专项练习(二) 全等三角形的基本模型
专题2全等三角形的常见模型及其构造方法(原卷版)
专题2 全等三角形的常见模型及其构造方法(原卷版)类型一一线三等角模型(一)捕捉一线三等角模型1.(2023•南谯区校级一模)如图,在矩形ABCD中,E,F分别为BC,DC上一点,AE=EF,AE⊥EF,若BE=3,矩形ABCD的周长为26,则矩形ABCD的面积为.2.(2022秋•武汉期末)如图,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠BAC =∠AEC=α,若DE=8,BD=2,求CE的长.3.(2023春•榆林期末)如图是一个工业开发区局部的设计图,河的同一侧有两个工厂A和B,AD、BC的长表示两个工厂到河岸的距离,其中E是进水口,D、C为两个排污口.已知AE=BE,∠AEB=90°,AD⊥DC,BC⊥DC,点D、E、C在同一直线上,AD=150米,BC=350米,求两个排污口之间的水平距离DC.(二)构造一线三等角模型4.(2022秋•武汉期中)如图,AC=AB=BD,∠ABD=90°,BC=8,则△BCD的面积为()A.8B.12C.14D.165.(2023春•和平区期中)如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(0,3),把线段BA绕点B逆时针旋转90°后得到线段BC,则点C的坐标是()A.(3,4)B.(4,3)C.(4,7)D.(3,7)6.(2023•雁塔区校级开学)如图,直线l1∥l2∥l3,正方形ABCD的三个顶点A、B、C分别在直线l1、l2、l3上,点A到直线l2的距离是3,点C到直线l2的距离是6,则正方形ABCD的面积为.7.(2021秋•恩施市校级月考)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD(D点在第四象限),过D作DE⊥x轴于E点,求OP﹣DE的值.(1)捕捉手拉手模型8.(2023春•高碑店市校级月考)如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD,AC,BD交于点M,关于结论Ⅰ,Ⅱ,下列判断正确的是()结论Ⅰ:AC=BD;结论Ⅱ:∠CMD>∠CODA.Ⅰ对,Ⅱ错B.Ⅰ错,Ⅱ对C.1,Ⅱ都对D.Ⅰ,Ⅱ都错9.(2021秋•十堰期中)在等腰△OAB和等腰△OCD中,OA=OB,OC=OD,连接AC、BD交于点M.(1)如图1.若∠AOB=∠COD=40°.则AC与BD的数量关系为;∠AMB的度数为;(2)如图2,若∠AOB=∠COD=90°,判断AC与BD之间存在怎样的关系?并说明理由;10.已知:在△ABD和△ACE中,AD=AB,AC=AE.(1)如图1,若∠DAB=∠CAE=60°,求证:BE=DC;(2)如图2,若∠DAB=∠CAE=n°,求∠DOB的度数.11.(2021秋•恩施市校级期末)在△ABC中,∠A=90°,AB=AC,D为BC的中点(1)如图1,E,F分别是AB,AC上的点,且BE=AF求证:△DEF为等腰直角三角形;(2)如图1,若AB=4,则四边形AEDF的面积为(直接写出结果);(3)如图2,若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,则△DEF是否仍为等腰直角三角形?证明你的结论.类型三半角模型12.已知:边长为1的正方形ABCD中,M、N分别是BC、CD上的点.(1)若MN=BM+ND,求证:∠MAN=45°;(2)若△MNC得周长为2,求∠MAN的度数.13.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,请猜想PM与PN的数量关系并说明理由.14.(2023春•连城县期末)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.类型四倍长中线模型15.(2020•黄陂区期末)如图,在△ABC中,D为BC的中点,若AC=3,AD=4.则AB的长不可能是()A.5B.7C.8D.916.(2020秋•通河县期末)如图所示,AD为△ABC中线,D为BC中点,AE=AB,AF=AC,连接EF,EF=2AD.若△AEF的面积为3,则△ADC的面积为.类型五截长补短构造全等三角形17.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.类型六平行线+线段中点构造全等三角形18.如图,AC∥BD,E为CD的中点,AE⊥BE(1)求证:AE平分∠BAC,BE平分∠ABD;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.19.(2023春•博山区期末)如图,AB⊥BC于点B,AB⊥AD于点A,点E是CD中点,若BC=5,AD=10,BE=132,求AB的长.。
初中数学《全等三角形》基本模型训练含解析
全等三角形基本模型专项训练一、单选题1如图,在Rt△ABC中,AB=AC,∠BAC=90°,点D,E分别在边BC及其延长线上,BD2+CE2=DE2,F为△ABC外一点,且FB⊥BC,FA⊥AE,则结论:①FA=AE;②∠DAE=45°;③S△ADE=14AD⋅EF;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.①②【答案】A【分析】根据全等三角形的性质,证明△ABF和△ACE全等,即可得到FA=AE;连接DF如图见解析,证明△ADE和△ADF全等,即可得到∠DAE=45°;延长AD交EF于H如图见解析,利用等腰直角△AFE三线合一的性质,∠FAE=90°,∠DAE=45°∠DAE=45°,可知AH⊥EF,S△ADE=12AD⋅EH,HE=HF=12EF,即可判断③;在Rt△EBF和Rt△EAF中,利用勾股定理以及等式的性质,即可判断④.【详解】解:∵AB=AC,∠BAC=90°∴∠ABC=∠ACB=45°∴∠ACE=180°-∠ACB=135°∵FB⊥BC∴∠FBE=90°∴∠ABF=∠ABC+∠FBE=135°∴∠ABF=∠ACE∵FA⊥AE∴∠FAE=90°=∠BAC∴∠FAE-∠FAC=∠BAC-∠FAC即∠CAE=∠BAF在△ABF和△ACE中,∠ACE=∠ABF AC=AB∠CAE=∠BAF∴△ACE≌△ABF ASA∴FA=EA,故①正确;连接DF,如图:∵△ACE≌△ABF∴BF=CE在Rt△BDF中,BD2+BF2=DF2∴BD2+CE2=DF2∵BD2+CE2=DE2∴DE=DF∵AE=AF,AD=AD∴△ADE≌△ADF SSS∴∠DAE=∠DAF∴∠DAE=12∠EAF=45°,故②正确;延长AD交EF于H,如图:∵AE=AF,∠EAD=∠FAD∴AH⊥EF,HE=HF=12EF∴S△ADE=12AD⋅EH=12AD⋅12EF=14AD⋅EF,故③正确;在Rt△EBF中,BE2+BF2=EF2∵CE=BF∴BE2+CE2=EF2∵AE=AF,∠FAE=90°∴EF2=AE2+AF2=2AE2∴BE2+CE2=2AE2,故④正确,综上所述,正确的有①②③④,故选:A.【点睛】本题考查了全等三角形的判定与性质、勾股定理、等腰直角三角形性质等知识,解题的关键是灵活运用所学知识.2如图所示,△ABC中,AC=BC,M、N分别为BC、AC上动点,且BM=CN,连AM、CN,当AM +BN最小时,CMCN=( ).A.2B.32C.54D.1【答案】D 【分析】过B 点在BC 下方作BH ∥AC ,且BH =AC ,链接BH ,AH ,先证明△BCN ≌△HBM ,即有BN =HM ,则AM +BN =AM +MH ,当A 、M 、H 三点共线时,AM +MH 值最小,再证明△ACM ≌△HBM ,问题随之得解.【详解】如图,过B 点在BC 下方作BH ∥AC ,且BH =AC ,链接BH ,AH ,∵BH ∥AC ,∴∠C =∠CBH ,∵BH =AC ,BM =CN ,∴△BCN ≌△HBM ,∴BN =HM ,∴AM +BN =AM +MH ,当A 、M 、H 三点共线时,AM +MH 值最小,如图,此时∵BH ∥AC ,∴∠C =∠CBH ,∠CAM =∠BHM ,∵AC =BC ,∴△ACM ≌△HBM ,∴CM =BM ,∵BM =CN ,∴CM CN=CM BM =1,故选:D .【点睛】本题主要考查了全等三角形的判定与性质,作出辅助线,构造全等三角形是解答本题的关键.3如图,正五边形ABCDE 中,点F 是边CD 的中点,AF ,BC 的延长线交于点N ,点P 是AN 上一个动点,点M 是BN 上一个动点,当PB +PM 的值最小时,∠BPN =()A.72°B.90°C.108°D.120°【答案】C【分析】本题考查了正多边形的定义,全等三角形的判定与性质等知识.连接BF ,EF ,PE ,EM ,根据全等三角形的判定与性质可得EP =BP ,则当E 、P 、M 三点共线,且EM ⊥BC 时,PB +PM 的值最小,过点E 作EH ⊥BC 于H ,交AF 于P ,分别求出∠BAP 和∠ABP 的度数,然后利用三角形外角的性质求解即可.【详解】解:连接BF ,EF ,PE ,EM ,∵正五边形ABCDE ,∴AE =AB =BC =ED ,∠BAE =∠AED =∠BCD =∠EDC =5-2 ×180°5=108°,∵点F 是边CD 的中点,∴CF =DF ,∴△BCF ≌△EDF SAS ,∴BF =EF ,又AE =AB ,AF =AF ,∴△AEF ≌△ABF SSS ,∴∠EAF =∠BAF =12∠BAE =54°,∴△AEP ≌△ABP SAS∴EP =BP ,∴PB +PM =EP +PM ≥EM ,∴当E 、P 、M 三点共线,且EM ⊥BC 时,PB +PM 的值最小,过点E 作EH ⊥BC 于H ,交AF 于P ,同理可求∠ABP =∠AEP =12∠AED =54°,∴∠BP N =∠BAP +∠ABP =108°,即当PB +PM 的值最小时,∠BPN =108°.故选:C .4如图,在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,给出下列结论:①AB =MG ;②S △ABC =S △AFN ;③过点B 作BI ⊥EH 于点I ,延长B 交AC 于点J ,则AJ =CJ .④若AB =1,则EH 2+FN 2=5.其中正确的结论个数是()A.1个B.2个C.3个D.4个【答案】D 【分析】本题考查勾股定理,全等三角形的性质和判定,解题的关键是正确作出辅助线.首先根据题意证明出△ACB ≌△MCG SAS ,进而得到AB =MG ,即可判断①;过点F 作FO ⊥NA 交NA 延长线于点O ,证明出△AFO ≌△ABC AAS ,得到OF =BC ,然后利用三角形面积公式即可得到S △ABC =S △AFN ,即可判断②;过点A 作AP ⊥BJ 交BJ 的延长线于点P ,过点C 作CQ ⊥BJ ,证明出△ABP ≌△BEI AAS ,得到AP =BI ,同理得到CQ =BI ,得到CQ =AP ,然后证明出△AJP ≌△CJQ AAS ,得到AJ =CJ ,即可判断③;根据全等三角形的性质得到EH =2BJ ,然后利用勾股定理证明出EH 2=AC 2+4BC 2,同理得到NF 2=4AC 2+BC 2,然后得到EH 2+NF 2=5AB 2=5,即可判断④.【详解】∵在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,∴AC =MC ,BC =GC ,∠MCA =∠GCB =90°∵∠ACB =90°∴∠MCG =∠ACB =90°∴△ACB ≌△MCG SAS∴AB =MG ,故①正确;如图所示,过点F 作FO ⊥NA 交NA 延长线于点O ,∵∠FAO +∠BAO =∠CAB +∠BAO =90°∴∠FAO =∠CAB又∵∠O =∠ACB =90°,AF =AB∴△AFO ≌△ABC AAS∴OF =BC∵AN =AC∵S △ANB =12AN ⋅OF ,S △ACB =12AC ⋅BC ∴S △ABC =S △AFN ,故②正确;如图所示,过点A 作AP ⊥BJ 交BJ 的延长线于点P ,过点C 作CQ ⊥BJ∵∠ABP +∠BEI =90°,∠EBI +∠BEI =90°∴∠ABP =∠BEI又∵∠P =∠BIE =90°,AB =BE∴△ABP ≌△BEI AAS∴AP =BI同理可证,△BCQ ≌△HBI AAS ∴CQ =BI∴CQ =AP∵∠P=∠CQJ=90°,∠AJP=∠CJQ∴△AJP≌△CJQ AAS∴AJ=CJ,故③正确;∵△ABP≌△BEI AAS∴BP=EI∵△BCQ≌△HBI AAS∴BQ=HI∵△AJP≌△CJQ AAS∴PJ=QJ∵EH=EI+HI=PB+BQ=PJ+QJ+BQ+BQ=2BJ ∵AJ=CJ∴BJ2=CJ2+BC2=14AC2+BC2∴EH2=2BJ2=4BJ2=414AC2+BC2=AC2+4BC2同理可证,NF2=4AC2+BC2∴EH2+NF2=AC2+4BC2+4AC2+BC2=5AC2+BC2=5AB2=5×12=5,故④正确.综上所述,正确的结论个数是4.故选:D.5如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E=∠F=90 °,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE= CF;④△ACN≅△ABM.其中正确的结论是()A.①③④B.①②③④C.①②③D.①②④【答案】A【分析】本题考查了两个全等三角形的判定及性质,根据已知条件判定两个三角形全等,可得到对应边及对应角相等,据此可判断①③,再结合条件证明两个三角形全等,可得到④,即可求得结果,灵活运用两个全等三角形的条件及性质是解题的关键.【详解】解:∵∠EAC=∠FAB,∴∠EAB=∠FAC,在△EAB 和△FAC 中,∠E =∠F =90 °AE =AF ∠EAB =∠FAC,∴△EAB ≌△FAC ASA ,∴∠B =∠C ,BE =CF ,AB =AC ,∴①③都正确,在△ACN 和△ABM 中,∠B =∠CAB =AC ∠CAN =∠BAM,∴△ACN ≌△ABM ASA ,故④正确,根据已知条件无法证明②是否正确,故①③④正确,故选:A .二、填空题6如图,在△ABC 中,AH 是高,AE ⎳BC ,AB =AE ,在AB 边上取点D ,连接DE ,DE =AC ,若S △ABC =5S △ADE ,BH =1,则BC =.【答案】2.5【分析】过点E 作EF ⊥AB ,交BA 的延长线于点F ,先分别证明△ABH ≌△EAF ,Rt △ACH ≌Rt △EDF ,由此可得S △ABH =S △EAF ,S △ACH =S △EDF =S △EAF +S △ADE ,再结合S △ABC =S △ABH +S △ACH =5S △ADE 可得S △ACH S △ABH =32,由此可得CH BH=32,进而即可求得答案.【详解】解:如图,过点E 作EF ⊥AB ,交BA 的延长线于点F ,∵EF ⊥AB ,AH ⊥BC ,∴∠EFA =∠AHB =∠AHC =90°,∵AE⎳BC ,∴∠EAF =∠B ,在△ABH 与△EAF 中,∠AHB =∠EFA∠B =∠EAFAB =EA∴△ABH ≌△EAF (AAS ),∴AH =EF ,S △ABH =S △EAF ,在Rt△ACH与Rt△EDF中,AH=EF AC=DE∴Rt△ACH≌Rt△EDF(HL),∴S△ACH=S△EDF=S△EAF+S△ADE,∵S△ABC=S△ABH+S△ACH=5S△ADE,∴S△ABH+S△EAF+S△ADE=5S△ADE,∴2S△ABH+S△ADE=5S△ADE,解得:S△ABH=2S△ADE,∴S△ACH=5S△ADE-S△ABH=3S△ADE,∴S△ACHS△ABH=3S△ADE2S△ADE=32,∴12CH⋅AH12BH⋅AH=32,即CHBH=32,又∵BH=1,∴CH=1.5,∴BC=BH+CH=2.5,故答案为:2.5.【点睛】本题考查了全等三角形的判定与性质以及三角形的面积公式,作出正确的辅助线并能灵活运用全等三角形的判定与性质是解决本题的关键.7如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是.【答案】3【分析】过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG,同理Rt△ADF≌Rt△ABH,得S四边形DGBA=6,进而得到FG的长.【详解】解:过点A作AH⊥BC于H,如图所示:在△ABC 和△ADE 中,BC =DE∠C =∠E CA =EA,∴△ABC ≌△AED SAS∴AD =AB ,S △ABC =S △AED ,又∵AF ⊥DE ,∴12×DE ×AF =12×BC ×AH ,∴AF =AH ,∵AF ⊥DE ,AH ⊥BC ,∴∠AFG =∠AHG =90°,在Rt △AFG 和Rt △AHG 中,AG =AG AF =AH ,∴Rt △AFG ≌Rt △AHG HL ,同理:Rt △ADF ≌Rt △ABH HL ,∴S 四边形DGBA =S 四边形AFGH =12,∵Rt △AFG ≌Rt △AHG ,∴S Rt △AFG =6,∵AF =4,∴12×FG ×4=6,解得:FG =3;故答案为:3.【点睛】本题考查了全等三角形的判定与性质以及三角形面积等知识,解决问题的关键是作辅助线构造全等三角形,解题时注意:全等三角形的面积相等.8如图,动点C 与线段AB 构成△ABC ,其边长满足AB =9,CA=2a +2,CB =2a -3.点D 在∠ACB 的平分线上,且∠ADC =90°,则a 的取值范围是,△ABD 的面积的最大值为.