统计检验原理与正态性检验
正态检验图的原理及应用
正态检验图的原理及应用1. 引言正态检验图是一种常用的统计图表,用于检验数据是否符合正态分布。
正态分布是统计学中最重要的概率分布之一,因此,了解数据是否服从正态分布对于进行进一步的数据分析和统计推断是非常重要的。
本文将介绍正态检验图的原理及应用,以帮助读者更好地理解正态性检验的概念和方法。
2. 正态性检验概述正态性检验是统计学中一种用于判断数据是否来自正态分布的方法。
它通过比较数据集的分布与正态分布的理论曲线,确定数据是否服从正态分布。
正态性检验有许多方法,其中最常用的方法之一就是正态检验图。
3. 正态检验图的原理正态检验图基于对数据的直方图和理论正态分布曲线的比较。
其原理如下:1.绘制直方图:首先,将数据分成若干个等宽的区间,然后计算每个区间中观测值的频数或频率,并绘制出数据的直方图。
2.绘制理论正态分布曲线:根据数据的均值和标准差,计算出理论上的正态分布曲线。
然后将该曲线绘制在直方图上。
3.对比观察值和理论分布:观察直方图和正态分布曲线的形状和分布是否一致。
如果两者接近,说明数据可能服从正态分布;如果两者差异较大,则说明数据不符合正态分布。
4. 正态检验图的应用正态检验图广泛应用于数据分析和统计推断的各个领域。
以下列举了几个常见的应用场景:1.检验数据是否服从正态分布:通过绘制正态检验图,可以直观地判断数据的偏离程度和正态分布的拟合程度。
这对于许多统计方法如假设检验、回归分析等的应用是至关重要的。
2.检验数据质量和异常值:正态检验图可以帮助检验数据的质量,并能够识别异常值。
如果数据不符合正态分布,可能意味着数据存在异常或者数据采样方法存在问题。
3.估计参数和制定模型:正态检验图可以提供对数据的初步认识,帮助选择适当的统计模型。
例如,如果数据符合正态分布,可以使用正态分布的参数进行建模和估计。
4.确定数据转换方法:如果数据不符合正态分布,可能需要对数据进行转换,以便符合正态性假设。
正态检验图可以帮助选择合适的数据转换方法,例如对数转换或者Box-Cox变换。
卫生统计学专题八:t检验
专题八 t 检验⒈t 检验基础t 检验是一种以t 分布为基础,以t 值为检验统计量资料的假设检验方法。
⑴t 检验的基本思想:假设在H 0成立的条件下做随机抽样,按照t 分布的规律得现有样本统计量t 值的概率为P ,将P 值与事先设定的检验水准进行比较,判断是否拒绝H 0。
⑵t 检验的应用条件:①样本含量较少(n <50);②样本来自正态总体(两样本均数比较时还要求两样本的总体方差相等,即方差齐性)。
【注】实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,对结果影响不大。
⑶t 检验的主要应用:①单个样本均数与总体均数的比较;②配对设计资料的差值均数与总体均数0的比较;③成组设计的两样本均数差异的比较。
⑷单样本t 检验基本公式:t=x0s x μ-=nsx 0μ- υ=n-1⒉z 检验z 分布(标准正态分布)是t 分布的特例,当样本n ≥50或者总体σ已知时用z 检验。
⑴单样本z 检验基本公式:z=nsx 0μ- 或 z=nx 0σμ-⑵单样本z 检验的步骤与单样本t 检验的基本相似。
⒊配对设计均数的比较 配对设计是为了控制某些非处理因素对实验结果的影响而采用的设计方式,应用配对设计可以减少实验误差和个体差异对结果的影响,提高统计处理的效率。
⑴配对设计的主要四种情况:①配对的两受试对象分别接受两种处理,如在动物实验中,常先将动物按照窝别、体重等配对成若干对,同一对的两受试对象随机分配到实验组和对照组,然后观察比较两组的实验结果。
②同一样品用两种不同方法测量同一指标或接受不同处理。
③自身对比,即将同一受试对象(实验或治疗)前后的结果进行比较。
④同一对象的两个部位给予不同处理。
⑵对配对资料的分析:一般用配对t 检验,其检验假设为:差值的总体均数为0即μd =0。
计算统计量的公式为:t=ns 0d d-,υ=n-1式中d 为差值的均数;s d 为差值的标准差;n 为对子数。
⑶关于自身对照(同体比较)的t 检验:①在医学研究中,我们常常对同一批患者治疗前后的某些生理、生化指标进行测量以观察疗效,对于这些资料可以按照配对t 检验。
SPSS统计分析1:正态分布检验
正态分布检验一、正态检验的必要性[1]当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。
当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方法,而应采用非参数检验。
二、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。
如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。
2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。
如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。
以上两种方法以Q-Q图为佳,效率较高。
3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。
4、箱式图判断方法:观测离群值和中位数。
5、茎叶图类似与直方图,但实质不同。
三、计算法1、峰度(Kurtosis)和偏度(Skewness)(1)概念解释峰度是描述总体中所有取值分布形态陡缓程度的统计量。
这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比较为平坦,为平顶峰。
峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异程度越大。
峰度的具体计算公式为:注:SD就是标准差σ。
峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。
偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。
这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。
正态分布 检验统计量
正态分布检验统计量正态分布是统计学中最基础、也是最重要的概率分布之一。
在实际的数据分析工作中,很多统计方法都要求数据呈正态分布,因此,对于数据正态性的检验就显得尤为重要。
一般的,数据正态性的检验有两种方法:直观法和统计法。
直观法主要是凭借肉眼观察数据的频数直方图、概率图、箱线图等常用图形来判断其分布是否呈正态分布。
虽然直观法操作简单,但其结果经常受到人为主观因素的影响,因此,统计法更加客观,更加稳定。
统计法主要是通过构造检验统计量来判断数据的分布是否为正态分布。
此处仅介绍经典的K-S检验、Shapiro-Wilk检验和Anderson-Darling检验。
1. K-S检验(Kolmogorov-Smirnov检验)K-S检验主要是通过比较样本分布函数和理论分布函数与实际经验分布函数的偏离程度来检验数据是否呈正态分布。
其检验统计量的计算公式为:D=max|F(x)-Φ(x)|其中,F(x)为样本分布函数、Φ(x)为理论正态分布函数,在此假设样本量为n,样本均值为μ,样本标准差为σ,将F(x)和Φ(x)代入上式,运用K-S统计量公式可算出检验值D。
若D值显著大于0,则拒绝原假设,即数据不呈正态分布。
2. Shapiro-Wilk检验Shapiro-Wilk检验是一种敏感度高、比K-S检验更加严格的正态性检验方法。
其依据样本观测值的大小顺序和样本平均数的大小关系来判断样本是否符合正态分布。
其检验统计量的计算公式为:W=(∑i(ai×yi))^2/∑(yi-Ȳ)²其中,ai为检验统计量的系数,yi为样本值,Ȳ为样本均值,样本量n越大,ai的值越接近1,此时W也就越大。
对于样本数在10以内和超过50的数据集,Shapiro-Wilk检验是最为常用的正态性检验方法。
3. Anderson-Darling检验Anderson-Darling检验也是一种较为严格的正态性检验方法,其统计量是样本值与理论正态分布之差的加权平方和。
医学统计学-知识梳理
均数±标准差:表示集中位置、离散程度均数±标准误:表示平均水平、抽样误差大小P75一、标准差的主要作用是估计正常值的范围实际应用中,估计观察值正常值范围应该用标准差(s),表示为“Mean±SD”。
此写法综合表达一组观察值的集中和离散特征的变异情况,说明样本平均数对观察值的代表性。
s 的大或小说明数据取值的分散或集中。
s与样本均数合用, 主要是在大样本调查研究中, 对正态或近似正态分布的总体正常值范围进行估计。
如果不是为了正常值范围估计,一般不用。
当数据与正态分布相差很大,或者虽为正态分布, 但样本容量太小(小于30 或100),也不宜用估计正常值范围。
二、标准差还可用来计算变异系数(CV)当两组观察值单位不同, 或两均数相差较大时,不能直接用标准差比较其变异程度的大小, 须用变异系数系数来做比较。
:标准误的正确使用一、标准误用来衡量抽样误差的大小和了解用样本平均数来推论总体平均数的可靠程度。
在抽样调查中,往往通过样本平均数来推论总体平均数,样本标准误适用于正态或近似正态分布的数据, 是主要描述小样本试验中,样本容量相同的同质的多个样本平均均数间的变异程度的统计量。
即如果多次重复同一个试验, 它们之间的变异程度用。
显然它越小,样本平均数变异越小,越稳定,用样本平均数估计总体均数越可靠。
因此,为说明它的稳定性、可靠性或通过几个对几组数据进行比较(这是科研论文中最常见的),应当用描述数据。
实际应用中应该写成“平均数±标准误”或而英文表示为“Mean±SE”的形式。
二、标准误还可以进行总体平均数的区间估计与点估计(置信区间)。
根据正态分布原理,与合用还可以给出正态总体平均数的可信区间估计即推论总体平均数的可靠区间,例如常用(其中 (n-1) 为样本容量是n的t界值)表示总体均值的95%可信区间, 意指总体平均数有95%的把握在所给范围内。
三、标准误还可用来进行平均数间的显著性检验,从而判断平均数间的差别是否是由抽样误差引起的。
16种统计分析方法
16种常用的数据分析方法汇总2015-11-10 分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。
一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。
常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。
二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析检査测量的可信度,例如调查问卷的真实性。
分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
正态性检验的几种方法
正态性检验的几种方法一、引言正态分布是自然界中一种最常见的也是最重要的分布。
因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验。
