连锁与互换规律
连锁与互换规律
在1906年,科学家贝特生等在研究香 豌豆的两对相对性状时,发现同一亲本的 两种性状,在杂交后代中,比较多地连在一 起出现,并不按照孟德尔自由组合规律的 比例发生分离,这使他们感到非常困惑,甚 至对孟德尔的遗传规律产生怀疑。 的遗
传学家摩尔根和他的同事用果蝇做实验材 料,进行了大量的遗传学研究,终于解开了 人们心中的疑团,这不仅证实了孟德尔的 遗传规律的正确性,并且丰富发展了关于
位于非同源染色体上的两对或多对基因,
×
黑身残翅
(bbvv)
果 蝇 的
(BBVV)
(bbvv)
灰身长翅 黑身残翅
F 测交 雄 × 雌 连 1 F1基因在染色体上的位置
的遗传学家摩尔根和他的同事用果蝇做实验材料,进行了大量的遗传学研究,终于解开了人们心中的疑团,这不仅证实了孟德尔的遗传规
律的正确性,并且丰富发展了关于两对(或两对以上)基因的遗传理论,提出了遗传的第三个规律----基因的连锁互换规律。
摩尔根
发现染色体的遗传机制, 创立染色体遗传理论, 现代实验生物学奠基人。 从1904年到1928年, 摩尔根创建了以果蝇为实验材料的研究室, 从事进化和遗传方面的工作。 “ 遗传学之父” “现代遗传学的先驱” 1933年,获诺贝尔生理学或医学奖
是按照自由组合规律向后代传递的;
连锁遗传
F1雌果蝇的位于同一个染色体上的两个基因大都是连锁遗传的,因此生成的
BV:bv= 1:1
BV:bv:Bv:bV =多:多:少: 少
双显:双隐:显 双显:双 双显:双隐:显
隐:隐显=
隐=1:1 隐:隐显=
1:1:1:1
多:多:少:少
基因的自由组合规律和基因的连锁互换 规律 是建立在基因的分离规律的基础上
奥赛1连锁与互换规律
生物奥赛培训之一:《连锁与互换规律》1910年摩尔根将果蝇白眼基因定位于X上后,又发现一些伴性遗传基因,证明X上确有许多基因(人有23对染色体和十万个基因)。
提出问题:(1)同一染色体上众多基因如何排列?(2)遗传传递有何规律?经研究得到结论:(1)基因论(2)连锁交换规律第一节基因的连锁与交换一、连锁遗传现象(一)连锁遗传现象发现1906年英国学者贝特森(Bateson)和潘耐特(Pannett)研究香豌豆两对性状遗传时,首先发现的。
花颜色紫色P对红色p显性,花粉粒形状长形L对圆形l显性。
F2分离比不符合9:3:3:1,亲组合类型较多,重组合类型偏少。
原为同一亲本的两个性状,在F2中常常有联系在一起的倾向,这说明来自同一亲本的基因,有较多的在一起传递的可能。
但贝特森和潘耐特未能提出科学的解释。
摩尔根认为应从F1产生配子数找原因,4种配子数目不等,亲组合类型多,重组类型少。
(二)摩尔根的实验果蝇翅长短,复眼颜色:长翅Vg,残翅vg,红色复眼Pr,紫色复眼pr。
1、相引组与相斥组的概念:(1)相引组:两个显性在一起,两个隐性在一起配成的杂交组合。
(2)相斥组:一个显性一个隐性和一个隐性一个显性在一起配成的杂交组合。
2、相引组、相斥组的完全连锁与不完全连锁实验:3、解释相引组杂交:红眼雄果蝇产生两种数目相同的配子,测交后代1:1,红眼雌果蝇产生四种配子,但亲组型配子Vg Pr和vgpr多,而重组型配子Vg pr和vgPr少。
同理可解释相斥组杂交结果。
果蝇翅的长短和眼的颜色是两对相对性状,这两对相对性状在杂交后代中具有某种程度的相关性或相连性,把这种现象叫连锁。
把这两对相对性状叫连锁性状。
控制连锁性状的基因叫连锁基因,连锁基因位于同一对同源染色体上。
连锁基因之间能够发生交换的连锁叫不完全连锁(雌果蝇),不能发生交换的连锁叫完全连锁(雄果蝇、雌家蚕)。
目前人们经过研究发现仅有两种动物雄果蝇和雌蚕属于完全连锁,不发生交换。
连锁与交换规律
第五章连锁与交换规律第一节连锁与交换连锁遗传:同一染色体上的某些基因以及它们所控制的性状结合在一起传递的现象;1906年英国学者贝特森Bateson和潘耐特Pannett研究香豌豆两对性状遗传时,首先发现的;一、连锁与交换的遗传现象连锁现象是1906年英国学者贝特森Bateson和潘耐特Pannett研究香豌豆两对性状遗传时,首先发现的;后来,摩尔根等发现连锁分二类:完全连锁和不完全连锁;香豌豆两对相对性状杂交试验.花色:紫花P对红花p为显性;花粉粒形状:长花粉粒L对圆花粉粒l为显性;1. 紫花、长花粉粒×红花、圆花粉粒.2. 紫花、圆花粉粒×红花、长花粉粒.杂交组合1:紫花、长花粉粒×红花、圆花粉粒;试验结果:1、F1两对相对性状均表现为显性,F2出现四种表现型;2、F2四种表现型个体数的比例与9:3:3:1相差很大,并且两亲本性状组合类型紫长和红圆的实际数高于理论数,而两种新性状组合类型紫圆和红长的实际数少于理论数;杂交组合2:紫花、圆花粉粒×红花、长花粉粒;试验结果:1、F1两对相对性状均表现为显性,F2出现四种表现型;2、F2四种表现型个体数的比例与9:3:3:1相差很大,并且两亲本性状组合类型紫圆和红长的实际数高于理论数,而两种新性状组合类型紫长和红圆的实际数少于理论数;一完全连锁:位于同一条染色体上的非等位基因,在形成配子过程中,作为一个整体随染色体传递到配子中,同源染色体之间不发生染色体片段的交换,杂合体在形成配子时,只有亲本组合类型的配子;完全连锁在生物界很少见,只在雄果蝇XY和雌家蚕ZW中发现注意雌雄连锁不同;霍尔丹定律:凡是较少发生交换的个体必定是异配性别的个体;例如:果蝇的体色、翅膀的遗传P 灰身残翅 BBvv♂×bbVV♀黑身长翅F1 