积分变换法求解定解问题
数学物理方程练习题第七版(学生用)
= u(0, t) 0= , ux (2,t) 1,
u(x= ,0)
cos π x + x3 − 3x2 − x.
2
3.求定解问题的解:
u
x= x + u yy
sinπ x,
0 < x < 1, 0 < y < 1,
= u(0, y) 1,= u(1, y) 2,
u(x,0) =1+ x,
7
u
rr
+
1 u
r
r
+
1 r2
uθθ
= 0,
u= (1,θ ) A cosθ (−π < θ ≤ π ).
4. 设 A, B 为常数,用试探法求如下定解问题的解:
u rr
1 +rur
+
1 r2
u
θθ
=
0,
r < a,
u r= =a A cosθ + B sinθ (−π < θ ≤ π ).
练习十五
练习六
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
3
2.求解如下定解问题:
= u tt
a2u
xx
+
t
sin
π l
x
,
u= (0,t) u= (l,t) 0, t ≥ 0,
X= ′(0)
X= (l)
0.
3. 求如下定解问题的解:
= ut uxx , 0 < x < 2, t > 0, ux= (0, t) u= (2, t) 0,
偏微分方程考试题
数学物理方程及数值解 复习提要一、偏微分方程的建立 CH1 典型方程和定解条件 【内容提要】1. 方程的建立(步骤:确定物理量;微元法建立等式;化简得方程)主要方法:微元法; 泛定方程:(1) 波动方程(双曲型):弦振动方程:222222(,)(,)(),()u x t u x t F a a txρ∂∂==∂∂张力单位长度弦质量 传输线方程:222222222221,00i a LCi a a t x t x νν∂∂∂∂-=-=∂∂∂=∂;, 电磁场方程:22222211,,H E H E t t εμεμ∂∂=∇=∇∂∂22222222221(),με标量函数形式:∂∂∂∂=++∂∂∂=∂u u u z a u a t x y (2) 热传导方程/扩散方程(抛物型):ρ,其中22u Fa u f f t c ∂=∇+=∂ 导热杆(无热源)222u u a t x ∂∂=∂∂, 导热片(无热源)22222()u u u a t x y ∂∂∂=+∂∂∂ (3) 稳恒方程(椭圆型):Poisson 方程:,2u f ∇= Laplace 方程:,20u ∇=2.定解条件:初始条件及边界条件边界条件(1)第一类边界条件(Dirichlet 条件): 1(,)(,)D u M t f M t ∂=(2) 第二类边界条件(Neumann 条件):2Duf n ∂∂=∂ (3) 第三类边界条件(Robin 条件): 3()Duu f n σ∂∂+=∂ 3.定解问题的提法:⎧⎪⎧⎨⎨⎪⎩⎩偏微分方程(泛定方程)定解问题初始条件定解条件边界条件()Cauchy ⎧⎨⎩泛定方程(1)初始问题初始条件 ⎧⎨⎩泛定方程(2)边界问题(第一,二,三)边界条件⎧⎪⎨⎪⎩泛定方程(3)混合问题初始条件边界条件4.线性偏微分方程的基本性质(1).线性迭加原理212,11,,,,,,,:nnij i ij i n i j i i j iL a b c a b c f x x x x x x ==∂∂=++∂∂∂∑∑其中是算子的函数111(1,2)(),nnni i ii ii i i i i i L u f in L c u c L u c f=====⇒==∑∑∑命题:21110(1,2),,()0,nnii i i i i i i i i i k j u Lu i c u c L c u x x ∞===∂==⇒=∂∂∑∑∑一致敛命收题:(2.) 齐次化原理(冲量原理)Duhamel 原理:设(,,)x t ωτ是方程22222,,(,)(,)0,(,),a x t t x x x f x x t ωτωτωττω⎧∂∂=-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解,⇒0(,,)d ,()t x t u x t ωττ=⎰是方程22222(,),,0(,0)(,0)0,0,u u a f x t x t tx u x u x x t ⎧∂∂=+-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解。
数学物理方程第三章_行波法和积分变换法
[x − at , x + at ] 上的值,而与其他点上的初始条件无关,这个区间称为点 (x, t ) 的依赖区间,
它是过 ( x, t ) 点分别作斜率为 ±
1 的直线与 x 轴相交所截得的区间,如图 3-2 所示. a
(x,t0)
y
x O x-at0 x+at0
图 3-1
初 始 时 刻 t = 0 时 , 取 x 轴 上 的 一 个 区 间 [x1 , x 2 ] , 过 点 x1 作 斜 率 为
同理可得
2 ∂ 2u ∂ 2u ∂ 2u ⎤ 2⎡∂ u = + a + 2 ⎢ 2 ∂ξ∂η ∂η 2 ⎥ ∂t 2 ⎣ ∂ξ ⎦
将其代入式(3.1.1),得
∂ 2u =0 ∂ξ∂η
对 ξ 积分,得
∂u = f (η ) ∂η
对此式再关于η 积分,得
u = ∫ f (η )dη + f1 (ξ ) = f1 (ξ ) + f 2 (η )
第三章 行波法与积分变换法 本章我们介绍两个常用的解题方法:行波法和积分变换法。行波法只用于求解无界区 域上的波动方程定解问题, 积分变换法不受方程类型的限制, 一般应用于无界区域的定界问 题,有时也应用于有界域的定解问题.
