,掌握点到直线的距离是解题的关键.12.(2023春·八年级课时练习)如图,一点,连接PM,PN,MN.若OP【答案】3【分析】根据两点之间线段最短,作点作点D关于AB的对称点G连接GH交AB于点M、交连接DM、EN,++的值最小.此时DM MN NE【答案】44°/44度【分析】根据角平分线的定义和垂直的定义得到AB=BE,根据等腰三角形的“三线合一”性质得到∠DEF,根据三角形的外角的性质即可得到结论.【答案】CE /EC【分析】如图,连接PC ,根据由于P 是AD 上的一个动点同时结合三角形三边关系定理可得C 、P 、E 共线时,PC +【详解】解:如图,连接∵AB AC =,AD 是ABC V【点睛】本题考查轴对称三角形三边关系定理,两点之间线段最短等知识.解题的关键是灵活运用所学知识解决问题.17.(2023·浙江·八年级假期作业)如图,已知(1)在(图①)直线l上找出一点P,使PA PB=;(2)在(图②)直线l上找出一点P,使PA PB+的值最小;-的值最大.(3)在(图③)直线l上找出一点P,使PA PB此时PA PB=;此时PA PB+的值最小;(3)如图③,点P即为所求-最大.此时PA PB【点睛】本题考查了轴对称18(2022秋·北京昌平·七年级统考期末)如图,在正方形网格中画有一段笔直的铁路及道口(1)若在村庄N与道口A之间修一条最短的公路,在图中画出此公路,并说明这样画的理由;(2)若在公路BN上选择一个地点P安装实时监控系统,要求点出点P的位置;(3)当一节火车头行驶至铁路AB上的点Q时,距离村庄(4)若在道口A或B处修建一座火车站,使得到两村的距离和较短,应该修在【分析】(1)根据两点之间线段最短作图即可;(2)取BN中点即可;(3)作N到AB的垂线段即可;(4)直接根据图作答即可.【详解】(1)理由:两点之间线段最短.(2)(3)(4)由图可知M、N到B点距离均小于到A点距离,故答案为:B.【点睛】本题考查了线段中点问题,最短距离问题,熟练掌握各知识点是解题的关键.19.(2023秋·重庆沙坪坝·七年级重庆八中校考期末)如图,已知点A,B,C,D是不在同一直线上的四个点,请按要求画出图形.(1)作线段BD 和射线CB ;(2)用无刻度的直尺和圆规在射线CB 上作3CM BD =;(3)在平面内作一点P ,使得PC PD PA PB +++的和最短.【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据几何语言画出对应的几何图形;(2)根据几何语言画出对应的几何图形;(3)连接CD 交AB 于P ,根据两点之间线段最短可判断P 点满足条件.【详解】(1)解:如图:(2)解:如图:(3)解:点P 即为所求.Q两点之间线段最短,\要使得PC PD PA PB+++的和最短,则点P应为线段AB和线段CD的交点.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了直线、射线、线段.20.(2022秋·湖北宜昌·八年级校考期中)已知,村庄A和村庄B都位于笔直的小河l同侧,要在河边建一引水站,使它到村庄A,B需铺设的水管长度之和最小.BP AP(包括画图痕迹);(1)请画出引水站P的位置,并连接,(2)若不计杂料,所用水管之和为2000米,且BP比AP长600米,两村庄购买水管花费30000元,约定按长度分摊费用,请计算两村庄各需付水管购买费多少元?【答案】(1)见解析(2)10500元;19500元【分析】(1)先作出点A关于河流的对称点A¢,然后连接A B¢,与河流的交点P即为所求作的水站的位置,此时BP AP+最小.BP AP,即可求解.(2)先求出每米水管的费用,然后列方程组求得,【详解】(1)解:如图所示,水站修在点P处才能使所需的管道最短.¸=(元),(2)解:水管每米的费用为:30000200015(2)实践应用1,如图周长最小,不说明理由;(3)实践应用2:如图N分别是AD、AC【答案】(1)见解析;(【分析】(1)作B点关于直线(2)分别作点P关于理由:根据作法得:PB PB =∴PA PB PA PB AB ¢¢+=+³,∴当点,,A P B ¢共线时,PA +(2)如图2,分别作点P 关于理由:根据作法得:PB PB ¢=∴PA PB AB PA PB AB ¢¢¢++=++∴当点,,,P A B P ¢¢¢共线时,PAB V (3)如图3,过点C 作CE ^90AOC AOE \Ð=Ð=°,AD Q 平分BAC Ð,CAD BAD \Ð=Ð,在AOC V 和AOE △中,Ð=______度;(1)AE=______,ACD(2)当四边形ACPD 为轴对称图形时,求CP 的长;(3)若CPD △是等腰三角形,求CPD Ð的度数;(4)若点M 在线段CD 上,连接MP 、ME ,直接写出MP ME +的值最小时CP 的长度.【答案】(1)4;45(2)4(3)90°或45°或67.5°(4)2【分析】(1)根据题意可得30B Ð=°,则28AB AC ==,即可求得AE 的长,再根据CD 平分ACB Ð,即可求得ACD Ð的度数;(2)根据轴对称图形的性质可得答案;(3)根据题意可得45PCD Ð=°,分三种情况:PC PD =,DP DC =,CP CD =,再结合三角形内角和定理即可求解;(4)过点M 作MP BC ^,点P 关于CD 的对称点P ¢,根据题意可得PCM P CM ¢Ð=Ð,CM CM =,根据AAS ,可得PCM P CM ¢V V ≌,则PM P M ¢=,CP CP ¢=,因此MP ME MP ME EP ¢¢+=+³,以此得点E ,M ,P ¢三点共线时,MP ME +的值最小,此时EP BC ¢∥,最后根据解含30度角的直角三角形即可得到结果.【详解】(1)解:Q 90ACB Ð=°,60A Ð=°,18030B ACB C \Ð=°-Ð-Ð=°,28AB AC \==,Q 点E 是边AB 的中点,142AE AB \==Q CD 平分ACB Ð,1452ACD ACB \Ð=Ð=°,故答案为:4;45.(2)∵四边形ACPD 为轴对称图形,CD 平分ACB Ð,∴对称轴为直线CD ,∴4CP CA ==.(3)∵CD 平分ACB Ð,90ACB Ð=°,MP BC ^Q ,MP AC ¢\^,Q CD 平分ACB Ð,PCM P CM ¢\Ð=Ð,。

轴对称最值模型

轴对称最值模型

轴对称最短路径问题模块⼀将军饮⻢类模型1.将军饮⻢直线l上有⼀动点P,令PA+PB最⼩模型特征:①线段和最⼩②两定⼀动辅助线:①异侧对称②三点共线最短距离:(PA+PB)min=2.两河饮⻢直线l1上有⼀动点P,l2上有⼀动点Q,令△APQ周⻓最⼩辅助线:①两次对称②三点共线最短距离:(C△APQ)min=直线l1上有⼀动点P,l2上有⼀动点Q,令四边形ABPQ周⻓最⼩辅助线:①两次对称②三点共线最短距离:(C四边形ABPQ)min=4.两河饮⻢3直线l2上有⼀动点P,l1上有⼀动点Q,令AP+PQ+BQ最⼩辅助线:①两次对称②三点共线最短距离:(AP+PQ+BQ)min=直线PQ为直线l上动点,且PQ⻓度为定值,令AP+PQ+BQ最⼩辅助线:①预先平移距离a②异侧对称③三点共线最短距离:(AP+PQ+BQ)min=6.造桥选址A、B是位于河两岸的两个村庄,要在这条宽度为d的河上垂直建⼀座桥,使得从A村庄经过桥到B村庄所⾛的路程最短(过河问题)辅助线:①预先平移距离d②三点共线最短距离:(AP+PQ+BQ)min=垂线段最短模型模块模块⼆⼆7.垂线段最短A 为定点,P 、Q 分别为l 1、l 2上的动点,令AP +PQ 最⼩模型特征:①线段和最⼩②两动⼀定辅助线:①对称定点②作垂线段最短距离:(AP +PQ )min =8.垂线段最短2A 为l 2上定点,P 、Q 分别为l 1、l 2上的动点,令AP +PQ 最⼩模型特征:①线段和最⼩②两动⼀定辅助线:①对称定点②作垂线段最短距离:(AP +PQ )min =线段差最值模型模块模块三三9.线段差最⼩P 为l 上的动点,令|PA −PB|最⼩模型特征:线段差最⼩辅助线:AB 的垂直平分线最短距离:|PA −PB|min =010.线段差最⼤P 为l 上的动点,令|PA −PB|最⼤模型特征:线段差最⼤辅助线:①同侧对称②三点共线最⼤距离:|PA −PB|max =。