灰身长翅 BbVv ♂× bbvv黑身残翅bbVv BbvvF2 黑身长翅灰身残翅亲本类型因为F1 BbVv♂在形成配子时,只形成了bV和Bv两种配子,即bV完全连锁, Bv也完全连锁;果蝇的体色、和眼睛颜色遗传:P 灰身紫眼 b+b+prpr × bbpr+pr+ 黑身红眼↓F1 b+bpr+pr × bbprpr黑身紫眼测交↓测交后代灰身紫眼b+bprpr:bbpr+pr黑身红眼拟等位基因:完全连锁的、控制同一形性状的非等位基因;二不完全连锁:位于同源染色体上的非等位基因,在形成配子时,除有亲型配子外,还有少数重组型配子产生;同源染色体的非姊妹染色单体发生交换例如:果蝇体色、翅膀的遗传:P bbVV×BBvv F1 BbVv♀× bbvv♂黑长灰残♀F2 ♂ Bv bV BV bvbv Bbvv bbVv BbVv bbvv香豌豆花色、花粉粒形状遗传:P 紫花、长花粉粒× 红花、圆花粉粒PPLL ↓ ppllF紫花、长花粉粒 PpLl1↓紫、长紫、圆红、长红、圆总数F2P_L_ P_ll ppL_ ppll实际个体数 4831 390 393 1338 6952按9:3:3:1推算的理论数 6952从上图看出,F2代也出现四种表现型,但二种新组合的表现型比理论推算少得多,即象亲本组合的实际数偏多,而重新组合的实际数偏少;P 紫花、圆花粉粒× 红花、长花粉粒PPll ↓ ppLL紫花、长花粉粒F1PpLl↓F 2 紫、长 紫、圆 红、长 红、圆 总数P_L_ P_ll ppL_ ppll实际个体数 226 95 97 1 419按9:3:3:1推算的理论数 419这二个试验的结果都不能用独立分配规律来解释;亲组合:亲代原有的组合;重组合:亲代没有的组合;二、交叉与交换的关系1、同源染色体在减数分裂配对时,偶尔在相应的位置发生断裂,然后错接,造成同源染色体中的非姐妹染色单体之间染色体片段的互换,这个过程叫交换或重组2、每发生一次有效交换,形成1个交叉,将产生两条重组染色体,两条非重组染色体亲染色体,含有重组染色体的配子叫重组合配子,含有非重组染色体的配子叫亲组合配子;三、交换值及其测定一重组值交换值的概念 ; 重组合配子数配子总数亲组合配子+重组合配子 12、发生交换的性母细胞的百分率是重组合配子百分率的2倍;因此如果交换值为4%,则表明有8%的性母细胞发生了交换;3、重组值的范围0—50%之间,重组值越大,基因之间连锁的程度越小;二重组值Rf 的测定1、测交法:用于异花授粉植物是易进行;测交后代Ft 的表现型的种类和比例直接反映被测个体如F1产生配子的种类和比例; 即算公式:重组值= 交换型的个体数 100%测交后代个体总数赫钦森C. B. Hutchinson, 1922玉米色粒遗传的测交试验:籽粒颜色:有色C 、无色c ;籽粒饱满程度:饱满Sh 、凹陷sh相引组相:杂交的双亲是显性基因与显性基因相连锁,隐性基因与隐性基因想相连锁的杂交组合;相斥组×100%重组值Rf =相: 杂交的双亲中,一个是显性基因与隐性基因相连锁,另一个是相对应的隐性基因与显性基因相连锁的杂交组合;C-Sh 相引相的重组值为%;C-Sh 相斥相的重组值为%;相引相测交试验与相斥相测交试验结果分析:1F1产生的四种类型配子比例不等于1:1:1:1;2亲本型配子比例高于50%,重组型配子比例低于50%;3亲本型配子数基本相等,重组型配子数也基本相等;根据实验计算的重组值Rf 是估算值,其标准误差Se 的计算公式是: Se=nRf Rf )1(- n :是总配子数或测交个体总数; 相引组:Se=8368)036.01(036.0-=± 2、自交法:适用于自花授粉的植物;1平方根法:不同的杂交组合计算方法不同相引组:AB/AB ×ab/ab 相斥组:Ab/Ab ×aB/aBF1基因型: AB/ ab Ab/ aBF2表型4种: A-B-; A-bb ; aaB-; aabbF2后代数量: a 1 a 2 a 3 a 4在相引组中,AB 和ab 配子是亲型配子,且AB=ab 的频率=q.Aabb 个体的频率x=q 2=43214a a a a a +++, q=x =43214a a a a a +++ 亲型配子的总频率=AB+ab=2q=2x =243214a a a a a +++=2个体总数双隐性个体数2F 重组配子的频率重组值=1-2q=1-2x =1-243214a a a a a +++=1-个体总数双隐性个体数2F 在相斥组中,AB 和ab 配子是重组型配子;其总频率重组值=2q=2x =243214a a a a a +++=2个体总数双隐性个体数2F 例如:香豌豆花色和花粉粒的遗传相引组P 紫长 × 红圆PPLL ppllF 紫长PpLlF2 紫长 紫圆 红长 红圆P_L_ P_ll ppL_ ppll 总数观察数: 4831 390 393 1338 6952频率: =xP_L 之间的重组值=1-2x =1-219.0=%2乘积比例法先用公式求出乘积比例x 值,然后查乘积比例法估算重组率表,从而得到重组值,读数是小数;X 代表的意义与前边一样;相引组X=4132a a a a =亲型个体数乘积重组型个体数乘积 相斥组X=3241a a a a =亲型个体数乘积重组型个体数乘积 重组值 乘积比例相斥组x 相引组x第二节 基因定位和连锁遗传图一、基因定位的概念根据重组值确定基因在染色体上的排列顺序和基因之间的距离的方法;二、基因定位的方法一两点测交两点试验:以两对基因为基本单位,来进行杂交和测交,计算交换值,求得基因间的距离进行基因定位的一种最基本的方法;例如:测定玉米第9号染色体上的CShWxcshwx 