3.1 达朗贝尔公式及波的传播 在求解常微分方程的特解时,一般先求出方程的通解,然后利用所给的定解条件去解出 通解中含有的任意常数,最后得到了满足所给条件的特解.这个想法能否推广到求解偏微分方 程的过程中呢?一般情况下,随着自变量个数的增加,偏微分方程的通解非常难求,并且偏微分 方程的通解一般都含有任意函数,这种任意函数很难由定解条件确定为具体的函数.所以在求 解数学物理方程时,主要采用通过分析各类具体的定解问题,直接求出符合定解条件的特解的 方法.但事情没有绝对的,在有些情况下,我们可以先求出含任意函数的通解,然后根据定解条 件确定出符合要求的特解.本节我们研究一维波动方程的求解,就采用这种方式. 3.1.1 达朗贝尔公式 如果我们所考察的弦无限长,或者我们只研究弦振动刚一开始的阶段,且距弦的边界较远 的一段,此时可以认为弦的边界,对此端振动的弦不产生影响.这样,定解问题就归结为如下形 式
第三章积分变换法2
0,
t
0,
(3.41) (3.42)
u x0 f (t),t 0,
(3.43)
不能用Fourier变换,因为 x, t (0, )
用Laplace变换求解。
对x还是t取Laplace变换?
U (x, p) u(x,t)e ptdt
记
0
号 F ( p) f (t)e ptdt 0
dt
a2
2u x2
ej x dx Nhomakorabea22U
(,
t
)
f (x, t)e jxdx G(, t)
得到 dU (,t) a22U (,t) G(,t) (3.37)
dt
dU (,t) a22U (,t) G(,t) (3.37)
3.3 积分变换法举例
积分变换的某些作用:
通过积分变换可将未知函数的常微分方程化成象 函数的代数方程,达到了消去对自变量求导数运算的
目的。
积分变换法也能用于解偏微分方程,在偏微分方程 两端对某个变量取变换就能消去未知函数对该自变 量求偏导数的运算,得到象函数的较为简单的微分方 程。
例1 无界杆上的热传导问题
c
方程的特点:非齐次 ,求解的区域又是无界。
(3.35) (3.36)
u
t
a2
2u x2
f
(x,t),
x
, t
0,
u t0 (x), x ,
(3.35) (3.36)
因为 x ,所以对x取Fourier变换来解。
jxdx
第十二章 积分变换法
傅里叶级数的复数形式(指数形式): n
令 kn
l
,则
a0 f ( x) (an cos kn x bn sin kn x) 2 n 1 a0 an ikn x bn ikn x ikn x [ (e e ) (e e ikn x )] 2 n 1 2 2i a0 an ibn ikn x an ibn ikn x ( e e ) 2 n 1 2 2
a0 n x n x f ( x) (an cos bn sin ) 2 n1 l l 利用三角函数的正交关系,可得
1 n an f ( )cos d l l l
l
(n 0,1, 2,) (n 1, 2,)
数学物理方法
1 n bn f ( )sin d l l l
问题,积分变换法适宜。 关于无界问题的说明:如果物体的体积很大,而所需要知 道的只是在较短的时间和较小范围内的变化情况,那么边界条 件所产生的影响可以忽略,此时问题就变成只有初始条件、但 没有边界条件的定解问题(柯西问题) ,但无边界条件就无法 构成本征值问题(分离变量法的重要步骤) 。
数学物理方法
由上式可见:正弦项是 k 的奇函数,对 k 的积分为零;余弦 项是 k 的偶函数,为在区间(0,∞)积分值的两倍。
f ( x)
0 0
1
0
dk
f ( ) cos[k ( x )]d
dk{[
[ A(k ) cos(kx) B (k )sin(cos k ( ) d ]cos( kx) [
1
f ( )sin k ( ) d ]sin( kx)}
数学物理方程-3
其中ϕ(x, y, z) 和 ψ (x, y, z) 均为已知函数。
u
3-3 高维波动方程的初值问题