【答案】a >52454【分析】在△ABC 中,由三角形三边关系“在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边”可知AC +BC >AB ,代入数值即可确定a 的取值范围;延长AD 、CB交于点E ,首先利用“ASA ”证明△ACD ≌△ECD ,由全等三角形的性质可得AC =EC =2a +2,AD =ED ,进而可求得BE =5,结合三角形中线的性质易知S △ABD :S △ABE =1:2,确定△ABE 面积的最大值,即可获得答案.【详解】解:∵在△ABC 中,AC +BC >AB ,∴2a +2+2a -3>9,解得a >52;如下图,延长AD 、CB 交于点E ,∵CD 为∠ACB 的平分线,∴∠ACD =∠ECD ,在△ACD 和△ECD 中,∠ACD =∠ECDCD =CD ∠ADC =∠EDC =90°,∴△ACD ≌△ECD (ASA ),∴AC =EC =2a +2,AD =ED ,∵CB =2a -3,∴BE =2a +2-(2a -3)=5,∵AD =ED ,∴S △ABD :S △ABE =1:2,当BE ⊥AB 时,△ABE 的面积取最大值,即S △ABE max =12×9×5=452,∴S △ABD max =454.故答案为:a >52,454.【点睛】本题主要考查了三角形三边关系、解一元一次不等式、角平分线、全等三角形的判定与性质、三角形中线的性质等知识,熟练掌握相关知识,正确作出辅助线是解题关键.9如图,AB =AC ,AD=AE ,∠BAC =∠DAE =40°,BD 与CE 交于点F ,连接AF ,则∠AFB 的度数为.【答案】70°/70度【分析】本题考查了全等三角形的判定与性质,三角形内角和定理,构造全等三角形是解答本题的关键.过点A作AM⊥BD于点M,AN⊥CE于点N,根据手拉手模型证明△BAD≌△CAE,得到∠ADM=∠AEN,然后证明△AMD≌△ANE,得到∠DAM=∠EAN,AM=AN,进一步推得∠MAN=∠DAE= 40°,再证明△AMF≌△ANF,可得∠FAM=20°,最后根据三角形内角和定理即得答案.【详解】过点A作AM⊥BD于点M,AN⊥CE于点N,∵∠BAC=∠DAE=40°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE SAS,∴∠ADM=∠AEN,∵∠AMD=∠ANE=90°,AD=AE,∴△AMD≌△ANE AAS,∴∠DAM=∠EAN,AM=AN,∴∠DAM+∠DAN=∠EAN+∠DAN,即∠MAN=∠DAE=40°,∵∠AMF=∠ANF=90°,AM=AN,AF=AF,∴△AMF≌△ANF HL,∴∠FAM=∠FAN=1∠MAN=20°,2∴∠AFB=180°-90°-∠FAM=70°.故答案为:70°.10如图所示,已知△ABC,∠BAC=90°,AB=AC,点D和点E分别是AB和AC边上的动点,满足AD=CE,连接DE,点F是DE的中点,则CDAF的最大值为.【答案】5+1/1+5【分析】作EM⊥ED,且EM=ED,连DM,MC,取ME中点N,连ND、NC、NF,可根据“SAS”证明△ADE≌△CEM,可得∠ECM=90°,再设AF=1,并表示DE,EM,及CN,然后根据勾股定理求出DN,最后根据三角形的三边关系ND+NC≥DC,求出CD最大值,可得答案.【详解】解:过E作EM⊥ED,且EM=ED,连DM,MC.取ME中点N,连ND、NC、NF.∵∠ADE+∠AED=90°,∠AED+∠MEC=90°,∴∠ADE=∠MEC.∵AD=CE,DE=EM,∴△ADE≌△CEM,∴∠ECM=∠DAE=90°.设AF=1,∵F为DE中点,∴DE=2AF=2,∴EM=2.∵N为EM中点,∴CN=EN=1.∴DN=DE2+EN2= 5.∵ND+NC≥DC,∴CD最大值5+1,=5+1.∴CDAF故答案为:5+1.【点睛】本题主要考查了全等三角形的性质和判定,勾股定理,根据三角形的三边关系求最大值,作出辅助线是解题的关键.三、解答题11数学兴趣小组在活动时,老师提出了这样,一个问题:如图1:在△ABC中,AB=3,AC=5,D是BC的中点,求BC边上的中线AD的取值范围.【问题初探】:第一小组经过合作交流,得到如下解决方法:如图2延长AD至E.使得DE=AD,连接BE.利用三角形全等将线段AC转移到线段BE,这样就把线段AB,AC,2AD集中到△ABE中.利用三角形三边的关系即可得到中线AD的取值范围,第二小组经过合作交流,得到另一种解决方法:如图3过点B作AC的平行线交AD的延长线于点F,利用三角形全等将线段AC转移到BF,同样就把线段AB,AC,2AD集中到△ABF中,利用三角形三边的关系即可得到中线AD的取值范围.(1)请你选择一个小组的解题思路.写出证明过程【方法感悟】当条件中出现“中点”“中线”等条件时,可考虑将中线延长一倍或者作一条边的平行线.构造出“平行八字型”全等三角形;这样就把分散的已知条件和所证的结论集中到一个三角形中,顺利解决问题【类比分析】(2)如图4:在△ABC中,∠B=90°,AB=6,AD是△ABC的中线,CE⊥BC,CE=10且∠ADE=90°.求AE的长度.【思维拓展】(3)如图5:在△ABC中,AF⊥BC于点F在AB右侧作AD⊥AB,且AD=AB,在AC的左侧作AE⊥AC,且AE=AC,连接DE,延长AF交DE于点O,证明O为DE中点.【答案】(1)见解析(2)16(3)见解析【分析】(1)选择第一个小组的解题思路:延长AD到点E,使DE=AD,证明△ADC≌△EDB(SAS),得到BE=AC=10,再根据在△ABE中,5-3<AE<5+3,即2<2AD<8,求解即可;选择第二个小组的解题思路:过点B作AC的平行线交AD的延长线于点F,先证明△BDF≌△CDA (AAS),得到DF=AD,BF=AC=5,则2AD=AF,再根据在△ABF中,5-3<AF<5+3,即2<2AD<8,求解即可;(2)延长AD到点F,使DF=AD,连接CF,先证明△ABD≌△FCD SAS,得到∠FCD=∠ABD=90°,CF=AB=6,再证明E、C、F三点共线,得到EF=EC+CF=10+6=16,然后证明△ADE≌△FDE SAS,得到AE=EF=16解决问题;(3)过点E作EM∥AD交AD延长线于M,先证明△AEM≌△CAB AAS,得到EM=AB,再证明△AOD≌△MOE AAS,得到OD=OE,即可得出结论.【详解】解:(1)选择第一个小组的解题思路:如图2,延长AD到点E,使DE=AD,∵D是BC的中点,∴BD=CD,∵∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=10,△ABE中,5-3<AE<5+3,∴2<2AD<8,∴1<AD<4;选择第二个小组的解题思路:如图3,过点B作AC的平行线交AD的延长线于点F,∵D是BC的中点,∴BD=CD,∵BF∥AC,∴∠FBD=∠C,∠F=∠CAD,∴△BDF≌△CDA(AAS),∴DF=AD,BF=AC=5,∴2AD=AF,在△ABF中,5-3<AF<5+3,∴2<2AD<8,(2)延长AD到点F,使DF=AD,连接CF,如图4,∵D是BC的中点,∴BD=CD,∵∠ADB=∠FDC,DF=AD,∴△ABD≌△FCD SAS,∴∠FCD=∠ABD=90°,CF=AB=6,∵CE⊥BC,∴∠BCD=90°,∴∠FCD+∠ECD=180°,∴E、C、F三点共线,∴EF=EC+CF=10+6=16,∵∠ADE=90°,∴∠FDE=∠ADE=90°,∵DE=DE,AD=DF,∴△ADE≌△FDE SAS,∴AE=EF=16;(3)证明:过点E作EM∥AD交AD延长线于M,如图4,∵AD⊥AB,AE⊥AC,∴∠3+∠2+∠CAD=∠3+∠2+∠BAE=90°,∴∠CAD=∠BAE,又∵AF⊥BC,∴∠3+∠2+∠CAD=∠3+∠BAE+∠B=90°,∴∠2=∠B,∵EM∥AD,∴∠2=∠M,∴∠B=∠M,∵AE⊥AC,AF⊥BC,∴∠3+∠CAM=∠C+∠CAM=90°,∴∠3=∠C,∵AE=AC,∴△AEM≌△CAB AAS,∵AB =AD ,∴EM =AD ,∵∠2=∠M ,∠AOD =∠EOM ,∴△AOD ≌△MOE AAS ,∴OD =OE ,∴O 为DE 中点.【点睛】本题考查三角形三边的关系,全等三角形的判定与性质,余角的性质,平行线的性质,熟练掌握倍长中线,构造出“平行八字型”全等三角形是解题的关键.12已知,在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,∠ABC =∠ACB =45°,点D 是线段BC 上一点,点D 不与点B ,点C 重合,连接AD ,以AD 为一边作△ADE ,AD =AE ,∠DAE =90°,且点E 与点D 在直线AC 两侧,DE 与AC 交于点H ,连接CE .(1)如图1,求证:△ABD ≌△ACE .(2)如图2,在CE 的延长线上取一点F ,当∠AEF =∠AFE 时,求证:CD =CF .(3)过点A 作直线CE 的垂线,垂足为G ,当CD =6EG 时,直接写出△CDH 与△CEH 的面积比.【答案】(1)见详解(2)见详解(3)32或34【分析】本题主要考查了全等三角形的判定与性质,涉及SAS 、AAS 以及HL 等判定方法,(1)利用“SAS ”证明△ABD ≌△ACE 即可作答;(2)结合(1)的结论,再利用“AAS ”证明△ACD ≌△ACF 即可作答;(3)分类讨论,第一种情况:点G 在点E 的下方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,先证明△AOC ≌△AGC ,即有AO =AG ,CO =CG ,同理可证明:MH =NH ,再证明Rt △AOD ≌Rt △AGE HL ,可得OD =GE ,问题即可作答;第二种情况:点G 在点E 的上方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,按照第一种情况作答即可.【详解】(1)∵∠DAE =90°,∠BAC =90°,∴∠DAE -∠DAH =∠BAC -∠DAH ,∴∠CAE =∠BAD ,又∵AB =AC ,AD =AE ,∴△ABD ≌△ACE SAS ;(2)∵△ABD ≌△ACE SAS ,∴∠ADB =∠AEC ,∠ABD =∠ACE =45°,∴180°-∠ADB =180°-∠AEC ,∠ACB =∠ACE =45°,∴∠ADC =∠AEF ,∵∠AEF =∠AFE ,∴∠ADC =∠AFE ,在△ACD 和△ACF 中,∴∠ACD =∠ACF∠ADC =∠AFC AC =AC,∴△ACD ≌△ACF AAS ,∴CD =CF ;(3)分类讨论:第一种情况:点G 在点E 的下方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,如图,∵AO ⊥BC ,AG ⊥CE∴∠AOC =∠AGC =90°,又∵∠ACB =∠ACE =45°,AC =AC ,∴△AOC ≌△AGC ,∴AO =AG ,CO =CG ,同理可证明:MH =NH ,又∵AD =AE ,∴Rt △AOD ≌Rt △AGE HL ,∴OD =GE ,∵CD =6EG ,∴CO =CD -OD =5EG ,∴CG =CO =5EG ,∴CE =CG -EG =4EG ,∵S △CHD =12×CD ×MH ,S△CHE =12×CE ×NH ,MH =NH ,∴S △CHD S △CHE =12×CD ×MH 12×CE ×NH =CD ×MH CE ×NH ,∵CD =6EG ,CE =4EG ,MH =NH ,∴S △CHD S △CHE =CD ×MH CE ×NH=32;第二种情况:点G 在点E 的上方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,如图,同理可得:OD =GE ,OC =CG ,MH =NH ,∵CD =6EG ,∴CO =CD +OD =7EG ,∴CG =CO =7EG ,∴CE =CG +EG =8EG ,∴S △CHD S △CHE =CD ×MH CE ×NH=34;综上:△CDH 与△CEH 的面积比为32或者34.13如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在x 轴上,A 、C 两点的坐标分别为A (0,m ),C (n ,0),B (-5,0),且m ,n 满足方程组m +2n =103m -n =9 ,点P 从点B 出发,以每秒2个单位长度的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A 、C 两点的坐标;(2)连接P A ,用含t 的代数式表示△AOP 的面积,并直接写出t 的取值范围;(3)当点P 在线段BO 上运动时,在y 轴上是否存在点Q ,使△POQ 与△AOC 全等?若存在,请求出t 的值并直接写出Q 点标;若不存在,请说明理由.【答案】(1)A (0,4),C (3,0);(2)0≤t <52,S △AOP =10-4t ;t >52,S △AOP =4t -10.(3)存在,Q (0,3)或(0,-3)或Q (0,4)或(0,-4).【分析】本题考查了全等三角形的性质和判定,二元一次方程组的解法,坐标与图形性质等知识点的综合运用,关键是利用分类讨论求出符合条件的所有情况.(1)解二元一次方程组求出m ,n 的值即可;(2)分为两种情况:当0≤t <52时,P 在线段OB 上,②当t >52时,P 在射线OC 上,求出OP 和OA ,根据三角形的面积公式求出即可;(3)分为四种情况:①当BP =1,OQ =3时,②当BP =2,OQ =4时,③④利用图形的对称性直接写出其余的点的坐标即可.【详解】(1)解方程组m +2n =103m -n =9 得m =4n =3 ,∴ A 的坐标是0,4 ,C 的坐标是3,0 ;(2)由已知,BP =2t ,OB =5.①0≤t <52,P 在线段OB 上.OP =OB -BP =5-2tS △AOP =12×OP ×OA 2=12×(5-2t )×4=10-4t .②t >52,P 在射线OC 上,OP =BP -OP =2t -5S △AOP =12×OA ×OP =12×4×(2t -5)=4t -10(3)在y 轴上存在点Q ,使△AOC 与△POQ 全等.①△POQ ≌△AOC 时,OQ =OC =3.OP =OA =4.t =5-42=12,Q (0,3)或Q (0,-3)②△POQ ≌△COA 时,OQ =OA =4,OP =OC =3.t =5-32=1 Q (0,4)或(0,-4)t =12,Q (0,3)或(0,-3);t =1,Q (0,4)或(0,-4);综上所述,t =12,Q (0,3)或(0,-3);t =1,Q (0,4)或(0,-4).14某校课后延时兴趣小组尝试用尺规来“作一条线段的三等分点”,请认真阅读下面的操作过程并完成相应的学习任务.如图1,①分别以点A ,B 为圆心,大于12AB 的长为半径在AB 两侧画弧,四段弧分别交于点C ,点D ;②连接AC ,BC ,AD ,作射线BD ;③以D 为圆心,BD 的长为半径画弧,交射线BD 于点E ;④连接CE ,交于AB 点F .点F 即为AB 的一个三等分点(即AF =13AB ).学习任务:(1)填空:四边形ADBC的形状是,你的依据是;(2)证明:AF=13AB;(3)如图2,若CE交AD于点H,∠CAD=60°,AC=6,将CH绕着点C旋转,当点H的对应点H 落在直线FD上时,求DH 的长.【答案】(1)菱形;四条边相等的四边形为菱形(2)见解析(3)DH′的长为33+32或33-32【分析】本题考查了菱形的判定与性质、相似三角形的判定与性质、等边三角形的判定与性质、全等三角形的判定与性质、勾股定理,善于利用特殊叫以及直角三角形中的关系是解题的关键.(1)根据菱形的性质判定即可.(2)证明△AFC∽△BFE,得出AFFB =ACBE,再根据线段关系即可求出.(3)利用菱形及已知条件推出相关信息,证明△ACD为等边三角形,再根据AAS证明△AHC≌△DHE,求得CH ;然后证明△AKF∽△BDF,根据相似三角形的性质得出AK、CK;最后用勾股定理解三角形即可.CH绕着点C旋转,点H的对应点H 需要分情况讨论.【详解】(1)解:由图的作法可知:AC=AD=BC=BD,∴四边形ADBC的形状是菱形,依据是:四条边相等的四边形为菱形.故答案为:菱形;四条边相等的四边形为菱形;(2)证明:∵四边形ADBC的形状是菱形,∴AC∥BE,∴△AFC∽△BFE,∴AF FB =ACBE.∵AC=BD,BD=DE,∴BE=2AC,∴AF FB =12,∴FB=2AF,∴AB=3AF.∴AF=13AB.(3)解:①当点H 在线段FD上时,连接CD,如图,∵AC=AD,∠CAD=60°,∴△ACD为等边三角形,∴CD=AD=6,∠ADC=60°.∵AC∥BE∴∠ACF =∠DEC .在△AHC 和△DHE 中,∠AHC =∠DHE∠ACE =∠DEC AC =DE,∴△AHC ≌△DHE AAS ,∴AH =HD =3,∵△ACD 为等边三角形,∴CH ⊥AD ,∠ACH =∠DCH =30°,∴CH =33.∴CH =CH =33.设FD 与AC 交于点K ,∵AC ∥BE ,∴△AKF ∽△BDF ,∴AK BD =AF FB=12.同理:CK ED =AF FB=12,∴AK BD =CK ED.∵BD =ED ,∴AK =CK =3,∴HK ⊥AC ,∠CDK =12∠ADC =30°.∴H K =CH 2-CK 2=32,DK =33.∴DH =DK -H K =33-32.