(完整版)几何最值—轴对称求最值(含答案)

(完整版)几何最值—轴对称求最值(含答案)

学生做题前请先回答以下问题问题1:几何最值问题的理论依据是什么?答:两点之间, ___________________ ;(已知两个定点) _________________ 最短(已知一个定点、一条定直线); 三角形 (已知两边长固定或其和、差固定)答: 两占之亂 线段最短(啟俩个定点):垂线段最舸(已知一个定点、一条定直线)i 三角形三讪并系(已知两边长固定或其和、差固定).问题2 :做题前,读一读,背一背:学习以下轴对称最值模型’固定长度线段测在直线I 上滑动,求的最对借 需平移岳V (或AM )・转化为AM 十W 解抉, 答:直线L 及异侧两点A B 求作直线L 上一点P 使P 与A B 两点距离之差最大 作A 点关于L 的对称点A1,连接A1B,并延长交L 的一点就是所求的 P 点.这样就有:PA=PA1,P 点与 A,B 的差 PA-PB=PA1-PB=A1B.下面证明A1B 是二者差的最大值.首先在L 上随便取一个不同于 P 点的点P1,这样P1A1B 就构成一三角形,且P1A 仁P1A.根据三角形的性质,二边之差小于第三边,所以有:P1A1-P1B<A1B,即:p1A-p1B<A1B.这就说明除了 P 点外,任何一个点与A,B 的距离差都小于 A1B •反过来也说明P 点与A,B 的距离差的最大值是 A1B. 所以,P 点就是所求的一点•求內少的最小值, 使点在纟塢侧求呼1-P 纠的最大值, 使点在线同侧几何最值一轴对称求最值一、单选题(共7道,每道14分)1. 如图,正方形ABCD的面积为12 , △ ABE是等边三角形,且点E在正方形ABCD的内部,在对角线存在一点P,使得PD+PE的值最小,则这个最小值为()(PD+P%将征:定点,D t E动点(定直线);理姫目标:和最小操作:对称到异侧2.解题过程如图.正方形ABCD的顶点B,D关于AC所在的直纸对称,PB=FD, 那么求i(PD-PE v的最小值就转化成求的最小值”根据两点之间线段最短,可以得出BE的长即为所求,AC上A.3B.答案:C解题思路:1 •思路分析DT正方形.ABCD的面积为12,/. jiS = A/5、v bABE是等边三角形,BE = AB = 2忑.试题难度:三颗星知识点:轴对称一线段之和最小2. 如图,在△ ABC中,/ ACB=90°,以AC为一边在△ ABC外侧作等边三角形ACD,过点D作DE丄AC,垂足为F, DE与AB相交于点E. AB=10cm, BC=6cm, P是直线DE上的一点,连接PC, PB,贝V △ PBC周长的最小值为(B.「「'cmA.16cmC.24cmD.26cm答案:A解题思路:1 •思路分析min特征:定虑:B t C动点(定直线);玫阳目标:和竝小操作:对称到异侧2.解题过程由题意得.召<7的长度为定值,.■-要使厶?恥的周长最小,只需尸C-抄的值最小即可.在等边三角形/CD中,\'DE±AC t二点C关于DE的对称点为点仏PW当点P与点E重合的时候,丹十丹最小.即站十PQ最小, 此时死的周长最小.如囹所示,△尸EC的最小周长知PB-PC±BC=AB^BC=1()^=16 (cm).试题难度:三颗星知识点:轴对称一线段之和最小3. 如图,A, B两点在直线'的异侧,点A到'的距离AC=4,点B至2的距离BD=2, CD=6.若点P在直线'上运动,则的最大值为()C.6答案:B解题思路:1 •思路分析PA~PB\JKaK特征:定点:£ B动点(定直钱):貝0目标,差最大換作;对称到同们2.解题过程要求\PA-PB\的最大值'需使点儿召在直线/同侧,如虱作点0关于直线F的对称点序=连接卫対井延长,与直紳的交点即为使得円-刃|取最大值时对应的点只可得四边形少DCE为矩形,/.. B r E = CD = 6, EC=£t D = BD=l,\\4C=4=二A£=2.—毎=4吕它=2尿,即回-的最大值为2価.试题难度:三颗星知识点:轴对称一线段之差(绝对值)最大4. 如图,在菱形ABCD中,AB=4, / ABC=60°,点P, Q, K分别为线段BC, CD, BD上的任意一点, 的最小值为()则PK+QK此时\PA-PB\=\PA-PB t\ = AB t.过点密作方E丄M于点忌如图,B*A.2C.4八;答案:D解题思路:作戸关于a的对称点E由菱形的性质可和点£在线段曲上谨接賦如图.则EK^PK,:.PK.-OK^EK^OK,V EK-^QK^EQ,当E K. 0三点共线时等号成立,.■-时QK的最小值対线段EQ的长.杲RC上的任意一点.二£是一炉上的任意一点,丁仑是仞上的任意一点,・'•当EQ1AB时,EQ的丧最小,此时EQ" 屁\PK-QK的最小值为20・试题难度:三颗星知识点:轴对称一最短路线问题5. 在平面直角坐标系中,矩形OACB的顶点0在坐标原点,顶点A, B分别在x轴、y轴的正半轴上,0A=3, 0B=4, D为边OB的中点.若E, F为边0A上的两个动点,且EF=2,则当四边形CDEF的周长最小时,点F的坐标为()C.「」D.「答案:B解题思路:1 •思路分析F( f) 特征:定点:C, DC畋巒coa曲用动点(銭段苣“瓦联EF二1)目标:和量小操作;平移,对称到异侧2.解题过程通过题意可知,EF和CD的长固定,要使四边形CD盯的周长最小,只需DE+b最小.如同CF向左平移两个单位到C爲得CF=C f E f此时就转化为求DE+UE的最小值.r rD'作点D 关于x 轴的对称点D 、连接CD,与x 轴的交电即为DE+CE 最小时对应的点E根据题意可得.CQ, 4), -2),・'•直线的解析式为;尸召兀-2,二点E 的塑标为(斗0],二点F 的坐标为(孑g试题难度:三颗星知识点:轴对称一线段之和最小6. 如图,/ AOB=30, / AOB 内有一定点 P ,且OP=10.若Q 为OA 上一点,R 为OB 上一点,贝U △ PQR 周长的最小值为()答案:A解题思路:尸是定点* a R 是在定直线上运动的动点+如團,分别作点尸关于射线OE 的对称点和马 连接片P 2R ,贝 \\PQ^QR^PR = I\Q+QR+RP l ,A.10C.20B.15 D.30要求△ PQJ?周长的最小値,即求殖十"十咫的最小值’:尸是定点,二P v 為也是定点,二当点0 R 分别杲耳F ;与O&的交点时.耳0+涉+咫连接邛,OR f由对称可知O ^ =OP =O 耳"90="购,Z PI OR=Z POR . .".Z Pl 0^2/J 05=60°,■•■△RO 比是等边三角形,.■-乌£二0乌二OP=10.即△P0?周长的最小值为10.试题难度:三颗星知识点:轴对称一线段之和最小 若C 为AM 上任意一点,B 为OD 上任意一点,贝y AB+BC+CD 勺最小值是()A.10B.11C.12D.137.如图,已知/ MON=20 , A 为OM 上一点,0A=4念,D 为ON 上一点,答案:C解题思路:H和D是定点,£和C是在定直线上运动的动点.如圃作点d关于CW的对称点小点D关于CW的对称点D:连接丿8 CD f,D'则AB *蛊C + C0 =虫爭十BC+ CDX• A, D为定点,'D为定点,/■ *嗥+胆+CD ■的最丿卜值为线段川D的长.如图,连接血1 0D\J QD'=OD=换、OWO4二必,ZDVA^ZW^ZJ ON=^f.'.ZDG可得△ DQA是直角三角形,且ZZ>^r CMOS/. ^D f= ^5of =12,即AS-BC+CD的最小值为12.试题难度:三颗星知识点:轴对称一一最值问题。