这三对基因的次序和位置,用两点测交就要分别进行三个试验,每个试验都要进行1次杂交和1次测交;C —有色,Sh 饱满,Wx 非糯性;CShWx 三个基因位于同一条染色体上,他们之间的位置,可根据交换值去掉百分号%的数值即基因间的相对距离;单位用厘摩cM 或图距单位;根据重组值C-Sh= cM ;Wx-Sh=20 cM,三个基因之间的顺序2种情况:但是又根据Wx-C=22 cM 可确定是第一种情况;22cM 和之间的差异由于实际试验与理论值之间的机误造成的;该方法的缺点:当基因之间的距离超过5个单位时,往往会因发生双交换而造成不准确;工作繁琐; Wx —Sh 重组值20%C —Wx 重组值22%C —Sh 重组值%二三点测验以三对基因为基本单位,通过一次杂交和测交,同时确定三对基因在染色体上的位置和排列顺序;优点:省时省工,精确简便,测试背景一致,严格可靠;无论单交换还是双交换都能测出;单交换:位于一对同源染色体上的基因之间分别发生单个交换,3对中仅一对交换;双交换:位于同源染色体上的3对基因之间,同时发生了两次单交换,实质上是在两个位点上发生了交换,结果只有中间的一对等位基因交换了位置,另外两对基因仍处在同一条染色体上,呈连锁状态;例如:+ + + Ⅰ + Sh Wx Ⅱ + Sh +C Sh Wx C + + C+ Wx1、三点测验后代6种表型:例如:果蝇三个突变基因ec —棘眼;sc —稀刚毛;cv —翅无横脉,都位于X 染色体上;P :ec + +/ ec + +×+sccv/ Y6种:2、三点测验后代8种表型:ec cv Sc,然后分v bl 排列仅有三种可能: b v l ;v bl ;v lb;b v l Ⅰ b + + Ⅱ b + l+ + + + v l + v +v b l Ⅰ b + + Ⅱ b + l+ + + + v l + v +b l v Ⅰ b + + Ⅱ b + v+ + + + l v + l +计算b -l 之间的重组值为:115+105+20+19/1020=%;v - l 之间的重组值为:80+72+20+19/1020=%;二者相加结果是即b-v 之间的交换值;结论:三点试验中,交换值最大的重组值一定等于另外两个重组值之和减去2倍的双交换值——基因直线排列定律;任何三点试验中,测交后代的8种表型中,个体数目最少的2种表型是双交换的产物,据此可以直接判断基因的顺序;三、干涉与并发率1、干涉干扰,交叉干涉;I同源染色体间一个位置上的交换对邻近位置上的交换发生的影响;这就是说,在三点测交中,如果两个基因对间的单交换并不影响邻近两个基因对间的交换,根据乘法定理,预期的双交换的频率就是两个单交换频率的乘积;实际上观察到的双交换率往往低于预期值;也就是说,每发生一个单交换,邻近基因也发生一次交换的机会要减少,即存在干涉;这种干涉的大小用并发率来表示;2、并发率并发系数;符合系数;C实际获得的双交换类型的数目或频率与理论期望得到的双交换类型的数目或频率的比值;并发率=两个单交换百分数乘积观察到的双交换百分数 值在0—1之间 并发率大,干涉小;C=1,没有干涉;I=1-C,一般情况下,两个基因对之间的距离缩短时,并发率降低,干扰值上升;四、连锁群和连锁图1、连锁群基因连锁群:位于一对同源染色体上的具有一定关系的连锁基因群;连锁群数目等于单倍体染色体数n;一般规律:如果A 与B 连锁,C 与D 连锁,则A 与C 连锁;如果A 与B 连锁,B 与C 不连锁,则A 与C 不连锁;2、连锁图遗传学图;连锁遗传图:根据染色体上的基因之间的相互交换值和排列顺序制定的、表明连锁基因的位置和相对距离的线性图谱;第三节真菌类的遗传学分析一、链孢霉Neurospora crassa的生活史链孢霉是真菌类中子囊菌纲,在遗传研究上应用极广;1、无性世代:占优势,单倍体n=7,菌丝体发出气生菌丝,长出无性孢子,叫做分生孢子,有的是单核的小分生孢子,有的是多核的大分生孢子,分生孢子萌发出新的菌丝;2、有性世代:有性生殖只有在两个不同交配型菌株一起生长时才会进行;1不同交配型菌丝接合子囊原始细胞异核体合子核2n 减数分裂有丝分裂 8个子囊孢子;2在固体琼脂上,两个菌株都形成许多雌性生殖结构,称为原子囊果;原子囊果是菌丝的圆形聚合物,包有特殊的菌丝,向空间伸展成为受精丝;不同交配型的小分生孢子与受精丝相接触时就发生受精作用;形成子囊原始细胞异核体,这两个核在伸长的细胞中融合成二倍体细胞核合子核;二倍体细胞核立即进行减数分裂,再进行有丝分裂,在一个子囊中形成四对子囊孢子;同时,其他菌丝形成了一个厚壁包围着产囊菌丝,构成长颈瓶状的子囊壳;特别应当注意的是:每个子囊是一次减数分裂的产物,而每对孢子则是有丝分裂的产物,因此每对孢子的每个成员具有相同的基因型;每次减数分裂所产生的四个产物即四分体四分子不仅仍保留在一个子囊中,而且在子囊中成线状排列;又叫顺序四分子四分子或八分子在子囊中呈直线排列——直列四分子,直列八分子,是提供遗传分析独一无二的非常重要的结构;二、四分子分析1、四分子分析概念:对四分子进行遗传学分析;2、利用链孢霉进行遗传学分析的好处1个体小,长得快,易培养繁殖;2无性世代单倍体,显性基因、隐性基因都能表达,便于直接观察基因表型;3减数分裂产物在一个子囊中顺序排列,可直接观察减数分裂分离比,便于重组率计算;4子囊中子囊孢子的对称性质,证明减数分裂是一个交互过程;可以把着丝粒作为一个座位,计算某一基因与着丝粒之间的重组率;5四线分析证明,每一次交换,只包括4线中的两线,但多重交换可以包括一个双价体中的三线或四线;三、着丝粒作图P100一概念1、着丝粒作图:把着丝粒作为一个作为相当一个基因,计算某一基因与着丝粒之间的距离,并在染色体上进行基因定位;2、野生型原养型:能在基本培养基上生长繁殖的链孢酶;3、营养缺陷型:一定要在基本培养基上加入某种营养物质才能生长的菌株;二着丝粒作图方法链孢霉Lys 