②当点H 在射线FD 上时,连接CD ,如图,由①知CH =CH =33,HK ⊥AC ,AK =KC =3,∴DK =AD 2-AK 2=33,∴H K =CH 2-CK 2=32.∴DH =H K +DK =33+32.综上,DH 的长为33+32或33-32.15(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .证明:DE =BD +CE .(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线l 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC 的边AB 、AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高,延长HA 交EG 于点I ,求证:I 是EG 的中点.【答案】(1)见解析;(2)DE =BD +CE ,见解析;(3)见解析【分析】本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD =AE 、CE =AD 是解题的关键.(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【详解】解:(1)如图1,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,∠ABD =∠CAE∠BDA =∠CEA AB =AC,∴△ABD ≌△CAE AAS ,∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(2)成立,理由如下:如图,证明如下:∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ABD 和△CAE 中.∠BDA =∠AEC∠DBA =∠CAE AB =AC.∴△ABD ≌△CAE AAS∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N .∴∠EMI =∠EMA =∠GNA =90°,∠BAE =90°,∴∠EAM +BAH =90°,∵AH 是BC 边上的高,∴∠AHB =90°,∴∠BAH +∠ABH =90°,∴∠ABH =EAM ,∵AE =AB ,∴△ABH ≌△EAM ,∴EM =AH ,同理△ACH ≌△GAN ,∴AH =GN ,∴EM =GN ,在△EMI 和△GNI 中,∠EIM =∠GIN∠EMI =∠GNI EM =GN,∴△EMI ≌△GNI AAS ,∴EI =GI ,∴I 是EG 的中点.16如图,在△ABC 中,BC =5,高AD 、BE 相交于点O ,BD =2,且AE =BE.(1)请说明△AOE ≌△BCE 的理由;(2)动点P 从点O 出发,沿线段OA 以每秒1个单位长度的速度向终点A 运动,动点Q 从点B 出发沿射线BC 以每秒4个单位长度的速度运动,P 、Q 两点同时出发,当点P 到达A 点时,P 、Q 两点同时停止运动.设点P 的运动时间为t 秒,求当t 为何值时,△AOQ 的面积为3.(3)在(2)的条件下,点F 是直线AC 上的一点且CF =BO .当t 为何值时,以点B 、O 、P 为顶点的三角形与以点F 、C 、Q 为顶点的三角形全等?(请直接写出符合条件的t 值).【答案】(1)见解析(2)当t 为15或45时,△AOQ 的面积为3(3)t =1或53s 时,△BOP 与△FCQ 全等【分析】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,(1)首先推导出∠EAO =∠EBC ,通过ASA 即可证明△AOE ≌△BCE ;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD =2-4t ,②当点Q 在射线DC 上时,DQ =4t -2时;依据三角形面积计算公式解答即可;(3)分两种情形求解即可①如图2中,当OP =CQ 时,BOP ≌△FCQ .②如图3中,当OP =CQ 时,△BOP ≌△FCQ .【详解】(1)如图1中,∵AD 是高,∴∠ADC =90°,∵BE 是高,∴∠AEB =∠BEC =90°,∴∠EAO +∠ACD =90°,∠EBC +∠ECB =90°,∴∠EAO =∠EBC ,在△AOE 和△BCE 中,∠EAO =∠EBCAE =BE ∠AEO=∠BEC,∴△AOE ≌△BCE ASA ,(2)解:由(1)知△AOE ≌△BCE ,∴OA =BC =5,∵BD =2,∴CD =3,由题意OP =t ,BQ =4t ,①当点Q 在线段BD 上时,QD =2-4t ,∴S △AOQ =12OA ⋅QD =12×5×2-4t =3,解得:t =15;②当点Q 在BD 延长线上时,DQ =4t -2,∴S △AOQ =12OA ⋅DQ =12×5×4t -2 =3,解得:t =45,综上,当t 为15或45时,△AOQ 的面积为3;(3)存在.①如图2中,当OP =CQ 时,∵OB =CF ,∠POB =∠FCQ ,∴△BOP ≌△FCQ .∴CQ =OP ,∴5-4t =t ,解得t =1,②如图3中,当OP =CQ 时,∵OB =CF ,∠POB =∠FCQ ,∴△BOP ≌△FCQ .∴CQ =OP ,∴4t -5=t ,解得t =53.综上所述,t =1或53s 时,△BOP 与△FCQ 全等.17如图1,在△ABC 中,BD 为AC 边上的高,BF 是∠ABD 的角平分线,点E 为AF 上一点,连接AE ,∠AEF =45°.(1)求证:AE平分∠BAF(2)如图2,连接CE交BD于点G,若△BAE与△CAE的面积相等,求证:BG=CF【答案】(1)见解析;(2)见解析【分析】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.(1)根据BF是∠ABD的角平分线和,BD为AC边上的高,可得12∠BAD=45°-12∠ABD,由∠AEF=45°得∠BAE=45°-∠ABE=45°-12∠ABD,即可证明∠BAE=12∠BAD;(2)过点E作EM⊥AB于点M,EN⊥AC于点N,由角平分线性质可以得EM=EN,由△BAE与△CAE的面积相等可得AB=AC,证明△ABE≌△ACE(SAS),得出∠AEB=∠CEB=135°,BE=EC,即可得出∠BEG=∠CEF=360°-∠AEB-∠AEC=90°,再根据垂直模型证明△BEG≌△CEF(ASA),即可得出结论.【详解】(1)证明:∵BD为AC边上的高,即∠ADB=90°,∴∠ABD+∠BAD=90°,∴12(∠ABD+∠BAD)=45°,∴1 2∠BAD=45°-12∠ABD∵∠AEF=∠ABF+∠BAE=45°,∴∠BAE=45°-∠ABF,∵∠ABF=12∠ABD,∴∠BAE=45°-12∠ABD,∴∠BAE=12∠BAF,即:AE平分∠BAF.(2)过点E作EM⊥AB于点M,EN⊥AC于点N,∵AE平分∠BAC,且EM⊥AB,EN⊥AC,∴EM=EN.∵S△ABE=S△ACE,∴AB=AC,∵AE平分∠BAC,∴∠BAE=∠CAE,在△ABE和△ACE中,AB=BC∠BAE=∠CAE AE=AE∴△ABE≌△ACE(SAS),∴∠AEB=∠CEB,BE=EC,∵∠AEF=45°,∴∠AEB=∠AEC=135°,∴∠BEG=∠CEF=360°-∠AEB-∠AEC=90°,∵BD为AC边上的高,∴∠ADB=90°,∴∠FBD+∠BFC=∠BFC+∠FCE,∴∠EBG=∠ECF.在△BEG和△CEF中,∠BEG=∠CEF BE=CE∠EBG=∠ECF∴△BEG≌△CEF(ASA).∴BG=CF .18如图,已知A a,0,B0,b,AB=AC且AB⊥AC,AC交y轴于E点.(1)如图1,若a2+b2-4a-8b+20=0,求C点坐标;(2)如图2,A,B两点分别在x轴,y轴正半轴上,E为AC的中点,BC交x轴于G点,连EG,若a=3,求G点的坐标;(3)如图3,A在x轴的负半轴上,以BC为边在BC的右侧作等边△BCD,连OD,当∠BOD=60°时,请探究线段OA、OB、OD之间的数量关系,并证明.【答案】(1)(-2,-2)(2)(-2,0)(3)OD=OB+2OA【分析】(1)利用完全平方公式将等式变形为两个数平方和的形式,即可求出a=2,b=4,如图1中,过点C作CH ⊥x轴于点H,证明△AHC≌△BOA,可得CH=OA=2,AH=OB=4,即可得到点C坐标.(2)根据(1)可得CH=OA=a,AH=OB=b,再由a=3,E为AC的中点,可得点C(-3,-3),AH=OB=6,再利用面积法求出AG =5,即可解题;(3)过点C 作CH ⊥x 轴于点H ,在OD 上取一点M ,使得OM =OB ,证明△OBM 是等边三角形,进而证明△MBD ≌△OBC ,得∠BMD =∠BOC =120°,MD =OC ,再证明∠COH =30°,得OC =2CH =2OA ,即可得出OD =OB +2OA .【详解】(1)解:∵a 2+b 2-4a -8b +20=0,∴(a 2-4a +4)+(b 2-8b +16)=0,即(a -2)2+(b -4)2=0,∴a =2,b =4,∴A 2,0 ,B 0,4如图1中,过点C 作CH ⊥x 轴于点H ,∵∠AHC =∠BOA =∠BAC =90°,∴∠CAH +∠BAO =90°,∠BAO +∠ABO =90°,∴∠CAH =∠ABO ,在△AHC 和△BOA 中,∠AHC =∠BOA∠CAH =∠ABO AC =BA,∴△AHC ≌△BOA (AAS ),∴CH =OA =2,AH =OB =4,∴OH =AH -OA =4-2=2∴点C 坐标为(-2,-2);(2)如图2,同理(1)可证明:CH =OA =a ,AH =OB =b ,∵a =3,E 为AC 的中点,OE 平行于CH ,∴OA =OH =3,CH =3,∴点C (-3,-3),AH =OB =6,AB =AC =OA 2+OB 2=62+32=35,∵S △ABC =S △AGC +S △AGB ,即12×35×35=12×3⋅AG +12×6⋅AG ,∴AG =5,∴GO =AG -OA =5-3=2,∴点G 坐标为(-2,0);(3)结论:OD =OB +2OA ,如图3,过点C 作CH⊥x轴于点H ,同理可得:CH =OA ,AH =OB ,在OD 上取一点M ,使得OM =OB ,∵OM =OB ,∠BOD =60°,∴△OBM 是等边三角形,∴BO =BM ,∠OMB =60°,∴∠BMD =120°,∵△BCD 是等边三角形,∴BC =BD ,∠CBD =∠OBM =60°,∴∠DBM =∠CBO ,在△MBD 和△OBC 中,BM =OB∠DBM =∠CBO BD =BC,∴△MBD ≌△OBC (SAS ),∴∠BMD =∠BOC =120°,MD =OC ,∴∠COH =120°-90°=30°,∵CH ⊥x 轴,∴OC =2CH =2OA ,∵OD =OM +MD ,∴OD =OB +OC =OB +2OA【点睛】本题考查了等腰直角三角形的性质,等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.19已知△ABC 为等边三角形,D 是边AC 上的一点,连接BD ,E 为BD 上的一点,连接CE.(1)如图1,延长CE 交AB 于点G .若∠DCG =15°,BG =2,求BC 的长;(2)如图2,将△BEC 绕点B 逆时针旋转60°至△BFA ,延长CB 至点M ,使得BM =DC ,连接AM 交BF 于点N ,探究线段FN ,DE ,BE 之间的数量关系,并说明理由;(3)如图3,在(2)问的条件下,过点A 作AH ⊥BC 于点H ,过点B 作BK ∥AH 且BK =AH ,连接HK ,NK ,NH ,NC .若BC =4,当12BD +NK 的值最小时,请直接写出CD NH的值.【答案】(1)1+3(2)2FN +DE =BE .理由见解析(3)277【分析】(1)作CF⊥BC,解直角三角形BFG求得BF和FG,进而解直角三角形CFG求得CF,从而得出结果;(2)延长BF至G,使FG=DE,连接AG,作BH∥AF,交BF于H,证明△ABG≌△CBD,进而证明△ANG≌ΔMNB,△AFN≌△MHN,△BMH≌△DCE,进一步得出结论;BD+NK最小,此时BG⊥AG,即BD⊥AC,进一步得出(3)可得出当K、N、G共线且与AG垂直时,12结果.【详解】(1)解:如图1,作CF⊥BC于F,∴∠CFG=∠BFG=90°,∵△ABC是等边三角形,∴∠ACB=∠ABC=60°,在Rt△BFG中,BG=2,∠ABC=60°,=1,∴BF=2cos60°=2×12=3,FG=2⋅sin60°=2×32在Rt△CFG中,FG=3,∠FCG=∠ACB-∠ACG=60°-15°=45°,∴CF=FG=3,tan∠FCG∴BC=BF+FC=1+3;(2)证明:如图2,延长BF至G,使FG=DE,连接AG,作BH∥AF,交BF于H,∴∠MHN=∠AFN,∠NMH=∠FAN,∴∠MHB=∠AFG∵△BEC绕点B逆时针旋转60°至△BFA,∴BF=BE,∠ABF=∠CBE,AB=BC,∴BG=BD,∴△ABG≌△CBD,∴AG=CD=BM,∠G=∠BDC=180°-∠CBE-∠ACB=120°-∠CBE,∵∠MBN=180°-∠ABC-∠ABF=120°-∠CBE,∴∠G=∠MBN,∴△ANG≌△MNB,∴AN=MN,∴△AFN≌△MHN,∴FN=NH,∵△ANG ≌△MNB ,∴NG =BN ,∵FN =NH ,∴BH =FG ,∵FG =DE∴BH =DE ,∵旋转,∴CE =AF ,∵△AFN ≌△MHN ,∴AF =MH ,∴MH =CE ,∵CD =BM ,∴△BMH ≌△DCE ,∴BH =DE ,∵FN +NH +BH =BF ,∴2FN +DE =BE ;(3)解:如图3,由(2)知:BD =BG =2BN ,∴12BD +NK =GN +NK ,∴当K 、N 、G 共线且与AG 垂直时,12BD +NK 最小,此时BG ⊥AG ,即BD ⊥AC ,如图4,连接NH ,∵AC =BC =4,∴CD =BH =2,BD =32BC =23,BN =GN =12BG =12BD =3,∵NH =BH 2+BN 2=2+(3)2=7,∴CD NH=277.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,解直角三角形等知识,解决问题的关键是作辅助线,构造全等三角形.。
三角形全等基本模型
常见三角形全等模型
公共线段模型
例1如图,点A,E,F,B在直线l上,AE=BF,AC∥BD且AC=BD,求证:CF=DE.
练习1已知:如图,点B、D在线段AE上,AF=DC,AB∥ED,∠B=∠E.求证:BC=DF.
公共角(对顶角)模型
例2如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED
的延长线于点F.求证:△BDE≌△CDF.
练习2如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.
角平分线模型
例3如图,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:BD=CD.
练习3如图,在正方形ABCD中,点E是BC的中点,点F在CD上,∠EAF=∠BAE.
求证:AF=BC+FC.
三垂直模型
例4如图,在△ABC中,AC=BC,D是AB上的一点,AE⊥CD于点E,BF⊥CD于点F.若CE=BF,AE=EF+BF,试判断AC与BC的位置关系,并说明理由.
手拉手模型
例5如图,已知△ABC,以AB、AC为边分别向△ABC外作正方形ABFD和正方形ACGE,连接BE,CD,猜想BE与CD有什么数量关系?并说明理由.。
人教版八年级数学上册专项素养综合练(二)全等三角形的六种常见模型课件
证明 (1)∵∠1=∠2,∠1+∠DPB=180°,∠2+∠CPB=180°, ∴∠DPB=∠CPB,
DPB CPB,
在△BDP和△BCP中,PB PB,
∴△BDP≌△BCP(ASA).
(2)由(1)知△BDP≌△BC3P,∴4D, P=CP,
AP AAB=AC,AD=AE,∠BAC=∠DAE. 结论:△ABD≌△ACE.
4.如图,AE=AB,AC=AF,∠BAE=∠CAF=90°,EC、BF相交于
点M.
(1)求证:EC=BF.
(2)求证:EC⊥BF.
(3)若将条件∠BAE=∠CAF=90°改为
∠BAE=∠CAF=m°,则(1)(2)中的结论
模型五 一线三等角模型 模型展示
通过“三等角”信息得到一组相等的角,另找一条边相等,即 可证全等.
5.(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过 点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证:DE= BD+CE. (2)如图2,在△ABC中,AB=AC,D,A,E三点都在直线m上,并且 有∠BDA=∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量 关系,并说明理由.
延长AD至E, 使DE=AD,
连接CE作 BE⊥AD
作BE⊥AD, CF⊥AD
6.八年级一班数学兴趣小组在一次活动中进行了探究实验
活动,请你和他们一起活动吧.
【探究与发现】
(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接
BE,写出图中全等的两个三角形:
.