目前,正态性检验主要有三类方法:一是计算综合统计量,如动差法、Shapiro-Wilk 法(W 检验)、D ’Agostino 法(D 检验)、Shapiro-Francia 法(W ’检验)。
二是正态分布的拟合优度检验,如2χ检验、对数似然比检验、Kolmogorov-Smirov 检验。
三是图示法(正态概率图Normal Probability plot),如分位数图(Quantile Quantile plot ,简称QQ 图)、百分位数(Percent Percent plot ,简称PP 图)和稳定化概率图(Stablized Probability plot ,简称SP 图)等。
而本文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,还进行了应用。
二、正态分布2.1 正态分布的概念定义1若随机变量X 的密度函数为()()()+∞∞-∈=--,,21222x e x f x σμπσ其中μ和σ为参数,且()0,,>+∞∞-∈σμ则称X 服从参数为μ和σ的正态分布,记为()2,~σμN X 。
另我们称1,0==σμ的正态分布为标准正态分布,记为()1,0~N X ,标准正态分布随机变量的密度函数和分布函数分别用()x ϕ和()x Φ表示。
引理1 若()2,~σμN X ,()x F 为X 的分布函数,则()⎪⎭⎫⎝⎛-Φ=σμx x F由引理可知,任何正态分布都可以通过标准正态分布表示。
2.2 正态分布的数字特征引理2 若()2,~σμN X ,则()()2,σμ==x D x E 引理3 若()2,~σμN X ,则X 的n 阶中心距为()()N k kn k k n kn ∈⎩⎨⎧=-+==2,!!1212,02σμ定义2 若随机变量的分布函数()x F 可表示为:()()()()x F x F x F 211εε+-= ()10<≤ε其中()x F 1为正态分布()21,σμN 的分布函数,()x F 2为正态分布()22,σμN 的分布函数,则称X 的分布为混合正态分布。
16种统计分析方法-统计分析方法有多少种
16种常用的数据分析方法汇总2015-11-10分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。
一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:易9除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。
常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A单样本t检验:推断该样本来自的总体均数卩与已知的某一总体均数卩0常为理论值或标准值)有无差别;B配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10 以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析检査测量的可信度,例如调查问卷的真实性。
分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
统计推断中方差分析实现过程的细节注意事项
统计推断中方差分析实现过程的细节注意事项方差分析(Analysis of Variance,ANOVA)是一种常用的统计方法,用于比较两个或多个总体均值是否存在差异。
在统计推断中进行方差分析时,有一些细节和注意事项需要注意。
本文将介绍方差分析的实现过程中需要特别关注的细节。
1. 数据的正态性检验在进行方差分析之前,需要先检验数据是否符合正态分布假设。
常用的正态性检验方法包括Shapiro-Wilk检验、Kolmogorov-Smirnov检验等。
如果数据不符合正态分布假设,可能需要进行数据转换或者考虑使用非参数方法。
2. 方差齐性检验方差齐性是指不同样本之间的方差是否相等。
方差分析是建立在方差齐性的基础上进行的,因此需要进行方差齐性检验。
通常使用Levene检验或Bartlett检验进行方差齐性检验。
如果方差齐性检验结果不显著,说明样本方差不等,可能会影响方差分析的结果,此时需要选择适合的非参数方法。
3. 组间平方和(SSB)和组内平方和(SSW)的计算方差分析的基本思想是将总体的方差分解为组间平方和和组内平方和。
组间平方和反映了不同组之间的差异程度,组内平方和反映了组内个体之间的差异程度。
需要注意的是,计算SSB和SSW时要根据方差齐性的检验结果选择适当的方法。
4. 计算统计量(F值或P值)在方差分析中,常常使用F值或P值来进行假设检验。
F值是组间平方和(SSB)与组内平方和(SSW)的比值,因此可以通过计算F值来判断组间的差异是否显著。
P值是指F值在给定自由度下的概率,通过与显著性水平比较来做出决策。
需要注意的是,在进行多个组间比较时,需要进行适当的多重比较校正。
5. 后续分析如果方差分析结果显示组间存在显著差异,通常需要进行后续分析来确定具体哪些组之间存在差异。
Tukey's HSD检验、Bonferroni法和Duncan多重范围检验等是常用的后续分析方法。
后续分析的目的是通过两两比较来确定特定组之间的差异情况。
正态检验方法
正态检验方法一、前言正态检验是统计学中常用的一种方法,用于检验数据是否符合正态分布。
正态分布是指在概率论和统计学中经常出现的一种连续概率分布,其特点是对称、单峰、钟形曲线。
正态分布在实际应用中具有很重要的意义,因此对数据进行正态检验就显得尤为重要。
本文将详细介绍正态检验的方法以及如何使用R语言进行正态检验。