缺陷型子囊孢子灰色与野生型杂交子囊孢子黑色Lys-- n × Lys++ n → +/-2n →RD 4个核→有丝分裂8个子囊孢子4个灰色4个黑色即4个孢子对,排列方式6 可见:交换型子囊孢子数等于交换型子囊数的一半,即一个子囊发生交换后,产生的子囊;所以在计算着丝粒与有关基因的重组值的时候可用下式计算:基因与着丝粒间重组值=非交换型)子囊总数(交换型交换型子囊数+×100%×21 例如:有9个子囊对Lys-基因是非交换型,5个子囊对是Lys-基因交换型,则交换型子囊比率=595+×100%=36%Lys-基因与着丝粒间重组值=21×36%=18%Lys-基因与着丝粒间距离=18厘摩1、非交换类型2种:+ + - - 第一次分裂分离- - + + M Ⅰ2、交换类型:4种:+ - + - 第二次分裂分离- + - + M Ⅱ - + + - 第一次分裂分离 第二次分裂分离 Lys-着丝粒。
连锁与互换定律
毛
上述现象表明:亲本中原来连在一起的两个不同性状
(或两个不同的基因)在F2中往往有连在一起遗传的倾向,
这种现象就称为连锁(linkage)遗传现象。
二、连锁遗传现象的解释
?
为什么F2不表现9:3:3:1的表现型分离比例 例一、摩尔根等的果蝇遗传试验
采用白眼、黄体雌蝇(wwyy)与野生型红眼、灰体
配子
白色卷羽IiFf × 有色常羽iiff
↓ ↓↓
IiFf =If iF if × if = 有色常羽12只, IF 白色卷羽15只,iiff Iiff = 白色常羽 4只,iiFf = 有色卷羽 2只。
连锁遗传规律 的内容:
连锁遗传的相对性状是由位于一对同源染
色体上的非等位基因控制,基因间具有连锁关
(3)由于基因交换而形成四种基因组合不
同的染色单体,经减数分裂后,产生四 种不同类型的性细胞,其中包括两种亲 本组合和两种新组合。
P F1
(复制)
同源染色体联会(偶线期)
非姊妹染色单体交换 (偶线期到双线期)
终变期
四分体
3、标识染色体的遗传
标识染色体:具有特殊记号的染色体。在实际中可以
用来辨别某一特定染色体的变化情况。
花色:
紫花(P)
对 红花(p)
为显性
花粉粒形状: 长花粉粒(L) 对 圆花粉粒(l) 为显性
以上结果表明F2: ① 同样出现四种表现型; ② 不符合9:3:3:1;
③ 亲本组合数偏多,重新组合数偏少(与理论数相比)。
例二:花斑、短毛兔与全色、长毛兔杂交
花式:花斑 (En)
对
全色 (en)
为显性
系,在形成配子时倾向于连在一起传递;交换
连锁和交换定律计算公式
连锁和交换定律计算公式连锁和交换定律是数学中非常重要的定律,它们在代数运算中起着至关重要的作用。
在本文中,我们将深入探讨这两个定律,并且通过一些具体的例子来加深对它们的理解。
首先,让我们来了解一下连锁定律。
连锁定律是指在代数运算中,当有多个运算符号相连时,可以按照不同的顺序进行运算,结果是相同的。
具体来说,对于任意三个数a、b和c,连锁定律可以表示为,a(bc) = (ab)c。
换句话说,无论是先计算b和c的乘积,还是先计算a和b的乘积,最后再与c相乘,最终的结果都是相同的。
举个例子来说明连锁定律。
假设我们有三个数2、3和4,那么根据连锁定律,我们可以得到,2(34) = (23)4。
具体来说,左边的式子等于212,结果是24;右边的式子等于64,结果也是24。
这个例子清楚地展示了连锁定律的作用,无论是先计算括号内的乘积,还是先计算括号外的乘积,最终的结果都是相同的。
接下来,让我们来了解一下交换定律。
交换定律是指在代数运算中,两个数进行运算时,可以改变它们的位置而不改变结果。
具体来说,对于任意两个数a和b,交换定律可以表示为,ab = ba。
换句话说,无论是先计算a和b的乘积,还是先计算b和a的乘积,最终的结果都是相同的。
举个例子来说明交换定律。
假设我们有两个数5和7,那么根据交换定律,我们可以得到,57 = 75。
具体来说,左边的式子等于35,右边的式子也等于35。
这个例子清楚地展示了交换定律的作用,无论是先计算5和7的乘积,还是先计算7和5的乘积,最终的结果都是相同的。
现在让我们通过一些具体的例子来加深对连锁和交换定律的理解。
首先,考虑以下的表达式,2(3+4)。
根据连锁定律,我们可以先计算括号内的和,得到27,结果是14。
现在,我们再来考虑另一个表达式,(23)+4。
根据交换定律,我们可以先计算2和3的乘积,得到6,然后再加上4,结果也是14。
这个例子再次证明了连锁和交换定律的有效性,无论是先计算括号内的和,还是先计算乘积再加上4,最终的结果都是相同的。
连锁互换定律
精选完整ppt课件
3
第一节 连锁与交换
精选完整ppt课件
4
一 连锁
1 性状连锁的发现
贝特生(1861-1926):
英国生物学家,
曾经重复过孟德尔的实验
1906年,贝特生(Bateson
W.)和贝拉特(Punnett R.