平均值法:不考虑函数 平均值法:不考虑函数 u(x, y, z, t) 本 身,而是研究u(x, y, z, t)在以点 M(x, y, z) 为球心,以r 为球心,以r为半径的球面上的平 均值 u ,当暂时选定 M(x, y, z) 后, u 就是关于r 就是关于r,t的函数。当我们很方 便地求出 u (r, t) 后,令 r →0 则 u(r, t) →u(x, y, z, t) ,问题就得到了 解决。
第3章 行波法与积分变换法
原柯西问题的通解为 u = f1 (x + at) + f2 (x − at) 初始条件代入其中,有 ϕ(x) = f1 (x) + f 2 (x) ′ ψ (x) = af1′(x) − af 2 (x) 无界弦振动的柯西问题的解(达朗贝尔解 无界弦振动的柯西问题的解(达朗贝尔解 ) 1 1 x+at 为: u(x, t) = [ϕ(x + at) +ϕ(x − at)] + ∫ ψ (ξ )dξ
3-2 延拓法求解半无限长振动问题
延拓后的定解问题:
2 ∂2v 2 ∂ v + F(x, t) (−∞ < x < +∞, t > 0) 2 =a 2 ∂x ∂t ∂v v(x,0) = Φ(x), |t=0 = Ψ(x) ∂t v(0, t) = 0
x >0 ϕ(x), Φ(x) = −ϕ(−x), x < 0
x >0 ψ (x), Ψ(x) = −ψ (−x), x < 0
x >0 f (x, t), F(x, t) = − f (−x, t), x < 0
数学物理方法试题汇总
12届真题1. 求下列各小题(2*5=10分):(1)用几何图形表示0arg(1)4z π<-<; (2)给出序列(1/)sin 6n n z i n π=+的聚点; (3)在复数域中求解方程cos 4z =的解;(4)给出二阶偏微分方程的基本类型;(5)给出解析函数所满足的柯西-黎曼方程。
2.按给定路径计算下列积分(5*2=10分):(1)320Re izdz +⎰,积分路径为线段[0,3]和[3,3+2i]组成的折线;(2)11,==⎰积分路径由z=1出发的。
3.利用留数定理计算下列积分(5*2=10分):(1)241x dx x +∞-∞+⎰; (2)3||1zz e dz z =⎰。
4.求常微分方程20w z w ''-=在0z =邻域内的两个级数解(15分)。
5.求下列线性非奇次偏微分方程的通解:2222u u xy y x y∂∂-=-∂∂(15分)。
6.利用分离变量法求解:(20分)2222000(),|0, |0,0, 0.x x l t t u u x l x t x u u u u t ====⎧∂∂-=-⎪∂∂⎪⎪==⎨⎪∂⎪==∂⎪⎩7.用拉普拉斯变换方法求解半无解问题(20分)220, 0,0,(0,)1, lim (,) 0, (,0)|0, 0.x u u x t t x u t u x t t u x x κ→∞⎧∂∂-=>>⎪∂∂⎪⎪=>⎨⎪=>⎪⎪⎩有界,2005级一、填空(请写在答题纸上,每题6分,共计48分)1. 三维泊松方程是______________________________2. 边界为Γ的区域Ω上函数u 的第二类边界条件为___________________。
3. 极坐标下的二维拉普拉斯方程为__________________________。
4. 定解问题2002||0tt xx t t t u u x u x u ===-∞<<+∞⎧⎪⎨==⎪⎩, ,的解__________________________。
第三章 积分变换法
G(, )e
0 a 2 2 ( t )
t
a 2 2 ( t )
d ]
F [( )e
1
a 2 2t
] F [ G(, )e
1 0
( x )2 4 a 2t t 1 0
t
d ]
]d
x2
1 2a
方程与初始条件两端同时关于x取Fourier变换,得
dU ( , t ) 2 2 a U ( , t ) dt U ( , t ) ( ) t 0
通过Fourier变换将原问题转化为常微分方程定解问题。方程通解为: U (, t ) Ce
( x )2 4 a 2t '
由公式
( x, t; )
1 2a t
'
f ( , )e
1 d 2a (t )
f ( , )e
( x )2 4 a 2 ( t )
d