2022年中考数学一轮复习课件:第七章 图形的变换 专题-利用“轴对称”求最值

2022年中考数学一轮复习课件:第七章 图形的变换  专题-利用“轴对称”求最值

一 动 点 . 若 MN = 1 , 则 △ PMN 周 长 的 最 小 值 为
(B ) A.4
B.5
C.6
D.7
解析:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON. ∵N关于AB的对称点N′, ∴MN′与AB的交点P′即为△PMN周长的最小时的点, ∵N是弧MB的中点, ∴∠A=∠NOB=∠MON=20°, ∴∠MON′=60°, ∴△MON′为等边三角形, ∴MN′=OM=4, ∴△PMN周长的最小值为4+1=5.
[典例4] 如图,已知正方形 ABCD 边长为 3,点 E 在 AB 边上 且 BE=1.点 P,Q 分别是边 BC,CD 的动点(均不与顶点重合), 当四边形 AEPQ 的周长取最小值时,四边形 AEPQ 的面积是 ____4_.5___.
解析:如图,作点 A 关于 DC 的对称点 M,作点 E 关于
解析:如图所示,以 BD 为对称轴作 N 的对称点 N′,连 接 PN′,MN′,根据轴对称性质可知,PN=PN′, ∴PM-PN=PM-PN′≤MN′,当 P,M,N′三点共线时, 取“=”,∵正方形边长为 8,∴AC= 2AB=8 2. ∵O 为 AC 的中点,∴AO=OC=4 2. ∵N 为 OA 的中点,∴ON=2 2. ∴ON′=CN′=2 2.∴AN′=6 2.
模型四:两定点与两条直线上两动点问题
问题:点P,Q在∠AOB的内部,在OA上找点C,在OB上找点D,使 得四边形PQDC周长最小.
解法:将问题转化为模型三即可求解.分别作点P,Q关于射线OA, OB的对称点P′,Q′,连接P′Q′,交OA,OB于点C,D,点C, D即为所求.PC+CD+DQ的最小值为线段P′Q′的长.则四边形 PQDC周长的最小值为P′Q′+PQ的值.

轴对称中的最值模型问题(将军饮马)重难点题型专训(学生版)-初中数学

轴对称中的最值模型问题(将军饮马)重难点题型专训(学生版)-初中数学

轴对称中的最值模型问题(将军饮马等)重难点题型专训题型一将军饮马之线段和最值题型二将军饮马之线段差最值题型三将军饮马之两定一动最值题型四三点共线最大值题型五双对称关系求周长最小值题型六两定两动型最值题型七两动一定最值题型八费马点最值问题将军饮马中最短路径问题四大模型一两定点在直线的异侧问题1作法图形原理在直线l 上找一点P ,使得P A+PB 的和最小。

连接AB ,与直线l 的交点P 即为所求。

两点之间,线段最短,此时P A +PB 的和最小。

二两定点在直线的同侧问题2:将军饮马作法图形原理在直线l 上找一点P ,使得P A +PB 的和最小。

作B 关于直线l 的对称点C ,连AC ,与直线l 的交点P 即为所求。

化折为直;两点之间,线段最短,此时P A +PB 的和AC 最小。

三两动点一定点问题问题3:两个动点作法图形原理作P 关于OA 的对称点P 1,作P 关于OB 的对称两点之间,线段最短,此时PC +PD +CD点P 在锐角∠AOB 的内部,在OA 边上找一点C ,在OB 边上找一点D ,,使得PC +PD +CD 的和最小。