【理解与应用】
(2)如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取
(完整版)全等三角形经典模型总结
全等三角形相关模型总结一、角均分线模型(一)角均分线的性质模型辅助线:过点G 作 GE⊥射线 ACA、例题1、如图,在△ ABC中,∠ C=90°, AD 均分∠ CAB,BC=6cm,BD=4cm,那么点 D 到直线 AB 的距离是cm.2、如图,已知,∠1=∠ 2,∠ 3=∠ 4,求证: AP 均分∠ BAC.B、模型牢固1、如图,在四边形ABCD中, BC> AB,AD= CD,BD 均分∠ ABC,求证:∠ A+∠ C= 180° .(二)角均分线+垂线,等腰三角形必表现A、例题辅助线:延长ED 交射线 OB 于 F辅助线:过点 E 作 EF∥射线 OB例 1、如图,在△ABC中,∠ ABC= 3∠ C, AD 是∠ BAC的均分线, BE⊥ AD 于 F .1求证: BE( AC AB) .例 2、如图,在△ ABC中,∠ BAC的角均分线 AD 交 BC 于点 D,且 AB= AD,作 CM⊥ AD 交1AD 的延长线于M. 求证:AM( AB AC) .2(三)角分线,分两边,对称全等要记全两个图形飞辅助线都是在射线ON 上取点 B,使 OB= OA,从而使△ OAC≌△ OBC .A、例题1、如图,在△ ABC 中,∠ BAC=60°,∠ C=40°, AP 均分∠ BAC交 BC 于 P, BQ 均分∠ ABC 交AC 于 Q,求证: AB+ BP= BQ+ AQ .2、如图,在△ ABC 中, AD 是∠ BAC的外角均分线, P 是 AD 上异于点 A 的任意一点,试比较PB+ PC与 AB+ AC的大小,并说明原由 .B、模型牢固1、在△ ABC中, AB> AC, AD 是∠ BAC的均分线, P 是线段 AD 上任意一点(不与 A 重合) . 求证: AB-AC> PB- PC .2、如图,△ ABC中, AB= AC,∠ A= 100°,∠ B 的均分线交 AC 于 D,求证: AD+BD=BC .3、如图,△ ABC中, BC=AC,∠ C= 90°,∠ A 的均分线交 BC 于 D,求证: AC+ CD= AB .二、等腰直角三角形模型(一)旋转中心为直角极点,在斜边上任取一点的旋转全等:操作过程:(1)将△ ABD 逆时针旋转 90°,得△ ACM ≌ △ ABD,从而推出△ ADM 为等腰直角三角形 .(2)辅助线作法:过点 C 作 MC⊥ BC,使 CM= BD,连接 AM.(二)旋转中心为斜边中点,动点在两直角边上转动的旋转全等:操作过程:连接AD.(1)使 BF=AE(或 AF= CE),导出△ BDF ≌ △ADE.(2)使∠ EDF+∠ BAC= 180°,导出△ BDF ≌ △ ADE.A、例题1、如图,在等腰直角△ ABC中,∠BAC= 90°,点 M 、N 在斜边 BC上滑动,且∠ MAN =45°,试试究 BM、 MN 、 CN 之间的数量关系 .2、两个全等的含有 30°, 60°角的直角三角板 ADE 和 ABC,按以以下图放置, E、A、 C 三点在一条直线上,连接 BD,取 BD 的中点 M ,连接 ME、 MC.试判断△ EMC 的形状,并证明你的结论.B、模型牢固1、已知,以以下图,Rt△ABC中, AB= AC,∠ BAC=90°, O 为 BC中点,若 M 、N 分别在线段 AC、 AB 上搬动,且在搬动中保持AN= CM.(1)试判断△ OMN 的形状,并证明你的结论.(2)当 M、 N 分别在线段AC、 AB 上搬动时,四边形AMON 的面积如何变化?2、在正方形ABCD中, BE= 3,EF= 5, DF=4,求∠ BAE+∠ DCF为多少度 .(三)构造等腰直角三角形(1)利用以上(一)和(二)都可以构造等腰直角三角形(略);(2)利用平移、对称和弦图也可以构造等腰直角三角形.(四)将等腰直角三角形补全为正方形,以以下图:A、例题应用1、如图,在等腰直角△ABC 中, AC= BC,∠ ACB= 90°, P 为三角形ABC内部一点,满足 PB= PC, AP= AC,求证:∠ BCP= 15° .三、三垂直模型(弦图模型)A、例题已知:以以下图,在△ ABC中, AB= AC,∠ BAC= 90°, D 为 AC 中点, AF⊥ BD 于点 E,交 BC 于 F,连接 DF .求证:∠ ADB=∠ CDF .变式 1、已知:以以下图,在△ABC中, AB= AC,AM = CN, AF⊥ BM 于 E,交 BC 于 F,连接NF .求证:( 1)∠ AMB=∠ CNF;(2) BM= AF+ FN .变式 2、在变式 1 的基础上,其他条件不变,可是将BM 和 FN 分别延长交于点P,求证:( 1) PM= PN;( 2) PB= PF+ AF .四、手拉手模型1、△ ABE和△ ACF均为等边三角形结论:( 1)△ ABF≌△ AEC .(2)∠ BOE=∠ BAE=60° .(3) OA 均分∠ EOF .(四点共圆证)拓展:△ ABC和△ CDE均为等边三角形结论:( 1) AD= BE;(2)∠ ACB=∠ AOB;(3)△ PCQ为等边三角形;(4) PQ∥ AE;(5) AP=BQ;(6) CO均分∠ AOE;(四点共圆证)(7) OA= OB+OC;(8) OE=OC+ OD .((7),( 8)需构造等边三角形证明)例、如图①,点 M为锐角三角形 ABC内任意一点,连接 AM、BM、 CM.以 AB为一边向外作等边三角形△ ABE,将 BM绕点 B 逆时针旋转 60°获取 BN,连接 EN.(1)求证:△ AMB≌△ ENB;(2)若 AM+BM+CM的值最小,则称点 M为△ ABC的费尔马点.若点 M为△ ABC的费尔马点,试求此时∠ AMB、∠ BMC、∠ CMA的度数;(3)小翔受以上启示,获取一个作锐角三角形费尔马点的简略方法:如图②,分别以△ABC 的 AB、 AC 为一边向外作等边△ABE和等边△ ACF,连接CE、BF,设交点为M,则点M 即为△ ABC的费尔马点.试说明这种作法的依据.2、△ ABD 和△ ACE均为等腰直角三角形结论:( 1) BE= CD;(2) BE⊥ CD .3、四边形ABEF和四边形ACHD均为正方形结论:( 1) BD= CF;( 2)BD⊥ CF .变式 1、四边形 ABEF和四边形 ACHD均为正方形, AS⊥ BC 交 FD 于 T,求证:( 1) T 为 FD 中点;( 2)SV ABC SV ADF .变式 2、四边形 ABEF和四边形 ACHD均为正方形, T 为 FD 中点, TA 交 BC于 S,求证: AS⊥ BC .360 4、如图,以△ ABC的边 AB、 AC为边构造正多边形时,总有:1 2 180n五、半角模型条件: 1 , 且 + =180 ,两边相等.2思路: 1、旋转辅助线:①延长CD到 E,使 ED=BM,连 AE 或延长 CB到 F,使 FB=DN,连 AF②将△ ADN绕点 A 顺时针旋转 90°得△ ABF,注意:旋转需证F、 B、 M三点共线结论:( 1) MN = BM+ DN;(2)CV CMN=2 AB;(3) AM、 AN 分别均分∠ BMN 、∠ MND .2、翻折(对称)辅助线:①作AP⊥ MN 交 MN 于点 P②将△ ADN、△ ABM分别沿 AN、 AM翻折,但必然要证明M、P、 N 三点共线 .A、例题例1、在正方形 ABCD中,若 M、 N 分别在边 BC、 CD 上搬动,且满足 MN = BM+DN,求证:( 1)∠ MAN = 45°;(2)CV CMN=2 AB;(3) AM、 AN 分别均分∠ BMN 和∠ DNM .变式:在正方形 ABCD中,已知∠ MAN =45°,若 M 、N 分别在边 CB、DC 的延长线上搬动,AH⊥MN ,垂足为 H,(1)试试究线段 MN 、BM、 DN 之间的数量关系;(2)求证: AB= AH例 2、在四边形 ABCD 中,∠ B +∠ D = 180°, AB = AD ,若 E 、 F 分别为边 BC 、 CD 上的点,且满足 EF =BE + DF ,求证: EAF 1BAD .2变式:在四边形 ABCD 中,∠ B = 90°,∠ D = 90°, AB = AD ,若 E 、 F 分别为边 BC 、CD 上的点,且 EAF1 BAD ,求证: EF = BE +DF .2。
2022年中考数学几何模型之全等三角形的五种模型(讲+练)(解析版)
专题06 全等三角形的五种模型全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不再重复。
模型一、截长补短模型①截长:在较长的线段上截取另外两条较短的线段。
如图所示,在BF 上截取BM=DF ,易证△BMC△△DFC (SAS ),则MC=FC=FG ,△BCM=△DCF , 可得△MCF 为等腰直角三角形,又可证△CFE=45°,△CFG=90°,△CFG=△MCF ,FG△CM ,可得四边形CGFM 为平行四边形,则CG=MF ,于是BF=BM+MF=DF+CG.②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。
如图所示,延长GC 至N ,使CN=DF ,易证△CDF△△BCN (SAS ), 可得CF=FG=BN ,△DFC=△BNC=135°,又知△FGC=45°,可证BN△FG ,于是四边形BFGN 为平行四边形,得BF=NG , 所以BF=NG=NC+CG=DF+CG.例1.如图,△ABC 中,△B =2△A ,△ACB 的平分线CD 交AB 于点D ,已知AC =16,BC =9,则BD 的长为( )A .6B .7C .8D .9【答案】.B 【详解】解:如图,在CA 上截取,CN CB = 连接,DN CD 平分,ACB ∠ ,BCD NCD ∴∠=∠,CD CD = (),CBD CND SAS ∴≌ ,,,BD ND B CND CB CN ∴=∠=∠=9,16,BC AC == 9,7,CN AN AC CN ∴==-=,CND NDA A ∠=∠+∠ ,B NDA A ∴∠=∠+∠2,B A ∠=∠ ,A NDA ∴∠=∠,ND NA ∴= 7.BD AN ∴== 故选:.B【变式训练1】如图,在△ABC 中,AB =BC ,△ABC =60°,线段AC 与AD 关于直线AP 对称,E 是线段BD 与直线AP 的交点.(1)若△DAE =15°,求证:△ABD 是等腰直角三角形;(2)连CE ,求证:BE =AE +CE .【答案】(1)见解析;(2)见解析【详解】证明:(1)△在△ABC 中,AB =BC ,△ABC =60°,△△ABC 是等边三角形, △AC =AB =BC ,△BAC =△ABC =△ACB =60°,△线段AC 与AD 关于直线AP 对称,△△CAE =△DAE =15°,AD =AC ,△△BAE =△BAC +△CAE =75°,△△BAD =90°,△AB =AC =AD ,△△ABD 是等腰直角三角形; (2)在BE 上取点F ,使BF =CE ,连接AF ,△线段AC 与AD 关于直线AP 对称,△△ACE =△ADE ,AD =AC ,△AD =AC =AB ,△△ADB =△ABD=∠ACE ,在△ABF 与△ACE 中,AC AB ACE ABF CE BF =⎧⎪∠=∠⎨⎪=⎩,△△ABF △△ACE (SAS ),△AF =AE ,△AD =AB ,△△D =△ABD ,又△CAE =△DAE , △()()111806022AEB D DAE D ABD DAC BAC ∠=∠+∠=∠+∠+∠=︒-∠=︒, △在△AFE 中,AF =AE ,△AEF =60°,△△AFE 是等边三角形,△AF =FE ,△BE =BF +FE =CE +AE .【变式训练2】如图,在△ABC 中,△ACB=△ABC=40o ,BD 是△ABC 的角平分线,延长BD 至点E ,使得DE=DA ,则△ECA=________.【答案】40°【详解】解:在BC 上截取BF=AB ,连接DF ,△ACB=△ABC=40°,BD 是△ABC 的角平分线,∴△A=100°,△ABD=△DBC=20°,∴△ADB=60°,△BDC=120°,BD=BD ,∴△ABD△△FBD ,DE=DA ,∴ DF=AD=DE ,△BDF=△FDC=△EDC=60°,△A=△DFB=100°,DC=DC ,∴△DEC△△DFC ,∴1006040DCB DCE DFC FDC ∠=∠=∠-∠=︒-︒=︒;故答案为40°.【变式训练3】已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,△四边形ABCD 是正方形,△AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB ADABG ADN BG DN=⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,△45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AMGAM NAM AN AG=⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又△BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,△四边形ABCD 是正方形,△AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,△GAB GAD DAN GAD ∠+∠=∠+∠,△90GAN BAD ∠=∠=︒, 又45MAN ∠=︒,45GAM GAN MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又△BM BG GM -=,BG DN =,△BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,△四边形ABCD 是正方形,△AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,△MAB BAG GAD BAG ∠+∠=∠+∠,△90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,△6CN =,8MC =,△1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-,△DC BC =,△48x x +=-,解得:2x =,△6AB BC CD CN ====,△//AB CD ,△BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,132CP BP BC ∴===,△CP 的长为3.模型二、平移全等模型例.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,△A = △D .(1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.【答案】(1)见解析;(2)BE =3.【详解】(1)证明:△AB△DE ,△△ABC =△DEF ,在△ABC 和△DEF 中A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩△△ABC△△DEF (ASA ); (2)解:△△ABC△△DEF ,△BC =EF ,△BC -EC =EF -EC ,即BE =CF ,△BF =11,EC =5,△BF -EC =6.△BE +CF =6.△BE =3.【变式训练1】如图,AB//CD ,AB=CD 点E 、F 在BC 上,且BF=CE .(1)求证:△ABE△△DCF (2)求证:AE//DF .【答案】(1)见详解;(2)见详解【详解】证明:(1)△AB △CD ,△B C ∠=∠,△BF =CE ,△CF EF BE EF +=+,△BE CF =,△AB =CD ,△ABE DCF △≌△(SAS );(2)由(1)可得:ABE DCF △≌△,△DFC AEB ∠=∠,△180,180DFC EFD AEF AEB ∠+∠=︒∠+∠=︒,△EFD AEF ∠=∠,△//AE DF .【变式训练2】如图,已知点C 是AB 的中点,CD △BE ,且CD BE =.(1)求证:△ACD△△CBE .(2)若87,32A D ∠=︒∠=︒,求△B 的度数.【答案】(1)见解析;(2)61【分析】(1)根据SAS 证明△ACD△△CBE ;(2)根据三角形内角和定理求得△ACD ,再根据三角形全等的性质得到△B=△ACD .【详解】(1)△C 是AB 的中点,△AC =CB ,△CD//BE ,△ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,△ACD CBE ∆≅∆;(2)△8732A D ︒︒∠=∠=,,△180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=,又△ACD CBE ∆≅∆,△61B ACD ︒∠=∠=.模型三、对称全等模型例.如图,已知△C =△F =90°,AC =DF ,AE =DB ,BC 与EF 交于点O ,(1)求证:Rt△ABC△Rt△DEF ;(2)若△A =51°,求△BOF 的度数.【答案】(1)见解析;(2)78°【详解】(1)证明:△AE =DB ,△AE +EB =DB +EB ,即AB =DE .又△△C=△F=90°,AC=DF,△Rt△ABC△Rt△DEF.(2)△△C=90°,△A=51°,△△ABC=△C-△A=90°-51°=39°.由(1)知Rt△ABC△Rt△DEF,△△ABC=△DEF.△△DEF=39°.△△BOF=△ABC+△BEF=39°+39°=78°.【变式训练1】如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90º,∠B =∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有()A.4个B.3个C.2个D.1个【解答】B【解析】∵∠E=∠F=90º,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴BE=CF,∵∠BAE=∠CAF,∠BAE-∠BAC=∠CAF-∠BAC,∴∠1=∠2,∴△ABE≌△ACF,∴∠B=∠C,AB=AC,又∵∠BAC=∠CAB,∴△ACN≌△ABM,④CD=DN不能证明成立,∴共有3个结论正确.【变式训练2】如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③【解答】D【解析】∵BE⊥AC于E,CF⊥AB于F,∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(第一个正确),∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(第二个正确),∴DF=DE,连接AD,∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD =∠EAD ,即点D 在∠BAC 的平分线上(第三个正确).模型四、旋转全等模型例.如图,△ABC 和△ADE 中,AB =AC ,AD =AE ,△BAC =△DAE ,且点B ,D ,E 在同一条直线上,若△CAE +△ACE +△ADE =130°,则△ADE 的度数为( )A .50°B .65°C .70°D .75°【答案】B【详解】BAC DAE ∠=∠BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∴∠=∠,AB AC AD AE == ∴在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴BAD ≌CAE ( SAS ) ABD ACE ∴∠=∠130CAE ACE ADE ∠+∠+∠=︒130ABD BAD ADE ∴∠+∠+∠=︒ADE ABD BAD ∠=∠+∠2130ADE ∴∠=︒65ADE ∴∠=︒故选:B .【变式训练1】如图,将正方形ABCD 绕点A 逆时针旋转60°得到正方形AB ′C ′D ′,线段CD ,B ′C ′交于点E ,若DE =1,则正方形的边长等于_____.【答案】2+【详解】解:连接AC 、AE ,延长C ′B ′交AC 于点F ,过点F 作GF △DC 于G , 由题意得,AD =AB ′,△D =△AB ′E ,△B ′AB =60°,△CAB =△GCB ′=45°,△△DAB ′=30°,△CAB ′=15°在RT △ADE 与RT △AB ′E 中AD AB AE AE ='⎧⎨=⎩,△RT △ADE △RT △AB ′E (HL ), △△DAE =△B′AE =12△DAB ′=15°,DE=EB ′=1,△△B′AE=△CAB ′在△AB′E 和△AB′F 中==B AE CAB AB AB EB A FB A ∠'=∠'⎧⎪''⎨⎪∠'∠'⎩ ,△△AB′E △△AB′F (ASA ),△EB′=BF=1 △△DEB ′=360°-△D -△EB A '-∠DAB′=150°,△△GEF =30°在RT △EGF 中,EG =EF ×cos △GEFDF =EF ×sin △GEF =2×12=1 在△CGF 中,△GCF =45°,△CG=GF =1,△DC =DE+EG+GC所以正方形的边长为【变式训练1】如图,,,,AC BC DC EC AC BC DC EC ⊥⊥==, 求证:(1)ACE BCD ∆≅∆;(2)AE BD ⊥.【答案】(1)见解析;(2)见解析【详解】证明:()1AC BC ⊥,DC EC ⊥,90ACB DCE ∴∠=∠=︒, ACB ACD DCE ACD ∴∠+∠=∠+∠,∴∠=∠DCB ECA ,在DCB ∆和ECA ∆中,AC BC DCB ECA CD CE =⎧⎪∠=∠⎨⎪=⎩,()DCB ECA SAS ∴∆≅∆;()2如图,设AC 交BD 于N ,AE 交BD 于O ,∆≅∆DCB ECA ,A B ∴∠=∠,∠=∠AND BNC ,90∠+∠=︒B BNC , 90∴∠+∠=︒A AND ,90∴∠=︒AON ,AE BD ∴⊥.【变式训练2】如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△;(2)若90α=︒,试判断BD 与CE的数量及位置关系并证明;(3)若CAB EAD α∠=∠=,求CFA ∠的度数.【答案】(1)见详解;(2)BD=CE ,BD△CE ;(3)902α︒-【详解】(1)△△CAB=△EAD△△CAB+△BAE=△EAD+△BAE ,△ △CAE=△BAD ,△AB=AC ,AE=AD 在△AEC 和△ADB 中AB AC CAE BAD AE AD =⎧⎪⎨⎪⎩∠=∠=△ △AEC△△ADB (SAS ) (2)CE=BD 且CE△BD ,证明如下:将直线CE 与AB 的交点记为点O ,由(1)可知△AEC△△ADB ,△ CE=BD , △ACE=△ABD ,△△BOF=△AOC ,△α=90°,△ △BFO=△CAB=△α=90°,△ CE△BD .(3)过A 分别做AM△CE ,AN△BD 由(1)知△AEC△△ADB ,△两个三角形面积相等故AM·CE=AN·BD△AM=AN△AF 平分△DFC由(2)可知△BFC=△BAC=α△△DFC=180°-α△△CFA=12△DFC=902α︒- 【变式训练3】如图①,在△ABC 中,△A =90°,AB =AC1,BC =2D 、E 分别在边AB 、AC 上,且AD =AE =1,DE.