二、什么是正态检验?正态检验(Normality Test)是指通过某些统计量对数据样本进行假设检验,判断样本是否符合正态分布。
常见的统计量有Kolmogorov-Smirnov (K-S) 检验、Shapiro-Wilk 检验、Anderson-Darling (A-D) 检验等。
三、K-S检验K-S检验(Kolmogorov–Smirnov test)是一种非参数假设检验方法,主要用于判断一个样本是否来自某个已知分布。
在正态性检查中,我们可以使用K-S测试来比较观察值与标准正态分布之间的差异。
1. K-S测试原理在使用K-S测试时,我们首先需要确定一个假设H0:该样本来自一个已知分布。
通常情况下,该已知分布是标准正态分布。
我们可以使用样本的均值和标准差来估计标准正态分布的参数。
接下来,我们需要计算出观察值与标准正态分布之间的最大偏差(D)。
这个偏差是指在统计学上,观察值与标准正态分布之间的最大距离。
最后,我们需要根据样本大小和显著性水平确定临界值。
如果D大于临界值,则拒绝假设H0,即该样本不符合正态分布。
2. 使用R语言进行K-S检验在R语言中,我们可以使用ks.test()函数进行K-S检验。
该函数包含两个参数:x表示要检验的数据向量;y表示用于比较的已知分布。
例如:```R# 生成一个随机数向量set.seed(123)x <- rnorm(100)# 进行K-S检验ks.test(x, "pnorm")```输出结果为:```ROne-sample Kolmogorov-Smirnov testdata: xD = 0.0863, p-value = 0.4814alternative hypothesis: two-sided```其中,D表示最大偏差;p-value表示拒绝原假设的显著性水平。
正态性检验方法
正态性检验方法正态性检验是统计学中常用的一种方法,用于检验数据是否符合正态分布。
正态分布是统计学中最重要的分布之一,许多统计方法都基于数据服从正态分布的假设。
因此,对数据进行正态性检验是非常重要的,它可以帮助我们选择合适的统计方法,进行准确的数据分析和推断。
常见的正态性检验方法主要包括直方图、正态概率图(Q-Q图)、K-S检验、Shapiro-Wilk检验等。
下面将逐一介绍这些方法的原理和应用。
直方图是最直观的正态性检验方法之一。
它将数据按照一定的区间进行分组,并绘制成柱状图。
如果数据呈现出类似钟形曲线的分布,那么就可以初步判断数据服从正态分布。
但直方图只能提供直观的感受,对于正态性的检验并不够准确。
正态概率图(Q-Q图)是一种更为准确的正态性检验方法。
它通过比较样本数据和理论正态分布的分位数来判断数据是否符合正态分布。
如果数据点在一条直线附近分布,并且与45度直线吻合度较高,则可以认为数据服从正态分布。
K-S检验(Kolmogorov-Smirnov test)是一种常用的非参数检验方法,用于检验样本数据是否来自于某一特定分布,包括正态分布。
K-S检验通过计算累积分布函数的差距来判断两个分布之间的差异,从而判断样本数据是否符合正态分布。
Shapiro-Wilk检验是一种较为严格的正态性检验方法,特别适用于小样本数据。
它基于样本数据的排序值和样本均值的比较,通过计算统计量来检验数据是否符合正态分布。
Shapiro-Wilk检验在小样本情况下的效果更为准确。
在实际应用中,我们可以根据数据的特点和样本量的大小选择合适的正态性检验方法。
如果数据呈现出明显的偏态或者峰态,那么可能不适合使用正态分布进行统计分析,需要考虑其他分布。
另外,对于大样本数据,即使数据略微偏离正态分布,也可能不会对统计推断产生显著影响。
因此,在进行正态性检验时,需要综合考虑数据的特点和实际需求。
总之,正态性检验是统计学中非常重要的一环,它可以帮助我们判断数据是否符合正态分布,选择合适的统计方法,进行准确的数据分析和推断。
16种统计分析方法
16种常用的数据分析方法汇总2015—11-10 分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。
一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。
常用方法:非参数检验的K—量检验、P—P图、Q-Q图、W检验、动差法。
二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用.2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K—量检验等。
三、信度分析检査测量的可信度,例如调查问卷的真实性.分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
假设检验之正态性检验,F 检验,T 检验
案例解析
• • • 如下图是BOSA AOP和ER用三种方法做出来的正态性检验 一般我们认为P>α (通常取0.05 或0.1) 就可以认为其不能拒绝正态的,也就是 大致认为其是正态分布的,而且P值越大,数据正态的信心越大。 下述参数中BOSA AOP是为非正态分布的,而ER是正态分布的。
方差齐性检验
拒绝H0
a/2
1 - a
a/2
临界值
0
样本统计量 临界值
显著性水平和拒绝域
(双侧检验 )
抽样分布
拒绝H0
置信水平 拒绝H0
a/2
1 - a
a/2
0 临界值
临界值
样本统计量
显著性水平和拒绝域
(单侧检验 )
抽样分布
拒绝H0
置信水平
a
1 - a
0 临界值
样本统计量
显著性水平和拒绝域
(左侧检验 )
... 如果这是总体 的假设均值
20
= 50 H0
样本均值
假设检验的过程
提出假设 作出决策
拒绝原假设 别无选择!