C.)在香豌豆的二对性状杂
交试验中 首先发现
易,可结大量种子
麦、稻、豆较难:回交去雄难,种
子少,故宜用自交测定法(F2资料)
精选完整ppt课件
26
2 自交法
例如第一节中的香豌豆资料
♣ 其中F2中纯合双隐性ppll个体数即为d2;
既组成F2表现型ppll的F1配子必然是pl,其频率d
精选完整ppt课件
27
已知香豌豆ppll个体数为1338株(相引数);
基因之间
的距离是用交换值来表示的。
准确地估算出交换值
确定基因在染色体上的相
对位置
把基因标志在染色体上。
两点测验和三点测验是基因定位可以采用的两种方
法。
精选完整ppt课件
32
1 两点测验:
♣ 先用三次杂交、再用三次测交(隐性纯合亲本)
分别测定两对基因间是否连锁,然后根据其交换值
确定它们在同一染色体上的位置。
亲本组合= (4032+4035)/8368×100% = 96.4%
精选完整ppt课件
重新组合= (149+152)/8368×100%
= 3.6%
11
摩尔根(Morgan TH.)等以果蝇为材料进行测交的结果
红眼长翅
pr+pr+vg+vg+ × 紫眼正常翅
连锁与互换
基因的连锁和互换规律
P
F2
42%
42%
8%
8%
基因的连锁和互换规律
P 配子 F1 配子
F2
基因的连锁和互换规律
P 配子 F1 配子 F2
基因的连锁和互换规律
基因的连锁和互换规律
连锁与互换规律的实质:
位于同一个染色体上的不同基因,再减数 分裂过程形成配子时,常常连在一起进入 配子中,在减数分裂形成四分体时,由于 同源染色体上的等位基因随着非姐妹染色 单体的交换而发生交换,因而产生基因重 组。
连锁与互换
台营中学
王占国
基因的连锁和互换规律
一、基因的连锁和互换的现象 二、基因的连锁和互换的原因
三、基因连锁与互换规律的实质
四、连锁和互换规律的区别与联系
五、三个遗传基本规律的区别和联系
基因的连锁和互换规律
基因的连锁和互换规律
P
F2
1
:
1
:
1 : 1
基因的连锁和互换规律
P
F2
50%
50%
基因的连锁和互换规律
在育种中的应用:
在连锁基因中,通过基因互换产生的新类 型为育种工作提供原始材料
基因的连锁和互换规律
(一)、区别:基因所在位置不同 Nhomakorabea分离规律:一对同源染色体上的
一对等位基因
自由组合规律:两对同源染色体上
的两对等位基因,基因重组为非同源染色 体自由组合。
连锁和互换规律:一对同源染色体 上的两对或多对等位基因,非同源染色 单体的局部互换而互换,从而导致基因 重组
练习一:
在生殖细胞进行减数分裂的过程中,基因的 动态变化与染色体位置的关系是: (1)基因的连锁发生在
连锁与互换
生物教学课件
遗传和变异
基因的连锁和互换规律
一、连锁 1、性状连锁遗传的发现 性状连锁遗传现象是Bateson和 Punnett(1906) 在香豌豆的杂交试验中首先发现及其测定 交换值:严格地讲是指同源染色体的非姊妹染色单体 间有关基因的染色体片段发生交换的频率。 就一个很短的交换染色体片段来说,交换值就等于重 组率。 在较大的染色体区段内,由于双交换或多交换常可发 生,因而用重组率来估计的交换值往往偏低。 交换值(%)=重组型配子/总配子数100 %
交换值变动在0-50%之间 交换值越接近0,连锁强度越大 交换值越接近50%,连锁强度越小, 当非等位基因为不完全连锁遗传时, 交换值总是大于0,而小于50%频率
交换值具有相对的稳定性,所以通常以这个 数值表示两个基因在同一染色体上的相对距 离,或称遗传距离。例如,Cc和Shsh这两对 连锁基因的交换值为3.5%
第四章 连锁与互换规律---遗传学课件
26
第三节 基因定位与连锁遗传图
一、基因定位 (一)、两点测验 (二)、三点测验 (三)、干扰和符合系数(并发率) 二、连锁遗传图
27
一、基因定位(gene location/localization)
二、连锁遗传的解释
每对相对性状是否符合分离规律?