由齐次化原理 1 V ( x, t ) ( x, t; )d 0 2a
1
f ( x)e i x dx
F ( )ei x d
f ( x)e i x dx
1 f ( x) F [ F ( )] 2
x
F ( )ei x d
例.求函数f ( x) e 的Fourier变换。
解:F ( )
0
2 2W W 2 , - x , t 0, 2 a 2 ( II ) t x W - x t 0 ( x),
积分变换法求解定解问题
1
F ()eixd
2
为f(x)的傅里叶逆变换式,记为f(x)=F-1[F(ω)];称
函数f(x)为F(ω)的傅里叶逆变换,简称傅氏逆变换
(或像原函数)。
傅里叶变换与傅里叶逆变换是互逆变换,即
F1F() F1 F f (x) F1F f (x) f (x)
定义 13.1.3 多维傅里叶变换 n维情况下函数 f(x1, x2,…,xn)傅氏变换为
F1 F1() F2 () f1( x) * f2( x)
证明:
F f1(x) * f2(x)
f1( x) * f2 ( x) eixdx
f1( )
f2(x
)eixd dx
f1( )
f2 (u)ei(u )dud
x u
dx du
f1( )ei )
f2 (u)eiudud
n
12
dn
注:傅氏变换和其逆变换积分前的系数虽然各书 的写法各不相同,但只要这两个系数的乘积等于 1/2π,傅氏变换和其逆变换则均可满足。
三、δ 函数
定义 13.1.5 如果一个函数满足下列条件,则 称之为δ 函数,并记为δ(x):
(
x)
0
x0 x0
(x)dx 1
等价定义(函数序列的极限):
f (ax)e a
1 d(ax)
a
1
f
iu
(u)e a du
1
iu
f (u)e a du
a
a
1 F() 1 F()
aa a a
u ax dx du
卷积定义 知函数f1(x)和f2(x),则它们的卷积定 义为:
f1(x) * f2(x) f1( ) f2(x )d
数理方程:第9讲积分变换法
L1 F p
L1
e
px a
f
t
L1
e
px a
查表得
L1
1
e
px a
p
2
x
e y2 dy g(t)
2a t
易证 而
g0 0
L1
e
px a
L1
p
1
e
px a
p
于是
L[ g
't ]
p
1
e
p x
a
g
0
p
p x
e a
于是
L1[
p
1
e
p a
x
]
g
't
p
d dt
2
x
e
y2
dy
2
e
x2 4a2t
3
2a t
2a t 2
所以
u x,t f t g 't
x
t
f ( )
1
e d
4
x2 a2 (t
)
2a 0
(t )3/2
例 设 x 1, y 0, 求解下面定解问题
2u x2 y xy u | y0 x 2 u | x1 cos y
解 对 y进行拉普拉斯变换, ux, y Ux, p
x
方程可变为
dU ,
t 2U ,t
dt
U , t |t0
可解得
U ,t e2t
由于
F 1[e2t ]
1
x2
e 4t
2 t
即
F
1
x2
e 4t
e2t
2 t
第13章积分变换法
1 [(x at) (x at)] 1
xat
( )d
2
2a xat
例:求解无限长细杆的热传导问题:
泛定方程 ut a2uxx 0
( x )
初始条件 u(x,t) t0 (x) ( x )
解: 将
u(x,t) U (,t)ei xd
代入泛 定方程
[ dU(,t) a2 2U (,t)]ei xd 0
2a
p
1 e px/a x e p /a [ p ( ) ( )]d
2a
p
1 e px/a x e p /a [ p ( ) ( )]d
2a
p
u (x, p) 1 e px/a x e p /a [ p ( ) ( )]d
2a
p
1 e px/a x e p /a [ p ( ) ( )]d
dU (,t) a2 2U (,t) F(,t) 求其
dt
通解
初始条件
U (,0) ()
dU (,t) a2 2U (,t) F(,t)
dt
其通解可用Laplace 变换法求
pU U (0) a2 2U F 其中 U (,0) ()
U
( ) p a2 2
1