现将△ADE 绕点A 顺时针方向旋转,旋转角为α(0°<α<180°).如图②,连接CE 、BD 、CD .(1)如图②,求证:CE =BD ;(2)利用备用图进行探究,在旋转的过程中CE 所在的直线能否垂直平分BD?如果能,请猜想α的度数,画出图形,并将你的猜想作为条件,给出证明;如果不能,请说明理由; (3)在旋转的过程中,当△BCD 的面积最大时,α= °.(直接写出答案即可)【答案】(1)证明见解析;(2)能,α=90°;(3)135α=︒.【详解】(1)证明:如图2中,根据题意:AB AC =,AD AE =,90CAB EAD ∠=∠=︒, 90CAE BAE BAD BAE ∠+∠=∠+∠=︒,CAE BAD ∴∠=∠,在ACE ∆和ABD ∆中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,()ACE ABD SAS ∴∆≅∆,CE BD ∴=;(2)能,若CE 所在直线垂直平分BD ,则CD =BC ,△AB =AC+1,BC =2,AD =AE =1,DE△1122AC AD CD BC +=+=== △AC +AD =CD ,即A 、C 、D 在同一条直线上,此时α=90°,如下图,CE 的延长线与BD 交于F ,与(1)同理可得()ACE ABD SAS ∆≅∆,ACE ABD ∴∠=∠,90ACE AEC ∠+∠=︒,且AEC FEB ∠=∠,90ABD FEB ∴∠+∠=︒,90EFB ∴∠=︒,CF BD ∴⊥,BC CD =,CF ∴是线段BD 的垂直平分线;(3)解:BCD ∆中,边BC 的长是定值,则BC 边上的高取最大值时BCD ∆的面积有最大值, ∴当点D 在线段BC 的垂直平分线上时,BCD ∆的面积取得最大值,如图中:1AB AC ==,1AD AE ==,90CAB EAD ∠=∠=︒,DG BC ⊥于G ,12AG BC ∴==45GAB ∠=︒,1DG AG AD ∴=+==,18045135DAB ∠=︒-︒=︒, BCD ∴∆的面积的最大值为:1122BC DG ⋅==135α=︒. 模型五、手拉手全等模型例.如图,B ,,三点在一条直线上,和均为等边三角形,与交于点,与交于点.(1)求证:;(2)若把绕点任意旋转一个角度,(1)中的结论还成立C E ABC ∆DCE ∆BD AC M AE CDN AE BD =DCE ∆C吗?请说明理由.【答案】(1)见解析(2)成立,理由见解析.【详解】解:(1)证明:如图1中,与都是等边三角形,,,,,,,即.在和中,,(SAS)..即AE=BD ,(2)成立;理由如下:如图2中,、均为等边三角形, ,,,,即,在和中,,,.【变式训练1】如图,△OAB 和△OCD 中,OA =OB ,OC =OD ,△AOB =△COD =90°,AC 、BD 交于点M .(1) 如图1,求证:AC=BD ,判断AC 与BD 的位置关系并说明理由;(2) 如图2,△AOB =△COD =60°时,△AMD 的度数为___________.【答案】(1)答案见解析;(2)120.ABC ∆DCE∆AC BC ∴=CD CE =60ACB DCE ∠=∠=︒180ACB ACD DCE ∠+∠+∠=60ACD ∴∠=︒ACB ACD ACD DCE ∠+∠=∠+∠BCD ACE ∠=∠BCD ∆ACE ∆BC AC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩BCD ACE ∴∆≅∆BD AE ∴=AE BD =ABC ∆DCE ∆BC AC ∴=CD CE =60BCA DCE ∠=∠=︒BCA ACD DCE ACD ∴∠+∠=∠+∠BCD ACE ∠=∠ACE ∆BCD ∆AC BC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACE BCD SAS ∴∆≅∆AE BD ∴=【详解】()190AOB COD ∠∠==,.AOB AOD COD AOD ∠+∠∠+∠= 即:.BOD AOC ∠∠=,,OA OB OC OD ==易证.BOD AOC ≌.OBD OAC ∴∠=∠ AC=BD△,AMD ABM BAM ∠=∠+∠.BAM BAO OAC ∠=∠+∠△.AMD ABM BAO OBD OBA BAO ∠=∠+∠+∠=∠+∠△90.AOB ∠= △90.OBA BAO ∠+∠=90.AMD ∴∠= △AC△BD(2)同理可得. .AMD OBA BAO ∠=∠+∠60.AOB ∠= 120.OBA BAO ∠+∠= 120.AMD ∴∠= 故答案为: 120.【变式训练2】如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明;(2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.【答案】(1)AC=BD ,AC△BD ,证明见解析;(2)存在,AC=BD ,AC△BD ,证明见解析;(3)AC=BD ,AC△BD【详解】(1)AC=BD ,AC△BD , 证明:延长BD 交AC 于点E .△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△COA=△BOD=90º,△△AOC△△BOD (SAS ),△AC=BD ,△△OAC=△OBD ,△△ADE=△BDO ,△△AED=△BOD=90º,△AC△BD ;(2)存在,证明:延长BD 交AC 于点F ,交AO 于点G .△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△DOC=BOA=90º,△△AOC=△DOC -△DOA ,△BOD=△BOA -△DOA ,△△AOC=△BOD ,△△AOC△△BOD (SAS ),△AC=BD ,△OAC=△OBD ,△△AGF=△BGO ,△△AFG=△BOG=90º,△AC△BD ;(3)AC=BD ,AC△BD .证明:BD 交AC 于点H ,AO 于M ,△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△DOC=BOA=90º,△△AOC=△DOC+△DOA ,△BOD=△BOA+△DOA ,△△AOC=△BOD ,△△AOC△△BOD (SAS ),△AC=BD ,△OAC=△OBD ,△△AMH=△BMO ,△△AHM=△BOH=90º,△AC△BD .【变式训练3】已知:如图1,在和中,,,.(1)证明.(2)如图2,连接和,,与分别交于点和,,求的度数.(3)在(2)的条件下,若,请直接写出的度数.【答案】(1)证明见解析;(2)△ACE =62°;(3)△CBA =6°.【详解】解:(1)△△CAE =△DAB ,△△CAE +△CAD =△DAB +△CAD ,即△CAB =△EAD ,在△ABC 和△ADE 中,△△ABC△△ADE (AAS ),ABC ∆ADE ∆C E ∠=∠CAE DAB ∠=∠BC DE =ABC ADE ∆∆≌CE BD DE AD BC M N 56DMB ∠=︒ACE ∠CN EM =CBA∠C E CAB EAD BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩(2)△△ABC△△ADE ,△△CBA=△EDA ,AC=AE ,在△MND 和△ANB 中,△△EDA +△MND+△DMB =,△CBA +△ANB +△DAB =,又△ △MND=△ANB ,△ △DAB=△DMB=,△△CAE =△DAB=,△AC=AE ,△△ACE =△AEC=,△△ACE =, (3)△CBA=,如图所示,连接AM ,,CN=EM,CA=EA,(SAS), AM=AN,,=即,由(2)可得:,=, △CAE =△DAB==-= .课后训练1.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为( )A .120︒B .135︒C .115︒D .125︒【答案】C 【详解】在△ABC 和△ADE 中AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩△ △ABC △△ADE (SAS )△△BAC =△DAE 180︒180︒56︒56︒1(18056)622︒︒︒-=62︒6︒NCA MEA ∠=∠∴NCA MEA ≅∴EAM CAN ∠=∠∴EAM CAM ∠-∠CAN CAM ∠-∠EAC MAN ∠=∠=56EAC MAN ︒∠=∠∴ANM ∠1(18056)622︒︒︒-=56︒∴CBA ANM DAB ∠=∠-∠62︒56︒6︒△△EAB =△BAC +△DAE +△CAD =120°△△BAC =△DAE ()112010552=⨯︒-︒=︒ △△BAF =△BAC +△CAD =65°△在△AFB 中,△AFB =180°-△B -△BAF =90°△△GFD =90°在△FGD 中,△EGF =△D +△GFD =115°故选:C2.如图,△ABC 中,E 在BC 上,D 在BA 上,过E 作EF△AB 于F ,△B =△1+△2,AB =CD ,BF =43,则AD 的长为________.【详解】在FA 上取一点T ,使得FT =BF ,连接ET ,在CB 上取一点K ,使得CK =ET ,连接DK . △EB =ET ,△△B =△ETB ,△△ETB =△1+△AET ,△B =△1+△2,△△AET =△2,△AE =CD ,ET =CK ,△△AET △△DCK (SAS ),△DK =AT ,△ATE =△DKC ,△△ETB =△DKB ,△△B =△DKB ,△DB =DK ,△BD =AT ,△AD =BT ,△BT =2BF =83,△AD =83,故答案为:83.3.如图,2A C ,BD 平分ABC ∠,10BC =,6AB =,则AD =_____.【答案】4【详解】解:(1)在BC 上截取BE =BA ,如图,△BD 平分△ABC ,△△ABD =△EBD ,在△ABD 和△BED 中,BE BA ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,△△ABD △△EBD (SAS ),△DE =AD ,△BED =△A ,又△△A =2△C ,△△BED =△C +△EDC =2△C ,△△EDC =△C ,△ED =EC ,△EC =AD ,△BC =BE +EC =AB +AD ,△BC =10,AB =6,△AD =10﹣6=4;故答案为:4.4.如图,正方形ABCD ,将边CD 绕点D 顺逆时针旋转α(0°<α<90°),得到线段DE ,连接AE ,CE ,过点A 作AF △CE 交线段CE 的延长线于点F ,连接BF .(1)当AE =AB 时,求α的度数;(2)求证:△AEF =45°;(3)求证:AE △FB .【答案】(1)α=30°;(2)证明见解析;(3)证明见解析.【详解】解:(1) 在正方形ABCD 中,AB =AD =DC ,由旋转可知,DC =DE ,△AE =AB △AE =AD =DE△△AED 是等边三角形,△∠ADE =60°,△△ADC =90°,△α=△ADC -∠ADE =90°-60°=30°.(2)证明:在△CDE 中,DC =DE ,△△DCE =△DEC =180=9022αα--, 在△ADE 中,AD =ED ,△ADE =90°-α,△△DAE =△DEA =()18090=4522αα--+ △△AEC =△DEC +△DEA =90+45+22αα-=135°.△△AEF =45°,(3)证明:过点B 作BG //CF 与AF 的延长线交于点G ,过点B 作BH //GF 与CF 交于点H , 则四边形BGFH 是平行四边形,△AF △CE ,△平行四边形BGFH 是矩形,△△AFP =△ABC =90°,△APF =△BPC ,△△GAB =BCP ,在△ABG 和△CBH 中,GAB HCB BGA BHC AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABG △△CBH (AAS ),△BG =BH ,△矩形BGFH 是正方形,△△HFB =45°,由(2)可知:△AEF =45°,△△HFB =△AEF =45°,△AE△F B .5.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65º,求∠BDC的度数.【答案】(1)见解析;(2)50º【解析】(1)证明:∵∠BAC=∠EAD,∴∠BAC-∠EAC=∠EAD-∠EAC,即∠BAE =∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD,∴∠ABD=∠ACD;(2)∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD +∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC,∵∠ABD=∠ACD,∴∠BAC=∠BDC,∵∠ACB=65º,AB=AC,∴∠ABC=∠ACB=65º ,∴∠BAC=180º-∠ABC-∠ACB=180º-65º-65º=50º ,∴∠BDC=∠BAC=50º.6.如图①,在△ABC中,△BAC=90°,AB=AC,点E在AC上(且不与点A、C重合),在△ABC 的外部作△CED,使△CED=90°,DE=CE,连接AD,分别以AB、AD为邻边作平行四边形ABFD,连接AF.(1)求证:EF=AE;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF、AE的数量关系,并证明你的结论.【答案】(1)见解析;(2)AF=,见解析.【详解】解:(1)如图,四边形ABFD是平行四边形,∴AB=DF,AB=AC,∴AC=DF,DE=EC∴AE=EF;(2)AF=,证明:连接EF,设DF交BC于K,四边形ABFD是平行四边形,∴AB//DF∴△DKE=△ABC=45°,∴△EKF=180°-△DKE=135°△ADE=180°-△EDC=180°-45°=135°,∴△EKF=△ADE,△DKC=△C,∴DK=DC ,DF=AB=AC,∴KF=AD在△EKF和△EDA中,EK DKEKF ADEKF AD=⎧⎪∠=∠⎨⎪=⎩,∴△EKF△△EDA(SAS)∴EF=EA, △KEF=△AED,∴△FEA=△BED=90°,∴△AEF是等腰直角三角形,AF=.7.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB =CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.【解答】(1)见解析;(2)见解析;(3)【解析】(1)证明,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)如图,过E作EM⊥AG,交AG于M,=AG•EM,∵S由(2)得△ACG≌△BCG,∴BG=AG=6,∴×6×EM,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM,∴M是AG的中点,∴AE=EG,∴BE=BG+EG=6+,在Rt△ECB中,∠EBC=30°,∴CE=BE=,∴AC=AE+EC.8.如图,在△ABC中,∠ABC=60°,点D,E分别为AB,BC上一点,BD=BE,连接DE,DC,AC=CD.(1)如图1,若AC=3,DE=2,求EC的长;(2)如图2,连接AE交DC于点F,点M为EC上一点,连接AM交DC于点N,若AE =AM,求证:2DE=MC;(3)在(2)的条件下,若∠ACB=45°,直接写出线段AD,MC,AC的等量关系.【解答】(1(2)见解析;(3【解析】(1)如图,过点C作CG⊥AB于G,∵AC=CD,∴AG=DG,设DG=a,∵BD=BE,∠ABC=60°,∴△BDE是等边三角形,∴BD=DE,∴BG=BD+DG+a,在Rt△BGC中,∠BCG=90°-∠ABC=30°,∴BC=2BG,CG=BG=6+a,在Rt△DGC中,CD=AC=3,根据勾股定理得,CG2+DG2=CD2,∴(6+a)2+a2=90,∴(舍),∴BC=EC+BE=EC+BD,∴EC+BD=2(BD+DG),∴EC=BD+2DG;(2)如图在MC上取一点P,使MP=DE,连接AP,∵△BDE是等边三角形,∴∠BED=60°,BE=DE,∴∠DEC=120°,BE=PM,∵AE=AM,∴∠AEM=∠AME,∴∠AEB=∠AMP,∴△ABE≌△APM(SAS),∴∠APM=∠ABC=60°,∴∠APC=120°=∠DEC,如图,过点M作AC的平行线交AP的延长线于Q,∴∠MPQ=∠APC=120°=∠DEC,∵AC=CD,∴∠ADC=∠DAC,∴∠CDE=180°-∠BDE-∠ADC=180°-60°-∠DAC=120°-∠DAC,在△ABC中,∠ACB=180°-∠ABC-∠DAC=120°-∠DAC=∠CDE,∵MQ∥AC,∴∠PMQ=∠ACB,∴∠PMQ=∠EDC,∴△MPQ≌△DEC(ASA),∴MQ=CD,∵AC=MQ,∴△APC≌△QPM(AAS),∴CP=MP,∴CM=MP+CP=2DE;(3)如图,在MC上取一点P,使PM=DE,由(2)知,MC=2CP=2DE,由(2)知,△ABE≌△APM,∴AB=AP,∵∠ABC=60°,∴△ABP是等边三角形,∴BP=AB,∵BE=BD,∴PE=AD,∴BC=BE+PE+CP=DE+PE+DE=2DE+AD=MC+AD,过点A作AH⊥BC于H,设BH=m,在Rt△ABH,在Rt△ACH中,∠ACB=45°,∴∠CAH=90°-∠ACB=45°=∠ACB,∴CH=AH,∵MC+AD=BC=BH+CH=,∴MC+AD=AC.。
全等三角形基本模型综合训练(二)(解析版)(北师大版)
全等三角形基本模型综合训练(二)1.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若△CDO +△CFO =98︒,则△C 的度数为( )A .40°B .41°C .42°D .43°【答案】B 【详解】解:如图,连接AO 、BO .由折叠的性质可得EA =EB =EO ,△△AOB =90°,△OAB +△OBA =90°,△DO =DA ,FO =FB ,△△DAO =△DOA ,△FOB =△FBO ,△△CDO =2△DAO ,△CFO =2△FBO ,又△△CDO +△CFO =98°,△2△DAO +2△FBO =98°,△△DAO +△FBO =49°,△△CAB +△CBA =△DAO +△OAB +△OBA +△FBO =139°,△△C =180°﹣(△CAB +△CBA )=180°﹣139°=41°,故选B .2.如图,已知正方形ABCD 的边长为3,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90︒到EF ,连接,DF CF ,则当DF CF +之和取最小值时,DCF 的周长为( )A.353B.433C.523D.133【答案】A【详解】解:连接BF,过点F作FG△AB交AB延长线于点G,△将ED绕点E顺时针旋转90°到EF,△EF△DE,且EF=DE,△△AED△△GFE(AAS),△FG=AE,△F点在BF的射线上运动,作点C关于BF的对称点C',△EG=DA,FG=AE,△AE=BG,△BG=FG,△△FBG=45°,△△CBF=45°,△BF是△CBC′的角平分线,即F点在△CBC′的角平分线上运动,△C'点在AB的延长线上,当D、F、C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,△DC5△DF+CF的最小值为5△此时DCF的周长为353.故选:A.3.如图,△ABC 中,△A =30°,BC =3,△ABC 的面积9,点D 、E 、F 分别是三边AB 、BC 、CA 上的动点,则△DEF周长的最小值为( )A .5B .6C .8D .10【答案】B 【详解】解:作E 点关于AB 的对称点G ,作E 点关于AC 的对称点H ,连接GH ,交AB 于D 点,交AC 于F 点,连接AG ,AH ,AE ,如图所示:∴由对称性可知GD DE =,EF FH =,AG AE AH ==,DEF ∴∆的周长DE DF EF GD DF FH GH =++=++=,GAD DAE ∠=∠,EAC HAC ∠=∠,2GAH BAC ∴∠=∠,30BAC ∠=︒,60GAH ∴∠=︒,GH AE ∴=,∴当AE BC ⊥时,GH 最短,此时DEF ∆的周长最小,3BC =,ABC ∆的面积9,6AE ∴=,DEF ∴∆的周长最小值为6,故选:B .4.如图,等边三角形ABC的边长为4,点D是AB边的中点,点E是BC边上的一个动点,以DE为边作等边三角形DEF,连接AF,则AF的最小值为()A.2B3C.2D.3【答案】B【详解】解:当AF△AB时,AF的值最小,过D作DG△BC,△DG△BC,AF△AB△△DGB=△DGE=△DAF=90°△△B+△BDG=90°,△GDE+△DEG=90°△△ABC和△DEF都是等边三角形△DF=EF,△B=△FDE=60°,△BDG=30°△△ADF+△GDE=180°-△BDG-△FDE=180°-60°-30°=90°△△ADF=△DEG又△△DGE=△DAF=90°,DE=DF△△DEG△△FDA(AAS)△AF=DG331BD43 222故选:B.5.如图,P为等边△ABC内一点,△APC=150°,且△APD=30°,AP=6,CP=3,DP=7,则BD的长为______.【答案】34【详解】将△CP A绕点C逆时针旋转60°得到△CEB,连接EP,△CE=CP,△ECB=△PCA,△CEB=△CP A=150°,BE=AP=6,△等边△ABC,△△ACP+△PCB=60°,△△ECB+△PCB=60°,即△ECP=60°,△△ECP为等边三角形,△△CPE=△CEP=60°,PE=6,△△DEB=90°,△△APC=150°,△APD=30°,△△DPC=120°,△△DPE=180°,即D、P、E三点共线,△ED=3+7=10,△BD22DE BE34故答案为346.如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=3CB的长为________.【答案】26【详解】如图,在BC上截取BD=AC=2,连接OD,△四边形AFEB 是正方形,△AO =BO ,△AOB =△ACB =90°,△△CAO =90°-△ACH ,△DBO =90°-△BHO ,△△ACH =△BHO ,△△CAO =△DBO ,△△ACO △△BDO ,△DO =CO =23△AOC =△BOD ,△△BOD +△AOD =90°,△△AOD +△AOC =90°,即△COD =90°,△CD 22(23)(23)26+△BC =BD +CD =26+故答案为:26+7.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF△AB ,F 为垂足,下列结论:①△ABD△△EBC ;②△BCE+△BCD=180°;③AD=EF=EC ;④BA+BC=2BF ,其中正确的结论有________(填序号).