点P 2,连接P 1P 2。

的和最小。

四造桥选址问题问题4:造桥选址作法图形原理直线m ∥n ,在m ,n 上分别求点M 、N ,使MN ⊥m ,MN ⊥n ,且AM +MN +BN 的和最小。

将点A 乡向下平移MN 的长度得A 1,连A 1B ,交n 于点N ,过N作NM ⊥m 于M 。

两点之间,线段最短,此时AM +MN +BN 的最小值为A 1B +MN 。

注意:本专题部分题目涉及勾股定理,各位同学可以学习完第3章后再完成该专题训练.勾股定理公式:a 2+b 2=c 2【经典例题一将军饮马之线段和最值】1.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当长为半径画弧,两弧分别交于E 、F ,画直线EF ,D 为BC 的中点,M 为直线EF 上任意一点,若BC =5,△ABC 的面积为15,则BM +MD 的最小长度为()A.5B.6C.7D.82.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD平分∠BAC,若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.1.2B.2.4C.4.8D.9.63.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的角平分线,若E,F分别是AD和AC上的动点,则EC+EF的最小值是.4.唐朝著名诗人李颀的代表作品《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”,其中隐含着一个有趣的数学问题.如图1,诗中将士在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问在何处饮马才能使总路程最短?我们可以用轴对称的方法解决这个问题.(1)如图2,作点B关于直线l的对称点B ,连接AB 与直线l交于点C,点C就是所求的位置.理由:如图3,在直线l上另取不同于点C的任一点C ,连接AC ,BC ,B C ,因为点B、B 关于直线l对称,点C、C 在直线l上,所以CB=,C B=,所以AC+CB=AC+CB =,在△AC B 中,依据,可得AB <AC +C B ,所以AC+CB<AC +C B ,即AC+CB最小.(2)迁移应用:如图4,△ABC是等边三角形,N是AB的中点,AD是BC边上的中线,AD=6,M是AD上的一个动点,连接BM、MN,则BM+MN的最小值是.【经典例题二将军饮马之线段差最值】5.如图,在△ABC中,AB=CB,∠B=100°.延长线段BC至点D,使CD=BC,过点D作射线DP∥AB,点E为射线DP上的动点,分别过点A,D作直线EC的垂线AM,DN.当AM-DN的值最大时,∠ACE的度数为.6.如图,AB⎳DP,E为DP上一动点,AB=CB=CD,过A作AN⊥EC交直线EC于N,过D作DM ⊥EC交直线EC于点M,若∠B=114°,当AN-DM的值最大时,则∠ACE=.7.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.已知△ABC的顶点均在格点上.(1)画出格点三角形ABC关于直线DE对称的△A B C ;(2)△A B C 的面积是(3)在直线DE上找出点P,使P A-PC最大,并求出最大值为.(保留作图痕迹)8.如图,已知△ABC的三个顶点在格点上.(1)画出△A1B1C1,使它与△ABC关于直线MN对称;(2)在直线MN上画出点D,使∠BDM=∠CDN.(3)在直线MN上画出点P,使P A-PC最大.【经典例题三将军饮马之两定一动最值】9.小王准备在红旗街道旁建一个送奶站,向居民区A,B提供牛奶,要使A,B两小区到送奶站的距离之和最小,则送奶站C的位置应该在( ).A. B.C. D.10.(2023春·黑龙江齐齐哈尔·八年级校考阶段练习)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11.(2023春·全国·八年级专题练习)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是.12.(2023·江苏·八年级假期作业)如图,在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线DE交AB于点D,若AE=3,(1)求BC的长;(2)若点P是直线DE上的动点,直接写出P A+PC的最小值为.【经典例题四三点共线最大值】13.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A-PB的最大值为.14.如图,AC,BD在AB的同侧,AC=2,BD=8,AB=10,M为AB的中点,若∠CMD=120°,则CD的最大值为()A.12B.15C.18D.2015.如图,△ABC为等腰直角三角形,∠ACB=90°,M在△ABC的内部,∠ACM=4∠BCM,P为射线CM上一点,当|P A-PB|最大时,∠CBP的度数是.16.如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)若以N点为原点建立平面直角坐标系,点B的坐标为0,5,则△ABC关于x轴对称△A2B2C2,写出点A2,C2的坐标.(3)在直线MN上找点P使PB-P A的最大值.最大,在图形上画出点P的位置,并直接写出PB-P A【经典例题五双对称关系求周长最小值】17.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找到一点M、N,使得△AMN的周长最小,则∠AMN+∠ANM的度数为()A.100°B.110°C.120°D.130°18.如图,在四边形ABCD中,∠A=∠C=90°,∠B=32°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=()A.110°B.112°C.114°D.116°19.如图,在△ABC中,AB=AC=10cm,BC=9cm,AB的垂直平分线交AB于点M,交AC于点N,在直线MN上存在一点P,使P、B、C三点构成的△PBC的周长最小,则△PBC的周长最小值为.20.在草原上有两条交叉且笔直的公路OA、OB,在两条公路之间的点P处有一个草场,如图,∠AOB=30°,OP=6.5.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,若存在M、N使得△PMN的周长最小,则△PMN周长的最小值是.21.几何模型:条件:如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.解法:作点A关于直线l的对称点A ,连接A B,则A B与直线l的交点即为P,且P A+PB的最小值为线段A B的长.(1)根据上面的描述,在备用图中画出解决问题的图形;(2)应用:①如图2,已知∠AOB=30°,其内部有一点P,OP=12,在∠AOB的两边分别有C、D两点(不同于点O),使△PCD的周长最小,请画出草图,并求出△PCD周长的最小值;②如图3,∠AOB=20°,点M、N分别在边OA、OB上,且OM=ON=2,点P,Q分别在OB、OA上,则MP+PQ+QN的最小值是.22.如图,在四边形ABCD中,∠BAD=∠B=∠D=90°,AD=AB=4,E是AD中点,M是边BC上的一个动点,N是边CD上的一个动点,则AM+MN+EN的最小值是.23.如图,在等边△ABC中,AC=12,AD是BC边上的中线,点P是AD上一点,且AP=5.如果点M、N分别是AB和AD上的动点,那么PM+MN+NB的最小值为.【经典例题七两动一定最值】24.如图,在锐角三角形ABC中,AB=6,△ABC的面积为18,BD平分∠ABC,若E、F分别是BD、BC上的动点,则CE+EF的最小值为.25.如图所示,在等边△ABC中,点D、E、F分别在边BC、AB,AC上,则线段DE+DF的最小值是()A.BC边上高的长B.线段EF的长度C.BC边的长度D.以上都不对26.如图,在△ABC中,∠ABC=90°,BC=8,AC=10,点P、Q分别是边BC、AC上的动点,则AP+PQ的最小值等于()A.4B.245C.5 D.48527.如图,在等腰△ABC中,AB=AC=8,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB、AD上的动点,则MN+BN的最小值是.【经典例题八费马点最值问题】28.【问题提出】(1)如图1,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM,CM.若连接MN,则△BMN的形状是.(2)如图2,在Rt△ABC中,∠BAC=90°,AB+AC=10,求BC的最小值.【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园ABCD,AB+BC=6千米,∠ABC=60°,公园内有一个儿童游乐场E,分别从A、B、C向游乐场E修三条AE,BE,CE,求三条路的长度和(即AE+ BE+CE)最小时,平行四边形公园ABCD的面积.29.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat po int).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为6的等腰直角三角形DEF的费马点,则PD+PE+PF=()A.6B.32+6C.63D.930.定义:若P为△ABC内一点,且满足∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)如图1,若点O是等边△ABC的费马点,且OA+OB+OC=18,则这个等边三角形的高的长度为;(2)如图2,已知△ABC,分别以AB、AC为边向外作等边△ABD与等边△ACE,线段CD、BE交于点P,连接AP,求证:点P是△ABC的费马点;(3)应用探究:已知有A、B、C三个村庄的位置如图3所示,能否在合适的位置建一个污水处理站Q,使得该处理站分别连接这三个村庄的水管长度之和最小?如果能,请你说明该如何确定污水处理站Q的位置,并证明该位置满足设计要求.31.定义:若P为△ABC内一点,且满足∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)如图1,若点O是高为3的等边△ABC的费马点,则OA+OB+OC=;(2)如图2,已知P是等边△ABD外一点,且∠APB=120°,请探究线段P A,PB,PD之间的数量关系,并加以证明;(3)如图3,已知△ABC,分别以AB、AC为边向外作等边△ABD与等边△ACE,线段CD、BE交于点P,连接AP,求证:①点P是△ABC的费马点;②P A+PB+PC=CD.32.若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CP A=120°,P A+PB+PC的值最小.(1)如图2,等边三角形ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,小林利用“转化”思想,将△ABP绕顶点A旋转到△ACP 处,连接PP ,此时△ACP ≌△ABP,这样就可以通过旋转变换,将三条线段P A,PB,PC转化到一个三角形中,从而求出∠APB=.(2)如图3,在图1的基础上延长BP,在射线BP上取点D,E,连接AE,AD.使AD=AP,∠DAE=∠P AC,求证:BE=P A+PB+PC.(3)如图4,在直角三角形ABC中,∠ABC=90°,∠ACB=30°,AB=1,点P为直角三角形ABC的费马点,连接AP,BP,CP,请直接写出P A+PB+PC的值.33.(2024八年级上·浙江·专题练习)如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接P A、PE,若P A+PE最小,则点P应该满足()A.P A=PCB.P A=PEC.