性状 花色 相引组 花粉粒 形状 花色 相斥组 花粉粒 形状 F2表现型 紫花(显) 红花(隐) 长花粉粒(显) 圆花粉粒(隐) 紫花(显) 红花(隐) 长花粉粒(显) 圆花粉粒(隐) F2个体数 4831+390=5221 1338+393=1731 4831+393=5224 1338+390=1728 226+95=321 97+1=98 226+97=323 95+1=96 F2分离比例 3:1 3:1 3:1 3:1
一、 交换值的概念
交换值(cross-over value),也称重组率/重组值,是指测 交后重组型配子占总配子的百分率。即: 交换值 (%)= 看到的重组 型和亲组型 都是以表型 来表示 重组型 配子数 ×100%
总配子数
二、 交换值的测定
◆ 测交法 测交后代(Ft)的表现型的种类和比例直接反映被测个体 (如F1)产生配子的种类和比例。
49
50
二、 连锁遗传图(linkage map)
51
果蝇的4个连锁群
52
53
54
(1.5) 0.0 1.0
(33.0) (36.1) 30.7 33.7
连锁与互换规律
连锁与互换规律第五章连锁与互换规律1910年摩尔根将果蝇白眼基因定位于X上后,又发现一些伴性遗传基因,证明X上确有许多基因(人有23对染色体和十万个基因)。
提出问题:(1)同一染色体上众多基因如何排列(2)遗传传递有何规律经研究得到结论:(1)基因论(2)连锁交换规律第一节基因的连锁与交换一、连锁遗传现象(一)连锁遗传现象发现1906年英国学者贝特森(Bateson)和潘耐特(Pannett)研究香豌豆两对性状遗传时,首先发现的。
分离比不符花颜色紫色P对红色p显性,花粉粒形状长形L对圆形l显性。
F2合9:3:3:1,亲组合类型较多,重组合类型偏少。
原为同一亲本的两个性状,在F中常常有联系在一起的倾向,这说明来自同2一亲本的基因,有较多的在一起传递的可能。
但贝特森和潘耐特未能提出科学的产生配子数找原因,4种配子数目不等,亲组合类型多,解释。
摩尔根认为应从F1重组类型少。
(二)摩尔根的实验果蝇翅的长短,复眼的颜色长翅Vg,残翅vg,红色复眼Pr,紫色复眼pr解释相引组杂交红眼雄果蝇产生两种数目相同的配子,测交后代1:1,红眼雌果蝇产生四种配子,但亲组型配子Vg Pr和vg pr多,而重组型配子Vg pr和vgPr少。
同理可解释相斥组杂交结果。
果蝇翅的长短和眼的颜色是两对相对性状,这两对相对性状在杂交后代中具有某种程度的相关性或相连性,把这种现象叫连锁。
把这两对相对性状叫连锁性状。
控制连锁性状的基因叫连锁基因,连锁基因位于同一对同源染色体上。
连锁基因之间能够发生交换的连锁叫不完全连锁(雌果蝇),不能发生交换的连锁叫完全连锁(雄果蝇、雌家蚕)。
目前人们经过研究发现仅有两种动物雄果蝇和雌蚕属于完全连锁,不发生交换。
相引组:两个显性在一起,两个隐性在一起配成的杂交组合。
相斥组:一个显性一个隐性和一个隐性一个显性在一起配成的杂交组合。
(三)连锁的细胞学基础同一染色体上非等位基因随染色体一起遗传——完全连锁,又能按一定比例发生交换而重组——不完全连锁。
孟德尔连锁与互换定律的内容
孟德尔连锁与互换定律的内容1.引言孟德尔连锁是指遗传学中的一个重要概念,它描述了基因在染色体上的遗传方式。
而互换定律则是遗传学中的另一个基本规律,它描述了染色体间的互换现象。
本文将详细介绍孟德尔连锁和互换定律的相关内容。
2.孟德尔连锁孟德尔连锁是基因在染色体上的遗传方式,它是指染色体上的两个基因由于位于同一染色体上而表现出的共同遗传现象。
孟德尔连锁与基因的位置有关,位于同一染色体上的基因往往会被同时传递给后代,因此它们的遗传方式呈现出一种“连锁”的规律,相互之间不容易独立分离。
2.1孟德尔连锁的原理孟德尔连锁的原理可以通过遗传交叉实验来解释。
在遗传交叉实验中,通过交叉两个不同的个体,可以观察到基因在染色体上的排列方式。
如果两个基因位于同一染色体上并且没有发生基因重组,那么它们就会同时传递给后代,表现为孟德尔连锁。
2.2孟德尔连锁的应用孟德尔连锁在遗传学研究中有着广泛的应用。
通过研究孟德尔连锁关系,可以帮助科学家确定基因的位置和功能,进而理解遗传性状的传递规律。
此外,孟德尔连锁还可用于遗传疾病的诊断和筛查,有助于提高人类健康水平。
3.互换定律互换定律是指同一染色体上的互换事件。
在互换过程中,两条同源染色体之间的交换发生,导致基因的重新组合。
这种互换现象使得位于同一染色体上的基因可以进行重新组合,破坏了孟德尔连锁的规律。
3.1互换定律的过程互换定律的过程可以通过染色体结构的变化来描述。
在互换过程中,两条同源染色体之间的非姊妹染色单体发生交换,形成新的染色体组合。
这种互换现象使得基因在染色体上重新组合,导致孟德尔连锁被打破。
3.2互换定律的意义互换定律的发现对于遗传学的研究有着重要的意义。
它揭示了基因在染色体上的重排现象,说明了孟德尔连锁并非绝对,在基因重组的情况下,基因之间的连锁关系可以被打破。
互换定律的研究帮助我们更好地理解基因的遗传规律,为遗传学研究的进一步深入提供了基础。
4.结论孟德尔连锁与互换定律是遗传学中的重要内容。
基因的连锁与互换规律
基因的连锁与互换规律从图中可以看出:F 1雌果蝇(灰身长翅)在减数分裂产生配子时,绝大多数的初级卵母细胞中连锁基因不发生互换,即为连锁遗传,所以减数分裂时产生两种数量相等的亲本类型配子:BV :bv=1:1(多数)。
少数的初级卵母细胞中的连锁基因发生互换,则会产生四种配子为:BV :bv :Bv :bV=1:1:1:1(少数)。
注意:其中有50%是亲本类型配子,50%是重组类型配子。
所以把上述两种情况相加,F 1雌果蝇共产生四种配子:BV :bv :Bv :bV=多:多:少:少。