【答案】①②④【详解】解:①△BD 为△ABC 的角平分线,△△ABD=△CBD ,在△ABD 和△EBC 中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩,△△ABD△△EBC (SAS ), △①正确;②△BD 为△ABC的角平分线,BD=BC ,BE=BA ,△△BCD=△BDC=△BAE=△BEA ,△△ABD△△EBC,△△BCE=△BDA,△△BCE+△BCD=△BDA+△BDC=180°,△②正确;③△△BCE=△BDA,△BCE=△BCD+△DCE,△BDA=△DAE+△BEA,△BCD=△BEA,△△DCE=△DAE,△△ACE为等腰三角形,△AE=EC,△△ABD△△EBC,△AD=EC,△AD=AE=EC,△BD为△ABC的角平分线,EF△AB,而EC不垂直与BC,△EF≠EC,△③错误;④过E作EG△BC于G点,△E是BD上的点,△EF=EG,在Rt△BEG和Rt△BEF中,BE BEBE EG=⎧⎨=⎩,△Rt△BEG△Rt△BEF(HL),△BG=BF,在Rt△CEG和Rt△AFE中,EF FG AE CE=⎧⎨=⎩,△Rt△CEG△Rt△AFE(HL),△AF=CG,△BA+BC=BF+FA+BG-CG=BF+BG=2BF,△④正确.故答案为①②④.8.如图,已知四边形ABCD中,AC平分△BAD,CE△AB于点E,且AE=12(AB+AD),若△D=115°,则△B=________.【答案】65°【详解】试题分析:如图,在AB上截取AF=AD,连接CF,△AC平分△BAD,AC为公共边,△△AFC△△ADC,△△ADC=△AFC,△AE=12(AB+AD),AF=AD,△AF+EF=12(AF+BF+AF),△EF=12BF,△EF=BE,△CE△AB,△△ABC=△BFC,△△ADC+△ABC=180°,△△D=115°,△△B=65°.9.已知在Rt ABC 中,90C ∠=︒,75ABC ∠=︒,5AB =.点E 为边AC 上的动点,点F 为边AB 上的动点,则线段FE EB +的最小值是__________.【答案】52【详解】解:如图作F 点关于AC 的对称点F ',连接A F '并延长交BC 延长线于点B ′,作BD △AB ′于点D ,由对称性可得EF =E F ',由垂线段的性质可得B 到AB ′的最短距离为BD ,△EF +EB =E F '+EB =B F '≥BD ,Rt △ABC 中,△BAC =90°-△ABC =15°,△△BAD =2△BAC =30°,Rt △ABD 中,AB =5,△BDA =90°,△BAD =30°,△BD =52,△线段FE EB +的最小值是52, 故答案为:52; 10.在矩形ABCD 中,AD ,CD 边的中点分别为E ,F ,连接BF ,CE 交于点G ,若2AB =,CG CF =,则BG 的长为______.410 【详解】解:如图,延长AD 交BF 的延长线于M .△AD ,CD 边的中点分别为E ,F ,2AB =,△11122CF DF AB CD ====,AE DE =. △CG CF =,△1CG =.△四边形ABCD 是矩形,△BC AM ∥,BC AD =,△CBF DMF ∠=∠,90BCF MDF ∠=∠=︒. 在BCF △与MDF △中90CBF DMF BCF MDF CF DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,△()BCF MDF AAS ≌,△=BC DM AD =. 设AE DE x ==,则2AD DM BC x ===.△BC EM ,△CBG M ∠=∠,BCG GEM ∠=, △BCG MEG ∽,△CG BC BG EG EM GM==. △1CG =,AE DE x ==,2AD DM BC x ===,△122x EG x x =+,△32EG =, △35122CE EG CG =+=+=,△222253222ED CE CD ⎛⎫=--= ⎪⎝⎭, △23AD BC DM ===,39322EM =+=,△3462AM AE DE DM =++=⨯=, △222226210BM AB AM++△210GM BM BG BG =-=.△BC BG EM GM =,△392102BG -,△410BG = 410 11.如图,已知△AED =△ACB =90°,AC =BC =3,AE =DE =1,点D 在AB 上,连接CE ,点M ,点N 分别为BD ,CE 的中点,则MN 的长为_____.10【详解】解:连接DN 并延长DN 交AC 于F ,连接BF ,如图,△△AED =△ACB =90°,AC =BC =3,AE =DE =1,45EAD EDA BAC ∴∠=∠=∠=︒,DE AC ∴∥,DEN FCN ∴∠=∠,△点N 为CE 的中点,EN NC ∴=,在DEN 和FCN △中,DNE FNC EN NCDEN FCN ∠=∠⎧⎪=⎨⎪∠=∠⎩()DEN FCN ASA ∴△≌△,DE FC DN NF ∴==,,AE FC ∴=,△点M 为BD 的中点,MN ∴是BDF 的中位线,12MN BF ∴=, 45EAD BAC ∠=∠=︒,90EACFCB ∴∠=∠=︒,在CAE 和BCF △中,EAC FCB AE FC ⎪∠=∠⎨⎪=⎩()CAE BCF SAS ∴△≌△,BF CE ∴=,22221111013222MN CE AE AC ∴==++=. 12.如图,已知△ABC 中,AB=AC ,△BAC=90°,分别过B ,C 向经过点A 的直线EF 作垂线,垂足为E ,F .(1)如图1,当EF 与斜边BC 不相交时,请证明EF=BE+CF ;(2)如图2,当EF 与斜边BC 相交时,其他条件不变,写出EF 、BE 、CF 之间的数量关系,并说明理由; (3)如图3,猜想EF 、BE 、CF 之间又存在怎样的数量关系,写出猜想,不必说明理由.【答案】(1)证明见解析;(2) EF= BE -CF ,理由见解析;(3)EF=CF -BE ,理由见解析.【详解】(1)证明:△BE△EA ,CF△AF ,△△BAC=△BEA=△CFE=90°,△△EAB+△CAF=90°,△EBA+△EAB=90°,△△CAF=△EBA ,在△ABE 和△CAF 中,BEA AFC EBA FAC AB AC ===∠∠⎧⎪∠∠⎨⎪⎩△△BEA△△AFC (AAS ), △EA=FC ,BE=AF ,△EF=EA+AF=BE+CF .(2)证明:△BE△EA ,CF△AF ,△△BAC=△BEA=△CFE=90°,△△EAB+△CAF=90°,△ABE+△EAB=90°,△△CAF=△ABE ,在△ABE 和△ACF 中,EBA FAC BEA CFA AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,△△BEA△△AFC (AAS ),△EA=FC ,BE=AF ,△EF=AF -AE ,△EF=BE -CF .(3)EF=CF -BE ,理由是:△BE△EA ,CF△AF ,△△BAC=△BEA=△CFA=90°,△△EAB+△CAF=90°,△ABE+△EAB=90°,△△CAF=△ABE ,在△ABE 和△ACF 中,BEA CFA AB AC ⎪∠∠⎨⎪⎩==,△△BEA△△AFC (AAS ),△EA=FC ,BE=CF ,△EF=EA -AF ,△EF=CF -BE .13.如图①,在四边形ABCD 中,5AB AD ==,53BC CD ==,90B ∠=︒.点M 在边AD 上,2AM =,点N 是边BC 上一动点.以MN 为斜边作Rt MNP △,若点P 在四边形ABCD 的边上,则称点P 是线段MN 的“勾股点”.(1)如图①,线段MN 的中点O 到BC 的距离是______.A 3B .52C .3D .23(2)如图②,当2AP =时,求BN 的长度.(3)是否存在点N ,使线段MN 恰好有两个“勾股点”?若存在,请直接写出BN 的长度或取值范围;若不存在,请说明理由.【答案】(1)C ;(2)33(3)33318【解析】(1)如图1,过点M 作 MQ △AB 交BA 的延长线于点Q ,过点O 作 OE △BC ,垂足为E ,过点M 作MF △BC ,垂足为F ,连接AC ,△AB =AD ,CB =CD ,AC =AC ,5AB AD ==,53BC CD ==90B ∠=︒,AM =2,△△ABC △△ADC ,△△D =△B =90°,AC 225(53)10+=,△△DAC =△BAC =△QAM =60°,△DCA =BCA =△QMA =30°,△△DAC =△BAC =60°,△DCA =BCA =30°,△QA =1,QM 3△MQ △AB ,OE △BC ,90B ∠=︒,△四边形MQBF 是矩形,△MF =QB =AB +QA =5+1=6,,△MF △CB ,OE △BC ,△OE ∥MF ,△NO NE OM EF =, △OM =ON ,△NE =EF ,△OE =12MF =3,故选C .(2)过点M 作MQ △AB 交BA 的延长线于点Q ,△点P 是线段MN 的“勾股点”.△△MPN =90°,△△QPM =△BNP ,△△QPM △△BNP ,△QP QM BN BP =, △33BN =△BN =33 (3)根据(2)得,BN =33P 是线段MN 的“勾股点”.过点N 作NG △DC ,垂足为G ,当DM =DP =3时, 点P 是线段MN 的“勾股点”.△点P 是线段MN 的“勾股点”.△△MPN =90°,△PG =GN ,设BN =x ,则NC =(53x ),根据(2),得△NCG =60°,△PG =GN 3(53)x ,GC =1(53)2x ,3(53)x +1(53)2x =(533),解得x =318, 故当BN =318或33MN 恰好有两个“勾股点”.14.已知ABC ,90,6cm ACB AC BC ∠==︒=,点P 从点A 出发,沿AB 2cm 的速度向终点B 运动,同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,设运动的时间为t 秒.(1)如上左图,若PQ BC ⊥,求t 的值;(2)如上中图,若PQ PC =,求t 的值;(3)如上右图,将PQC △沿BC 翻折至P QC '处,当t 为何值时,四边形QPCP '为菱形?【答案】(1)3t =;(2)2t =;(3)2t = 【解析】(1)解:由题意可得:2AP t =,226662AB +cm BQ t =, 则(622)cm BP AB AP t =-=,△90,ACB PQ BC ︒∠=⊥,△PQ AC ∥, △PQB ACB ∽,△BP BQ BA BC=, 622662t t -=, △3t =.(2)过点P 作PE BC ⊥交BC 于E 点,如图,BQ t =,6CQ t =-, △PQ PC =,△622CQ t QE EC -===, △PE AC ∥,△PEB ACB ∽,△BP BE AB BC=, 66222662t t t -+-=,解得:2t =.(3)如图,连接PP '交CQ 于D ,△四边形QPCP '为菱形,△PP CQ '⊥,CD DQ =,△点Q 的速度是每秒1cm ,△11(8)cm 22CD CQ t ==-, 过点P 作PO AC ⊥于O ,则四边形CDPO 是矩形,△CD OP =,△90,C AC BC ∠=︒=,△ABC 是等腰直角三角形,△45A ∠=︒,△点P 2cm , △22cm PO t t ==, △1(6)2t t -=,解得:2t =.15.图1是边长分别为a 和()b a b >的两个等边三角形纸片ABC 和CDE △叠放在一起(C 与C '重合)的图形.(1)操作:固定ABC ,将CDE △绕点C 按顺时针方向旋转20°,连结AD ,BE ,如图2,则ECA ∠=______度,并直接写出线段BE 与AD 的数量关系____.(2)操作:若将图1中的CDE △,绕点C 按顺时针方向旋转120°,使点B 、C 、D 在同一条直线上,连结AD 、BE ,如图3.①线段BE 与AD 之间是否仍存在(1)中的结论?若是,请证明;若不是,请直接写出BE 与AD 之间的数量关系;②求APB ∠的度数.(3)若将图1中的CDE △,绕点C 按逆时针方向旋转一个角()0360αα<<︒,当α等于多少度时,BCD △的面积最大?请直接写出答案.【答案】(1)40,BE =AD ;(2)①存在,理由见详解;②60°(3)当α=150°或330°时,BCD △的面积最大【解析】(1)△△ABC 和△CDE 是等边三角形,△BC =AC ,CE =CD ,△BCA =60°,△旋转20°△△BCE =△ACD =20°,△△CBE △△CAD (SAS ),△BE =AD (全等三角形的对应边相等),△ECA ∠=△BCA -△BCE△ECA ∠=60°-20°=40°故答案为:40,BE =AD(2)如图1,①(1)中结论仍然成立,理由如下:△△ABC和△CDE是等边三角形,BC=AC,CE=CD,△△BCE=△ACD=120°,△△CBE△△CAD(SAS),△BE=AD;②△△CBE△△CAD,△△CBE=△CAD,又△AOP=△BOC,△△APB=△ACB=60°;(3)如图2,当D运动到D1或D2,即BC△D1D2S△BCD最大12BC CD=⋅12=ab,此时旋转角是60°+90°=150°,或360°﹣30°=330°,△当α=150°或330°.16.知识再现:已知,如图1,四边形ABCD 是正方形,点M 、N 分别在边BC 、CD 上,连接AM 、AN 、MN ,且45MAN ∠=︒,延长CB 至G 使BG DN =,连接AG ,根据三角形全等的知识,我们可以证明MN BM DN =+.(1)知识探究:如图1中,作AH MN ⊥,垂足为点H ,猜想AH 与AB 有什么数量关系?并进行证明.(2)知识运用:如图2,四边形ABCD 是正方形,E 是边BC 的中点,F 为边CD 上一点,2FEC BAE ∠=∠,24AB =,求DF 的长.(3)知识拓展:已知45BAC ∠=︒,AD BC ⊥于点D ,且2BD =,6AD =,求CD 的长.【答案】(1)=AH AB ,证明见解析;(2)8;(3)3CD =【解析】(1)解:=AH AB ,理由如下:△四边形ABCD 是正方形,△AD AB =,=90ABG ADN ∠∠=︒,在ADN △和ABG 中,AD AB ADN ABG DN BG =⎧⎪∠=∠⎨⎪=⎩△()ADN ABG SAS ≌△△,△AG AN =,GAB NAD ∠=∠,△45MAN ∠=︒,90DAB ∠=︒,△45BAM NAD ∠+∠=︒,△45BAM GAB ∠+∠=︒,即45GAM MAN ∠=∠=︒,在GAM △和NAM △中,AG NG GAM MAN AM AM =⎧⎪∠=∠⎨⎪=⎩△()GAM NAM SAS ≌△△,△MN GM =,△GAM NAM =S △△S ,即1122AB GM AH MN =, △=AH AB ,(2)解:作AM EF ⊥交EF 与点M ,连接EF ,如图,设=BAE α∠,则2FEC α∠=,△=90B ∠︒,△=90BEA α∠︒-,△2FEC α∠=,△=90AEM α∠︒-,在ABE △和AME △中,ABE AME AEB AEM AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩△()ABE AME AAS ≌△△,△=BE ME ,=A AB M ,△24AB =,ABCD 为正方形,E 为BC 中点, △==12BE M E ,在Rt AMF △和Rt ADF 中,AD AM AF AF =⎧⎨=⎩△()AMF ADF HL ≌△△,△DF MF =,设DF x =,则24CF x =-,12EF x =+,△222EF CF EC =+,即()()222122412x x +=-+,解之得:8x =, △8DF =,(3)方法1、解:由题意可知:22210AB AD BD =+=作CE AB ⊥交AB 于点E ,如图,设CD a =,则236AC a =+△45BAC ∠=︒,236AC a =+△2362a AE EC += △()2113662=210222a a +⨯⨯+=12a -(舍去),=3a ,△3CD = 方法2、解:对比图1和图3可以发现当6AH AD ==,2BD MH ==,45BAC MAN ∠=∠=︒,CD NH =, 由(1)可知:AH AB =, 在Rt ABM 和Rt AHM 中,AM AM AB AH =⎧⎨=⎩△()ABM AHM HL △≌△, △2BM MH ==,△624MC =-=,同理可得:()AHN ADN HL △≌△, △DN HN =,设=DN HN x =,则6NC x =-,2MN x =+,△222NC MC MN +=,即()()222642x x -+=+,解之得3x =△=3CD NH。
专题02 全等三角形模型解题九年级数学中考复习专题训练模型解题高分攻略(教师版)
专题二全等三角形模型解题解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.解题模型二对称模型针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.图示:图示:4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.5.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.6.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.解题模型三旋转模型针对训练8.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.10.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.图示:12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.14.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.15.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.图示:16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.图示:解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.图示:解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【点睛】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应角相等.解题模型二对称模型图示:针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【点睛】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应角相等,对应边相等.图示:3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用S AS证明△ADE≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS).∴∠A=∠C(全等三角形对应角相等).【点睛】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.【分析】由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.【点睛】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.5.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.【分析】由∠ABC=∠ACB可得AB=AC,又点D、E分别是AB、AC的中点.得到AD=AE,通过△ABE≌△ACD,即可得到结果.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,熟记定理是解题的关键.6.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF.∴BF=CE.在△ABF和△DCE中,[来源:]∴△ABF≌△DCE(SAS).∴∠GEF=∠GFE.∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO 与△CDO全等,所以有OB=OC.【点睛】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=75°.【分析】(1)要证明△ABE≌△ACF,由题意可得AB=AC,∠B=∠ACF,BE=CF,从而可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质可以求得∠ADC的度数.【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.¥解题模型三旋转模型针对训练9.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,图示:,∴△ABC≌△EDC(ASA).【点睛】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.10.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【分析】(1)根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论;(2)根据∠ACD=90°,AC=CD,得到∠2=∠D=45°,根据等腰三角形的性质得到∠4=∠6=67.5°,由平角的定义得到∠DEC=180°﹣∠6=112.5°.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.【分析】利用“边角边”证明△ACD和△BCE全等,可得可得∠CAE=∠CBD,根据“八字型”证明∠AOP=∠PCB=60°即可.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B.∵CE=BF,图示:∴CF=BE.又∵CD=AB,∴△CDF≌△BAE(SAS).∴DF=AE.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.14.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.[来源:Z|xx|]【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【点睛】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.15.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【点睛】本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是SSS证明△ACE≌△BDF.16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C.在△ABE与△CDF中,,∴△ABE≌△CDF(ASA).(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD.∵EG=5,∴CD=10.∵△ABE≌△CDF,∴AB=CD=10.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【点睛】本题主要考查了角平分线的性质和全等三角形的性质及判定,利用图形写出已知条件和求证是解图示:答此题的关键.解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.【分析】先证明∠BCE=∠CAD,再证明△ADC≌△CEB,可得到AD=CE,DC=EB,等量代换,可得出DE=AD+BE.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明两线段的和等于一条线段常常借助三角形全等来证明,要注意运用这种方法图示:19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【分析】分析图可知,全等三角形为:△ACD≌△CBE.根据这两个三角形中的数量关系选择ASA证明全等.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