pHale Waihona Puke a2 2F因为L1[
t
)
§13.2 Laplace变换法
Laplace变换法适用于求解初值问题,不管泛定方程 或边界条件是否为齐次
例:求解无限长的自由振动定解问题:
泛定方程 utt a2uxx 0 ( x )
初始条件 u(x,t) t0 (x) ( x ) ut (x,t) t0 (x) ( x )
1 [ e p( x)/a ( )d x e p(x )/a ( )d ]
数学物理方法第十二章积分变换法课件
方程(12.2.4)的通解为
将式(12.2.6)代入式(12.2.5),可得
将式(12.2.7)与式(12.2.8)联立,解出C1与C2后代入 式(12.2.6) ,可得
(12.2.9)
53
(3)作像函数应
的傅里叶逆变换
第一、三项应用延迟定理 作傅里叶逆变换得
(12.2.10)
54
第二、四项应用延迟定理和积分定理
特别是
证明 将
代入式 (12.1.40)左边,交换积分次序后应用d函数的 傅里叶展开式,便有
41
帕塞瓦尔等式在辐射问题中有着广泛的应用,如 计算切连科夫辐射的电磁能流密度时就会用到
42
【例12.1.5】 求解积分方程
解设 解题的步骤分三步:
(1)作积分方程的傅里叶变换。由卷积的定义
用卷积定理,将积分方程的傅里叶变换写成
可见,只要证明
, 也即证明e-k满足傅
里叶正弦逆变换(见式(12.1.20)
则本题得证
22
实际上,通过两次分部积分可证,留给读者作为练 习.
23
4. d函数的傅里叶展开
d函数可以表示为指数函数与三角函数的傅里叶积分
证明 令f(x)=d (x-x’)代入式(12.1.14), 得 将上式代入式(12.1.15) 即有
若a1 、a2为任意常数,则对任意函数f1(x)及
f2(x) ,有
27
证明 由定义出发
28
2.延迟定理
设x0为任意常数,则
证明由定义出发,令u=x-x0可得
由式(12.1.16)可见,F[f(x)]仅为k的函数,与x无关(x 是定积分的积分变量) 故 F[f(u)]=F[f(x)] (12.1.30)
数学物理方法讲义11积分变换法
Chapter 11 积分变换法一、无界空间的有源导热问题—Fourier 变换法定解问题: ()2(,)(,)(,), ().t xx t u x t a u x t f x t x u x φ=⎧-=-∞<<∞⎪⎨=⎪⎩()()22000, (,), ().0.t xx t xx t t w a w x v a v f x t x w x v φ==⎧⎧-=-∞<<∞-=-∞<<∞⎪⎪⇔+⎨⎨==⎪⎪⎩⎩ ⇒ (,)(,)(,).u x t w x t v x t =+1.一维无源导热问题()20(,)(,)0, ().t xx t w x t a w x t x w x φ=⎧-=-∞<<∞⎪⎨=⎪⎩ 解:把t 看作参数,应用Fourier 变换:1(,)(,)d ;2(,)(,)d .ikx ikx w k t w x t e x w x t w k t e k ∞--∞∞-∞⎧=⎪⎪⎨⎪=⎪⎩⎰⎰(,)(,),w x t w k t ↔()22(,)(,)(,).xx w x t ik w k t k w k t ↔=-220(,)(,)0,().t t w k t a k w k t w k φ=⎧+=⎪⎨=⎪⎩ 解得22(,)().a k tw k t k e φ-= 因为)()(~x k ϕϕ↔, ta x tk a eta e2222421--↔ (利用a b ax e a x bx e 422d cos -∞∞--=⎰π), 利用卷积定理,得()()222244(,)(d (d ()(,;,0)d ,x x a ta tw x t G x t ξξφξξφξξφξξξ----∞∞-∞-∞∞-∞===⎰⎰其中()224(,;,0).x a tG x t ξξ--=容易验证,)0,;,(ξt x G 是问题()⎪⎩⎪⎨⎧-=∞<<∞-=-=)( 0),(),(02ξδx u x t x u a t x u t xx t 的解。
《数理方程》积分变换法解析
x2
x2
1 p2
dU dx
2x p
x2 p3
.