∠APE=90°D.∠APC=∠DPE34.(24-25八年级上·全国·课后作业)如图,在四边形ABCD中,BC∥AD,CD⊥AD,P是CD边上的一动点,要使P A+PB的值最小,则点P应满足的条件是()A.P A=PBB.PC=PDC.∠APB=90°D.∠BPC=∠APD35.(23-24八年级下·四川巴中·期末)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当长为半径画弧,两弧分别交于E、F,画直线EF,D为BC的中点,M为直线EF上任意一点,若BC=5,△ABC 的面积为15,则BM+MD的最小长度为()A.5B.6C.7D.836.(23-24八年级下·河南郑州·阶段练习)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,则∠AMN+∠ANM的度数为()A.60°B.120°C.90°D.45°37.(23-24八年级上·湖南湘西·期末)在某草原上,有两条交叉且笔直的公路OA、OB,如图,∠AOB=30°,在两条公路之间的点P处有一个草场,OP=4.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,存在M、N使得△PMN的周长最小.则△PMN周长的最小值是( ).A.4B.6C.8D.1238.(22-23八年级下·福建漳州·期中)如图,在△ABC中,AB=AC,BC=6,S△ABC=18,D是BC中点,EF垂直平分AB,交AB于点E,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.3B.6C.9D.1239.(23-24八年级上·福建福州·期中)在平面直角坐标系xOy中,A0,4,动点B在x轴上,连接AB,将线段AB绕点A逆时针旋转60°至AC,连接OC,则线段OC长度最小为()A.0B.1C.2D.340.(22-23七年级下·山东济南·阶段练习)如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找到一点M、N,使得△AMN的周长最小,则∠AMN+∠ANM的度数为()A.100°B.110°C.120°D.130°41.(21-22八年级上·四川广元·期末)如图所示,在四边形ABCD中,AD=2,∠A=∠D=90°,∠B=60°,BC=2CD,在AD上找一点P,使PC+PB的值最小;则PC+PB的最小值为()A.4B.3C.5D.642.(21-22八年级上·广东广州·期中)在Rt △ABC 中,∠C =90°,∠A =30°,点P 是边AC 上一定点,此时分别在边AB ,BC 上存在点M ,N 使得△PMN 周长最小且为等腰三角形,则此时AP PC 的值为()A.12B.1C.32D.243.(2024七年级下·全国·专题练习)如图,△ABC 中,AB =AC ,BC =5,S △ABC =15,AD ⊥BC 于点D ,EF 垂直平分AB ,交AC 于点F ,在EF 上确定一点P ,使PB +PD 最小,则这个最小值为.44.(23-24七年级下·陕西西安·阶段练习)如图,在四边形ABCD 中,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,使△AMN 周长最小,此时∠MAN =80°,则∠BAD 的度数为.45.(23-24七年级下·山东济南·期末)在草原上有两条交叉且笔直的公路OA 、OB ,在两条公路之间的点P 处有一个草场,如图,∠AOB =30°,OP =6.5.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,若存在M、N使得△PMN的周长最小,则△PMN周长的最小值是.46.(22-23七年级下·广东河源·期末)如图,在四边形ABCD中,∠A=∠C=90°,∠B=36°,在边AB、BC上分别找一点E、F,使△DEF周长最小,此时∠EDF=.47.(22-23八年级上·广东东莞·期中)如图,点A-2,1,点P是在x轴上,且使P A+PB最小,写,B2,3出点P的坐标.48.(22-23八年级上·湖南岳阳·期中)如图,直线l垂直平分△ABC的AB边,在直线l上任取一动点O,连结OA、OB、OC.若OA=5,则OB=.若AC=9,BC=6,则△BOC的最小周长是.49.(22-23八年级上·四川绵阳·期中)在平面直角坐标系xOy中,点A的坐标是0,2,点B在x轴的负半轴上且∠ABO=30°,点P与点O关于直线AB对称,在y轴上找到一点M,使PM+BM的值最小,则这个最小值为.50.(22-23八年级上·海南海口·期中)如图,在四边形ABCD中,∠A=∠C=90°,∠B=36°,在边AB,BC上分别找一点E,F使△DEF的周长最小.此时∠EDF的大小是.51.(22-23八年级上·湖北黄石·期末)如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM=103cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为cm.52.(21-22八年级上·福建厦门·期末)小河的两条河岸线a∥b,在河岸线a的同侧有A、B两个村庄,考虑到施工安全,供水部门计划在岸线b上寻找一处点Q建设一座水泵站,并铺设水管PQ,并经由P A、PB 跨河向两村供水,其中QP⊥a于点P.为了节约经费,聪明的建设者们已将水泵站Q点定好了如图位置(仅为示意图),能使三条水管长PQ+P A+PB的和最小.已知P A=1.6km,PB=3.2km,PQ=0.1km,在A村看点P位置是南偏西30°,那么在A村看B村的位置是.53.(22-23八年级上·云南昆明·期末)如图,△ABC的三个顶点坐标分别为A2,3.,B1,1,C5,3(1)作出△ABC关于y轴对称的图形△A1B1C1.(2)求△A1B1C1的面积;(3)在x轴上找一点P,使得PC+PB最小,请直接写出点P的坐标.54.(24-25八年级上·黑龙江哈尔滨·阶段练习)如图,在平面直角坐标系中,已知A-3,4,B-1,2,C1,3.(1)在平面直角坐标系中画出△ABC,将△ABC平移得到△A B C ,已知A 1,-1,则C 坐标是.(2)求出△ABC的面积;(3)在x轴上有一点P,使得P A+PB的值最小,保留作图痕迹.55.(23-24八年级下·广东深圳·期末)【综合实践活动】【问题背景】如图1,A,B表示两个村庄,要在A,B一侧的河岸边建造一个抽水站P,使得它到两个村庄的距离和最短,抽水站P应该修建在什么位置?【数学建模】小坤发现这个问题可以用轴对称知识解决,他先将实际问题抽象成如下数学问题:如图2,A,B是直线l同侧的两个点,点P在直线l上.P在何处时,P A+PB的值最小.画图:如图3,作B关于直线l的对称点B ,连结AB 与直线l交于点P,点P的位置即为所求.证明:∵B和B 关于直线l对称∴直线l垂直平分BB∴PB=,∴P A+PB=P A+PB根据“”(填写序号:①两点之间,线段最短;②垂线段最短;③两点确定一列条直线.)可得P A+ PB 最小值为(填线段名称),此时P点是线段AB 和直线l的交点.【问题拓展】如图4,村庄B的某物流公司在河的对岸有一个仓库C(河流两侧河岸平行,即GD∥EF),为了方便渡河,需要在河上修建一座桥MN(桥的长度固定不变,等于河流的宽度且与河岸方向垂直),请问桥MN修建在何处才能使得B到C的路线最短?请你画出此时桥MN的位置(保留画图痕迹,否则不给分).【迁移应用】光明区某湿地公园如图5所示,四边形AEDC为花海景区,∠CDE=∠E=90°,AE=80米,DE=50米,长方形CFGH为人工湖景区,为了方便市民观景,公园决定修建一条步行观光路线(折线AM-MN-BN),A为起点,终点B在ED上,BD=30米,MN为湖边观景台,长度固定不变(MN =40米),且需要修建在湖边所在直线CF上,步行观光路线的长度会随着观景台位置的变化而变化,请直接写出步行观光路线的最短长度.2156.(2023九年级·四川成都·专题练习)在△ABC 中,AC =BC ,点E 在是AB 边上一动点(不与A 、B 重合),连接CE ,点P 是直线CE上一个动点.(1)如图1,∠ACB =120°,AB =16,E 是AB 中点,EM =2,N 是射线CB 上一个动点,若使得NP +MP 的值最小,应如何确定M 点和点N 的位置?请你在图2中画出点M 和点N 的位置,并简述画法;直接写出NP +MP 的最小值;(2)如图3,∠ACB =90°,连接BP ,∠BPC =75°且BC =BP .求证:PC =P A .57.(23-24七年级下·广东深圳·期末)【背景材料】对称美是我国古人和谐平衡思想的体现,常被用于建筑、器物、绘画、标识等作品的设计上,比如图1.同时,对称在解决生活中的实际问题时,也往往有很大的作用.【问题提出】某小区要在街道旁修建一个奶站,向居民区A ,B 提供牛奶,奶站应建在什么地方,才能使A ,B 到它的距离之和最短?该问题给牛奶公司造成了困扰,现向居民们征求意见.【问题解决】小明同学将小区和街道抽象出的平面图形,并用轴对称的方法巧妙地解决了这个问题.如图2,作A 关于直线m 的对称点A ,连接A B 与直线m 交于点C ,点C 就是所求的位置.(1)请你在下列阅读、应用的过程中,完成解答并填空:证明:如图3,在直线m 上另取任一点D ,连结AD ,A D ,BD ,∵直线m 是点A ,A 的对称轴,点C ,D 在m 上,22∴CA =,DA =,∴AC +CB =A C +CB =.在△A DB 中,∵A B <A D +DB ,∴A C +CB <A D +DB .∴AC +CB <AD +DB ,即AC +CB 最小.(2)如图4,在等边△ABC 中,E 是AB 上的点,AD 是∠BAC 的平分线,P 是AD 上的点,若AD =5,则PE +PB 的最小值为.【拓展应用】(3)“龙舟水”来势汹汹,深圳“雨雨雨”模式开启,深圳某学校的志愿者们在查阅地图后,画出了平面示意图5.其中,点A 表示龙潭公园,点B 表示宝能广场,点C 表示万科里,点D 表示万科广场,点E 表示龙城广场地铁站.如图6,志愿者计划在B 宝能广场和D 万科广场之间摆放一批共享雨伞,使得共享雨伞的位置到B宝能广场、C 万科里、D 万科广场和E 龙城广场地铁站的距离的和最小.若点A 与点C 关于BD 对称,请你用尺子在BD 上画出“共享雨伞”的具体摆放位置(用点G 表示).58.(24-25八年级上·全国·假期作业)如图,B、C 两点关于y 轴对称,点A 的坐标是0,b ,点C 坐标为-a ,-a -b .(1)直接写出点B 的坐标为;(2)用尺规作图,在x 轴上作出点P ,使得AP +PB 的值最小;(3)∠OAP =度.59.(21-22七年级上·陕西商洛·期末)点C 为∠AOB 内一点.23(1)在OA上求作点D,OB上求作点E,使△CDE的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值.60.(23-24八年级上·湖南长沙·期末)在四边形ABCD中,∠BAD=BCD=90°,∠ABC=135°,AB=32,BC=1,在AD、CD上分别找一点E、F,使得△BEF的周长最小,求△BEF周长的最小值.61.(2023八年级上·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,CD平分∠ACB交斜边AB于点D,动点P从点C出发,沿折线CA-AD向终点D运动.(1)点P在CA上运动的过程中,当CP时,△CPD与△CBD的面积相等;(直接写出答案)(2)点P在折线CA-AD上运动的过程中,若△CPD是等腰三角形,求∠CPD度数;(3)若点E是斜边AB的中点,当动点P在CA上运动时,线段CD所在直线上存在另一动点M,使两线段MP、ME的长度之和,即MP+ME的值最小,则此时CP的长度(直接写出答案).。