人教版数学八年级上册:第十二章《全等三角形》专题练习
第十二章《全等三角形》专题练习专题1证明三角形全等的解题思路思路一:找边边相等呈现的方式:①公共边(包括全部公共和部分公共);②中点.类型1已知两边对应相等,找第三边相等1.如图,已知AB=DE,AD=EC,D是BC的中点,求证:△ABD≌△EDC.类型2已知两角对应相等,找夹边相等2.如图,∠ABD=∠CDB,∠ADB=∠DBC,求证:△ABD≌△CDB.类型3已知两角对应相等,找其中一角的对边相等3.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF 的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?类型4已知直角三角形的直角边(或斜边)相等,找斜边(或直角边)相等4.如图,∠A=∠D=90°,AB=DF,BE=CF.求证:△ABC≌△DFE.思路二:找角角相等呈现的方式:①公共角;②对顶角;③角平分线;④垂直;⑤平行.类型5已知两边对应相等,找夹角相等5.如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:△ABC≌△ADE.6.如图,已知AD=AE,AB=AC,求证:△ABE≌△ACD.7.如图,已知AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.类型6已知一边一角对应相等,找另一角相等8.如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE,求证:△ABC≌△DAE.9.如图,已知∠BDC=∠CEB=90°,BE,CD交于点O,且AO平分∠BAC,求证:(1)△ADO≌△AEO;(2)△BDO≌△CEO.专题2全等三角形的基本模型类型1平移模型1.如图,AC=DF,AD=BE,BC=EF.求证:(1)△ABC≌△DEF;(2)AC∥DF.类型2对称模型2.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F,求证:∠A=∠D.3.如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:BE=CD.4.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.类型3旋转模型5.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.求证:BC=DE.6.如图,四边形ABCD的对角线相交于点O,AB∥CD,O是BD的中点.(1)求证:△ABO≌△CDO;(2)若BC=AC=4,BD=6,求△BOC的周长.类型4一线三等角模型7.如图,AD⊥AB于点A,BE⊥AB于点B,点C在AB上,且CD⊥CE,CD=CE.求证:AD=CB.类型5综合模型平移+旋转模型:平移+对称模型:8.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.小专题3构造全等三角形的常用方法方法1利用“角平分线”构造全等三角形因角平分线本身已经具备全等的三个条件中的两个(角相等和公共边相等),故在处理角平分线问题时,常作以下辅助线构造全等三角形:(1)在角的两边截取两条相等的线段;(2)过角平分线上一点作角两边的垂线段.1.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,求证:PM=PN.【拓展1】OM+ON的值是否为定值?请说明理由.【拓展2】四边形PMON的面积是否为定值?请说明理由.方法2利用“截长补短法”构造全等三角形截长补短法的具体做法:在某一条线段上截取一条线段与特定线段相等,或将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种方法适用于证明线段的和、差、倍、分等题目.2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD.3.如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.点E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG.先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由.方法3利用“倍长中线法”构造全等三角形将中线延长一倍,然后利用“SAS”判定三角形全等.4.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM.方法4利用“三垂直”构造全等三角形如图,若AB=AC,AB⊥AC,则可过斜边的两端点B,C向过A点的直线作垂线构造△ABD≌△CAE.在平面直角坐标系中,过顶点A的直线常为x轴或y轴.5.已知在△ABC中,∠BAC=90°,AB=AC,将△ABC放在平面直角坐标系中,如图所示.(1)如图1,若A(1,0),B(0,3),求C点坐标;(2)如图2,若A(1,3),B(-1,0),求C点坐标;(3)如图3,若B(-4,0),C(0,-1),求A点坐标.参考答案专题1 证明三角形全等的解题思路1.证明:∵D 是BC 的中点,∴BD =CD.在△ABD 和△EDC 中,⎩⎪⎨⎪⎧AB =ED ,AD =EC ,BD =DC ,∴△ABD ≌△EDC(SSS ).2.证明:在△ABD 和△CDB 中,⎩⎪⎨⎪⎧∠ABD =∠CDB ,BD =DB ,∠ADB =∠CBD ,∴△ABD ≌△CDB(ASA ).3.解:全等.理由:∵两三角形纸板完全相同,∴BC =BF ,AB =BD ,∠A =∠D.∴AB -BF =BD -BC ,即AF =DC.在△AOF 和△DOC 中,⎩⎪⎨⎪⎧∠A =∠D ,∠AOF =∠DOC ,AF =DC ,∴△AOF ≌△DOC(AAS ).4.证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF.在Rt △ABC 和Rt △DFE 中,⎩⎪⎨⎪⎧AB =DF ,BC =FE ,∴Rt △ABC ≌Rt △DFE(HL ).5.证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC.∴∠BAC =∠DAE.在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS ).6.证明:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AE =AD ,∠A =∠A ,AB =AC ,∴△ABE ≌△ACD(SAS ).7.证明:∵AD 是△ABC 的中线,∴BD =CD.在△ACD 和△EBD 中,⎩⎪⎨⎪⎧CD =BD ,∠ADC =∠EDB ,DA =DE ,∴△ACD ≌△EBD(SAS ).8.证明:∵DE ∥AB ,∴∠CAB =∠EDA.在△ABC 和△DAE 中,⎩⎪⎨⎪⎧∠CAB =∠EDA ,AB =DA ,∠B =∠DAE ,∴△ABC ≌△DAE(ASA ).9.证明:(1)∵AO 平分∠BAC ,∴∠DAO =∠EAO.∵∠BDC =∠CEB =90°,∴∠ADO =∠AEO.在△ADO 和△AEO 中,⎩⎪⎨⎪⎧∠ADO =∠AEO ,∠DAO =∠EAO ,AO =AO ,∴△ADO ≌△AEO(AAS ).(2)∵△ADO ≌△AEO ,∴DO =EO.在△BDO 和△CEO 中,⎩⎪⎨⎪⎧∠BDO =∠CEO ,DO =EO ,∠DOB =∠EOC ,∴△BDO ≌△CEO(ASA ).小专题2 全等三角形的基本模型1.证明:(1)∵AD =BE ,∴AD +DB =BE +DB ,即AB =DE.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF(SSS ).(2)∵△ABC ≌△DEF ,∴∠A =∠EDF.∴AC ∥DF.2.证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =FE.在△ABC 和△DFE 中,⎩⎪⎨⎪⎧AB =DF ,∠B =∠F ,BC =FE ,∴△ABC ≌△DFE(SAS ).∴∠A =∠D.3.证明:在△AEB 和△ADC 中,⎩⎪⎨⎪⎧AE =AD ,∠A =∠A ,AB =AC ,∴△AEB ≌△ADC(SAS ).∴BE =CD.4.解:添加∠BAC =∠DAC(答案不唯一),理由:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(AAS ).5.证明:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD.∴∠BAC =∠DAE.在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS ).∴BC =DE.6.解:(1)证明:∵AB ∥CD ,∴∠BAO =∠DCO ,∠ABO =∠CDO.∵O 是DB 的中点,∴BO =DO.在△ABO 和△CDO 中,⎩⎪⎨⎪⎧∠BAO =∠DCO ,∠ABO =∠CDO ,BO =DO ,∴△ABO ≌△CDO(AAS ).(2)∵△ABO ≌△CDO ,∴AO =CO =12AC =2. ∵BO =12BD =3, ∴△BOC 的周长为BC +BO +OC =4+3+2=9.7.证明:∵AD ⊥AB ,BE ⊥AB ,∴∠A =∠B =90°.∴∠D +∠ACD =90°.∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°.∴∠D =∠BCE.在△ACD 和△BEC 中,⎩⎪⎨⎪⎧∠A =∠B ,∠D =∠BCE ,CD =EC ,∴△ACD ≌△BEC(AAS ).∴AD =CB.8.解:(1)证明:在△ABC 和△DFE 中,⎩⎪⎨⎪⎧AB =DF ,∠A =∠D ,AC =DE ,∴△ABC ≌△DFE(SAS ).∴∠ACB =∠DEF.∴AC ∥DE.(2)∵△ABC ≌△DFE ,∴BC =EF.∴BE =CF =12(BF -EC)=4.∴BC =BE +EC =9.专题3 构造全等三角形的常用方法1.证明:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∴∠PEO =∠PFO =90°.∴∠EPF +∠AOB =180°.∵∠MPN +∠AOB =180°,∴∠EPF =∠MPN.∴∠EPM =∠FPN.∵OP 平分∠AOB ,PE ⊥OA ,PF ⊥OB ,∴PE =PF.在△PEM 和△PFN 中,⎩⎪⎨⎪⎧∠EPM =∠FPN ,PE =PF ,∠PEM =∠PFN ,∴△PEM ≌△PFN(ASA ).∴PM =PN.【拓展1】 解:OM +ON 的值是定值.理由:∵△PEM ≌△PFN ,∴ME =NF.易证△EPO ≌△FPO ,∴OE =OF.∴OM +ON =OE +EM +ON =OE +NF +ON =OE +OF =2OE =定值.【拓展2】 解:四边形PMON 的面积是定值.理由:∵△PEM ≌△PFN ,∴S △PEM =S △PFN .∴S 四边形PMON =S 四边形PEOF =定值.2.证明:在BC 上截取BF =AB ,连接EF.∵BE 平分∠ABC ,CE 平分∠BCD ,∴∠ABE =∠FBE ,∠FCE =∠DCE.在△ABE 和△FBE 中,⎩⎪⎨⎪⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,∴△ABE ≌△FBE(SAS ).∴∠A =∠BFE.∵AB ∥CD ,∴∠A +∠D =180°.∴∠BFE +∠D =180°.∵∠BFE +∠CFE =180°,∴∠CFE =∠D.在△FCE 和△DCE 中,⎩⎪⎨⎪⎧∠CFE =∠D ,∠FCE =∠DCE ,CE =CE ,∴△FCE ≌△DCE(AAS ).∴CF =CD.∴BC =BF +CF =AB +CD.3.(1)EF =BE +DF ;(2)解:EF =BE +DF 仍然成立.理由:延长FD 到G ,使DG =BE ,连接AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG.在△ABE 和△ADG 中,⎩⎪⎨⎪⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ).∴AE =AG ,∠BAE =∠DAG.∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF.在△AEF 和△AGF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG.∵FG =DG +DF =BE +DF ,∴EF =BE +DF.4.证明:延长AM 至N ,使MN =AM ,连接BN.∵点M 为BC 的中点,∴BM =CM.在△AMC 和△NMB 中,⎩⎪⎨⎪⎧AM =NM ,∠CMA =∠BMN ,CM =BM ,∴△AMC ≌△NMB(SAS ).∴AC =BN =AD ,∠C =∠NBM ,∠ABN =∠ABC +∠NBM =∠ABC +∠C =180°-∠BAC =∠EAD.在△ABN 和△EAD 中,⎩⎪⎨⎪⎧AB =EA ,∠ABN =∠EAD ,BN =AD ,∴△ABN ≌△EAD(SAS ).∴DE =NA =2AM.5.解:(1)过点C 作CD ⊥x 轴,垂足为D.则∠CAD +∠ACD =90°.∵∠BAC =90°,∴∠BAO +∠CAD =90°.∴∠BAO =∠ACD.在△ABO 和△CAD 中,⎩⎪⎨⎪⎧∠AOB =∠CDA ,∠BAO =∠ACD ,AB =CA ,∴△ABO ≌△CAD(AAS ).∴BO =AD ,OA =CD.∵A(1,0),B(0,3),∴OA =1,OB =3.∴AD =3,CD =1.∴OD =OA +AD =4.∴C(4,1).(2)过点A 作AD ⊥x 轴,垂足为D ,过点C 作CE ⊥AD ,垂足为E.同(1)可证△ACE ≌△BAD , ∴AE =BD ,CE =AD.∵A(1,3),B(-1,0),∴BD =2,AD =3.∴CE =3,DE =AD -AE =1.∴C(4,1).(3)过点A 作AD ⊥x 轴,AE ⊥y 轴,垂足分别为D ,E. 同(1)可证△BAD ≌△CAE ,∴CE =BD ,AE =AD.∵B(-4,0),C(0,-1),∴OB =4,OC =1.∴AE =OB -BD =OB -CE =OB -(OC +OE)=3-AE.∴AE =32. ∴A(-32,32).。
全等三角形的六种模型全梳理(学生版)--初中数学专题训练
全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
全等三角形模型总结及经典练习题
全等三角形模型及习题练习第一部分全等模型图一、平移模型特征:可看成是三角形在一边所在直线上移动构成的,故在同一直线上的对应边的相等关系一般可由加(减)公共边证得,对应角的相等关系可由平行线的性质证得。
二、平行模型(X型)特征:平行线所形成的同位角、内错角相等三、折叠轴对称模型(翻转型,部分X型)特征:图形关于某一条直线对称,则这条直线两边的部分能完全重合,重合的顶点就是全等三角形的对应点。
图①中有公共角∠A;图②中对顶角相等(∠AOC=∠BOD);图③④中分别有公共边AB,BD四、旋转模型特征:可看成是以三角形某一个顶点为中心旋转构成的,故一般有一对相等的角隐含在对顶角、某些角的和或差中五、角平分线模型旋转有重叠特征:角平分线形成的两个角相等,若把角平分线看成一条公共边,在角的两边再截取相等的线段,就可根据SAS得到全等三角形(如图①,ΔA1BD1≌ΔC1BD1),或者利用角平分线上的点到角两边的距离相等找到一组相等的边,就可根据HL得到全等三角形(如图②,ΔA2BD2≌ΔC2BD2)六、双直角三角形模型特征:证明多数可以用到同(等)角的余角相等这个定理,相等的角就是对应角七、一线三等角模型(K型)特征:如图①,,三个等角指的是α(图②中,α=90°),利用外角定理可证得∠1=∠2或∠3=∠4第二部分精选例题例1.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM 交DA的延长线上于E.交BC于N,求证:AE=CN.思路分析:欲证AE=CN.看它们在哪两个三角形中,设法证这两个三角形全等即可.结合图形可发现△AME≌△FCN可证.题设告知AM=CF,AD∥BC,AB∥CD.由两平行条件,可找两对角相等.∵∠1=∠2(对顶角相等)∴∠2=∠E(等量代换)∴AE=CN (全等三角形的对应边相等)例2.△ABC中,∠ACB=90°,AC=BC,过C的一条直线CE⊥AE于E,BD⊥CE的延长线于D,求证:AE=BD+DE.思路分析:从本例的结论知是求线段和的问题,由此入手,很难找到突破口.此时可迅速调整思维角度,可仔细观察图形,正确的图形是证题的“向导”,由此可发现△ACE与△CBD好像(猜测)全等.那么AE=CD=CE+DE.又BD=CE.那么,此时已水落石出.AC=BC(已知)∠1=∠3 (已证)∠AEC=∠CDB(已证)∴△ACE≌△CBD(AAS)∴BD=CE,AE=CD(全等三角形的对应边相等)∵AE=CE=CE+DE∴AE=BD+DE(等量代换)例3.如图,AD是△ABC的中线,DE,DF分别平分∠ADB和∠ADC,连接EF,求证:EF<BE+CF. 定对象:△ABC定角度:三角形全等分析:由结论EF<BE+CF很容易与定理“三角形两边之和大于第三边”联系在一块,观察图形,BE,CF,EF 条件分散,不在一个三角形中,必须设法(平移,旋转,翻转等)把三者集中在一个三角形中,是打开本例思路的关键.由角的平分线这一线索,可将△BDE沿角平分线翻转180°,即B点落在AD的点B'上(如图)(也就是在DA上截取DB'=BD),连结EB',B'F,此时△BDE与△B'DE完全重合,所以△BDE≌△B'DE(两个三角形能够完全重合就是全等三角形,所以BE=B'E(全等三角形的对应边相等).在△EFB'中,EF<B'E+B'F(三角形的两边之和大于第三边).∴EF<BE+CF(等量代换).例4 如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长.定对象:如图定角度:三角形全等分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD 和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.例5已知:如图,△ABC≌△ADE,BC的延长线交DA于F,交 DE于G,∠ACB=105°,∠CAD=10°,∠D=25°.求∠EAC,∠DFB,∠DGB的度数.例6.在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=20 cm,则△DBE的周长等于多少?分析:对象:△DBE的周长角度:(1)BD,DE,BE的长解:因为DE⊥AB,所以AED ACD∠=∠因为AD是∠BAC的平分线,所以EAD CAD≅则AE=AC ∠=∠又因为AD为公共边所以AED ACD DE=DC所以△DBE的周长=BE+DE+BD=AB-AE+BC=20例7如图13—3—8所示,已知在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:EF⊥AD.分析:对象:△ABC 角度:(1)AD是∠BAC的平分线,(2)DE⊥AB于E,DF⊥AC于F证明:因为DE⊥AB于E,DF⊥AC于F,所以0∠=∠=又因AED AFD90为AD是∠BAC的平分线,所以EAD FAD∠=∠由于AD是公共边所以AED AFD≅则AE=AF 因为AD是∠BAC的平分线所以EF⊥AD。
微专题 全等三角形的六种基本模型-2024年中考数学复习
21
全等三角形的六种基本模型
模型应用
8.如图17, △ 是边长为1的等边三角形, = ,
∠ = 120∘ ,点 , 分别在 , 上,且
∠ = 60∘ .求 △ 的周长.
提示:如图16,延长 至点 ,使 = ,连接 .
图6
= ,
在 △ 和 △ 中, ቐ∠ = ∠, ∴ △≌△ SAS .
= ,
∠ = ∠ = 50∘ .
7
全等三角形的六种基本模型
模型三 旋转型
模型剖析
如图7,将三角形绕着公共顶
点旋转一定角度后,两个三角形能
够完全重合,这两个三角形称为旋
图3
在 △ 和△ 中, ∵ ∠ = ∠ , ∠ = ∠ , = ,
∴ △ ≌ △ AAS .
∴ = .
4
全等三角形的六种基本模型
模型二 对称型
模型剖析
如图4、图5,将所给图形沿某一条直线折叠后,直线两旁的部分能
够完全重合,这两个三角形称为对称型全等三角形,其中重合的顶点就
= , ∴ △ ≌ △ SAS . ∴ = ,
图17
图16
22
全等三角形的六种基本模型
∠ = ∠. ∵ ∠ = 120∘ , ∠ = 60∘ , ∴ ∠ +
∠ = 60∘ . ∴ ∠ + ∠ = 60∘ . ∴ ∠ = ∠ =
∴ ∠ = ∠ + ∠ = 110∘ .
∴ ∠ = ∠ .
= ,
图9
在 △ 和 △ 中, ቐ∠ = ∠ , ∴ △ ≌ △ .
= ,
∴ = .
11
全等三角形的六种基本模型
第十三章 全等三角形 5.专项二 全等三角形的常见模型强化练
专项二 全等三角形的常见模型强化练
4. 新定义型阅读理解题 阅读材料,回答下列问题.筝形的定义:两组邻边 分别相等的四边形叫做筝形,几何图形的定义通常可作为图形的性质也可以作 为图形的判定方法.也就是说,如图,若四边形 ABCD 是一个筝形,则 DA=DC ,BA=BC;若 DA=DC,BA=BC,则四边形 ABCD 是筝形.如图,四边形 ABCD 是 一个筝形,其中 DA=DC,BA=BC.对角线 AC,BD 相交于点 O,过点 O 作 OE⊥AB,OF⊥BC,垂足分别为 E,F,求证:四边形 BEOF 是筝形.
专项二 全等三角形的常见模型强化练
解:(1)证明:∵AB⊥DC,∴∠ABC=∠DBE=90°,在△ABC 和△DBE 中, AB=DB,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE(SAS),∴DE=AC;
(2)题图 2:由平移变换知 EF⊥BC,EF=BC,DF=AB. ∴∠ABC=∠DFE=90°.在△DFE 和△ABC 中,EF=CB,∠DFE=∠ABC,DF=AB, ∴△DFE≌△ABC(SAS),∴DE=AC.故在题图 2 中的结论仍然成立.题图3,4 中 可类似地推证出(1)的结论也成立.