我认为人口的平 均年龄是50岁
总体
抽取随机样本
均值 x = 20
原假设与备择假设
假设(hypothesis)
原假设 备择假设 (Null Hypothesis) (Alternative Hypothesis)
检验统计量与拒绝域
检验统计量(test
statistic)
1. 根据样本观测结果计算得到的,并据以对 原假设和备择假设作出决策的某个样本统 计量 2. 对样本估计量的标准化结果
– 原假设H0为真
正态性检验 方法简介
正态性检验方法简介一、 Anderson-Darling 检验Anderson —Darling 检验(简称A-D 检验)是一种拟合检验,此检验是将样本数据的经验累积分布函数与假设数据呈正态分布时期望的分布进行比较,如果差异足够大,该检验将否定总体呈正态分布的原假设。
样本数据的经验累积分布函数与理论累积分布函数之间的差异可通过两种分布之间的二次AD 距离进行衡量,若二次AD 距离小于置信水平下的临界值,则可认为样本数据来源于正态分布。
Anderson-Darling 检验的计算步骤如下:1. 提出假设:样本数据服从正态分布:0H ;分布不服从正态样本数据:0H ; 2. 计算统计量2A ,其计算步骤为:➢ 首先将样本数据按照从小到大的顺序进行排序并编号,排在第i 位的数据为i x ;➢ 其次进行样本数据的标准化,计算公式如下:Sxx Y i i -=(式1-1) 其中,x 为所有样本数据的平均值,S 为所有样本数据的标准差。
➢ 接着计算)(i Y F ,计算公式为)()(i i Y Y F φ=(式1-2)其中,其中φ为标准正态分布函数,可查表获得。
➢ 最后A 2值,计算公式如下:[]{})(1ln )(ln )12(1112i N iNi YF Y F i NN A -+=-+---=∑(式1-3)其中,N 为样本总个数,i 为样本序号3. 计算判定统计量2'A ,计算公式为:)25.275.01(222'NN A A ++= (式1-4)4. 查找临界值:根据给定的显著性水平α,查《Anderson-Darling 临界值表》,得到临界值2'αA ;5. 作出判定:若2'A ≥2'αA ,则在α水平上,拒绝0H ,即认为样本数据不服从正态分布;若2'A <2'αA ,则不能拒绝0H ,即认为样本数据服从正态分布。
例1. 采用Anderson-Darling 判断表1中的数据是否符合正态分布。
SPSS统计分析1:正态分布检验
SPSS统计分析1:正态分布检验正态分布检验⼀、正态检验的必要性[1]当对样本是否服从正态分布存在疑虑时,应先进⾏正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进⾏正态检验。
当然,在正态分布存疑的情况下,也就不能采⽤基于正态分布前提的参数检验⽅法,⽽应采⽤⾮参数检验。
⼆、图⽰法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直⾓坐标系中的散点。
如果资料服从整体分布,则样本点应围绕第⼀象限的对⾓线分布。
2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。
如果资料服从正态分布,则样本点应该呈⼀条围绕第⼀象限对⾓线的直线。
以上两种⽅法以Q-Q图为佳,效率较⾼。
3、直⽅图判断⽅法:是否以钟形分布,同时可以选择输出正态性曲线。
4、箱式图判断⽅法:观测离群值和中位数。
5、茎叶图类似与直⽅图,但实质不同。
三、计算法1、峰度(Kurtosis)和偏度(Skewness)(1)概念解释峰度是描述总体中所有取值分布形态陡缓程度的统计量。
这个统计量需要与正态分布相⽐较,峰度为0表⽰该总体数据分布与正态分布的陡缓程度相同;峰度⼤于0表⽰该总体数据分布与正态分布相⽐较为陡峭,为尖顶峰;峰度⼩于0表⽰该总体数据分布与正态分布相⽐较为平坦,为平顶峰。
峰度的绝对值数值越⼤表⽰其分布形态的陡缓程度与正态分布的差异程度越⼤。
峰度的具体计算公式为:注:SD就是标准差σ。
峰度原始定义不减3,在SPSS中为分析⽅便减3后与0作⽐较。
偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。
这个统计量同样需要与正态分布相⽐较,偏度为0表⽰其数据分布形态与正态分布的偏斜程度相同;偏度⼤于0表⽰其数据分布形态与正态分布相⽐为正偏或右偏,即有⼀条长尾巴拖在右边,数据右端有较多的极端值;偏度⼩于0表⽰其数据分布形态与正态分布相⽐为负偏或左偏,即有⼀条长尾拖在左边,数据左端有较多的极端值。
产品质量检测中的数据分析与统计方法
产品质量检测中的数据分析与统计方法引言:在现代工业生产中,产品质量是企业发展和竞争力的核心。
而产品质量的可靠性则依赖于对产品进行全面准确的检测和分析。
数据分析与统计方法在产品质量检测中扮演着重要的角色,本文将介绍一些常用的数据分析和统计方法,以助于提高产品质量。
一、抽样与样本容量的确定在大规模生产中,不可能对每个产品进行全面检测。
这就需要通过抽样的方法,从整个批次中选取部分样本进行测试。
抽样的目标是尽可能准确地反映整个批次的特征,这就需要合理确定样本容量。
通常,样本容量的确定需要考虑以下几个因素:整批产品的大小、成本限制、测试方法的准确性和信心水平。
合理确定样本容量可以提高测试的效率和可靠性。
二、正态性检验正态性检验是对产品质量测试所得数据是否服从正态分布进行判定。
许多统计方法都基于正态分布的假设,因此正态性检验的结果对于后续的统计分析至关重要。