而 u |x1 cos y
变为
U
x,
p
|x1
1
p p2
,
解常微分方程得
U x, p
1 3 p3
x3
1 p
x2
p 1 p2
1 3 p3
1 p
.
取拉普拉斯逆变换,得
L(t n )
n! pn1 , n 0,1,
u
|x
0
f
t.
思考:需要对哪一个自变量进行哪一种积分变换?
对 t 进行拉普拉斯变换,设
u x,t U x, p, f t F p
于是方程变为
a2
d 2U x,
dx 2
p
pU
x,
p,
U x, p |x0 F p
这是二阶常微分方程的边值问题,它的通解为
根据傅里叶变换的微分性质,
方程转化为
dU ,
t
2U , t
dt
U , t |t0 F
于是 U ,t F e2t .
为了求出原方程的解,下面对 U ,t 关于 进行
傅立叶逆变换.
U ,t F e2t .
再由边值条件 U x, p |x0 F p 可知,C = F(p).
U
x,
p
F
pe
p a
x
.
为求出 u(x,t), 需要对 U(x,p) 进行拉普拉斯 逆变换。
行波法与积分变换法——数学物理方程
1 3 u f1 3 x f1 f2 x f 2 1 3 f1 0 f2 0 C
其解中得f1 , ff21是3两x个二94x次2连34续C可微函数.
于是原方程 f的1 通x 解 为14 x 2
4
4
3.1 一维波动方程的达朗贝尔公式
例 求方程 u x x 2 s in xu x y c o s2x u y y c o sx u y 0
的一般解. 解 特征方程为
d y 2 2 s in x d x d y c o s 2x d x 2 0
dy sinx1 dx
rat 1( )d , r at 0
at)
u
(r,t)
(r
at
)
0
(r
at
)
(at
r
)
0
(at
r
)
2r
1 2ar
atr
atr 1( )d , r at 0
3.2 三维波动方程的泊松公式
二. 一般情况
令
u(r,
t)
f1 x f2 x x ……………①
u t| t 0 a f ' 1 ( x a 0 ) a f 2 ' ( x a 0 )
a '1 x f a '2 x fx ……………②
由第二式得
f1xf2xa10xdC.............③
进一步有
2tu 2 a22ru rr2u 20 2(tr2u)a22(rr2u)0
数理方程参考答案4第四章 积分变换法
若 在 点连续,则
1
定义
设函数 f ( x) 在 (−∞, +∞) 上的任意有限区间上满足狄利克雷条件,在 (−∞, +∞) 上绝
对可积,则称广义积分
为
的傅里叶变换,或者称为 定义 称
的像函数。通常记为
,或
。
为
的傅里叶逆变换,或者称为 傅里叶变换及其逆变换的基本性质
的像原函数。记为
.
性质 1(线性性质) 傅里叶变换及其逆变换都是线性变换,即
其中 , 是任意常数。 性质 2(相似性质) 对于任意实常数 ,有 . 性质 3(位移性质)对于任意实常数 ,有 , 性质 4(微分性质)设 , 的傅里叶变换存在,则 . 一般地,若 , ,…, 的傅里叶变换存在,则 . 性质 5(乘多项式性质)设 的傅里叶变换存在,则
2
.