专项二 全等三角形的常见模型强化练
解决图形变换问题需要抓住的三个特点:(1)变化前后的结论及说理过程对 变化前后的结论起到重要的作用;(2)在图形变化前后,明确哪些关系发生变化 ,哪些关系没有发生变化,变化前的等角、等线段在变化后是否还存在;(3)几 种变化图形之间,说理思路存在内在联系,变化后的说理思路可模仿与借鉴变化 前的结论与过程.变化后的结论有时发生变化,有时不发生变化.
ቤተ መጻሕፍቲ ባይዱ 专项二 全等三角形的常见模型强化练
解:(2)AF∥CD,理由如下:如图,作 AG⊥BF 于点 G,AH⊥CE 于点 H,由(1)知△ABD≌△ACE,∴ 易知 AG=AH.∵∠AGF=∠AHF=90°,AF=AF, 又易知∠HAF=∠AFD,∴△AGF≌△FHA;∴AG=HF,∴AH=HF,∴ 易知 ∠HFA=45°,∴∠AFD=45°,∵∠BDC=135°,∴∠FDC=45°,∴∠AFD=∠FDC, ∴AF∥CD.
专题 全等三角形常见的基本模型(6大题型提分练)(原卷版)_1
八年级上册数学《第1章三角形的初步认识》专题全等三角形常见的基本模型平移模型展示沿同一直线 (BC) 平移可得两三角形重合 (BE=CF)1.(2024•荔湾区一模)如图,点E,C在线段BF上,BE=FC,∠A=∠D,∠ACB=∠DEF.求证:△ABC≌△DFE.2.已知:如图,点E是AC的中点,BA⊥AC于A,DE⊥AC于E,⊥B=⊥D,求证:BE=DC.3.(2023秋•枣阳市期末)如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.求证:AC=DF.4.(2023春•埇桥区期末)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.试说明:(1)△ABC≌△DEF;(2)∠A=∠EGC.5.已知:如图,点B,E,C,F有同一直线l,AB⊥DE,且AB=DE,BE=CF,试判断线段AC与DF的数量关系以及位置关系.并证明.6.如图,点B,E,C,F在一条直线上,AC与DE相交于点O,AB=DE,AB∥DE,BE=CF.(1)求证:AC∥DF;(2)若∠B=65°,∠F=35°,求∠EOC的度数.7.如图,A、D、B、E四点在同一条直线上,AD=BE,BC∥EF,BC=EF.(1)求证:AC=DF;(2)若CD为∠ACB的平分线,∠A=25°,∠E=71°,求∠CDF的度数.对称模型展示有公共边:有公共顶点:所给图形沿公共边所在直线或者经过公共顶点的某条直线折叠,两个三角形完全重合. 1.(2024春•秦都区校级月考)如图,在△ABC和△AED中,AB=AE,AC=AD,∠BAD=∠EAC,求证:2.(2023•越秀区校级二模)已知:如图,DB⊥AB,DC⊥AC,∠1=∠2.求证:AD平分∠BAC.3.(2023春•桑植县期末)如图,∠A=∠D=90°,点B,E,F,C在同一直线上,AB=CD,BE=CF,求证:∠B=∠C.4.(2024•碑林区校级模拟)如图.已知△ABC中,AB=AC,点D、E分别是边AB、AC上的中点,连接求证:BE=CD.5.(2024春•碑林区校级期末)如图,在△ABC中,AB=AC,过点A作DE∥BC,且AD=AE,连接BD,CE.试说明:BD=CE.6.(2024春•碑林区校级月考)如图,已知∠C=∠E,AC=AE,∠CAD=∠EAB.求证:∠ABD=∠ADB.7.(2024•凉州区校级三模)如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且OB=OC.求证:AO平分∠BAC.8.(2023春•明水县期中)如图,在△ABE和△ACF中,∠E=∠F=90°,∠B=∠C,BE=CF.求证:(1)∠1=∠2.(2)CM=BN.旋转模型展示绕公共顶点旋转可得两个三角形重合.1.(2024•海珠区校级二模)如图,AD=AB,∠D=∠B,∠EAC=∠DAB,求证:AE=AC.2.(2023•大连)如图,在△ABC和△ADE中,延长BC交DE于F.BC=DE,AC=AE,∠ACF+∠AED =180°.求证:AB=AD.3.如图,在⊥ABC和⊥ADE中,AB=AC,AD=AE,⊥BAD=⊥CAE.求证:⊥ABD=⊥ACE.4.(2024•阎良区校级二模)如图,点E在△ABC外部,点D在BC边上,若∠1=∠2,∠E=∠C,AE=AC,求证:AB=AD.5.(2024•长沙)如图,点C在线段AD上,AB=AD,∠B=∠D,BC=DE.(1)求证:△ABC≌△ADE;(2)若∠BAC=60°,求∠ACE的度数.6.(2023•宜兴市二模)如图,△ABC和△CDE均为等腰三角形,AC=BC,CD=CE,∠ACB=∠DCE,点D在线段AB上(与A,B不重合),连接BE.(1)证明:△ACD≌△BCE.(2)若BD=3,BE=7,求AB的长.7.(2024•杭州三模)如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB;(2)如果∠BDC=75°,求∠ADB的度数.8.(2032秋•大同月考)已知△ABC和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,AE与BD交于点F.(1)如图1.当α=90°时.求证:①△ACE≌△BCD;②AE⊥BD;(2)如图2.当α=60°时,直接写出∠AFB的度数为;(3)如图3,直接写出∠AFD的度数为(用含α的式子表示).题型四旋转不共顶点模型1.(2024•泸州校级二模)如图AE=BD,AC=DF,BC=EF,求证:EF∥BC.2.(2024•江阳区校级三模)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AB的两侧,且AE=BF,∠A=∠B,∠ACE=∠BDF.求证:△ADE≌△BCF.3.(2023秋•翠屏区期末)小明和小亮准备用所学数学知识测一池塘的长度,经过实地测量,绘制如下图,点B、F、C、E在直线l上(点F、C之间的距离为池塘的长度),点A、D在直线l的异侧,且AB∥DE,旋转模型展示∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=120m,BF=38m,求池塘FC的长度.4.(2023春•连平县期末)已知:如图,A、C、F、D在同一直线上,AF=DC,AB∥DE,AB=DE,求证:(1)△ABC≌△DEF;(2)BC∥EF.5.(2023秋•大化县月考)如图,A、E、F、C四点在同一直线上,AE=CF,过E、F分别作BE⊥AC,DF ⊥AC,且AB=CD.求证:(1)AB∥CD;(2)BD平分EF.6.(2023春•碑林区校级期末)如图,点A,E,F,C在同一条直线上,AF=CE,BE=FD,∠AEB=∠CFD.(1)求证:△AEB≌△CFD;(2)若DF=CF,∠ABE=20°,∠DAC=30°,求∠ADC的度数.7.如图所示,点A、E、F、C在一条直线上,AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,且AB=CD.(1)如图⊥所示,若EF与BD相交于点G,则EG与FG相等吗?试说明理由.(2)如图⊥所示,若将⊥DEC的边EC沿AC方向移动至图中所示位置时,其余条件不变,(1)中结论是否还能成立?请说明理由.题型五三垂直模型已知 A , B , C 三点共线,且∠1=∠2=∠3=90°.1.(2023春•钢城区期末)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.2.(2023秋•江州区期末)课间,小明拿着老师的等腰三角板玩,不小心掉在两墙之间,如图所示.(1)求证:△ADC≌△CEB;三垂直模型展示(2)已知DE=49cm,请你帮小明求出砌墙砖块的厚度a的大小和墙AD的高(每块砖的厚度都为a cm).3.(2023春•横山区期末)如图,⊥ABC=90°,F A⊥AB于点A,点D在直线AB上,AD=BC,AF=BD.(1)如图1,若点D在线段AB上,判断DF与DC的数量关系和位置关系,并说明理由;(2)如图2,若点D在线段AB的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.4.如图,AB=BC,AD=DE,且AB⊥BC,AD⊥DE,又CG⊥BD的延长线于点G,EF⊥BD交BD的延长线于点F.求证:CG+EF=BD.5.如图,在⊥ABC中,⊥ACB=90°,AC=BC,直线MN过点C,且AD⊥MN于点D,BE⊥MN于点E,在MN绕点C旋转过程中,以上关系保持不变(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2位置时,DE、AD、BE三者之间有怎样的等量关系,证明你的结论;(3)当直线MN绕点C旋转到图3位置时,试问:DE、AD、BE三者之间又有怎样的等量关系?请直接写出结论.6.(2023秋•邓州市期中)已知∠ABC=90°,D是直线AB上的点,AD=BC,作F A⊥AB于点A,且AF =BD,连结DC、DF.(1)自主探究:如图1,当点D在线段AB上,点F在点A右侧时,DF与DC的数量关系为,位置关系为;(2)思考拓展:如图2,当点D在线段AB的延长线上,点F在点A的左侧时,(1)中的结论还成立吗?请说明理由;(3)能力提升:当点D在线段BA的延长线上,点F在点A的侧时,(1)中的两个结论依然成立,若此时BC=2,AB=1,则AF的长度为.7.(203秋•阳信县期中)在△ABO中,∠AOB=90°,AO=BO,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D(1)当直线MN绕点O旋转到图①的位置时,求证:CD=AC+BD;(2)当直线MN绕点O旋转到图②的位置时,求证:CD=AC﹣BD;(3)当直线MN绕点O旋转到图③的位置时,试问:CD、AC、BD有怎样的等量关系?请写出这个等量关系,并加以证明.一线三等角模型展示(1)点P在线段AB上:(2)点P 在线段AB 的延长线上:已知A , P , B 三点共线,且∠1=∠2=∠3 .1.(2023•碑林区一模)如图,在△ABC中,AC=BC,∠A=∠B,D、E分别为AB、BC上一点,∠CDE=∠A.若BC=BD,求证:CD=DE.2.(1)课本习题回放:如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长.(2)探索证明:如图②,点B、C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.3.(2023春•宽甸县期中)已知:CD是经过∠BCA顶点C的一条直线,CA=CB,点E、F分别是直线CD 上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,如图1,若∠BCA=90°,∠a=90°,则BE与CF的数量关系是.(2)如图2,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想:.并说明理由.4.(1)如图1,直线m经过等腰直角△ABC的顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别为D、E,求证:BD+CE=DE;(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点D,E,使∠ADB=∠AEC=α,补充∠BAC=(用α表示),线段BD,CE与DE之间满足BD+CE=DE,补充条件后并证明;(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC=(用α表示).通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.5.问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为3,则△ACF与△BDE的面积之和为.6.(2023春•平阴县期末)已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,∠BDA=∠AEC =∠BAC.(1)如图①,若AB⊥AC,则BD与AE的数量关系为,BD,CE与DE的数量关系为.(2)如图②,当AB不垂直于AC时,(1)中的结论是否成立?请说明理由.(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,DE=10cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t与x的值;若不存在,请说明理由.7.(2024春•温江区校级期末)【模型熟悉】(1)如图1,已知△ABC和△DCE,点B、C、E在一条直线上,且∠B=∠ACD=∠E,AC=CD,求证:BC=DE;【模型运用】(2)如图2,在等边△ABC中,M、N分别为BC,AB边上的点,且ND=NM,∠DNM=60°,连接AD.若∠DAN=30°,求证:CM=2BN;【能力提升】(3)如图3,等边△ABC的面积是25,AB=6,点D、F分别为AC、BC边上的动点,AD=2CF,连接DF,以DF为边在△ABC内作等边△DEF,连接BE,当点D从点A运动到点C,请在图3中作出点E 的运动轨迹,并求出点E的运动路程.。
全等模型(2)手拉手模型 练习题(带答案
, ,
2. 如图,点 , , 在同一直线上,在这条直线同侧作等边
,交点为 , 交 于点 , 交 于点 .连接 、
.②
≌
.③
.④
在横线上:
.
和等边
,连接 和
,有 个结论:①
≌
.请将所有正确结论的序号填
2
【答案】 ①②④
【解析】 ①
和
中, ,
∴ ②在 ∴ 在
≌
,故①正确.
中,
为等边三角形.
和
中,
,
∴
≌
( 2 )延长 与 交于点 试求
的度数.
【答案】( 1 ) (2)
. .
【解析】( 1 )
,理由如下:
∵等腰
,等腰
,
∴
,
,
在
和
中,
,
∴
≌
,
∴
.
( 2 )∵
≌
,
∴
,
∴
∴
∴
.
【标注】【知识点】全等三角形的对应边与角
, ,
5. 如图甲,在
中,
的右侧作等腰直角三角形
为锐角,点 为射线
,
,
上一动点,连接 ,以 .解答下列问题:
的大小是否发生变化.若不变请求出
3
【答案】( 1 ) (2)
【解析】( 1 ) ∵ ∴ ∴
(2) ∵ ∴
∴ ∴ 在
∴ ∴ ∴
. ,不发生变化.
;理由:
和
是等边三角形,
,
.
,不发生变化;理由如下:
是等边三角形,
是等边三角形,
,
,
.
,
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专项练习(二)全等三角形的基本模型►基本模型一平移模型
常见的平移模型:
图2-ZT-1
1.如图2-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=D B.
求证:∠A=∠E.
图2-ZT-2
2.如图2-ZT-3,点A,B,C,D在一条直线上,AB=CD,AE∥BF,CE∥DF.
求证:AE=BF.
图2-ZT-3
►基本模型二轴对称模型
常见的轴对称模型:
图2-ZT-4
3.如图2-ZT-5,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.
图2-ZT-5
4.如图2-ZT-6,BD⊥AC于点D,CE⊥AB于点E,AD=AE.
求证:BE=CD.
图2-ZT-6
5.如图2-ZT-7,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF.
求证:DE=CF.
图2-ZT-7
6.如图2-ZT-8,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.
图2-ZT-8
►基本模型三旋转模型
常见的旋转模型:
图2-ZT-9
7.如图2-ZT-10,O是线段AB和线段CD的中点.求证:(1)△A OD≌△BOC;
(2)AD∥BC.
图2-ZT-10
8.:如图2-ZT-11,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.
图2-ZT-11
►基本模型四一线三等角模型
图2-ZT-12
9.如图2-ZT-13,B,C,E三点在同一条直线上,AC∥DE,AC =CE,∠ACD=∠B.
(1)求证:BC=DE;
(2)假设∠A=40°,求∠BCD的度数.
图2-ZT-13
►基本模型五综合模型
平移+对称模型:
图2-ZT -14
10.如图2-ZT-15,点B,F,C,E在一条直线上,FB=CE,AB ∥ED,AC∥FD.求证:AC=DF.
图2-ZT-15
平移+旋转模型:
图2-ZT-16
11.:如图2-ZT-17,AB=BC,BD=EC,AB⊥BC,EC⊥BC.求证:AD⊥BE.
图2-ZT-17
详解详析
1.证明:∵BC ∥DE ,∴∠ABC =∠D. 在△ABC 和△EDB 中,⎩⎪⎨⎪⎧AB =ED ,∠ABC =∠D ,BC =DB ,
∴△ABC ≌△EDB(SAS),∴∠A =∠
E. 2.证明:∵AE ∥BF ,∴∠A =∠FBD. ∵CE ∥DF ,∴∠ACE =∠D.
∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD. 在△ACE 和△BDF 中,⎩⎪⎨⎪⎧∠A =∠FBD ,AC =BD ,∠ACE =∠D ,
∴△ACE ≌△BDF(ASA),∴AE =BF. 3.解:答案不唯一,如∠BAC =∠DAC. 理由:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC , ∴△ABC ≌△ADC(AAS).
4.证明:∵BD ⊥AC ,CE ⊥AB ,
∴∠ADB =∠AEC =90°. 在△ADB 和△AEC 中,⎩⎪⎨⎪⎧∠ADB =∠AEC ,AD =AE ,
∠A =∠A ,
∴△ADB ≌△AEC(ASA),∴AB =AC.
又AD =AE ,∴AB -AE =AC -AD , 即BE =CD. 5.证明:∵AC =BD ,∴AC +CD =BD +CD , 即AD =BC. 在△AED 和△BFC 中,⎩⎪⎨⎪⎧∠A =∠B ,AD =BC ,∠ADE =∠BCF ,
∴△AED ≌△BFC(ASA),∴DE =CF.
6.证明:∵BE ⊥AC ,CD ⊥AB ,
∴∠BEA =∠CDA.
又∵∠A =∠A ,BE =CD ,
∴△ABE ≌△ACD ,∴AB =AC.
7.证明:(1)∵O 是线段AB 和线段CD 的中点, ∴AO =BO ,CO =DO. 在△AOD 和△BOC 中,⎩⎪⎨⎪⎧AO =BO ,∠AOD =∠BOC ,OD =OC ,
∴△AOD ≌△BOC(SAS).
(2)∵△AOD ≌△BOC ,
∴∠A =∠B ,∴AD ∥BC.
8.证明:∵AB ⊥AC ,AD ⊥AE , ∴∠BAC =∠DAE =90°,
∴∠BAC -∠DAC =∠DAE -∠DAC , 即∠BAD =∠CAE. 在△ABD 和△ACE 中,⎩⎪⎨⎪⎧∠BAD =∠CAE ,AB =AC ,∠ABD =∠ACE ,
∴△ABD ≌△ACE ,∴AD =AE. 9.解:(1)证明:∵AC ∥DE , ∴∠ACB =∠E ,∠ACD =∠D. ∵∠ACD =∠B ,∴∠D =∠B. 在△ABC 和△CDE 中,⎩⎪⎨⎪⎧∠ACB =∠E ,∠B =∠D ,
AC =CE , ∴△ABC ≌△CDE(AAS),∴BC =DE.
(2)∵△ABC ≌△CDE ,
∴∠A =∠DCE =40°,
∴∠BCD =180°-40°=140°.
10.证明:∵FB =CE ,
∴FB +FC =CE +FC ,
即BC =EF.
∵AB ∥ED ,AC ∥FD ,
∴∠B =∠E ,∠ACB =∠DFE. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧∠B =∠E ,BC =EF ,∠ACB =∠DFE ,
∴△ABC ≌△DEF(ASA), ∴AC =DF.
11.证明:∵AB ⊥BC ,EC ⊥BC , ∴∠ABD =∠C =90°. 在△ABD 和△BCE 中,⎩⎪⎨⎪⎧AB =BC ,∠ABD =∠C ,BD =CE , ∴△ABD ≌△BCE ,∴∠A =∠CBE. ∵∠CBE +∠ABE =90°,
∴∠A+∠ABE=90°,∴AD⊥BE.。