初中数学几何模型与最值问题05专题-费马点中的对称模型与最值问题(含答案)

初中数学几何模型与最值问题05专题-费马点中的对称模型与最值问题(含答案)

初中数学最值问题专题5 费马点中的对称模型与最值问题【专题说明】【例题】1、如图,在△ABC 中,△ACB =90°,AB =AC =1,P 是△ABC 内一点,求P A +PB +PC 的最小值.【分析】如图,以AD 为边构造等边△ACD ,连接BD ,BD 的长即为P A +PB +PC 的最小值.至于点P 的位置?这不重要!如何求BD ?考虑到△ABC 和△ACD 都是特殊的三角形,过点D 作DH △BA 交BA 的延长线于H 点,根据勾股定理,222BD BH DH =+即可得出结果.C2、如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.3、如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN的周长的最小值为___________.4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为( )A .B .C .D .5、如图所示,30AOB ∠=,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.ABCDME6、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接P C,P E.当△P CE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是C P上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.7、已知,如图,二次函数()2230y ax ax a a =+-≠图象的顶点为H ,与x 轴交于A 、B 两点(B 点在A点右侧),点H 、B 关于直线l :y x =+对称.(1)求A 、B 两点的坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连结HN 、NM 、MK ,求HN +NM +MK 的最小值.专题5 费马点中的对称模型与最值问题 答案【专题说明】【例题】1、如图,在△ABC 中,△ACB =90°,AB =AC =1,P 是△ABC 内一点,求P A +PB +PC 的最小值.【分析】如图,以AD 为边构造等边△ACD ,连接BD ,BD 的长即为P A +PB +PC 的最小值.至于点P 的位置?这不重要!如何求BD ?考虑到△ABC 和△ACD 都是特殊的三角形,过点D 作DH △BA 交BA 的延长线于H 点,根据勾股定理,222BD BH DH =+即可得出结果.C2、如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.【分析】依然构造60°旋转,将三条折线段转化为一条直线段. 分别以AD 、AM 为边构造等边△ADF 、等边△AMG ,连接FG ,易证△AMD △△AGF ,△MD =GF △ME +MA +MD =ME +EG +GF过F 作FH △BC 交BC 于H 点,线段FH 的长即为所求的最小值.ABCDMEHFGE MDCBA3、如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为___________.【解析】如图,作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△P MN 的周长最短,最短的值是CD 的长.△点P 关于OA 的对称点为C , △P M =CM ,O P=OC ,△COA =△P OA ; △点P 关于OB 的对称点为D , △P N =DN ,O P=OD ,△DOB =△P OB ,△OC =OD =O P=3,△COD =△COA +△P OA +△P OB +△DOB =2△P OA +2△P OB =2△AOB =60°, △△COD 是等边三角形, △CD =OC =OD =3.△△P MN 的周长的最小值=P M +MN +P N =CM +MN +DN ≥CD =3.4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为()A.B.C.D.【解析】分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结P Q分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=D P+DC+CQ+AB=P Q+AB==4+2=6,故选B.5、如图所示,30AOB ∠=,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.【解析】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP 、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN ∆周长最小,根据轴对称性质可知1PMPM =,2PN P N =,1212PMN PM MN P N PP ∴∆=++=,且1AOP AOP ∠=∠,2BOP BOP ∠=∠,12260POP AOB ∠=∠=︒,128OP OP OP ===,12PP O ∆为等边三角形,1218PP OP ==即PMN ∆周长的最小值为8.6、如图,在平面直角坐标系中,抛物线y =x 2﹣x ﹣与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接P C ,P E .当△P CE 的面积最大时,连接CD ,CB ,点K是线段CB的中点,点M是C P上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【解析】(1)△y=x2﹣x﹣,△y=(x+1)(x﹣3).△A(﹣1,0),B(3,0).当x=4时,y=.△E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.△直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.△直线CE的解析式为y=x﹣.过点P作P F△y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则F P=(x﹣)﹣(x2﹣x﹣)=x2+x.△△E P C的面积=×(x2+x)×4=﹣x2+x.△当x=2时,△E P C的面积最大.△P(2,﹣).如图2所示:作点K关于CD和C P的对称点G、H,连接G、H交CD和C P与N、M.△K是CB的中点,△k(,﹣).△点H与点K关于C P对称,△点H的坐标为(,﹣).△点G与点K关于CD对称,△点G(0,0).△KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.△GH==3.△KM+MN+NK的最小值为3.(3)如图3所示:△y ′经过点D ,y ′的顶点为点F ,△点F (3,﹣).△点G 为CE 的中点,△G (2,).△FG =.△当FG =FQ 时,点Q (3,),Q ′(3,).当GF =GQ 时,点F 与点Q ″关于y =对称,△点Q ″(3,2).当QG =QF 时,设点Q 1的坐标为(3,a ).由两点间的距离公式可知:a +=,解得:a =﹣.△点Q 1的坐标为(3,﹣).综上所述,点Q 的坐标为(3,),Q ′(3,)或(3,2)或(3,﹣). 7、已知,如图,二次函数()2230y ax ax a a =+-≠图象的顶点为H ,与x 轴交于A 、B 两点(B 点在A=+对称.点右侧),点H、B关于直线l:y x(1)求A、B两点的坐标,并证明点A在直线l上;(2)求二次函数解析式;BK AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连结HN、NM、(3)过点B作直线//MK,求HN+NM+MK的最小值.【解析】(1)依题意,得ax2+2ax−3a=0(a≠0),两边都除以a得x2+2x−3=0,解得x1=−3,x2=1,△B点在A点右侧,△A点坐标为(−3,0),B点坐标为(1,0),答:A.B两点坐标分别是(−3,0),(1,0).证明:△直线l:y x+-=,△点A在直线l上.当x=−3时,y(3)0(2)△点H、B关于过A点的直线l:y x+对称,△AH=AB=4,过顶点H作HC△AB交AB于C点,则AC=12,2AB HC==△顶点H(1,-,代入二次函数解析式,解得a=,△二次函数解析式为2y x=,答:二次函数解析式为2y x=+.(3)直线AH的解析式为y=+,直线BK的解析式为y=-y xy⎧=⎪⎨⎪=-⎩,解得3xy=⎧⎪⎨=⎪⎩K),则BK=4,△点H、B关于直线AK对称,K,△HN+MN的最小值是MB,过K作KD△x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,则QM=MK,QE=EKAE△QK,△根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,△BK△AH,△△BKQ=△HEQ=90△,由勾股定理得QB8==△HN+NM+MK的最小值为8,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学几何模型:轴对称最值模型名师点睛拨开云雾开门见山B'QDA'AP B C典题探究启迪思维探究重点例题1. 如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为2.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.故答案为:2.变式练习>>>1.如图Rt△ABC和等腰△ACD以AC为公共边,其中∠ACB=90°,AD=CD,且满足AD⊥AB,过点D 作DE⊥AC于点F,DE交AB于点E,已知AB=5,BC=3,P是射线DE上的动点,当△PBC的周长取得最小值时,DP的值为()A.B.C.D.