常用的正态性检验方法有Shapiro-Wilk检验和Kolmogorov-Smirnov检验。
如果数据不服从正态分布,可以尝试使用相应的非参数统计方法进行分析。
三、方差分析(ANOVA)方差分析是一种用于比较多个群体间差异的统计方法。
在产品质量检测中,方差分析可以用于比较不同生产批次、不同生产线或不同工艺参数对产品质量的影响。
通过方差分析,可以确定哪些因素对产品质量具有显著影响,并且可以进行优化改进。
四、回归分析回归分析是一种用于研究变量之间关系的统计方法。
在产品质量检测中,回归分析可以用来确定与产品质量相关的因素,并建立预测模型。
例如,可以通过回归分析确定产品质量与环境温度、湿度等因素的关系,并预测不同环境条件下产品的质量水平。
五、过程能力分析过程能力分析用于评估生产过程的稳定性和可控性。
通过过程能力分析,可以确定生产过程是否处于统计控制下,以及生产过程的稳定性和可靠性。
常用的过程能力指标有Cp、Cpk和Pp、Ppk等。
过程能力分析可以帮助企业找出生产过程中的问题,并采取相应的改进措施,以提高产品质量。
正态分布的检验方法
正态分布的检验方法正态分布是统计学中经常使用的一个概率分布。
这种分布在自然界和社会现象中都经常出现。
在统计学中,我们经常需要进行正态分布的检验,来确定特定数据集是否遵循正态分布。
本文将探讨几种常用的正态分布检验方法。
1. Shapiro-Wilk检验Shapiro-Wilk检验是最常用的正态分布检验之一。
它的原理是通过将样本数据与理论上符合正态分布的数据进行比较来检验数据是否符合正态分布。
该检验的零假设为:样本数据服从正态分布。
如果p 值小于显著性水平,那么就可以拒绝零假设,即拒绝数据服从正态分布的假设。
否则,我们不能拒绝零假设,即不能拒绝数据服从正态分布的假设。
2. Anderson-Darling检验Anderson-Darling检验也是一种常用的正态分布检验方法。
它的原理是通过计算样本数据与正态分布的偏离程度来判断数据是否服从正态分布。
该检验的零假设为:样本数据服从正态分布。
如果p值小于显著性水平,那么就可以拒绝零假设,并认为样本数据不服从正态分布。
3. Kolmogorov-Smirnov检验Kolmogorov-Smirnov检验是一种基于累积分布函数的正态分布检验方法。
该检验的原理是通过计算样本数据的经验累积分布函数和理论上的标准正态分布累积分布函数的偏离程度来判断数据是否服从正态分布。
该检验的零假设为:样本数据服从正态分布。
如果p值小于显著性水平,那么就可以拒绝零假设,并认为样本数据不服从正态分布。
4. Lilliefors检验Lilliefors检验是一种改进的Kolmogorov-Smirnov检验方法。
它能够检测非标准化的数据分布,并且具有较高的敏感性。
该检验的原理和K-S检验基本一致,但是通过使用Lilliefors纠正系数来计算样本数据和标准正态分布累积分布函数偏离程度的大小。
该检验的零假设为:样本数据服从正态分布。
如果p值小于显著性水平,那么就可以拒绝零假设,并认为样本数据不服从正态分布。
正态分布与正态分布检验
正态分布与正态分布检验正态分布是一种常见且重要的连续型数据分布。
标准正态分布是其中一种,当μ=0,σ=1时,即为标准正态分布。
为了方便应用,常用Z分数分布来表示正态分布。
正态分布的主要特征包括:集中性、对称性和均匀变动性。
正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ)。
在应用某些统计方法之前,需要判断数据是否服从正态分布或样本是否来自正态总体,因此需要进行正态性检验。
任何正态检验原假设都是数据服从正态分布。
正态性检验有两种方法:P-P图和Q-Q图。
P-P概率图的原理是检验样本实际累积概率分布与理论累积概率分布是否吻合。
若吻合,则散点应围绕在一条直线周围,或者实际概率与理论概率之差分布在对称于以为水平轴的带内(这种称为去势P-P图)。
P-P图常用来判断正态分布,但实际上它可以考察其他很多种分布。
Q-Q概率图的原理是检验实际分位数与理论分位数之差分布是否吻合。
若吻合,则散点应围绕在一条直线周围,或者实际分位数与理论分位数之差分布在对称于以为水平轴的带内(这种称为去势Q-Q图)。
Q是单词quantile的缩写,是分位数的意思。
Q-Q图比P-P图更加稳健一些。
构建Q-Q图的方法是先将数据值排序,然后按照公式(i–0.5)/n计算累积分布值,其中字母表示总数为n的值中的第i 个值。
累积分布图通过以比较方式绘制有序数据和累积分布值得到。
标准正态分布的绘制过程与此相同。
生成这两个累积分布图后,对与指定分位数相对应的数据值进行配对并绘制在QQ图中。
普通QQ图可以用来评估两个数据集分布的相似程度。
它的创建过程类似于正态QQ图,不同的是第二个数据集不必服从正态分布,任何数据集都可以使用。
如果两个数据集具有相同的分布,普通QQ图中的点将落在45度直线上。
峰度和偏度是用来反映频数分布曲线尖峭或扁平程度以及数据分布曲线非对称程度的指标。
它们最初是由皮尔逊用矩的概念演算而来,其中随机变量X的3阶标准矩称为偏度,4阶标准矩称为峰度。
统计学中的正态性检验方法
统计学中的正态性检验方法统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有广泛的应用。
正态性检验是统计学中的一个重要概念,用于判断数据是否服从正态分布。
本文将介绍统计学中的正态性检验方法,探讨其原理和应用。
一、正态分布的特征正态分布是统计学中最为常见的分布形式,也被称为高斯分布。
它具有以下特征:均值为μ,标准差为σ,对称分布,呈钟形曲线。