如把初级卵母细胞总数看成100,假设不发生交叉互换的初级卵母细胞为68个(68%),则产生的卵细胞为BV 和bv 各34个。
发生互换的初级卵母细胞为32个(32%),则产生的卵细胞为BV 、bv 、Bv 、bV 各8个。
两种情况相加,F 1产生的卵细胞为BV :42%、bv :42%、Bv :8%、Bv :8%。
这样就很容易理解F 1灰身长翅(雌)与黑身残翅(雄)测交后产生的后代的种类及比例:灰身长翅:黑身残翅:灰身残翅:黑身长翅=42%:42%:8%:8%。
学生根据此图也比较容易理解交换值的含义及公式在应用中的变化。
交换值= F 1重组型配子数/ F 1总配子数×100%=测交后代中的重组型数/测交后代总数×100% =1/2发生交换的性母细胞的百分比以此图为例,F 1雌果蝇的初级卵母细胞有32%发生了互换,则连锁基因间的交换值为16%(8%+8%)。
(如果其它生物的精母细胞发生了互换,与卵母细胞同理)练习1:在100个精母细胞的减数分裂中,有50 的细胞的染色体发生了一次互换,在所形成的配子中,换型的百分率占 ( C )A 、5%B 、15%C 、25%D 、35%解析:根据上述公式,重组配子(换型)率为发生互换的精母细胞百分比的一半,即50%÷2=25% 练习2:基因型为 的精原细胞120个,其中若有30 个在形成精子的过程中发生了交换,在正常发育的情况下能产生亲本基因型和重组基因型的精子数目依次是 ( B )测交配子测交后代灰身长翅 黑身残翅 灰身残翅黑身长翅 灰身长翅黑身残翅F 1♀ ♂ (多数)42% 42%8% 8%×图二A B a bA 、480、480、60、60、B 、210、210、30、30、C 、90、90、30、30、D 、240、240、60、60解析:30个精原细胞发生了互换,产生四种精子为:BV :30、bv :30、Bv :30、bV :30。
连锁互换定律整理
连锁与互换定律1、连锁遗传:原来在亲本中组合在一起的两个性状在F2中有连在一起遗传的倾向,称连锁遗传。
连锁相包括互引相(AB、ab)、互斥相(Ab、aB)。
2、亲本型:与两亲本相同的性状表现型称为亲本型;不同的称为重组型。
3、完全连锁遗传:仅有亲本型,缺少重组型,eg:仅见于雄果蝇、雌家蚕。
4、不完全连锁遗传:在连锁遗传的同时发生性状的交换和重组;绝大多数生物为不完全连锁遗传。
5、利用测交法验证连锁遗传现象:特点:连锁遗传的表现为: 两个亲本型配子数是相等,> 50%; 两个重组型配子数相等,< 50%。
亲组合类型多, 重组合类型出现少6、交换值(Cv):指不完全连锁的两基因间发生交换的频率(百分率,平均次数) 。
重组值(Rf):不完全连锁的双杂合体产生的重组型配子数占总配子数的比率(百分率)。
通常又把交换值称为重组值。
但严格说,交换值不能等同于重组值,因为若两个基因座之间相距较远,其间发生偶数次多重交换时,结果不形成重组型配子,用重组值代表交换值会造成偏低的估计。
7、连锁群:不能进行自由组合的基因群(位于同一染色体上的基因群)。
特点:一种生物连锁群的数目与染色体的对数是一致的。
即有n对染色体就有n个连锁群。
8、染色体作图:把染色体的多种基因相互之间的排列顺序确定下来。
连锁遗传的特征1)摩尔根连锁互换是经典遗传学第三定律,是孟德尔自由组合定律的补充;2)发生在两对或以上基因间,且基因在染色体上线性排列;3)连锁基因发生在同一对同源染色体上;4)减数分裂偶线期,同源染色体联会,非姐妹染色单体间的互换是形成重组型的分子基础;5)两对基因座间距离越大,交换概率越大、连锁性越弱;6)完全交换即为自由组合,完全不交换即为完全连锁情形;染色体作图(基因定位)方法包括两点测交法和三点测交法计算基因间相对距离(1)非等位基因在染色体上排列的直线距离与基因间的互换率大小有关;(2)遗传学上规定,以互换率的1%作为一个遗传单位将基因定位在一条直线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因的连锁和交换规律的实质是:
在进行减数分裂形成配子时, 在进行减数分裂形成配子时, 位于同一条染色体上的不同基因 常常连在一起进入配子; 常常连在一起进入配子; 在减数分裂形成四分体时, 在减数分裂形成四分体时, 位于同源染色体上的等位基因有时会随着 非姊妹染色单体的交换而发生交换, 非姊妹染色单体的交换而发生交换, 因而产生了基因的重组。 因而产生了基因的重组。
这样的雄果蝇,位于同一染色体上的两个基因( 和 、 这样的雄果蝇,位于同一染色体上的两个基因(B和V、b 同一染色体上的两个基因 和v)不分离,而是连在一起随着生殖细胞传递下去。 )不分离,而是连在一起随着生殖细胞传递下去。
连锁遗传:位于一对同源染色体上的两对或两对以上等位基因, 连锁遗传:位于一对同源染色体上的两对或两对以上等位基因, 在向下一代传递时,同一条染色体上的不同基因连在一起不相分离的现象, 在向下一代传递时,同一条染色体上的不同基因连在一起不相分离的现象, 叫做连锁遗传。 叫做连锁遗传。
基因连锁和互换规律 在实践上的应用
如果不利的性状和有利的性状连锁在一起, 如果不利的性状和有利的性状连锁在一起,那 就要采取措施,打破基因连锁,进行基因互换,让 就要采取措施,打破基因连锁,进行基因互换, 人们所要求的基因连锁在一起,培育出优良品种。 人们所要求的基因连锁在一起,培育出优良品种。