【解答】解:连接PB、PC、P A,要使得△PBC的周长最小,只要PB+PC最小即可,∵PB+PC=P A+PB≥AB,∴当P与E重合时,P A+PB最小,∵AD=CD,DE⊥AC,∴AF=CF,∵∠ACB=90°,∴EF∥BC,∴AE=BE=AB=2.5,∴EF=BC=1.5,∵AD⊥AB,∴△AEF∽△DEA,∴=,∴DE==,故选:B.例题2. 如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,求△BMN的周长的最小值.【解答】解:作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,DB,连接MB、NB;再DC和AD上分别取一动点M'和N'(不同于点M和N),连接M'B,M'B',N'B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B'',B'M'=BM',B''N'=BN',∴BM'+M'N'+BN'>B'B'',又∵B'B''=B'M+MN+NB'',MB=MB',NB=NB'',∴NB+NM+BM<BM'+M'N'+BN',∴C△BMN=NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B''D的延长线于点H,如图示2所示:∵在Rt△ABD中,AD=3,AB=,∴==2,∴∠2=30°,∴∠5=30°,DB=DB'',又∵∠ADC=∠1+∠2=60°,∴∠1=30°,∴∠7=30°,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120°,DB'=DB''=DB=2,又∵∠B'DB''+∠6=180°,∴∠6=60°,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:===6.∴C△BMN=NB+NM+BM=6,变式练习>>>2.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.例题3. 如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC 和AD上的动点,则CQ+PQ的最小值是2.【解答】解:如图,作点P关于直线AD的对称点P′,连接CP′交AD于点Q,则CQ+PQ=CQ+P′Q=CP′.∵根据对称的性质知△APQ≌△AP′Q,∴∠P AQ=∠P′AQ.又∵AD是∠A的平分线,点P在AC边上,点Q在直线AD上,∴∠P AQ=∠BAQ,∴∠P′AQ=∠BAQ,∴点P′在边AB上.∵当CP′⊥AB时,线段CP′最短.∵在△ABC中,∠C=90°,CB=CA=4,∴AB=4,且当点P′是斜边AB的中点时,CP′⊥AB,此时CP′=AB=2,即CQ+PQ的最小值是2.故填:2.变式练习>>>3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.2C.D.4【解答】解:如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PR+QR的最小值是PE的长,设等边△ABC的边长为x,则高为x,∵等边△ABC的面积为4,∴x×x=4,解得x=4,∴等边△ABC的高为x=2,即PE=2,故选:B.例题4. 如图,∠MON=30°,A在OM上,OA=2,D在ON上,OD=4,C是OM上任意一点,B是ON上任意一点,则折线ABCD的最短长度为2.【解答】解:作D关于OM的对称点D′,作A作关于ON的对称点A′,连接A′D′与OM,ON的交点就是C,B二点.此时AB+BC+CD=A′B+BC+CD′=A′D′为最短距离.连接DD′,AA′,OA′,OD′.∵OA=OA′,∠AOA′=60°,∴∠OAA′=∠OA′A=60°,∴△ODD′是等边三角形.同理△OAA′也是等边三角形.∴OD'=OD=4,OA′=OA=2,∠D′OA′=90°.∴A′D′==2.变式练习>>>4. 如图,在长方形ABCD中,O为对角线AC的中点,P是AB上任意一点,Q是OC上任意一点,已知:AC=2,BC=1.(1)求折线OPQB的长的最小值;(2)当折线OPQB的长最小时,试确定Q的位置.【解答】解:(1)作点B关于AC的对称点B′,作点O关于AB的对称点O′,连接AB′,QB′,AO′,PO′,B′O′,则QB=QB′,OP=O′P,折线OPQB的长=OP+PQ+QB=O′P+PQ+QB′,∴折线OPQB的长的最小值=B′O′.∵在长方形ABCD中,∠ABC=90°,在△ABC中,AC=2,BC=1,∠ABC=90°,∴∠BAC=30°,∵点B、B′关于AC对称,点O、O′关于AB对称,∴∠B′AC=30°,AB′=AB=,∠O′AB=30°,AO′=AO=1,∴∠B′AO′=90°,∴B′O′=,∴折线OPQB的长的最小值=2;(2)设B′O′交AC于点Q′,∵在Rt△AO′B′中,AO′=1,B′O′=2,∴∠AB′O′=30°,则∠AO′B′=60°,∵在△AO′Q′中,∠Q′AO′=∠Q′AB+∠BAO′=60°,∴△AO′Q′是等边三角形,∴AQ′=AO′=1=AO,∴点Q′就是AC的中点O.∴当折线OPQB的长最小时,点Q在AC的中点.例题5. 如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ=时,四边形APQE的周长最小.【解答】解:点A向右平移3个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE==2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,设CQ=x,则NQ=8﹣3﹣x=5﹣x,∵△MNQ∽△FCQ,∴=,∵MN=AB=4,CF=CE=2,CQ=x,QN=5﹣x,解得:x=,则CQ=故答案为:.变式练习>>>5.如图,已知A(3,1)与B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为()A.(,)B.(,)C.(0,0)D.(1,1)【解答】解:作点B关于直线y=x的对称点B'(0,1),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后得A'(2,0)连接A'B'交直线y=x于点Q,如图理由如下:∵AA'=PQ=,AA'∥PQ∴四边形APQA'是平行四边形∴AP=A'Q∵AP+PQ+QB=B'Q+A'Q+PQ且PQ=∴当A'Q+B'Q值最小时,AP+PQ+QB值最小根据两点之间线段最短,即A',Q,B'三点共线时A'Q+B'Q值最小∵B'(0,1),A'(2,0)∴直线A'B'的解析式y=﹣x+1∴x=﹣x+1,即x=∴Q点坐标(,)故选:A.例题6. 如图,点E、F是正方形ABCD的边BC上的两点(不与B、C两点重合),过点B作BG⊥AE于点G,连接FG、DF,若AB=2,求DF+GF的最小值为.【解答】解:取AB的中点O,点O、G关于BC的对称点分别为O'、G',∵G与G'关于BC对称,∴FG=FG',∴FG+DF=FG'+DF,∴当G(也就是G')固定时,取DG'与BC的交点F,此时能够使得FG+FD最小,且此时FG+DF的最小值是DG',现在再移动点E(也就是移动G),∵BG⊥AE,∴∠AGB=90°,∴当点E在BC上运动时,点G随着运动的轨迹是以O为圆心,OA为半径的90°的圆弧,点G'随着运动的轨迹是以O'为圆心,O'B为半径的90°的圆弧,∴当取DO'与交点为G'时,能够使得DG'达到最小值,且DG'的最小值=DO'﹣O'G'=﹣1=﹣1,即DF+GF的最小值为﹣1.故选:A.变式练习>>>6.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为()A.5﹣4B.﹣1C.6﹣2D.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(2,3),∴点A′坐标(2,﹣3),∵点B(3,4),∴A′B==5,∴MN=A′B﹣BN﹣A′M=5﹣3﹣1=5﹣4,∴PM+PN的最小值为5﹣4.故选:A.例题7. 如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=()A.112.5°B.105°C.90°D.82.5°【解答】解:如图,作CH⊥BC,且CH=BC,连接BH交AD于M,连接FH,∵△ABC是等边三角形,AD⊥BC,∴AC=BC,∠DAC=30°,∴AC=CH,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°﹣60°=30°,∴∠DAC=∠ACH=30°,∵AE=CF,∴△AEC≌△CFH,∴CE=FH,BF+CE=BF+FH,∴当F为AC与BH的交点时,如图2,BF+CE的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105°,故选:B.变式练习>>>7.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=30度.【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故答案为30.例题8. (1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.