. 性质 6 (积分性质) . 性质 7 (对称性质) . 定义 于所有的 设函数 和 是 上定义的函数。 如果广义积分 对
2 ∂ 2u 2 ∂ u a − = 0 (−∞ < x < +∞, t > 0), ∂t 2 ∂x 2 ∂u u| ψ ( x). ( x), = = t =0 ϕ ∂t t =0
的解为
二维拉普拉斯方程的边值问题
∂ 2u ∂ 2u = 0 ( −∞ < x < +∞, y > 0), ∂x 2 + ∂ y2 u | = f ( x ), x =0 u = 0. |xlim |→+∞ 的解为
2
s2
例3 解
求函数 F ( p ) = 因为
p 的拉普拉斯逆变换 p − 2 p +5
圆锥曲线定点定值问题方法总结
圆锥曲线定点定值问题方法总结
圆锥曲线是一类受应力和形变作用的曲线,它的应用广泛,是研究几何图形的重要工具。
圆锥曲线的定点定值问题要求在任意给定的两个圆锥曲线上找到定点定值的解,而这样的解通常是难以求得的。
一般情况下,这类问题使用数学变换方法,如积分转换、限界积分转换、局部变换等。
首先,以积分变换为例,我们可以使用积分变换来求解圆锥曲线定点定值问题。
这种变换把原始曲线进行分段处理,求出每一段的积分,然后求出该曲线上特定坐标(X0,Y0)的积分。
这种方法的优点在于,可以使用常用的数学软件解决大多数圆锥曲线定点定值问题。
其次,我们也可以使用限界积分变换来解决圆锥曲线定点定值问题。
这种变换首先要将原始曲线进行分段处理,通过限界积分计算每一段的积分。
最后,用积分变换求出曲线上特定坐标(X0,Y0)的积分。
这种方法的优点在于,它可以有效节省计算时间,并且灵活性强,将积分计算公式转换成局部变量。
最后,我们还可以使用局部变换来解决圆锥曲线定点定值问题。
这种变换将原始曲线进行分段处理,将每一段的积分表示为一个局部变量函数,然后将局部变量函数进行积分,求出圆锥曲线上特定坐标(X0,Y0)的积分。
这种方法的优点在于,使用较少的计算量可以快速地求出该曲线上特定坐标(X0,Y0)的积分。
总之,我们可以使用积分变换、限界积分变换和局部变换等数学变换方法来求解圆锥曲线定点定值问题。
这几种方法各有优缺点,需
要结合实际情况来选择合适的解决方案。
圆锥曲线定点定值问题是解决几何图形相关问题的重要方法,也是构建几何图形的基础之一,研究者需要加强对其原理性质的理解,发掘更多的实用方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特别是对于无界或半无界的定界问题,用积分变换来 求解,最合适不过了.(注明:无界或半无界的定界问题 也可以用行波法求解)
用积分变换求解定解问题的步骤为:
第一:根据自变量的变化范围和定解条件确定选择适当
的积分变换;
对于自变量在
内变化的定解问题
(如无界域的坐标变量)常采用傅氏变换,而自变量在
3
内变化的定解问题(如时间变量)常采用拉氏变换.
例12.1.6 如果定解问题为下列第二边值问题
【解】 令
即
26
容易得到
满足定解问题为
则根据上述稳定场第一边值问题公式
故得到
27
12.2 拉普拉斯变换解数学物理定解问题
由于要作傅氏变换的函数必须定义在
上,故当
我们讨论 半无界问题时,就不能对变量 作傅氏变换了.
28
由此本节介绍另一种变换法:拉普拉斯变换法求解定解问题.
这正是前面学过的的达朗贝尔公式.
例12.1.2
11
为了说明傅氏变换法解非齐次方程特别简便,
我们特举一强迫弦振动问题: 求解无限长弦的强迫振动方程的初值问题
【解】 根据与例15.1.1 相同的方法,作傅氏变换
12
我们容易得到原定解问题可变换为下列常微分方程的问题
13
上述问题的解为
利用傅氏变换的性质有 故得到
12.2.1 无界区域的问题
例12.2.1 求解无限长细杆的热传导(无热源)问题
【解】 先对时间 作拉氏变换
(15.2.1)
29
由此原定解问题中的泛定方程变为
对方程(17.2.3)实施傅氏逆变换来进行求解.利用傅氏逆变换公式
30
以及卷积定理
得方程(12.2.3)的解为
(12.2.4)式作拉氏逆变换,并查阅拉氏变换表,
例 12.1.5 定解问题
22
【解】 对于变量 作傅氏变换,有
定解问题变换为常微分方程
23
因为 可取正、负值,所以常微分定解问题的通解为
因为
,故得到
常微分方程的解为 设
24
根据傅氏变换定义,
的傅氏逆变换为
再利用卷积公式 最后得到原定解问题的解为
25
容易看出与格林函数解出的结果具有相同的表示式.