正态分布在自然界和社会科学中广泛存在,例如身高、体重、考试成绩等都可以近似看作服从正态分布。
二、为什么需要正态性检验正态性检验的目的是验证数据是否符合正态分布的假设。
在许多统计分析中,例如回归分析、方差分析等,都要求数据服从正态分布。
如果数据不满足正态性假设,可能会导致结果的偏差和误差。
因此,正态性检验是保证统计分析结果可靠性的重要步骤。
三、常见的正态性检验方法1. 直方图检验法直方图是一种常用的图形表示方法,可以用来观察数据的分布情况。
正态分布的直方图呈现出钟形曲线,而非正态分布的数据则会显示出不同的形状。
通过观察直方图的形状,可以初步判断数据是否服从正态分布。
2. QQ图检验法QQ图是一种用于检验数据是否服从某种分布的图形方法。
它将数据的分位数与理论分位数进行比较,如果数据点近似落在一条直线上,则说明数据近似服从正态分布。
如果数据点偏离直线,则说明数据不符合正态分布。
QQ图可以直观地展示数据的分布情况,是一种常用的正态性检验方法。
3. Shapiro-Wilk检验法Shapiro-Wilk检验是一种常用的正态性检验方法,它基于数据的偏度和峰度进行计算。
该检验方法的原假设是数据服从正态分布,备择假设是数据不服从正态分布。
通过计算统计量和对应的p值,可以判断数据是否符合正态分布。
如果p值小于显著性水平(通常为0.05),则拒绝原假设,即数据不服从正态分布。
四、正态性检验的应用正态性检验在统计学中有广泛的应用。
例如,在回归分析中,需要检验残差是否服从正态分布,以验证模型的合理性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出于数学上的需要,原假设总是包含等号 “=” ,例如:
H0: 3
H1: < 3
H0: < 3
H1: 3
又如:
H0:总体服从正态分布 H1:总体不服从正态分布 H0:总体不服从正态分布 H1:总体服从正态分布
7
假设检验的两类错误
1. 第一类错误
否真错误(针对原假设)——本来原假设是正 确的,却被拒绝。 出现第一类错误的概率记为
一个称为零假设或原假设(The Null Hypothesis), 记为H0 另一个称为对立假设、备择假设(The Alternative Hypothesis),记为H1
2.从总体中抽取少数个体(一组样本) 3.根据样本判断接受H0还是接受H1(此说法有 些不严格,后面进一步解释!)
6
所提出的一对假设,何者为零假设?
33
如何运用计算机软件进行检验?
所有类型的检验,计算机软件会输出P值。我们完全依靠P-值进行检验。 通常当P-值较接近0时(通常以10%为界 限),我们应拒绝H0,接受H1。否则我 们不能拒绝H0。
34
p-值 在SPSS输出结果通常以“sig.”表 示。 利用SPSS的“sig.”输出结果我们可以 方便地进行各种类型的检验,而不需要 掌握统计量的定义和拒绝域的形式,而 且不需要通过查表确定临界值。统计检 验变得异常简单!
9
两类此错误( 与 ) 的逆向关系
不能同时降低两类错误!
10
假设检验在科学研究方法中的 关键作用
11
(1) 观察:确认宽泛 的研究范围
(3) 问题界定: 描述研究
(4) 理论框架: 对变量进行清 楚的辨识与归类
(5) 提出假设
(6) 研究设计
(7) 资料的收集、 分析与解释
(2) 初步资料搜集: 访谈、文献查阅 否
20
考虑以下指标(统计量):
X 84 t S / 20
其中:X 为样本均值 S为样本标准差 思考:该指标有何特点? H0成立与H1成立时,一般t值有何不同?
21
X 84 t S / 20
该指标的特点:
当H0成立时,一般t值为正,且较大; 当H1成立时,一般t值为负,且绝对值较大;
等于显著性水平 Level of Significance
2. 第二类错误
存伪错误(针对原假设)——本来原假设是错 误的,却被接受。 出现第二类错误的概率为 8
统计推断结果的四种情形
实际情况如何,我们实 际是不知道的!
实际情况 决策 不拒绝 H0 拒绝 H0 H0 为真 H0为假 正确 第一类 错误 () 第二类 错误 () 正确
如果H0成立,t值不应该太低。
H1成立时 H0成立时
t
22
上面的分析可得下面结论: 如果我们假定H0成立,在这种情况下, t值不应太低
23
进一步,我们可知,如果原假设成立,t小于 -1.33的概率仅为10%。 当原假设成立时t统计量分布
0.10
-1.33
0
t
24
如果我们将发生的可能性只有10%的事 件视为“小概率”事件——在一次观察 中不会遇到,那么我们在一次抽样观察 中,不会遇到t小于-1.33这种情况。
41
如果我们希望作出接受原假设的结论, 则显著 水平α越低效果越差。因为此结论如果是错误 结论,则属于第二类错误,其错误概率为β (我们不知道它有多大!),而β与α的关系是 此消彼长的。
42
4.分布正态性检验
柯尔莫戈洛夫-斯米诺夫检验 夏皮罗-威尔克检验 正态Q-Q图法 直方图 偏度与峰度
30
如果按照上面的思路,我们必须从头重 新做一遍分析。 如果我们得到下一张幻灯片的信息,那 么我们就可以直接作出回答。
31
当原假设成立时t统计量分布
p-值
0.052
-1.705
样本统计量的t值
0
t
32
p-值 提供了更详细的信息 本例中, p-值为0.052,表明:如果显著 水平取0.10检验结果为显著,如果显著 水平取0.05则检验结果为不显著。当然, 如果显著水平取1%,检验更不显著。
17
3.统计检验概述
统计检验的基本原理
18
还记得中学学过的“反证法” 吗?