【解答】解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,∵AC×BC=AB×CD,∴CD==,故答案为;(2)如图②,作出点C关于BD的对称点E,过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN=EN最小;∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴BD×CF=BC×CD,∴CF==,由对称得,CE=2CF=,在Rt△BCF中,cos∠BCF==,∴sin∠BCF=,在Rt△CEN中,EN=CE sin∠BCE==;即:CM+MN的最小值为;(3)如图3,∵四边形ABCD是矩形,∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,根据勾股定理得,AC=5,∵AB=3,AE=2,∴点F在BC上的任何位置时,点G始终在AC的下方,设点G到AC的距离为h,∵S四边形AGCD=S△ACD+S△ACG=AD×CD+AC×h=×4×3+×5×h=h+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=2,sin∠BAC==,∴EH=AE=,∴h=EH﹣EG=﹣1=,∴S四边形AGCD最小=h+6=×+6=,过点F作FM⊥AC于M,∵EH⊥FG,EH⊥AC,∴四边形FGHM是矩形,∴FM=GH=∵∠FCM=∠ACB,∠CMF=CBA=90°,∴△CMF∽△CBA,∴,∴,∴CF=1∴BF=BC﹣CF=4﹣1=3.达标检测领悟提升强化落实1. 如图,矩形ABCD中,AB=5,AD=10,点E,F,G,H分别在矩形各边上,点F,H为不动点,点E,G为动点,若要使得AF=CH,BE=DG,则四边形EFGH周长的最小值为()A.5B.10C.15D.10【解答】解:作点F关于CD的对称点F′,连接F′H交CD于点G,此时四边形EFGH周长取最小值,过点H作HH′⊥AD于点H′,如图所示.∵AF=CH,DF=DF′,∴H′F′=AD=10,∵HH′=AB=5,∴F′H==5,∴C四边形EFGH=2F′H=10.故选:D.2. 如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于﹣3.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣A′M=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为﹣3.3. 如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为(2,0),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是8﹣2和8+2.【解答】解:y=x+4,∵当x=0时,y=4,当y=0时,x=﹣4,∴OA=4,OB=4,∵△ABE的边BE上的高是OA,∴△ABE的边BE上的高是4,∴要使△ABE的面积最大或最小,只要BE取最大值或最小值即可,过A作⊙C的两条切线,如图,当在D点时,BE最小,即△ABE面积最小;当在D′点时,BE最大,即△ABE面积最大;∵x轴⊥y轴,OC为半径,∴EE′是⊙C切线,∵AD′是⊙C切线,∴OE′=E′D′,设E′O=E′D′=x,∵AC=4+2=6,CD′=2,AD′是切线,∴∠AD′C=90°,由勾股定理得:AD′=4,∴sin∠CAD′==,∴=,解得:x=,∴BE′=4+,BE=4﹣,∴△ABE的最小值是×(4﹣)×4=8﹣2,最大值是:×(4+)×4=8+2,故答案为:8﹣2和8+2.4. 正方形ABCD,AB=4,E是CD中点,BF=3CF,点M,N为线段BD上的动点,MN=,求四边形EMNF周长的最小值++.【解答】解:作点E关于BD的对称点G,则点G在AD上,连接GM,过G作BD的平行线,截取GH=MN=,连接HN,则四边形GHNM是平行四边形,∴HN=GM=EM,过H作PQ⊥BC,交AD于P,交BC于Q,则∠HPG=∠HQF=90°,PQ=AB=4,∵∠PGH=∠ADB=45°,∴HP=PG==1,HQ=4﹣1=3,由轴对称的性质,可得DG=ED=2,∴AP=4﹣2﹣1=1,∴BQ=1,又∵BF=3CF,BC=4,∴CF=1,∴QF=4﹣1﹣1=2,∵当点H、N、F在同一直线上时,HN+NF=HF(最短),此时ME+NF最短,∴Rt△HQF中,FH===,即ME+NF最短为,又∵Rt△CEF中,EF===,∴ME+NF+MN+EF=++,∴四边形EMNF周长的最小值为++.故答案为:++.5. 如图,已知点D,E分别是等边三角形ABC中BC,AB边的中点,BC=6,点F是AD边上的动点,则BF+EF的最小值为3.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD,∵BC=6,∴BD=3,∴AD=3,即BF+EF=3.故答案为:3.6. 如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回到E点,则蚂蚁所走的最小路程是.【解答】解:延长DC到D',使CD=CD',G对应位置为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===27. 如图,在△ABC中,AC⊥BC,∠B=30°,点E,F是线段AC的三等分点,点P是线段BC上的动点,点Q是线段AC上的动点,若AC=3,则四边形EPQF周长的最小值是8.【解答】解:过E点作E点关于BC的对称点E′,过F点作F点关于AC的对称点F′,∵在△ABC中,AC⊥BC,∠B=30°,AC=3,∴AB=6,∵点E,F是线段AC的三等分点,∴EF=2,∵E′F′=AB=6,∴四边形EPQF周长的最小值是6+2=8.故答案为:8.8. 如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD的最小值是.【解答】解:如图所示,以AB,BD为边构造平行四边形ABDE,作点C关于x轴的对称点F,连接AF,则DE⊥y轴,OF=OC=1,∵四边形ABDE是平行四边形,∴BD=AE,DE=AB=1,∵AB垂直平分线CF,∴AC=AF,∴AC+BD=AE+AF,如图,当点E,A,F在同一直线上时,AE+AF=EF(最短),此时,∵Rt△DEF中,DE=1,DF=2+1=3,∴EF===,∴AC+BD的最小值是.故答案为:.9. 在矩形ABCD中,AB=8,BC=10,G为AD边的中点.如图,若E、F为边AB上的两个动点,且EF=4,当四边形CGEF的周长最小时,则求AF的长为.【解答】解:∵E为AB上的一个动点,∴如图,作G关于AB的对称点M,在CD上截取CH=4,然后连接HM交AB于E,接着在EB上截取EF=4,那么E、F两点即可满足使四边形CGEF的周长最小.∵在矩形ABCD中,AB=8,BC=10,G为边AD的中点,∴AG=AM=5,MD=15,而CH=4,∴DH=4,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE===,∴AF=4+=.故答案为:.10. 如图,矩形ABCO的边OC在x轴上,边OA在y轴上,且点C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,点M,N分别是线段OA、AB上的动点(不与端点重合),则当四边形EFNM的周长最小时,点N的坐标为(4,6).【解答】解:如图所示:作点F关于AB的对称点F′,作点E关于y轴的对称点E′,连接E′F′交AB与点N.∵C的坐标为(8,0),点A的坐标为(0,6),点E、F分别足OC、BC的中点,∴OE=OE′=4,FB=CF=3,∴E′C=12,CF′=9.∵AB∥CE′,∴△F′NB∽△F′E′C.∴==,即=,解得BN=4,∴AN=4.∴N(4,6).故答案为:(4,6).11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.【解答】解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.12. 如图,两点A、B在直线MN外的同侧,A到MN的距离AC=16,B到MN的距离BD=10,CD=8,点P在直线MN上运动,则|P A﹣PB|的最大值等于10.【解答】解:延长AB交MN于点P′,∵P′A﹣P′B=AB,AB>|P A﹣PB|,∴当点P运动到P′点时,|P A﹣PB|最大,∵BD=10,CD=8,AC=16,过点B作BE⊥AC,则BE=CD=8,AE=AC﹣BD=16﹣10=6,∴AB===10,∴|P A﹣PB|的最大值等于10,故答案为:10.11. 如图△ABC是边长为2的等边三角形,D是AB边的中点,P是BC边上的动点,Q是AC边上的动点,当P、Q的位置在何处时,才能使△DPQ的周长最小?并求出这个最值.【解答】解:作D关于BC、AC的对称点D′、D″,连接D′D″,DQ,DP.∵DQ=D″Q,DP=D′P,∴△DPQ的周长为PQ+DQ+DP=PQ+D″Q+D′P=D′D″,根据两点之间线段最短,D′D″的长即为三角形周长的最小值.∵∠A=∠B=60°,∠BED=∠AFD=90°,∴∠α=∠β=90°﹣60°=30°,∠D′DD″=180°﹣30°﹣30°=120°,∵D为AB的中点,∴DF=AD•cos30°=1×=,AF=,易得△ADF≌△QD''F,∴QF=AF=,∴AQ=1,BP=1,Q、P为AC、BC的中点.∴DD″=×2=,同理,DD′=×2=,∴△DD′D″为等腰三角形,∴∠D′=∠D″==30°,∴D″D′=2DD′•cos30°=2××=3.12. 如图,C 为线段BD 上一动点,分别过点B 、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问AC+CE的值是否存在最小值?若存在,请求出这个最小值;若不存在请说明理由.(3)根据(2)中的规律和结论,请直接写出出代数式+的最小值为25.【解答】解:(1)由线段的和差,得BC=(8﹣x).由勾股定理,得AC+CE =+=+=+;(2)当A、C、E在同一直线上,AC+CE最小;当A、C、E在同一直线上时,延长AB,作EF⊥AB于点F,∵AB=5,DE=1,∴AF=6,∵∠ABD=90°,∴∠FBD=90°,∵∠BDE=∠BFE=90°,∴四边形BFED是矩形,∴BD=EF=8,∴AE===10;(3)如下图所示:作BD=24,过点B作AB⊥BD,过点D作ED ⊥BD,使AB=3,ED=4,连接AE交BD于点C,当BC=x,∵x+y=24,∴y=24﹣x,AE的长即为代数式的最小值,过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=3,AF=BD=24,所以AE===25,即代数式+的最小值为25,故答案为:25.- 21 -。

相关文档
最新文档