并对空间变量x积分(这里把时间变量看成参数),按照傅
里叶变换的定义,我们采用如下的傅氏变换对:
7
简化表示为
对其它函数也作傅氏变换,即为
8
于是原定解问题变换为下列常微分方程的定解问题
上述
10
最后,上式乘以 并作逆傅氏变换.应用延迟定 理和积分定理得到
第十二章 积分变换法求解定解 问题
在复变函数理论中,我们曾用拉普拉斯变换法求解 常微分方程.经过变换,常微分方程变成了代数方程, 解出代数方程,再进行反演就得到了原来常微分方程 的解.
1
积分变换法是通过积分变换简化定解问题的一种有效的求 解方法.对于多个自变量的线性偏微分方程,可以通过实施积 分变换来减少方程的自变量个数,直至化为常微分方程,这就 使问题得到大大简化,再进行反演,就得到了原来偏微分方程 的解.积分变换法在数学物理方程(也包括积分方程、差分 方程等)中亦具有广泛的用途.尤其当泛定方程及边界条件均 为非齐次时,用经典的分离变量法求解,就显得有些烦琐和笨 挫,而积分变换法为这类问题提供了一种系统的解决方法,并 且显得具有固定的程序,按照解法程序进行易于求解.利用积 分变换,有时还能得到有限形式的解,而这往往是用分离变 量法不能得到的.
或 (12.2.47)
40
(12.2.4)
31
得原定解问题(12.2.1)的解为
12.2.2半无界区域的问题 例 12.2.2 求定解问题
32
【解】首先作变量 的拉氏变换
(12.2.6)
原定解问题即为
33
易得到(12.2.8)式的解为
34
又 故 由于
35
及拉氏变换的卷积定理 最后,得原定解问题的解为
36
例12.2.3 求解在无失真条件下 电报方程的定解问题
第二:对方程取积分变换,将一个含两个自变量的偏微分方
程化为一个含参量的常微分方程;
第三:对定解条件取相应的变换,导出常微分方程的定解条件; 第四:求解常微分方程的解,即为原定解问题的变换; 第五:对所得解取逆变换,最后得原定解问题的解.
4
12.1 傅里叶变换法解数学物理定解问题
对于无限空间的定解问题,傅里叶变换是一种很 适用的求解方法.本节将通过几个例子说明运用傅里叶 变换求解无界空间(含一维半无界空间)的定界问题的 基本方法,并给出几个重要的解的公式.
(12.2.16)
37
【解】令
并考虑到无失真条件则原方程(12.2.16)化为
若对时间 作拉氏变换有
(12.2.17)
于是定解问题(12.2.16)化为下列常微分方程的边值问题:
38
上述问题的解为
因为
所以
(12.2.18)
39
于是
最后利用拉氏变换的延迟定律,得定解问题(12.2.16)的解为:
14
代入得到 即得
15
12.1.2 热传导问题
例12.1. 3 求解无限长细杆的热传导(无热源)问题
【解】 作傅氏变换,
定解问题变换为
16
常微分方程的初值问题的解是 再进行逆傅里叶变换,
交换积分次序
17
引用积分公式
且令
以便利用积分公式,即得到
18
例15.1.4 求解无限长细杆的有源热传导方程定解问题
【解】
利用
对定解问题作傅氏变换,得到常微分方程的定解问题
19
上述问题的解为
为了求出上式的逆变换,利用下面傅氏变换的卷积公式,即 若 则
20
而积分 即为
最后得到定解问题的解为
21
12.1.3 稳定场问题
我们先给出求半平面内
拉普拉斯方程的第一
边值问题的傅氏变换 系统解法(读者可以与格林函数解法进
行比较)
5
下面的讨论我们假设待求解的函数 及其一阶导数是有限的 .
12.1.1 弦振动问题 例12.1.1 求解无限长弦的自由振动定解问题
(假定:函数 及其一阶导数是有限的,以后不再特别指出. 这一定解问题在行波法中已经介绍,读者可以比较行波解 法和傅氏解法)
6
【解】
应用傅里叶变换,即用
遍乘定解问题中的各式,