我们不知到“命题A”是否正确,我们先 假定它正确,如果由此产生矛盾,那么 我们就认为“当初假定命题A正确”是不 对的,因而应判定命题A是不成立的。
19
例:假设检验原理与p-值
为研究某高校“英语统考成绩”,随机抽取20名 同学,其考试成绩如下: 87,82,80,80,74,82,74,75,86,88, 81,86,92,84,88,77,79,79,83,85 已知英语统考成绩服从正态分布,我们关心 该校英语统考成绩是否达到84分的优秀标准。 提出如下假设: H0: μ≥84 该校平均成绩不低于84分 H1: μ<84 该校平均成绩低于84分
39
检验结论的表述方法
如果sig=0.063,下面的说法都是恰当的: 在10%的水平下,检验是显著的。 在5%的水平下,检验是不显著的。 在1%的水平下,检验是不显著的。
40
几点应牢记的重要结论
必须弄清原假设与对立假设的内容 检验结果为“显著”是指原假设显著不成立。 结论的说服力强弱主要取决于显著水平高低 当作出拒绝零假设 (即接受对立假设)结论时, 显著水平α越低效果越好,因为它表明该结论 为错误结论的概率不超过α。
37
P-值为0.16,只是说明,如果我们做出 “拒绝H0,接受H1” 这种推断,其错误的 概率不超过16%,但是并没说我们做出 “接受H0,拒绝H1” 这种推断错误的概率 不超过16%! 有时在这种情况下,我们也说,可以认 为H0成立,但切记,此推论是苍白无力 的!
38
最有说服力的情形是:P-值非常接近0, 例如,sig=0.001,我们可以作出接受H1 的结论,此结论错误的概率不足0.1%! 由此也可以看出,原假设与对立假设的 地位是不对等的。
该图是服从正态分布 变量值的“正态Q-Q 图”。 图中散点基本处于一 条直线上,表明上述 变量服从正态分布。 变量NORM是利用函 数normal( )由软件 自动生成的正态分布 随机数。
Expected Normal
Normal Q-Q Plot of NORM
3
2
1
0
-1
-2
-3 140 150 160 170 180 190 200
50
打开Explore:Plots对话框
Boxplots----箱图输出方式 选中 Normality plots with tests即可得到 正态概率图及进行分布正态性检验
51
偏度与峰度主要用于作出否定正态分布 结论 当其中一个或两个指标的绝对值明显偏 离零,例如绝对值大于1时,通常预示着 变量偏离正态。
在研究“资本结构的影响因素”时,可 提出以下研究假设: 假设1:资本结构与企业绩效显著相关 假设2:资本结构与企业规模显著相关 假设3:资本结构与企业成长性显著相关
14
例2:
研究硕士毕业生在企业工作绩效方面与 本科毕业生是否有显著差异,可提出如 下研究假设: 假设1:硕士毕业生与本科毕业生在工作 绩效方面存在显著差异
Observed Value
48
例∶均匀分布的正态Q-Q图
该图是服从均匀分布 变量值的“正态Q-Q 图”。 图中散点构成一条曲 线,表明上述变量不 服从正态分布。 变量UNI是利用函数 uniform( )由软件自 动生成均匀分布随机 数。
Expected Normal
Normal Q-Q Plot of UNI
25
本例中,样本为: 87,82,80,80,74,82,74,75,86, 88,81,86,92,84,88,77,79,79, 83,85 样本平均值X为82.1,标准差S为4.98 代入前述公式,可计算出t值: t=-1.705
26
这说明,我们做的一次抽样观察中,出 现了t小于-1.33这种情况。与前面的分析 相矛盾,因此前面假定H0成立出现了问 题,因而应拒绝H0,接受H1。
Shrpiro-Wilk Statistic df .963 48 .899 48 Sig .132 .001
46
NORM UNI
正态Q-Q图法
(通常称为概率纸检验法)
该方法是一种粗略的正态性检验法 如果图中散点大体处于一条直线上 则可判定该组数据服从正态分布 否则可判定不服从正态分布
47
例∶正态分布的正态Q-Q图
Sig .200* .012
44
本例中,我们可以做以下结论: 变量NORM在10%的水平下,检验不显 著,不能否定该变量服从正态分布。 变量UNI在5%的水平下,检验是显著的, 应认为该变量不服从正态分布。
45
夏皮罗-威尔克检验
该检验与柯尔莫戈洛夫-斯米诺夫
检验用法大体相同。 当样本容量较大时,系统只给 出柯尔莫戈洛夫-斯米诺夫检验结果。 输出结果举例∶
(8) 假设检验: 假设是否被验 证? 研究问题是否 得到解答?
是 (9) 撰写报告 (10) 提交报告 (11) 作出管理 决策
12
会计研究中的假设举例