在1906年,科学家贝特生等在研究香豌豆的两对相 年 科学家贝特生等在研究香豌豆的两对相 对性状时,发现同一亲本的两种性状 在杂交后代中,比较 对性状时 发现同一亲本的两种性状,在杂交后代中 比较 发现同一亲本的两种性状 在杂交后代中 多地连在一起出现,并不按照孟德尔自由组合规律的比 多地连在一起出现 并不按照孟德尔自由组合规律的比 例发生分离,这使他们感到非常困惑 这使他们感到非常困惑,甚至对孟德尔的遗 例发生分离 这使他们感到非常困惑 甚至对孟德尔的遗 传规律产生怀疑。 传规律产生怀疑。美国的遗传学家摩尔根和他的同事用 果蝇做实验材料,进行了大量的遗传学研究 进行了大量的遗传学研究,终于解开了 果蝇做实验材料 进行了大量的遗传学研究 终于解开了 人们心中的疑团,这不仅证实了孟德尔的遗传规律的正 人们心中的疑团 这不仅证实了孟德尔的遗传规律的正 确性,并且丰富发展了关于两对 或两对以上)基因的遗传 并且丰富发展了关于两对(或两对以上 确性 并且丰富发展了关于两对 或两对以上 基因的遗传 理论,提出了遗传的第三个规律 基因的连锁互换规律。 提出了遗传的第三个规律----基因的连锁互换规律 理论 提出了遗传的第三个规律 基因的连锁互换规律。Fra bibliotekb v
雌
不完全连锁遗传 P
(BBVV) (bbvv)
果 蝇 的 连 锁 和 互 换 遗 传
(bbVv) 8%
F1
(BbVv) (bbvv)
(BbVv) 42%
(bbvv)42%
(Bbvv) 8%
雌果蝇的位于同一个染色体上的两个基因大 同一个染色体上的两个基因 F1雌果蝇的位于同一个染色体上的两个基因大 都是连锁遗传的 遗传的, 都是连锁遗传的,因此生成的 B V 和 b v 两种 配子特别多,但也有小部分因为交叉互换 小部分因为交叉互换而产生 配子特别多,但也有小部分因为交叉互换而产生 两种新的基因组合 B v 和b V b b B b B b ×v v 雄 F1测交 雌 V v v V 灰身长翅 黑身残翅 B V B b V v 灰身长翅 42% b v B v b V b v
×
b v
b v
b 雌 v 黑身残翅 b v
B b V v 灰身长翅50% 灰身长翅
b b v v 黑身残翅50% 黑身残翅
基因连锁和互换的原因
灰身长翅果蝇的灰身基因和长翅基因位 同一染色体上 表示。 于同一染色体上,以 B V 表示。 黑身残翅果蝇的黑身基因和残翅基因位 同一染色体上 表示。 于同一染色体上,以 b v 表示。 经过杂交, 是灰身长翅, 经过杂交,F1是灰身长翅,其基因型是 B V BbVv( )。 。
b b v v 黑身残翅 42%
B b b b v v V v 灰身残翅 黑身长翅 8% 8%
不完全连锁遗传: 不完全连锁遗传:
由于基因在向下一代传递的过程中,不仅有连锁, 由于基因在向下一代传递的过程中,不仅有连锁, 还出现了交换,因此,这种遗传是不完全连锁遗传。 还出现了交换,因此,这种遗传是不完全连锁遗传。
基因的连锁和基因的自由组合规律相互矛盾吗? 不矛盾: 不矛盾: 它们是在不同情况下发生的遗传规律: 它们是在不同情况下发生的遗传规律: 位于非同源染色体上的两对或多对基因, 位于非同源染色体上的两对或多对基因, 是按照自由组合规律向后代传递的; 是按照自由组合规律向后代传递的; 而位于同源染色体上的两对或多对基因, 而位于同源染色体上的两对或多对基因, 则是按照连锁和交换规律向后代传递的。 则是按照连锁和交换规律向后代传递的。
名称 类别 亲代相对性 状的对数
基因的分 离规律 一对相对 性状
基因的自由 组合规律 两对相对 性状
基因的连锁互换规律
两对相对性状 B b V v
F1基因在 Y y D d 染色体上 R r 区 的位置 F1形成配 2种: 4种: 2种: 种 种 种 子的种类 D:d=1:1 YR:yr:Yr:yR BV:bv= : : =1:1:1:1 : : : 和比例 1:1 别 测交后代 显:隐 双显:双隐: 双显: 双显:双隐:显 双显:双 隐显= 隐:隐显 隐=1:1 : 比例 =1:1 :
雄
P
果
灰身长翅
(BBVV)
×
雄
黑身残翅
(bbvv)
蝇 的 连 锁 遗 传
F1测交
×
雌
灰身长翅
(BbVv)
黑身残翅
(bbvv)
测交
灰身长翅
(BbVv) 50%
黑身残翅
(bbvv)50%
P 配子
B B V V 灰身长翅 B V
×
b b v v 黑身残翅 b v
F1测交 配子 测交 后代
B V
B b 雄V v 灰身长翅
1:1:1:1 : : :
4种: 种
BV:bv:Bv:bV =多:多:少: 多 少
双显:双隐: 双显:双隐:显 隐显= 隐:隐显 多:多:少:少
基因的自由组合规律和基因的连锁互换 建立在基因的分离规律的基础上 规律 是建立在基因的分离规律的基础上 生物形成配子时, 的,生物形成配子时,在减数第一次分裂的 过程中, 过程中,同源染色体上的等位基因都要彼此 分离。在分离之前, 分离。在分离之前,可能发生部分染色体的 交叉互换。在同源染色体分离的基础上, 交叉互换。在同源染色体分离的基础上,非 同源染色体上的非等位基因又进行自由组合, 同源染色体上的非等位基因又进行自由组合, 从而形成各种组合的配子。 从而形成各种组合的配子。可见三大规律在 配子形成过程中相互联系 同时进行、 相互联系、 配子形成过程中相互联系、同时进行、同时 作用。 作用。
发现染色体的遗传机制, 发现染色体的遗传机制, 创立染色体遗传理论, 创立染色体遗传理论, 现代实验生物学奠基人。 实验生物学奠基人 现代实验生物学奠基人。 年到1928年, 从1904年到 年到 年 摩尔根创建了以果蝇为实验材料的研究室, 果蝇为实验材料的研究室 摩尔根创建了以果蝇为实验材料的研究室 从事进化和遗传方面的工作。 从事进化和遗传方面的工作。 美国遗传学之父” “美国遗传学之父” 现代遗传学的先驱” “现代遗传学的先驱” 1933年,获诺贝尔生理学或医学奖 年 摩尔根